
UNIVERSITY OF BERGEN
DEPARTMENT OF INFORMATICS

Polar Codes and LDPC Codes in
5G New Radio

Author: Kristian Wøhlk Jensen
Supervisor: Chunlei Li

June 30, 2022



Abstract

The channel coding theorem by Shannon affirms the existence of digital
communication systems that can achieve error-free communication over a
noisy channel. However, channel coding increases the reliability of com-
munication by adding structured redundancy and introducing extra com-
putational costs. The prime objectives for the 5th generation mobile net-
work (5G) are increased reliability, less redundancy, and lower latency.
LDPC codes and polar codes are two promising communication systems
for meeting this objective. This thesis is a survey on the encoding/decoding
process and the reliability of communication in the communication sys-
tem utilized in the 5G developed by 3rd Generation Partnership Project
(3GPP). We will evaluate the encoding/decoding process over three of
the most studied communication channels, namely: the Binary Symmetric
Channel (BSC), the Binary Erasure Channel (BEC), and the Additive White
Gaussian Noise (AWGN) channel.
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Chapter 1

Introduction

Figure 1.1: Digital communication is the act of transmitting packets from
sender to receiver over a channel. Sender adds structured information to
the transmitted information so that the receiver can better correct faults
induced by the channel to the received packet.

The 5G structure of LDPC codes and polar codes specified in the standard
developed by 3GPP specifies the intermediate steps the sender must fol-
low to achieve communication, called encoding. While the intermediate
steps the receiver must follow, called decoding, are not mentioned in the
standard.

The encoding detailed in the standard assumes much background knowl-
edge from the reader. At the same time, the decoding is much left to the
individual developer to research in order to piece together a coherent de-
coder. Developing a well-functioning decoder is not easy, as many in-
dividual studies propose different solutions to achieve both efficient and
reliable communication.
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This thesis will research proposed decoding algorithms and develop a
coherent communication system to profile their contribution to reliable
communication with the transmission of smaller packets. The size of the
packet to be transmitted can, in some cases, be too large for the encoder/decoder
to handle as one unit. The packet is then segmented into a collection of
smaller-sized packets. Ideally, our project should include the segmenta-
tion of incoming packets. However, this thesis will focus on the perfor-
mance of LDPC codes and polar codes in 5G of input packet sizes appro-
priate for the encoder/decoder.
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Chapter 2

Information Theory

Information theory is the theoretical study of achieving an arbitrarily small
probability of wrong estimation of the sent information sequence by only
reading the received information sequence. In digital communication, an
arbitrarily small chance of incorrectly determining the transmitted infor-
mation is referred to as error-free communication.

If we were to use a perfect channel, the sender would be guaranteed that
the content arriving at the receiver is identical to the sent information.
However, in practice, there is no such thing as a perfect channel; non-
perfect channels are referred to as noisy channels. Noise over a channel
is defined by the probability of each symbol in the information sequence
arriving as a value different from its corresponding value at the receiver.
All channels have varying amounts of noise; the noise over each channel
is never assumed to be constant. If a received symbol is not identical to
the transmitted symbol, it is said to be erroneous. A fundamental concept
of information theory is that information is the resolution of uncertainty
regarding an outcome.
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In digital communication, the information sequence requested by the re-
ceiver from the sender is a given sequence of binary numbers a of length
A. The elements of a are one of two values and are drawn from the Galios
Field of size two (GF(2)), which is the set containing the elements 0 and
1. The information sequence a is given as a = {a0, a1, . . . , aA−1}, where
A = |a|, ai ∈ GF(2), and GF(2) = {0, 1}

By introducing an encoder, error-free communication can be achieved by
appending parity bits to a. The purpose of the encoder is to add the parity
bits as structured additional information to a through intermediate steps,
providing error detection and error correction capabilities at the receiver.
The collection of these intermediate steps at the sender is called encoding.
Through these intermediate steps, the codeword is assigned a different
variable notation and a corresponding variable for the codeword length to
easier distinguish each step in the encoding process. The final codeword
to be transmitted is always denoted as x and is of length E.

The transmission rate R is given as a ratio of information bits A to the
total number of transmitted bits E, on the form R = A

E . We want the
information rate to be as close to 1 as possible, but the noise property of
the channel forces the rate to be lower. The higher the noise, the lower the
rate.

Information theory heavily builds on the work of Claude Shannon, A Math-
ematical Theory of Communication [14], which laid the groundwork for the
mathematical explanation and proof of error-free communication while
achieving a non-zero rate.

2.1 Shannon’s Channel Coding Theorem

The work of [14], showed and proved how to calculate the maximum rate
of a channel given its noise level while achieving error-free communica-
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tion. This maximum rate is called the channel capacity C, often referred to
as the Shannon limit, and is defined as:

C := max
p(x)

I(X; Y)

Where X is the probability distribution of an input ensemble, and Y is the
probability distribution of an output ensemble.
The following definitions explain the Shannon limit.

Entropy
The Shannon information content of an outcome x in X is defined as:

h(x) = −log2p(x)

The entropy of a single outcome h(x) is the amount of uncertainty resolved
by learning the outcome of an event x, occurring with probability p(x).
The entropy of an ensemble X is the average information content of all
single outcomes x ∈ X expressed as:

H(X) =
n

∑
i=1

p(x) h(x)

Note that the entropy H(X) depends upon the probabilities of an outcome
x and not the specific values of x.

Conditional Entropy
Conditional entropy H(X |Y) is the measure of information needed to
fully determine the outcome of a probability ensemble X when observing
the outcome of a probability ensemble Y. This gives us the equation:

H(X |Y) = − ∑
x∈X

H(Y | x)

Joint Entropy
Suppose we map a value x of the ensemble X to a value y of an ensemble
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Y, and we want to measure the dependencies between ensembles X and
Y. The uncertainty of a joint variable ensemble H(X, Y) is the uncertainty
in the ensemble Y plus the uncertainty remaining in the ensemble X when
Y is observed:

H(X, Y) = H(X) + H(Y | X)
symmetry

= H(Y) + H(X |Y)

Mutual Information
The mutual information I(X; Y) of two ensembles X and Y is the differ-
ence between the average uncertainty in X and the uncertainty remaining
in X after observing Y. The mutual information I(X; Y) is defined by:

I(X; Y) = H(X)− H(X |Y) = H(X)− H(Y) + H(X, Y) (2.1)

To maximize equation (2.1), we need to maximize H(X) and minimize
H(X |Y). H(X) is maximum when the probability ensemble X is uni-
formly distributed. When the probability ensemble X is uniformly dis-
tributed and x ∈ GF(2), the entropy H(X) = 1. H(Y) is 0 as there is no
uncertainty of the outcome of the received values at the receiver. H(X, Y)
depends on the channel utilized and will be further discussed as their re-
spective channels are explained in chapter 3.2.

Channel capacity is the difference between the information gained from
learning X and the uncertainty remaining about X once its joint variable
Y is observed.

Shannon’s limit [10] states the following.

1. The channel used for digital communication has the property that
for any chance of bit error pb ≥ 0, and rate R ≤ C, then for a large
enough codeword length N there exists a code of length N and rate ≥
R accompanied with a decoding algorithm such that the maximum
probability of decoding to an erroneous codeword is less than pb.
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2. If a probability of bit error pb is acceptable, rates up to R are achiev-
able, where

R = 1 − C

3. For any probability of bit error pb rates greater than R are not achiev-
able.

The channel capacity is the maximum rate R which gives us the minimum
amount of parity bits needed to ensure an arbitrarily low probability of
wrong recovery of the information bits a, given the received codeword y.
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Chapter 3

Channel Coding

Channel coding is the field of applying information theory to an encoder/decoder
system to achieve communication with an acceptable rate of erroneous bits
while maintaining low complexity of the encoder/decoder. The primary
function of channel coding is to give the receiver the extra information and
the necessary tools to detect and correct the erroneous symbols induced by
the transmission channel.

Many channel coding systems have been proposed since Shannon’s chan-
nel coding theorem. As the channel coding systems became more ad-
vanced, information theory became more integrated into the implemen-
tation of channel coding systems instead of being used as a tool to evalu-
ate its performance. Figure 3.1 shows the encoder and decoder’s role in a
communication model to achieve reliable communication better.
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Figure 3.1: The intermediate steps in the coding system for communication

• The source is the resting place of information in the form of binary
digits, which is requested by the sink.

• The encoder segments the information into chunks if necessary and
adds redundancy to each chunk to form a codeword.

• The modulation converts each bit to a signal appropriate to the chan-
nel.

• The channel is the medium by which the codeword is transmitted.

• The noise is an uncontrollable factor that has the property of altering
the symbols of a codeword transmitted over the channel.

• The demodulation determines the reliability of each incoming bit. Higher
levels of noise output less reliable bits at the receiver.

• The decoder uses the redundant information introduced by the en-
coder to detect and correct erroneous bits.

• The sink is the final destination of the data requested from the source.

Communication systems are run for different rates over varying noise lev-
els to better profile the error detection and correction performance. This is
done as the noise is difficult to accurately estimate in practice [10].
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3.1 Binary Discrete Memoryless Channels

This chapter will discuss the three communication channels utilized in this
thesis. In doing so, we will first review the shared characteristics of the
channels, and later discuss how they differ. All three channels are said to
be Binary Discrete Memoryless Channel (B DMC). The definition of a B
DMC is:

• Binary: The values of the codeword xi transmitted over the channel
can take one of two values, on the form xi ∈ GF(2).

• Discrete: Communication is discrete when the transmitted codeword
of length E uses a finite number of transmissions to send its code-
word. For a codeword of length E, the channel is used E times.

• Memoryless: A channel is memoryless in that learning the value of
one incoming symbol yi gives us no information about previous in-
coming symbols yi−1 or following incoming symbols yi+1. Therefore
the value of the corresponding noise symbol ni gives no informa-
tion about neither the next incoming symbol yi+1 nor the next noise
symbol ni+1. As each symbol in both xi and ni are statistically inde-
pendent, it is sufficient to model each channel on the transmission of
a single symbol xi.

