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Abstract
Cardiac inter-beat intervals (IBIs) are considered to reflect autonomic functioning 
and self-regulatory abilities and are often investigated by traditional time- 
and frequency domain analyses. These analyses investigate IBI fluctuations 
across relatively long time series. The similarity graph algorithm is a nonlinear 
method that analyzes segments of IBI time series (i.e., time windows)—
possibly being more sensitive to transient and spontaneous IBI fluctuations. 
We hypothesized that the similarity graph algorithm would detect differences 
between Attention-Deficit/Hyperactivity Disorder (ADHD) and control groups. 
Resting electrocardiogram (ECG) recordings were collected in 10–18-year-olds 
with ADHD (n = 37) and controls (n = 36). IBIs were converted to graphs that 
were subsequently investigated for similarity. We varied the criterion for defining 
IBIs as similar, assessing which setting best distinguished ADHD and control 
groups. Using this setting, we applied the similarity graph algorithm to time 
windows of 2–5, 6–13 and 12–25 s, respectively. We also performed traditional IBI 
analyses. Independent samples t tests assessed group differences. Results showed 
that a 1.5% criterion of similarity and a time window of 2–5 s best distinguished 
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1   |   INTRODUCTION

Heart rate variability (HRV) indexes autonomic activity 
by assessing differences in consecutive inter-beat intervals 
(IBIs; Camm et al., 1996) of an electrocardiogram (ECG) 
recording. HRV is often analyzed by time- and frequency 
domain methods (Thayer et al., 2010) based on linear mod-
els, although the adaptive mechanisms that regulate heart 
rate (HR) are considered to be nonlinear (see Huikuri 
et al., 2003; Rajendra Acharya et al., 2006). Further, HRV 
indices typically depend on calculations from one to five 
minutes of an IBI series (Camm et al., 1996). As the indices 
are expressed as mean values or summary statistics from 
relatively long recordings (Camm et al.,  1996; Shaffer & 
Ginsberg, 2017), they can be similar despite being from re-
cordings with distinctly differently organized IBIs. Hence, 
valuable information about IBI organization might go un-
detected by use of linear methods.

IBIs are influenced by complex regulatory systems 
causing frequent spontaneous fluctuations in HR, lead-
ing to nonlinearity of IBI organization (see Huikuri 
et al.,  2003; Rajendra Acharya et al.,  2006). Nonlinear 
methods based on concepts such as chaos, fractality, and 
complexity have as such led to important insights into 
IBIs dynamics (de Godoy,  2016; Henriques et al.,  2020; 
Voss et al.,  2009), although not without limitations (see 
Henriques et al., 2020). These methods might be hard to 
compute or interpret, or vulnerable to erroneousness if pa-
rameter choices are non-optimal (Henriques et al., 2020). 
Others are highly sensitive to ECG length or artifacts, or 
do not utilize all data (Henriques et al., 2020). Some meth-
ods might also reflect autonomic activity inaccurately 
(Cepeda et al., 2018). On account of such limitations, the 
development of nonlinear methods is still warranted.

Graph theory is a promising mathematical field for ap-
plication to nonlinear methods, which has provided new 
insights into various brain disorders in neuroimaging stud-
ies (e.g., Ahmadlou et al., 2012; Bullmore & Sporns, 2009; 
Stam & Reijneveld, 2007). As opposed to assessing values 

across an entire IBI series, graph theory allows for the in-
vestigation of smaller segments of the time series. These 
time windows provide information about moment-to-
moment IBI fluctuations, as represented in a graph. The 
term “graph” refers to the visualization of a set of nodes 
and edges (Kleinberg & Tardos,  2006). Each IBI is visu-
alized as a point—a node. Similar IBIs are connected by 
a line—an edge. Thus, a graph highlights similarities in 
IBIs (Figure 1). Different criteria of similarity—thresholds 
for defining IBIs as similar—provide different graphs. 
There are numerous indices that can be deducted from 
such graphs. Yet, previous graph theory-based studies of 
IBIs appear to have performed analyses of only one spe-
cific variable (Choudhary et al., 2019, 2020). This might be 
insufficient for characterizing complex physiological sys-
tems such as IBI organization (see Voss et al., 2009).