Noise
The noise is a random quantity with the expected value of 0, where each
drawn quantity is independent of one another, and are added to each
transmitted symbol. By the central limit theorem, a significant sample size
of many similar and independent random effects added together produces
a normal distribution. It is therefore normal to model the noise as vari-
ables randomly drawn from the normal distribution N0(0, σ2), also called
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Gaussian distribution, with the expected value of the noise being 0, and
the variance σ2 is the predicted channel noise . The received symbol yi is
the channel noise ni added to the transmitted codeword symbol xi on the
form yi = xi + ni.

Figure 3.2: The received symbol yi is the noise ni added to the sent symbol
xi by addition ⊕.

The difference between the three channels is the mapping ni : xi → yi,
and how much uncertainty of xi can be resolved by yi. The correlation
between the sent symbol, noise, and the received signal can be modeled
by a transition matrix T.

Let SX and SY be the set from which the sent symbol xi, and the received
symbol yi can take their values, respectively. A transition matrix T shows
the mapping of the channel input variable xi to the channel output variable
yi.

T =


p(xi = SX0 | yi = SY0) . . . p(xi = SX|SX|−1 | yi = SY0)

...
...

...
p(xi = SX0 | yi = SY|SY|−1) . . . p(xi = SX|SX|−1 | yi = SY|SY|−1)


(3.1)

Each column is assigned to a specific input symbol xi, and each row is
assigned to a particular output symbol yi, where each element in the row
is the probability of the symbol xi being sent, given that we observe yi.
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A channel is said to be symmetric if both the rows are permutations of
one another, and the columns are permutations of one another. A chan-
nel is said to be weakly symmetric if it is symmetric, and the rows of the
transition matrix add up to the same value [10]. For a weakly symmetric
channel, the entropy of a row in the transition matrix T does not depend
on the choice of its row. Meaning that the input symbol to the channel
does not affect the probability of a faulty transmission.

For a weakly symmetric channel we can write that the mutual information
I(X; Y) is:

I(X; Y) = H(Y)− H(Y | X) = H(Y)− H(Tr) = log2|X| − H(Tr)

Where Tr is a row of the transition matrix T. With equality if and only if X
is uniformly distributed. X being uniformly distributed implies that Y is
also uniformly distributed. Over a B DMC with uniform input distribution
P(x = 0) = P(x = 1) = 1

2 , where xi ∈ GF(2), the channel capacity of a
given symmetric channel equals the mutual information I(X; Y) between
its input ensemble X and its output ensemble Y.

3.2 The three channels

The three channels covered in the thesis are the Binary Symmetric Channel
(BSC), Binary Erasure Channel (BEC), and the Additive White Gaussian
Noise (AWGN) channel with Binary-Phase Key Shifting (BPSK) modula-
tion. They can be defined by the set of values the input xi, and the output
yi take. The three channels all share the characteristic that the channel in-
put xi can be one of two values drawn from GF(2), while the values from
which the channel output yi is drawn differ in all three channels.
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3.2.1 Additive White Gaussian Noise Channel

The AWGN channel is a channel that sends and receives continuous sig-
nals, where the receiver collects the continuous signals into chucks through
sampling. We omit the details of sampling and view the AWGN as a
discrete-time channel, where each sample is fed into the demodulator. The
channel is called Additive White Gaussian Noise since the instances of
noise added to the signal are uncorrelated and drawn from the Gaussian
distribution.

There are different ways to modulate each incoming bit to an appropriate
signal for the channel. Here we will review the Binary-Phase Key Shifting
(BPSK). In BPSK, each bit xi is modulated to x̃i according to equation (3.2).

x̃i =


√

Eb if xi = 0

−
√

Eb if xi = 1
(3.2)

Eb is the quantity of energy per information bit. After encoding, the energy
put into each bit in the transmission codeword is Ec =

√
Eb × R. For

simplicity under simulation we set Eb = 1, and get Ec = Eb × R.

The noise maps ni : xi → yi by yi = x̃i + ni, where ni is a random variable
drawn from the Gaussian distribution σ2, N0(0, σ2).

The channel capacity C is:

C = W log2

(
1 +

2REb
N0

)
(3.3)

where W is the bandwidth and N0 is the normal distribution [17].
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3.2.2 Binary Symmetric Channel

The BSC is a B DMC where each received symbol yi is identical to the
transmitted symbol xi by probability 1 − p, and different by probability
p. Let xi ∈ GF(2) be the symbol from the transmitted codeword x, and
yi ∈ GF(2) be the symbol from the corresponding channel output of xi.

The noise maps ni : xi → yi by yi = xi ⊕ ni, where ni is a random variable
drawn from the uniform distribution with P(ni = 1) = p and P(ni = 0) =
1 − p, with summation ⊕ being the remainder of sum operation modulo
2. Therefore, the received symbol yi in BSC is:

yi =

xi ⊕ 1 if ni ≤ p

xi otherwise

By equation (3.1) its transition matrix T is:

T =

[
p(xi = 0 | yi = 0) p(xi = 1 | yi = 0)
p(xi = 0 | yi = 1) p(xi = 1 | yi = 1)

]
=

[
1 − p p

p 1 − p

]

The transition matrix T is visualized in Figure 3.3.

Figure 3.3: Representation of the transition matrix T for the BSC channel.

The BSC is a weakly symmetric channel as the rows of the transition ma-
trix T are permutations of one another, the columns are permutations of

14



one another, and the sum of every row are equal. Therefore, its channel
capacity C is expressed by any row Tr.

C = log|R| − H(Tr) = 1 − H(x) (3.4)

A plot of the channel capacity for the BSC is shown in Figure 3.4.

Figure 3.4: Channel capacity for the BSC with crossover probability p on
the x-axis and channel capacity C on the y-axis.

3.2.3 Binary Erasure Channel

The BEC is a B DMC where each bit may be lost under transmission with
probability α or successfully transmitted by probability 1 − α, where the
loss of a symbol is given by the character e. Let xi ∈ GF(2) be the symbol
from the transmitted codeword x, and yi ∈ {0, e, 1} be the symbol from
the corresponding channel output of xi.
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The noise maps ni : xi → yi by yi = xi ⊕ ni, with some abuse of notation,
where ni is a variable drawn for the uniform distribution. Therefore, the
received symbol yi in BEC is:

yi =

e if ni ≤ α

xi otherwise

By equation (3.1) its transition matrix T is:

T =

p(xi = 0 | yi = 0) p(xi = 1 | yi = 0)
p(xi = 0 | yi = e) p(xi = 1 | yi = e)
p(xi = 0 | yi = 1) p(xi = 1 | yi = 1)

 =

1 − α 0
α α

0 1 − α


The transition matrix T is visualized in Figure 3.5.

Figure 3.5: Representation of BEC channel

The channel capacity C of the BEC channel is:

C = 1 − α (3.5)
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Figure 3.6: Channel capacity for the BEC with crossover probability α on
the x-axis and channel capacity C on the y-axis.

3.3 Log-Likelihood Ratio

One might be able to see that while reading the codeword y = 0⃗ over two
different channels over the BSC, one with crossover probability p1 = 0.0,
and the other p2 = 0.5, that y2 received from channel with p2 should be
treated with more precaution than y1 received from channel with p1 as
each bit in y2 is totally random. Yet, the two codewords are treated with
equal certainty.

Instead of passing the output from the channel directly to the decoder, one
can pass the probability of each received bit being correct, called the soft
information. Since xi ∈ GF(2) the soft information of yi can be expressed
by (3.6).

LR(yi) =
P(xi = 0 | yi)

P(xi = 1 | yi)
yi (3.6)
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called the posteriori probability. One usually passes the log of equation
(3.6) to the decoder to avoid underflow representation, called the Log-
Likelihood Ratio (LLR). The shorthand notation for LLR of equation (3.6)
is:

Λ(yi) := log
p0

p1
yi (3.7)

The LLR instances for the AWGN, BSC, and BEC are given by equation
(3.8), (3.9), and (3.10), respectively.

Λ(yi)
AWGN =

2
√

Ec

σ2 yi (3.8)

Λ(yi)
BSC =

log
(1−p

p
)

if yi = 0

log
( p

1−p
)

if yi = 1
(3.9)

which can be simplified to Λ(yi)
BSC = (−1)yi log

(1−p
p
)
.

Λ(yi)
BEC =


log(1

0) = ∞ if yi = 0

log(0
1) = −∞ if yi = 1

log(1/2
1/2) = 0 if yi = e

(3.10)

It is normal to let the decoder operate on the soft values as they contain
more information about the correctness of each bit, increasing the error
correction performance of the decoder. However, when the decoder termi-
nates it outputs the hard decision of its soft information. The hard decision
x̂i from the received symbol yi is given by equation (3.11).

x̂i =

0 if sign(yi) ≥ 0

1 otherwise
(3.11)
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3.4 Repetition Codes

Through repetition codes, we will discuss that obtaining a communication
model which performs better than uncoded transmission, is not as trivial
as it may seem.

The (N, K) repetition code produce a codeword d of length N by repeating
K = 1 input bits N times. An error is detected at the receiver if the incom-
ing codeword y is neither a sequence of N 1-bits nor 0-bits. Decoding
is then performed by choosing the candidate codeword d̂ that maximizes
the probability of d̂ being equal to d given the received codeword y. Under
equal input distribution in the channel coder, ML decoding is:

d̂ = arg max
d

p(y | d = d̂)

When y is described in terms of Log-Likelihood Ratio (LLR)s, the ML de-
cisions can be seen as d̂i = sign(∑i+K

i yi). If N were to be an even number
this could lead to d̂i = 0, so the decoder might not output a candidate
codeword d̂i on ∑i+K

i yi, this is why N should be an odd number.

Repetition codes’ correction capability is t = ⌈(n − 1)/2⌉. The probability
of exactly i erroneous bits out of N bits is:

Pi
b =

(
N
i

)
pi(1 − p)N−i

The probability of decoding error PN
b is given by:

PN
b =

N

∑
i=t+1

(
N
i

)
pi(1 − p)N−i

Figure 3.7 illustrates that the decoding error probability decrease as N in-
creases. It is then possible to obtain an arbitrarily small probability of error,
but at the cost of a very low rate.
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Figure 3.7: Probability of wrongful decoding of repetition codes in BSC
with crossover probability p = 0.1.

Repetition Codes over AWGN
Suppose the transmitter has Eb = 1 Watt of energy available for each bit of
information. Under the (N, 1) repetition code the energy per coded bit Ec

is Ec = Eb × R. With less energy available per bit, the probability of error
becomes:

p = Q
(√

2Ec/N0

)
= Q

(√
2Eb/N × N0

)
The crossover probability p in the (N, K) repetition code is higher than in
the uncoded transmission due to the coding scheme [11].

The decoder makes the hard decision d̂i by:

d̂i =

0 if ∑i+K
i=1 yi+K ≥ 0

1 if ∑i+K
i=1 yi+K < 0
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since each
√

Ec =
√

Eb × R, d̂ = ∑ yi =
√

Eb. This implies that the proba-
bility of error for the (E, 1) repetition code over AWGN is:

Pb = Q
(√

2Eb/N0
)

which is the same as for uncoded transmission [11]. Figure 3.8 shows the
probability of error with repetition codes of (1, 1), (3, 1), and (5, 1) over
the AWGN channel are shown in Figure 3.8. From Figure 3.8 we can con-
clude that repetition codes does not increase the chance of error-free com-
munication compared to uncoded transmission.

No further encoding steps are applied to the (N, K) repetition code, mak-
ing the transmission codeword x = d, of length E = N.

Figure 3.8: Probability of wrongful decoding of repetition codes in AWGN
channel.
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3.5 Hamming Codes

Through Hamming codes, we will discuss encoding of an (N, K) linear
block code by use of a generator matrix G, and a method to check the
correctness of the incoming codeword y by a Parity-Check Matrix (PCM)
H associated with G.

A channel coding system is said to be an (N, K) linear block code if it takes
K input bits and produces N output bits by a generator matrix G. The
codeword d can be generated by matrix-matrix multiplication d = a × G.

Hamming codes invented by R. W. Hamming in his work titled Error de-
tecting and error correcting codes [8], is one of the first non-trivial codes as
they perform better than uncoded transmission. A (7, 4) hamming code
is a linear block code that takes K = 4 information bits and produces a
codeword of length N = 7. Since hamming codes are linear block codes,
they can be expressed by a systematic generator matrix G = (Ik | CT), and
the PCM H = (C | In−k). For a matrix H to be a PCM of G, it must satisfy
the conditions H × dT = 0⃗ and G × HT = 0⃗.

The set of all codewords D are obtained through linear combinations of the
rows in G. The codeword space is |D| = 24 = 16. It can be verified that the
minimum distance dmin = 3 for the (7, 4) Hamming code by generating
D, and noting the minimum distance of any two codewords d ∈ D is
three. The code is capable of detecting dmin − 1 = 2 errors and correcting
t = ⌊(dmin − 1)/2⌋ = 1 error.

No further encoding steps are applied to the (N, K) Hamming code, mak-
ing the transmission codeword x = d, of length E = N.
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3.5.1 Syndrome Decoding

Let d̂ be the hard decision of d by the received codeword y, and H be the
given PCM. The syndrome s is:

s = H × d̂

The procedure of syndrome decoding involves finding the syndrome s by
as few linear combinations of the columns from H [10].

let a = [0, 1, 0, 1], and n = [0, 1, 0, 0, 0, 0, 0]. Additionally, let generator
matrix G = (Ik | CT) and PCM H = (C | In−k) be:

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1



d is then d = a×G = [0, 1, 1, 1, 0, 0, 1], making y = d⊕n = [1, 1, 1, 0, 1, 0, 1],
and our syndrome s = H × yT = [1, 0, 1].
Since p ≤ 1/2, we know that a bit flip is less likely than successful trans-
mission. We then look for as few linear combinations of the columns in
H that match the syndrome s. Indeed, the second column of H equals s.
Therefore, we estimate that the error occurred in the 2nd position of y.

3.6 Cyclic-Redundancy Check

Cyclic-Redundancy Check (CRC) is used to detect transmission errors in a
codeword ĉ [16]. Before transmission, the codeword a is appended with a
check value derived from the remainder of polynomial long division over
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GF(2), of the incoming codeword and a pre-specified generator polyno-
mial gP(x) of degree P. The A incoming information bits of a are used
to compute the P checksum bits appended to a. When the CRC-bits are
directly input to the encoder, the CRC vector is denoted by c, otherwise it
will be denoted by c′. In both cases, the CRC vector is of length K = A+ P.

The CRC computation implemented in this thesis is based on the work
of [13]. The CRC generator matrix CCRC

A×P can be constructed recursively
through the generator polynomial gP(x). The last row of CCRC is given by
the coefficients of gP(x) in decreasing order, excluding the highest term.
The last row of CCRC is computed by CCRC(A, i − 1) = gP−i with i ∈
{1, . . . , P}. Previous rows are computed by equation (3.12). Vector c of
length K is computed as c = [a | a × CCRC].

CCRC(k, i) = CCRC(k + 1, i + 1)⊕
(

CCRC(k + 1, 1)× gP−i

)
CCRC(k, P) = CCRC(k + 1, 1)× g0

(3.12)

The available generator polynomials gP(x) in 5G are given under Sub-
clause 5.1 in [1] and are as follows:

g6(x) =x6 + x5 + 1

g11(x) =x11 + x10 + x9 + x5 + 1

g24(x) =x24 + x23 + x21 + x20 + x17 + x15 + x13 + x12 + x8 + x4 + x2 + x + 1

At the receiver, the bit-polynomial division is again performed with the
same generator polynomial gP(x). When the remainder at the receiver is
0⃗, the codeword is deemed valid and forwarded to the application layer. If
not, the receiver can discard the codeword and request it once more from
the sender.

Let A = 12, and g6(x) be the encoding polynomial. By equation (3.12) we
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get the encoding matrix CCRC
A×P:

CCRC =



1 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 1 1 0 1 0
0 1 1 1 0 1
1 1 1 1 1 0
0 1 1 1 1 1
1 1 1 1 1 1
1 0 1 1 1 1
1 0 0 1 1 1
1 0 0 0 1 1
1 0 0 0 0 1


The last row of CCRC is the binary representation of g6(x) = 1x6 + 1x5 +

0x4 + 0x3 + 0x2 + 0x1 + 1x0, with decreasing values of the exponents and
leaving out the highest degree term x6. Computation of second-to-last row
of CCRC is shown in Figure 3.9. The colored arrows shows the computation
of the first equation of (3.12), and the last grey arrow shows the second
equation of (3.12).

Figure 3.9: Visual representation of computation of row k=10 of CCRC ac-
cording to (3.12).
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3.7 Rate Matching

If the discrete channel in use for transmission has E pre-determined fi-
nite amount of channel uses, it might be that the length of codeword N
is greater than or shorter than E. The core function of rate matching is to
match the length of the encoded codeword N to E = N − U, by either
leaving out or introducing U more bits to our codeword d. Both punc-
turing and shortening reduce the length of the encoded codeword while
repetition extends its length.

The rate matching implementation differs from polar codes to LDPC codes.
Still, the goal is to satisfy the equation E = N − U, where E is the number
of available bits to be transmitted. Puncturing leave out U codeword bits
in the beginning of the codeword, while shortening leave out U codeword
bits at the end of the codeword. Rate Matching is often visualized as a
circular buffer seen in the Figure 3.10.

Figure 3.10: Rate Matching in terms of a circular buffer, where the dotted
lines represent the U bits not to be transmitted in order to match N to E.
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Chapter 4

Polar Codes

Polar codes introduced by Erdal Arikan in his work titled Channel Polar-
ization: A Method for Constructing Capacity-Achieving Codes for Symmetric
Binary-Input Memoryless Channels [2], break the notion that a codeword
needs to be sent over a channel where each codeword bit is equally af-
fected by the noise. Rather, in polar codes, each bit position in the code-
word can be seen as being transmitted over its own synthetic channel. Po-
lar codes use the basis of mutual information to derive the channel capac-
ity of the synthetic channels W from the original channel. The channels are
called synthetic as the codeword is sent over the same physical channel,
but each bit position has a different certainty of being decoded correctly,
given by the capacity C of their corresponding synthetic channel W.

4.1 Preliminaries for Polar Codes

Polar codes differ from previous capacity-approaching codes in that they
are mathematically proven. However, they are proven as the codeword

27



Figure 4.1: Figure for polar encoding of codeword x of length N = 2 by
input vector u. Each symbol xi is transmitted over their own synthetic
channel W, where the received symbol for xi is yi.

length N approaches +∞, which is not feasible as a transmitted block
length. However, polar codes are still attractive as encoding and decoding
can be implemented in O(n log n).

4.2 Polarization

One channel is split into several independent synthetic channels. Each
channel sends its bit with different reliability measures, meaning every
bit has a different probability of being decoded correctly. Increasing N
tends the capacity of some synthetic channels toward 1 (noiseless channel),
while other channels tend toward 0 (fully noisy channel). This concept is
called polarization and is where the name polar codes comes from.
The foundation of polar codes lies in the polarization effect on the base
matrix G2 =

[
1 0
1 1

]
, often referred to as the channel transformation matrix or

kernel matrix [5].

We will discuss the concept of polarization over N = 2.

We want to show that we keep the global property of the mutual informa-
tion even though we derive new channels from the original.

I((X0, X1); (Y0, Y1)) = 2I(X0, Y0)
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I((X0, X1); (Y0, Y1)) = H(X0, X1)− H(X0, X1 | Y0, Y1)

= H(X0) + H(X1 | X0)−
(

H(X0 | Y0, Y1) + H(X1 | X0, Y0, Y1)
)

= H(X0) + H(X1)−
(

H(X0 | Y0, Y1) + H(X1 | Y0, Y1)
)

= H(X0) + H(X1)− H(X0 | Y0) + H(X1 | Y1)

Ultimately, we want to extrapolate the values of u and the mapping (U0, U1) −→
(X0, X1) is invertible, we can substitute Ui for Xi in the statements, giving
us:

I((U0, U1); (Y0, Y1)) = I((X0, X1); (Y0, Y1))

And by applying the chain rule, we get:

I(U0, U1; Y0, Y1) = I(U0; Y0, Y1) + I(U1; Y0, Y1 | U0) (4.1)

The second term in equation (4.1) can be simplified,

I(U1; Y0, Y1 | U0) = H(U1 | U0)− H(U1 | Y0, Y1, U0)

= H(U1)− H(U1 | Y0, Y1, U0)

= I(U1; Y0, Y1, U0)

Giving us:

I(U0, U1; Y0, Y1) = I(U0; Y0, Y1) + I(U1; Y0, Y1, U0)

= I(W(0)
2 ) + I(W(1)

2 )

We now want to show that these two synthetic channels keep the global
property of mutual information, and that one of the channels has better
mutual information property:

I(W(0)
2 ) + I(W(1)

2 ) = 2I(W), I(W(0)
2 ≤ I(W(1)

2 )
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2I(W) = 2I(X0; Y0) = I(U0, U1; Y0, Y1)

= I(U0; Y0, Y1) + I(U1; Y0, Y1, U0)

= I(W(0)
2 ) + I(W(1)

2 )

Hence, the first statement is proven.

I(W(1)
2 ) = I(U1; Y0, Y1, U0)

= I(U1; Y1) + I(U1; Y0, U1 | Y1)

= I(W) + I(U1; Y0, U1 | Y1)

Since mutual information is always non-negative, then I(W(1)
2 ) ≥ I(W).

But since I(W(0)
2 ) + I(W(1)

2 ) = 2I(W), then

I(W(0)
2 ) ≤ I(W) ≤ I(W(1)

2 )

4.3 Code design

Polar codes are based on the n-fold Kronecker product ⊗n of the base
matrix G2, which recursively calculates the transformation matrix GN =

G⊗n
2 . By construction, N is limited to take integers on the form N = 2n,

while the number of information bits A can take an arbitrary value. Code
design of an (N, K) polar code tackles the challenge of identifying the K
best synthetic channels that have the highest reliability and using these
channels to transmit the K bits of the input codeword. The index set of
the K most reliable channels constitutes the information set I . The index
set of the remaining N − K least reliable channels form the frozen set F ,
which can be seen as the complementary set F = IC . The bit positions
of F carry no information as they are likely to be decoded incorrectly and
are therefore always set to 0. Setting the frozen bits to a predetermined
value removes any uncertainty of their values in the decoder. The decoder
of polar codes is therefore often referred to as a genie aided decoder.
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4.4 Encoding

An (N, K) polar code is defined by its channel transformation GN = G⊗n
2

and its information set I .

To generate a polar encoded codeword d = [d0, d1, ..., dN−1], the auxiliary
vector u = [u0, u1, ..., uN−1] is introduced. u is generated by assigning
ui = 0 if i ∈ F , and placing the bits from c in the remaining entries. The
output of the encoding process is calculated by d = u × GN.

Let c = (1, 1, 0, 1) be the information vector of length K, and the reliability
sequence RN = (0, 1, 2, 4, 3, 5, 6, 7). I = (3, 5, 6, 7) is the set containing
the last K elements of RN. F is the complementary set IC, F = (0, 1, 2, 4).
From I and F we create the auxiliary vector u = (0, 0, 0, 1, 0, 1, 0, 1). GN

is generated by the 3-fold Kronecker product of G2 on the form:

G8 =

[
1 0
1 1

]⊗3

=


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


⊗2

=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



⊗1

The polar-encoded codeword d = u × G8 = (0, 0, 0, 0, 1, 1, 1, 1)
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4.5 Decoding

The original proposal for decoding was by Successive Cancellation (SC).
The SC decoder is fast and straightforward but may suffer from error prop-
agation during the decoding process. The decoder can be visualized as a
depth-first binary tree traversal prioritizing the left branch. The leaf nodes
are the N bits to be estimated, and soft information on the received code-
word y is the value of the root node.

A node will first send its soft beliefs α to the left child through the up-
date function f (α1, α2), where α1 is the first half of its soft beliefs and α2

is the second half of its soft beliefs. The node remains idle until the left
child node returns its hard decision estimate βl. Then it will take βl, and
send soft information to its right child by the update function g(α1, α2, βl).
The node will then stay idle until the right child returns its hard decision
βr Lastly, the node will send its hard decision β to its parent by update
function β(βl, βr) = [βl ⊕ βr | βr]. This is done for all nodes except for the
leaf nodes. When a leaf node is reached, β can be determined by one of
two update functions. If the node belongs to the frozen set F , β is always
set to 0. Otherwise, the node belongs to the information set I , and β is
the return value of the sign function of its incoming belief β = sign(α).
The decoder terminates when all leaf nodes have made a hard decision on
their incoming beliefs. This chain of events is shown in Figure 4.2. Note
that the decoding process in the example terminates after β10 is executed.
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Figure 4.2: The decoding process for polar codes over a binary tree. Each
function is assigned a number to indicate the traversal of the tree.

update functions f () and g() are defined by the channel, and are the fol-
lowing in the different channels:
BEC

f (α1, α2) = α1 ⊕ α2

g(α1, α2) = α2 ∨ (α1 ⊕ β)

where e ⊕ • = e and e ∨ • = •.

BSC and AWGN

f (α1, α2) = (sign(α1, α2)× min(|α1|, |α2|)

g(α1, α2, β) = α2 + α1 × (1 − 2 × β)
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Chapter 5

LDPC Codes

5.1 Preliminaries for LDPC Codes

Low-Density Parity-Check (LDPC) codes introduced by R. G. Gallager in
1962 are linear block codes defined by a PCM H containing mostly 0’s and
few 1’s [7]. Each check equation contains few variables, and each vari-
able occurs in several check equations. The idea for decoding is to have
codeword bits occurring in several check equations as a variable. Each
equation must follow the constraint that the sum of its variables modulo
2 equals 0. With the PCM being sparse, the decoding can be of low com-
plexity as few computations are executed. Each row of the PCM describes
a single check equation. Since the PCM describes each check equation,
they are often called parity check equations.

Let us look at a decoding example of incoming codeword y with a single
erroneous bit. By successively evaluating each parity check equation, we
can rule out the codeword bits which are not erroneous and build up a
belief of which bit to be erroneous.

34



Let PCM HMxN with M = 3, N = 6, codeword d = (1, 1, 0, 1, 1, 0), and
the noise vector n = (1, 0, 0, 0, 0). y is then y = d ⊕ n = (0, 1, 0, 1, 1, 0). In
addition, let H and its parity check equations α:

H =

x0 x1 x2 x3 x4 x5

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

αn,0 : x1 ⊕ x2 ⊕ x3 = 0

αn,1 : x0 ⊕ x2 ⊕ x4 = 0

αn,2 : x0 ⊕ x1 ⊕ x5 = 0

We see that equations αn,1 : 0 ⊕ 0 ⊕ 1 and αn,2 : 0 ⊕ 1 ⊕ 0 does not satisfy
the sum of variables equal 0, and that they share the variable x0. Hence, we
estimate the erroneous bit to be x0 and get a valid codeword as H × dT = 0.

5.2 Factor Graphs

LDPC codes were mostly ignored up until the 1990s [17]. A key develop-
ment in this resurrection was the introduction of factor graphs [17], with
message passing between Check Node (CN) and Variable Node (VN).

The factor graph of HM×N is a bipartite graph with N VNs and M CNs,
with and edge between VNn and CNm if Hm, n ̸= 0, in which they are
said to be neighbors. The only edges allowed in a factor graph are those
connecting VNs and CNs. The set of neighbors for a CN m is written as
N (m) and of a VN written as N (n). The number of neighbors dv = |N (.)|
of a node is called its degree, where (.) can be n or m.

An LDPC code is said to be regular if all the rows r of H have the same
weight wr and all the columns c of H have the same weight wc. Resulting
in all VNs having the same degree dv = wr, and all CNs having the same
degree dc = wc. Otherwise, The LDPC code is said to be irregular.
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A significant advantage of sparseness is that when storing the positions of
the non-zero elements of the matrix H, the memory required to store H is
much more efficient than if one were to store the entire matrix. An essen-
tial characteristic of the PCM in decoding of LDPC codes is the ability to
segment the PCM, and process the rows of the matrix in a parallel manner.

An example of an irregular PCM H of dimension M × N = 8× 10 is given
in matrix (5.1), and its corresponding factor graph is in Figure 5.1.

H =



0 1 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0


(5.1)

Figure 5.1: Factor Graph for PCM (5.1). Circle nodes represent the variable
nodes (VN), and square nodes represent check nodes (CN).
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5.3 Encoding

There are two distinct ways to perform encoding of LDPC codes. One
approach is to generate the codeword d from the generator matrix G, while
the other generates d from the PCM H. We will now look at encoding
performed by d = c × G and later look at encoding by d = H × cT as this
is how it is performed in 5G.

To construct G, one can do the following: Let Hp be the invertible (n − k)
by (n − k) matrix such that HpH = (In−k, H2) for some H2, a n − k by
k matrix. Then G = (HT

2 , Ik) is a generator matrix. c × G generates the
codeword d, and H is a PCM as its satisfies the constraint H × dT = 0 and
G × HT = 0.

The drawback of storing G is that the entries of the generator matrix gen-
erally scale by n2 as the matrix grows. If one were to store the non-zero
elements in the matrix, it would require much more memory than storing
the non-zero elements of H, which generally scales by n.

5.4 Decoding

The decoding algorithm for LDPC codes can be viewed as a message-
passing algorithm over the factor graph, iteratively passing beliefs be-
tween VNs and CNs. The belief sent from VNn to its neighbor CNm is
denoted by αn,m, and the beliefs sent from CNm to VNn is denoted as βm,n

[19]. After every iteration, the estimate at each variable node becomes
more certain of their own beliefs. The decoding algorithm is continuously
processed until the decoder hits a stopping criterion. This criterion can
be that either the estimated codeword d̂ satisfies H × d̂T = 0, or that a
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maximum number of iterations Itermax is reached. In the latter, a decoding
failure is declared.

Each CNm can be seen as a soft-output decoder that outputs a list of |N (m)|
beliefs, one for each connected VN. Where the sum of all beliefs sent from
CNs connected to VNn generates the global belief Ltot

n that form the ba-
sis of the hard decision d̂n = sign(Ltot

n ) + Ln, where Ln is the shorthand
notation for the LLR value Λ(yn).

The total belief for every n is given by equation (5.2).

Ltot
n = Ln + ∑

m∈N (n)
βm,n (5.2)

In every iteration of the decoding algorithm, the belief for each VNn is
updated by equation (5.3).

αn,m = Ln + ∑
n′∈N (m)\n

βm,n (5.3)

Figure 5.2: Message passing of α0,i and β0,i respectively of selected nodes
from Figure 5.1.

Computations at Check Nodes
The computations performed at the CNs are more complicated than those
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performed at the VNs and are often performed using simple approxima-
tions [17]. The belief sent from CNm to VNn is:

βm,n = (−1)|N(n)| 2 tanh−1

 ∏
m′∈N (n)\m

tanh (αm′,n/2)

 (5.4)

also known as Belief Propagation. Belief Propagation is computationally
expensive and can be replaced by a simple approximation called the Min-
Sum approximation, given by equation (5.5).

βm,n ≈ (−1)|N (n)| ∏
n′∈N (n)\m

sign (αn′,m) min
n′∈N (n)\m

(|αn′,m|) (5.5)

The Min-Sum algorithm is not as precise as belief propagation, but the
benefit of easier computations outweighs its loss in preciseness.

The decoder is initialized with βm,n = 0 ∀m, n ∈ M, N.
(5.2) is then Ltot

j = Λ(y) ∀ j ∈ N.
Equation (5.3) becomes αn,m = Ln ∀m, n ∈ M, N if Hn,m = 1. After ini-
tialization, the algorithm executes formulas (5.5), (5.2), then verifies if (5.2)
produced a valid codeword by checking if H × d̂T = 0 is satisfied, if not
then formula (5.3) is executed and the algorithms starts over.
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Chapter 6

Polar Codes in 5G

Figure 6.1: Implemented steps in encoding chain of polar codes in 5G, yel-
low, and orange blocks represent mandatory and optional steps, respec-
tively.

6.1 CRC Encoder

The CRC structure in the 5G standard is used as an error detection of
the output codeword under the Successive Cancellation (SC) decoder and
used as a method to extract a final candidate codeword from a list of L
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candidate codewords in the Successive Cancellation List (SCL) decoder.
The selection of CRC generator polynomial gP(x) is specified as follows:

gP(x) =


g6(x) if 12 ≥ A ≤ 19

g11(x) if 20 ≥ A ≤ 1706

g24(x) otherwise

6.2 Input Bits Interleaver

When CRC is used to select the final candidate codeword, the entire de-
coding process must be executed. In some cases, it is preferred to early ter-
minate the decoding process if the yielding candidate codeword is bound
to fail, rather than discarding the candidate codewords once the decoding
terminates [9].

Early termination of the decoder for polar codes in 5G is achieved by dis-
tributing the CRC-bits within the codeword c in such a way that when
encountering a CRC-bit, the decoder paths can be deemed as likely to fail
or likely to succeed. A constraint of the CRC computation is that it must
be able to be executed only with the information bits existing in the list
of codeword candidates. Consequently, the decoding complexity can be
reduced by early termination if all codeword candidates fail to pass the
correctness check, as the decoder is terminated early [13].

To distribute the CRC-bits and create the interleaved codeword c from c′,
one pre-computes h = |Πmax| −K, then loops over the interleaving pattern
Πmax given by Table 5.3.1.1-1 in the standard [1], and stores the elements
in the interleaver vector Π satisfying π ≥ h as π − h, where π ∈ Πmax

[5]. Note that |Πmax| = 164, and the CRC-generator polynomial is always
g24(x) when the interleaver flag IIL is activated. IIL is activate when IIL =

1, and inactive when IIL = 0.
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Let A = 12, K = 36, and IIL = 1. Then h = 164 − 36 = 128, and the inter-
leaver vector Π = [1, 4, 6, 10, 11, 12, 0, 2, 5, 7, 13, 3, 8, 14, 9, 15, . . . , 35]
where elements occurring after the last interleaved bit π − h = 15 are all
occurring in incremental order. The interleaver vector Π is applied to c′

and the interleaved codeword c is obtained by c = [cΠ0 , cΠ1 , . . . , cΠK−1 ]

[13], shown in Figure 6.2.
The information bits a are in grey, and the CRC-bits are in green.

Figure 6.2: Creating the CRC interleaved vector c from input-vector c′,
when interleaver flag IIL = 1.

If IIL = 0, the output vector c of the interleaver is equal to the input vector
c′. The input and output vectors are still denoted by c′ and c, respectively.

6.3 Sub Channel Allocation

Initially, the information set I and its complementary frozen set F are
computed based on the universal reliability order RNMax and the matching
set MS. RNmax is the list of all synthetic channels sorted by their reliability
order in increasing order, and is given in Table 5.3.1.2-1 in the standard [1].
Note that |RNMax | = 1024. Afterwards, bits from codeword c are assigned
to bit positions in u according to I .
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The first step in sub-channel allocation is to retrieve the reliability sequence
RN with N appropriate channels from RNMax . This is done by extracting
the channels from RNMax that are smaller than N, creating RN = {R0, ..., RN−1}
where Ri < N.

From RN, the matching set is determined. The first bit positions extracted
from RN are the U bit positions belonging to the matching set MS. These
bits will ultimately not carry any information bits and are therefore added
to F . The information set I are the K most reliable positions in RN not
belonging to MS, the remaining entries in RN are added to F .

6.4 Polar Code Encoding

The core polar encoder d = u × GN in 5G is executed much in the same
way as explained in the preliminary. The difference is that the information
bits a are appended with P CRC-bits beforehand, making the encoding
input vector not a but c, of length K = A + P.

6.5 Rate Matching Circular Buffer

As previously mentioned, the codeword length N is rigorous as it is re-
stricted to be a power of two, while the length of the information sequence
A can be of any finite integer length. Hence, the ability to scale the number
of bits transmitted to a desired amount is an important functionality of po-
lar codes in 5G. The techniques used in this paper to modify the codeword
d to achieve codeword e of desired length E, are through the classical rate
matching schemes shortening and puncturing, is based on the work of [4].

43



The difference between puncturing and shortening lies in its effect on the
code’s behavior and how the decoder reconstructs the bits belonging to
the matching set. Note that some information bit positions determined
in the sub-channel allocation without rate matching may become unfit to
carry information bits due to the rate matching scheme [3].

The matching pattern is determined by the reliability sequence RN and the
bit-reversal sequence of BN. The bit-reversal sequence BN is defined by the
reverse of the binary representation of each element in RN, then finding
the index of the U = N − E appropriate indices of BN in RN. Note that
all binary representations must be of equal length. Therefore, some binary
representations are pre-padded with 0 to reach the longest non-padded
binary digit length.

6.5.1 Puncturing

In puncturing, the first U left-out bit positions are obtained by taking the
first U integers in RN and returning the index of these U integers in BN.
The punctured bits make up the matching set MS.
The decoder recovers the punctured bits by setting their LLR = 0, mean-
ing the decoder cannot derive any information about the values of the
punctured bits when initializing the decoder. Finally, F and I is selected
according to the bit reliabilities of the mother polar code, while the match-
ing set MS is generated from the bit-reversal permutation.

6.5.2 Shortening

In shortening, the last U left-out bit positions are obtained by taking the
last U integers in RN and returning the index of these U integers in BN.
The shortened bits make up the matching set MS.
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The shortened bit positions in u are set so that linear combinations of the
shortened bit positions are of 0-values only in their respective bit positions
in d. The decoder then knows the shortened bits to take the zero value,
setting their LLRs = +∞.

6.6 Decoding

The Successive Cancellation List decoder proposed in the work of [15], im-
proves the performance of the SC decoder by keeping L candidate code-
words during the decoding. SCL provides better error correction perfor-
mance at a higher complexity cost. The most attractive trade-off between
better error correction and low complexity is set to L = 8 in the 3GPP
standard [1]. The decoder is said to have L different decoders, where each
decoder stores the hard decisions on the computed information set and
the path metric PM.

The SCL decoder traverses the binary tree similarly to the SC decoder.
The difference between the SC and SCL decoders is that the SCL evalu-
ates the information bits to be both 0 and 1. When the decoder evaluates
an information node, the path-metric PM of each candidate codeword is
computed by equation (6.1).

PM =

PM + |α|, if sign(α) ̸= (−1)ĉi

PM, otherwise
(6.1)

where α is the incoming beliefs for the leaf node. After the estimation
decision, the size of the list decoder is 2L, and the decoder is then pruned
to keep the L = 8 most likely codeword candidates.
There are no updates to the candidate codewords when a frozen node is
encountered, and PM remains the same.
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6.6.1 Decoding of interleaved Polar Codes

In the work of [13], little is mentioned about the implementation of the
check-sum of the interleaved CRC-bits. We assume that their check-sum
is performed similarly to the work of [6].

Here, the rows of the CRC encoding matrix G is permuted according to
G′ = [GΠ′

0
, GΠ′

1
, . . . , GΠ′

A−1
|Π < A]. When evaluating the correctness of

candidate codeword x̂ to the interleaved CRC-bit pi, where pi occurs in c′

at index Πpi . The CRC-check is computed by â × G′, where â is d̂ when all
previous CRC-bits are excluded. If the product of â × G′ in position Πpi

matches the hard decision β of the incoming belief α we determine â, and
equivalently d̂, to be correct.

Three check methods for Cyclic Redundancy Check Aided Successive Can-
cellation List (CA SCL) decoding are suggested in the work of [13]. We
will focus on the Check and Remove SCL (CR SCL) as it is said to have the
better error correction performance of the three decoders discussed.

CR SCL
In the CR SCL, when estimating a CRC-bit, the only paths kept in the
decoder are the paths passing the CRC check. Those that do not pass
the CRC-check are discarded. The number of remaining paths in the de-
coder V after CRC-evaluation is then V ≤ L, and the list of candidates
grows only from the V codewords passing the CRC-check. The said pa-
per mentions that the CR SCL decoder is expected to have better error-
correction performance and therefore, fewer earlier terminations. Better
error-correction performance can be credited to the removal of incorrect
candidate codewords that may have lower path-metric than the correct
codeword.

The inability to evaluate the incoming parity bit pi as both one and zero
poses a significant drawback of the CA SCL decoder. Ultimately, we would
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like to generate 2L codewords from the L existing candidate codewords,
one path for pi = 0, the other for pi = 1.

Here, we propose a decoding algorithm to evaluate the incoming parity bit
pi to be both zero and one, and append these to each candidate codeword
ĉ′. We will call the candidate codewords ĉ′0 and ĉ′1 for 0-appending and
1-appending, respectively, and perform HCRC × ĉ′i of i ∈ {0, 1}.

First, we need to create PCM HCRC from our CRC generator matrix GCRC.
In order to derive HCRC from GCRC, we represent G as a systematic ma-
trix on the form G = [IA×A C], where I is the identity matrix and C is
computed by (3.12) with G24(x). HCRC can then be represented as HCRC =

[CT IP×P]. The interleaved PCM H′CRC is created by permuting its columns
by the interleaver vector Π on the form H′CRC = [HCRC

Π′
0

, HCRC
Π′

1
, . . . , HCRC

Π′
K−1

].

Then, let K be the indices of the interleaved CRC-bits in c′, and P be the
indices of each element in K. The candidate codewords that are kept in the
decoder are the ones where HCRC × ĉT

i gives a 0-vector in the first positions
up to Ppi .

Though the interleaver is designed to catch faulty candidate codewords,
one wants as few early terminations as possible. Fewer early terminations
can be attributed to a well-performing removal of unwanted candidate
codewords.
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Chapter 7

LDPC Codes in 5G

Figure 7.1: Implemented steps in encoding chain of LDPC in 5G, yellow
and orange blocks represent mandatory and optional steps, respectively.

One big disadvantage for LDPC codes is the high complexity of the en-
coding process d = c × G. A family of LDPC codes called Quasi-Cyclic
LDPC (QC LDPC) codes aims at overcoming high encoding complexity
by leaving out the generator matrix G and performing encoding with the
PCM H by d = H × cT. QC LDPC codes can be defined by a Base Graph
(BG) and a lifting size Zc. The BGmb×kb

is a matrix consisting of integer en-
tries I ∈ {−1, 0, 1, . . . , Zc − 1}. Each integer I is expanded to an identity

48



matrix of size Zc and then circularly shifted to the right I times, except for
I = −1, which is a Zc × Zc zero matrix.

7.1 Code Design

Code design of an (N, K) QC LDPC code finds an appropriate Base Graph
(BG) and a lifting size Zc for the CRC encoded codeword c and the rate R,
creating the codeword d of length N.

7.1.1 Determine gP(x)

The CRC structure in the 3GPP standard is used as error-detection for the
codeword candidate ĉ , where ĉ are the K first bits in x̂ output from the
Min-Sum decoder.
The selection of CRC generator polynomial gP(x) is as follows:

gP(x) =

g11 if A ≤ 3824

g24 otherwise

and the output of the CRC generator is codeword c = [c | c × G] of length
K = A + P.

7.1.2 Determine BG

There are many variations to the Base Graph (BG), but they can all be
sectioned in to Base Graph 1 and Base Graph 2, BG1 and BG2 for short,
respectively. BG2 is of dimension 42 × 52 supporting shorter codewords
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over higher rates, and BG1 is of dimension 46× 68 supporting longer code-
words over lower rates.

The selection of the BG is specified in the 3GPP standard under Clause
6.2.2 LDPC base graph selection [1], and can be summarized as follows:

• If K ≤ 292, then BG2 is selected.

• If K ≤ 3824 and R ≤ 0.67, then BG2 is selected.

• If R ≤ 0.25, then BG2 is selected.

• Else BG1 is selected.

7.1.3 Determine Kb

Kb denotes the number of information bit groups in the BG, where each
information bit group contains Zc information bits.
As specified in the standard under Clause 5.2.2 [1].
For BG1 Kb = 22.
For BG2:

• If K > 640 then Kb = 10.

• If 560 < K ≤ 640 then Kb = 9.

• If 192 < K ≤ 560 then Kb = 8.

• If K ≤ 192 then Kb = 6
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7.1.4 Determine lifting size Zc

The lifting size Zc, also called expansion factor, is computed by selecting the
minimum value in the sets of LDPC lifting sizes Z specified in the 3GPP
standard in Table 5.3.2-1 [1], such that Kb × Zc ≥ K. While also storing the
set index iLS. The sets of lifting sizes can be seen in Table 7.1.

Set index (iLS) Set of lifting sizes (Z)
0 {2, 4, 8, 16, 32, 64, 128, 256}
1 {3, 6, 12, 24, 48, 96, 192, 384}
2 {5, 10, 20, 40, 80, 160, 320}
3 {7, 14, 28, 56, 112, 224}
4 {9, 18, 36, 72, 144, 288}
5 {11, 22, 44, 88, 176, 352}
6 {13, 26, 52, 104, 208}
7 {15, 30, 60, 120, 240}

Table 7.1: sets of LDPC lifting size Z.

Note that Z is the set of lifting sizes, while Zc is the minimum value in Z
satisfying Kb × Zc ≥ K.

7.1.5 Create BG

Each row element m and column element n in BG1 are gathered from Table
5.3.2-2, and in BG2 they are gathered from Table 5.3.2-3 in the 3GPP stan-
dard [1]. The elements gathered from these tables are denoted as Vm, n,
and are stored in BGm, n as BGm, n = Vm, n mod Zc. Only the non-zero el-
ements are stored in each table, if one tries to gather an element which is
not in the table BGm, n then BGm, n = −1.
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7.1.6 Create PCM H

By previous steps we have BG, iLS and Zc. To create the PCM H each
entry of BGm, n is expanded to a Zc × Zc submatrix. Elements of BGm, n

which are -1 is a Zc × Zc 0-submatrix in H, while for elements BGm, n ≥ 0
is the identity matrix circularly shifted BGm, n times to the right.

The overall structure of H, and subsequently BG, is:

H =

[
A B 0
C D I

]

Submatrix [ A B ] of dimension 4 × Kb are said to be the core part of H,
while the rest are said to be extensions parts of H. [ 0 ] is a zero submatrix,
and [ I ] is an identity submatrix.

To give a short example of the expansion of the BG, we omit the details of
parameter selection and let Zc = 2 and BG be:

BG =


1 0 −1 −1 −1
−1 0 0 −1 −1
1 −1 1 −1 −1
0 −1 −1 0 −1


With Zc = 2, we get the following unique submatrices:

BG0,0 = 1 −→
[

0 1
1 0

]
BG0,1 = 0 −→

[
1 0
0 1

]
BG0,2 = −1 −→

[
0 0
0 0

]

Giving us a PCM equal to that of (5.1), and the factor graph from Figure
5.1.
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7.1.7 CRC Encoder

The notation for the codeword after CRC-calculation is slightly different
for LDPC as K denotes the size of the codeword after 0-appending. The
length of the CRC-encoder output will just be given as |c′|. We say we
obtain the codeword c′ of length |c′| = A + P after CRC computation in
LDPC. c′ might then be appended with 0’s to achieve the length K = kb ×
Zc.

For LDPC codes, the length of the CRC output vector might not be of
correct dimension K. Sp by appending K′ = K − |c| 0-bits to c′, we ensure
the input vector of the LDPC encoder c to be of correct length.
Note that LDPC does not use any interleaving of the CRC-bits.

7.2 QC LDPC Encoding

The goal of encoding is to solve the following system of equations:

HdT = 0 ⇒
[

A B 0
C D I

]  cT

pT
c

pT
a

 = 0 (7.1)

where d is a codeword of length N and can be represented in systematic
form as:

d =
[

c pc pa

]
(7.2)

pc is a vector of the core parity bits containing four vectors each of size Zc,
pa is a vector of additional parity bits, and c is the information bits vector
appended with both CRC-bits and K′ = K − B 0-bits.
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Structure of H
The core parity bits can be calculated from the codeword c and core sub-
matrix [ A B ]. Note that submatrix [ 0 ] does not affect the encoding com-
putations and can therefore be left out of the encoding process. The ad-
ditional parity bits can be calculated from information and core parity
bits using the extension submatrix [ C D ] [12]. [ I ] and [ 0 ] represent the
identity-matrix and the zero-matrix, respectively.

A key difference between the two BGs is the structure of submatrix [ B ],
which directly affects the computations of pc = {pc0 , pc1 , pc2 , pc3} . We
have observed the following structures of submatrix B:
For BG2 there are:

B0BG2 =


0 0 − −
− 0 0 −
1 − 0 0
0 − − 0

 B1BG2 =


1 0 − −
− 0 0 −
1 − 0 0
0 − − 0

 (7.3)

While for BG1 there is one general B1 structure on the form:

B1BG1 =


1 0 − −
S 0 0 −
− − 0 0
1 − − 0

 (7.4)

Where 0 represents the identity matrix, 1 Is the identity matrix circularly
shifted by one, − is the zero matrix, and S is an identity matrix circularly
shifted S times. The value of S is dependent on Zc and iLS.

To obtain pc = {pc0 , pc1 , pc2 , pc3} one tries to satisfy the following equa-
tion:
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[
A B

]
×
[

cT

pT
c

]
= [ A ]× CT + [ B ]× pT

c = 0 (7.5)

Denoting the intermediate result [ A ]× cT as γT = {γT
0 , γT

1 , γT
2 , γT

3 }. Let
[ B ] = B1BG2, from γT + [ B ]× pT

c we get the following set of linear equa-
tions:

γ0 + 1pc0 + pc1 = 0

γ1 + pc1 + pc2 = 0

γ2 + pc0 + pc2 + pc3 = 0

γ3 + 1pc0 + pc3 = 0

By solving the system of linear equations for B1BG2 we get the results:

pc0 =
4

∑
0

γi pc1 = γ0 + 1pc0 pc2 = γ1 + pc1 pc3 = γ3 + 1pc0

For B0BG2 we get:

1pc0 =
4

∑
0

γi pc1 = γ0 + pc0 pc2 = γ1 + pc1 pc3 = γ3 + pc0

And for B1BG1 pc we get:

pc0 =
4

∑
0

γi pc1 = γ0 + Spc0 pc3 = γ3 + Spc0 pc2 = γ2 + pc3

The additional parity bits pa can be calculated as:

pT
a =

[
C D

]
×
[

cT

pT
c

]
(7.6)

We have now solved the equation (7.1), and the codeword is in the sys-
tematic form of (7.2).
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7.3 Rate Matching

The codeword-bits corresponding to the first 2× Zc bits are said to always
be punctured in 5G. This is due to their VNs having a high out-going de-
gree dv, making them highly likely to be recovered correctly. In the de-
coder, their respective LLR values are set to 0, as there is no certainty
of what their values were before puncturing. ⌊K−K′

Zc
⌋ × Zc of the K − K′

padded 0-bits are also punctured, and the LLR values of these punctured
bits are set to −∞, as their values are known to be 0. The corresponding
column positions of the punctured bits are kept in H, as the first 2 × Zc

columns correspond to information bits in a, and the 0-padding is part of
the core submatrix of H.

The length of the rate-matched codeword x is E =
⌈ K

R Zc

⌉
× Zc. Let E′ be

the number of bits from c after puncturing. The length of the codeword
input to the LDPC decoder is then of length E + E′, and the PCM is of
dimension (E − E′) × K + (E − E′).

As seen in Figure 7.2, the section of the matrix colored in green is used in
the decoder, while the parts colored in grey are discarded. The sketched
parts of the green submatrix are the punctured bits, which need to be re-
covered at the receiver. The puncturing of bits enables a bigger part of the
PCM is utilized in the decoder as E bits are pre-determined to be transmit-
ted, and the sender can include more parity bits in the transmitted code-
word.
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Figure 7.2: Figure representation of rate matching of codeword and scaling
of H.

7.4 Decoding

In our work, we will analyze the Min-Sum algorithm, a variation of the
Adapted Min-Sum (AMS) decoder, and the Improved Offset Min-Sum
(IOMS) decoder. By the definition of H there is a significant amount of
degree-1 VNs, which are difficult to correctly estimate in the Min-Sum
decoder, leading to a significant deterioration of decoding performance.
Both the IOMS and the AMS decoders suggest two different modifications
to equation (5.5) in the Min-Sum decoder to mitigate the erroneous effect
of the degree-1 VNs.

57



7.4.1 Adapted Min-Sum

The work of [19] presents an adaption of the Min-Sum decoder for the QC
LDPC structure to improve the correction performance of the Min-Sum
decoder called the Adapted Min-Sum (AMS) decoder. The core idea is to
apply a different offset factor to the core and extension parts of the PCM
when executing equation (5.5).

The beliefs sent from the CNs in IOMS are updated by equation (7.7).

βm,n ≈ (−1)|N (n)| ∏
n′∈N (n)\m

sgn (αn′, m)max
(

min
n′∈N (n)\m

(|αn′, m|)− η(l), 0
)

(7.7)

where η(l) is said to be the offset factor. For Min-Sum decoding the offset
factor is always η(l) = 0, while for AMS η(l) = 0 if l ≤ 4× Zc else η(l) = 0.
l ≤ 4 × Zc comes from the fact that the extensions part of H starts from
row l > 4 × Zc by definition of H.

By Figure 5 in the work of [19], The Offset Min-Sum with offset factor
η = 0.2 outperforms the AMS over most instances of SNR. We will in
our implementation of the AMS decoder consider the offset factor to be
ηl = 0.2 if l < 4 × Zc, else ηl = 0.

7.4.2 Improved Offset Min-Sum

To overcome the overestimation of degree-1 VNs, the IOMS normalize the
beliefs sent from CN to VN by offsetting the product of a pre-specified
normalizing factor µ and the minimum value |αn′, m| by µ. The beliefs sent
from the CNs in IOMS are done by equation (7.8).

βm,n ≈ (−1)|N (n)| ∏
n′∈N (n)\m

sgn (αn′, m)max
((

µ× min
n′∈N (n)\m

(|αn′, m|)
)
− η, 0

)
(7.8)
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Chapter 8

Performance of Polar Codes and
LDPC Codes

8.1 Intro

In this chapter, we will detail the steps involved in assessing the Bit Er-
ror Rate (BER) and Block Error Rate (BLER) performance of polar codes
and LDPC codes over different SNR values and transmission codeword
lengths E. Through our implementation in SageMath of the encoding/decoding
modules in 5G, we simulate the encoding of binary codewords, the behav-
ior of noise appropriately for the different channels, and different decod-
ing algorithms.

There are some limitations to the simulation compared to the actual em-
ployment as the segmentation of incoming packets is not implemented.
Instead, we focus on CRC calculation, encoding of the incoming codeword
without segmentation, rate matching, and simulation of noise to the trans-
mitted codeword.
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Monte Carlo
Simulation of the program is done with Monte Carlo simulation. We have
run instances of different information lengths A and rates R over the noise
corresponding to the channel capacity and lower. We stress that a rate
higher than the channel capacity C is not feasible by Shannons limit. There-
fore, when simulating the SNR values, the highest rate will always be
equal or lower than the channel capacity. The number of iterations for
each combination of A, R, and noise is runs = 40000.

Bit Error Rate
Bit Error Rate (BER) is measured by the total Hamming distance between
every transmitted information sequence a and the output codeword â di-
vided by the total amount of transmitted information bits.

Block Error Rate
Block Error Rate (BLER) is the number of times the output â did not match
a divided by the total number of transmission runs.

The motivation for implementing all modules of the encoder and decoder
in a simulation model is to extrapolate various data and produce a profile
of the communication system. With high SNR values, we expect the error
correction capabilities to be low, and we will get a high rate of erroneous
codewords with high BER.

Error-Free Communication
We recall that each channel given an SNR value, has a theoretical maxi-
mum rate R at which information bits K occur in ratio to the total amount
of transmitted bits E, on the form R = K

E , to achieve error free communi-
cation. The channel capacity is given in (3.3), (3.4) and (3.5) for the AWGN
channel, BSC and BEC, respectively. Since we are testing for the rates
R = 1

2 , we want our SNRs over the channels to reflect our choices of R.

For the BSC the maximum value p for R = 1
2 is p = 0.1, as CBSC = 1 −

H(0.9, 0.1) ≈ 0.53. For the BEC the maximum value for α for R = 1
2 is

60



α = 0.5, as CBEC = 1 − α = 0.5. When simulating for the AWGN channel,
the convention is to run the system over SNR values starting for SNR = 1
and higher.

8.2 Components

When simulating for a specified rate, we include the encoding/decoding
for different instances of a. The focus is on selecting the different parame-
ters to achieve the desired rate R as well as possible.

8.2.1 Components of Polar Code

´

IIL 0 1
A ≤ 12 A ≥ 20 1 ≤ A ≥ 140

P 6 11 24
Amin 12 1
Amax 501 140
Nmin 64
Nmax 1024

Table 8.1: Bounds and parameters for polar codes when segmenting in-
coming packets is not utilized.

Again, the length N of the polar code codeword d is a power of two on
the form N = n2. When choosing the lowest value of N while satisfying
K = A+P

R ≥ Amin, we get Nmin = 64 for both IIL = 0 and IIL = 1. As
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RNmax = 1024, the highest value n can take is nmax = 10 as 210 = 1024.
We will need to choose A to achieve the desired rate R and getting the
transmitted codeword length E as close to N = 2n as possible. While
keeping the codeword length N ≤ Rmax where N = 2min(⌈log2 E⌉, 10).

When defining the rate, we will consider it to be R = K
E . Although the

convention is not to view the CRC-bits as part of the information bits, they
are part of the information set I of an (N, K) polar code, and in the case
of IIL = 0 they occupy the K − A most reliable synthetic channels. As E is
the transmitted codeword length, our goal is to minimize the difference of
N − E when the rate matching scheme is excluded. To achieve the practical
rate R = K

E as close to the rate of the polar code output R = K
N as possible,

we set A to be 21, giving us R = K
E = 32

64 = 1
2 .

Polar Codes with IIL = 1
When activating the interleaver flag IIL = 1 the generator polynomial
g24(x) is always used. To maintain N = 64 and R = K

E = 1
2 , A was set

to 8, giving us K = 32.

Polar Codes with Rate Matching
When profiling the effect of rate matching on the decoding performance,
we evaluate the codeword over a constant N = 128 and vary the amount
of rate-matched bits U = [0, 8, 24, 40, 56, 64], while keeping the ratio R =
K
E constant by having K = [64, 60, 52, 44, 36, 32] as U increase, all with a
list size of L = 8. E was chosen by N − U, and K = E × R.
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U (K, E)
0 (64, 128)
8 (60, 120)

24 (52, 104)
40 (44, 88)
56 (36, 72)
64 (32, 64)

Table 8.2: The table shows how the relation of K and E was kept constant
while U increased for rate-matched polar codes.

8.2.2 Components of LDPC Codes

LDPC codes in 5G are used for transmission of longer information se-
quences. To compare polar codes and QC LDPC codes fairly, we will
mimic the information lengths A with rate R of polar codes in QC LDPC,
and then simulate for larger values of A. We define the rate for LDPC code
to be R = K

E .

Validity Check for d̂

In our work, we propose a slight modification to the validity check H ×
d̂ = 0⃗ of the hard decision estimate d̂. By equation (7.2) the QC LDPC
encoded codeword d is in systematic form d =

[
c pc pa

]
. If d̂ were to

contain erroneous bits in
[

pa
]

only, the validity check H × d̂T = 0⃗ would
not hold. In the worst case, the erroneous bits of p̂a will cause the bits in
d̂ =

[
ĉ p̂c

]
to become erroneous as well, making the decoder declare a

decoding failure when number of iterations equals Itermax.

We propose to perform validity check of d̂ by equation (8.1).

Hcore × d̂core =
[

A B
] [ ĉT

p̂T
c

]
= 0⃗ (8.1)
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In order for the decoder to terminate, we also impose that ĉ needs to gen-
erate a valid CRC-check.

8.3 Performance of Polar Codes

In this chapter, we will first compare the performance of the SC decoder,
SCL decoder, and the CA SCL decoder over the three channels. Later, we
will review the effect of shortening over polar codes. All simulations were
performed with list size L = 8.

Decoding Failures
When each leaf node is assigned a hard decision, the decoder terminates
with L-candidate codewords sorted from the lowest path-metric to the
highest path-metric. CRC-check is then performed sequentially on the
candidate codewords. The first codeword satisfying the check-sum HCRC ×
d̂T = 0⃗ is the final candidate codeword â for the information-vector a,
where HCRC =

[
CT IP×P

]
. When none of the codewords in the list of can-

didates passes the CRC-check, the codeword of the lowest path-metric is
selected to compute the BER and BLER, even though another candidate
codeword could potentially have a lower hamming distance to a. In the
case of an early termination in the CA SCL decoder, the total amount of
erroneous bits are updated by taking the additive inverse of a.

8.3.1 SC, SCL, and CA SCL

Figures 8.6, 8.2, and 8.3 all show that the CA SCL decoder has the bet-
ter performance for most instances of noise over all three channels. The
high BER values for the CA SCL decoder is attributed to our method of
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penalization by updating the total number of erroneous bits to be the ad-
ditive inverse of a when the decoder terminates early. For this reason it
is most fair to compare the CR SCL to the CA SCL decoder, and the SC
decoder to the SCL decoder when reading the plot for BER performance.
When reading the plot for the BLER performance it is fair to compare all
decoders, since â is either accpeted or rejected at the receiver in practical
applications.
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Figure 8.1: Results for the SC decoder, SCL decoder, and CA SCL decoder
over the BSC channel.
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Figure 8.2: Results for SC, SCL, and CA SCL decoders over the BEC chan-
nel.
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Figure 8.3: Results for SC, SCL, and CA SCL decoders over the AWGN
channel.

From the displayed graphs, the CA SCL performs better in terms of BLER
than the other decoders for polar codes. Both the CA SCL and the CR SCL
decoder have higher computational complexity as the correctness for ev-
ery CRC-bit is evaluated by vector-matrix multiplication of H′ × ĉT and
ĉ × G′, respectively. For the CR SCL decoder L vector-matrix checks are
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performed when evaluating the correctness of its candidate codewords,
while the CA SCL decoder performs 2L vector-matrix checks. With the
extra computational complexity, the BLER performance should ideally be
noticeably better than its SC and SCL counterparts to offset the higher
computational complexity. The CA SCL decoder, overall have better per-
formance in terms of BLER. Most notable is its achievement of error-free
communication for the BEC when α < 0.2.

The performance of the SCL decoder does not clearly stand out from the
SC decoder, if one wants to increase the error correction performance of
the SCL decoder one could increase the list-size to L > 8.

8.3.2 Rate Matched Decoder

Originally, the values of U were chosen as to have six instances of evenly
distributed integers between Umin = 0 and Umax = 64, on the form U =

[0, 8, 24, 40, 56, 64]. After simulating these values of U, a trend where |U|
were to be a power of two seemed to have better performance than values
were |U| was not a power of two. We then included simulations were
U = 25 = 32. The figures below show simulation results for instances of
(R, U).
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Figure 8.4: Results of rate matching of polar codes over the AWGN chan-
nel.
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Figure 8.5: Results of rate matching of polar codes over the BSC.

71



Figure 8.6: Results of rate matching of polar codes over the BEC.

From our results, the rate matching scheme slightly favors higher values of
U that are powers of two over every channel with higher values of SNR.
Then, as the SNR decrease the rate matching scheme tend to favor the
channels with lower values of U. For the BEC we see that it no longer
achieves error-free communication for higher values of U for α < 0.20.
The BSC is the only channel in which U = 24 performs better than U = 32
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over higher values of SNR. Over the AWGN channel, the performance
of U = 32 has a significant gain over lower values of SNR compared to
the other values of U, which can be attributed to a good balance between
inserting LLR values of −∞ and not using the information set I over syn-
thetic channels with lower reliability.

In general, the insertion of LLR values of −∞ seem to counteract wrongful
belief propagation for the SCL decoder. Especially for higher levels of
noise, when each information leaf-node are more likely to be incorrect. As
the noise over each channel decreases, each information leaf-node have a
higher belief of their own correctness. In which, the insertion of −∞ values
does not have as strong counteracting of wrongful belief propagation, and
the fact that the bit indices for the information nodes are transmitted over
synthetic channels of lower reliabilities are exposed in their performance.

8.4 Performance of LDPC Codes

In this chapter, we will first compare the performance of validity check
when performing Hcore × d̂core with CRC-check, and when performing H ×
d̂. Later, we will compare the results of the Min-Sum decoder, AMS de-
coder, and the IOMS decoder over the three channels.

Figure 8.7 shows the BER and BLER performance of He and Hc. The per-
formance of Hc does not clearly show until SNR = 5, our interpretation
of the results is that when the overall probability of error is low, the prob-
ability that all erroneous bits occurring only in

[
pa
]

is greater.
Table 8.3 shows the average amount of iterations needed for each decoder
when the decoder outputs the correct codeword.
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Figure 8.7: Results comparing Hcore × d̂core, Hc for short, with CRC-check
versus H × d̂, He for short, over the AWGN channel.

SNR 7 6 5 4 3 2 1
He 1.14 1.44 2.16 3.34 4.93 6.63 8.66
Hc 1.06 1.28 1.86 2.96 4.50 6.18 7.6

Table 8.3: The average amount of iterations when the decoder terminated
with a valid codeword over the AWGN channel.
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Figure 8.8: Results comparing Hcore × d̂core with CRC-check versus H × d̂
over the BSC.

SNR 0.01 0.02 0.04 0.06 0.08 0.1
He 1.65 2.79 5.23 7.12 8.76 9.45
Hc 1.33 2.21 4.58 6.54 8.20 8.92

Table 8.4: The average amount of iterations when the decoder terminated
with a valid codeword over the BSC.
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Figure 8.9 compares the BER and the BLER performance for Hc and He

over the BEC channel. Their overall performance match until α = 0.25.
The drop for graph Hc after α = 0.25 represents that there were no more
erroneous outputs from the decoder for values lower than α = 0.25, while
for graph He there were no more erroneous outputs from the decoder for
values lower than α = 0.2.

Figure 8.9: Results comparing Hcore × d̂core with CRC-check versus H × d̂
over the BEC.
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From the results of Figures 8.7, 8.8, and 8.9 we will run the Min-Sum,
IOMS, and the AMS decoders and perform Hcore × d̂core with CRC-check
when checking the validity of d̂ in the LDPC decoder.

Graphs from Figure 8.10, 8.11, and 8.12 displays the performance of the
Min-Sum, IOMS and the AMS decoders. We only ran the tanh update
function (5.4) over the BEC as the variables nodes are either correct, or
contain no information. Applying an offset to variable nodes which are
certain to be correct could deteriorate the performance of the decoder.

The offset factor µ and the normalized factor η for the AMS decoder and
the IOMS decoder are gathered from the work of [18], and are set to 0.4
and 0.95, respectively. The offset factor µ and the normalized factor η for
the Min-Sum decoder are set to 0 and 1, respectively.
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Figure 8.10: Results for the Min-Sum, AMS, and the IOMS decoders over
the AWGN channel.
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Figure 8.11: Results for the Min-Sum, AMS, and the IOMS decoders over
the BSC channel.
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Figure 8.12: Results for the Min-Sum BEC channel.

From the displayed graphs, both the IOMS and the AMS decoders shown
an improvement to the Min-Sum decoder, where the IOMS decoder has a
slight advantage over the AMS decoder.
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Chapter 9

Conclusions

In this thesis, we discussed the development of LDPC codes and polar
codes and detailed the CRC calculation, the mother encoder, and the rate
matching scheme for both structures, with the aim of explaining the ma-
terial in such a way that is more inviting to new readers in the field of
reliable digital communication.

Through our research of independent papers, we implemented and pro-
filed the originally proposed approximation for the belief propagation func-
tion, called the Min-Sum, to adapted versions of the Min-Sum decoder to
achieve better error correction performance of the QC LDPC code. The
adapted versions we included in this thesis were the IOMS decoder and
acrshortams decoder. We suggested a modification for the validity check
of d̂, which utilized the core parts of both H and d̂ accompanied with a
CRC-check before terminating the decoding algorithm.

For polar codes, we implemented and profiled the performance of the SC
decoder, the SCL decoder, and two versions of a CA SCL decoder. The
main objective for the CA SCL decoder is to interleave the CRC-bits to al-
low for early termination of the SCL decoder. One variant of the CA SCL
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decoder, named CR SCL in the work of [13], was based on our interpreta-
tion by the work of [13] and [6]. The other variant of the CA SCL decoder
was by our suggestion, and we simply kept the CA SCL name. Though the
CA SCL decoder is designed to early terminate the decoder, if none of the
candidate codewords will yield the correct codeword, one wants as few
early terminations as possible. Fewer early terminations are attributed to
a decoder which can better keep the correct candidate codeword through-
out the decoding process.
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