In the current study we applied a graph theory-based, 
nonlinear method that might complement other IBI anal-
yses: the similarity graph algorithm. It has previously been 
applied in studies of motor activity (Fasmer et al., 2018, 
2020). The algorithm assesses several indices familiar 
from graph theory in relatively short time windows, pro-
viding information about moment-to-moment IBI simi-
larity - termed inter-relatedness. As further detailed in the 
method section, the indices represent different perspec-
tives on inter-relatedness and lack of inter-relatedness. 
A ratio of inter-relatedness across a longer compared to 
a shorter time window is also calculated: edges10+10/
edges2+2. This might be compared to the inverse of the 
previously criticized (Billman,  2013) low frequency/
high frequency (LF/HF) ratio from HRV analysis (Camm 
et al., 1996), although our use of time windows might pro-
vide a more refined index.

We suggest that a higher inter-relatedness reflects al-
tered ANS activity, similar to a lower HRV. Supporting 
this, graph theory-based methods have found lower IBI 
complexity (i.e., more similarity) in individuals with 
heart disease and the elderly (Choudhary et al.,  2020, 
2019), which are populations that often have a lower 

adolescents with ADHD and controls. The similarity graph algorithm showed a 
higher number of edges, maximum edges and cliques, and lower edges10+10/
edges2+2 in the ADHD group compared to controls. The results suggested more 
similar IBIs in the ADHD group compared to the controls, possibly due to altered 
vagal activity and less effective regulation of heart rate. Traditional analyses did 
not detect any group differences. Consequently, the similarity graph algorithm 
might complement traditional IBI analyses as a marker of psychopathology.
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HRV (Camm et al.,  1996; Thayer & Lane,  2007; Voss 
et al., 2012). Of the ANS components, the vagus nerve is 
crucial for adaptive changes in HR and variability in IBIs 
(Berntson et al., 1997). The vagus nerve has a rapid course 
of action, compared to sympathetic activity that has a 
peak effect after about five seconds (Nunan et al., 2010). 
As such, higher inter-relatedness in shorter time windows 
(i.e., less than five seconds) might reflect vagal alterations 
most accurately, whereas longer time windows might also 
represent other ANS functions. Vagal alterations indexed 
by lower vagally mediated HRV have been associated with 
less effective self-regulatory abilities and general psycho-
pathology (Beauchaine, 2015; Beauchaine & Thayer, 2015; 
Holzman & Bridgett, 2017). This is likely because activity 
in brain areas important for adaptability, such as the pre-
frontal cortical areas and amygdala, is connected to ANS 
centers in the brainstem and reflected in vagal modula-
tion on the heart (Thayer & Lane,  2000). Possibly, such 
self-regulatory abilities and vulnerability to psychopathol-
ogy might also be reflected in inter-relatedness indexes of 
vagal modulation.

As traditional IBI indices have been associated with 
self-regulatory abilities and general psychopathology 
(Beauchaine, 2015; Beauchaine & Thayer, 2015; Holzman 
& Bridgett, 2017), we investigated as a proof of concept if 
the similarity graph algorithm could detect IBIs differences 
between adolescents with Attention-Deficit/Hyperactivity 
Disorder (ADHD) and controls. A meta-analysis con-
cluded with no differences in vagally mediated HRV in 
individuals with ADHD compared to controls (Koenig 
et al., 2016). Still, lower vagal activity has been associated 
with ADHD symptoms such as inattention, impulsivity, be-
havioral disinhibition, and difficulties with goal-directed 
behavior (see Rash & Aguirre-Camacho,  2012), giving 
reason to suspect vagal alterations in this group. Further, 
ADHD is likely characterized by altered noradrenaline 
and dopamine functioning (Sharma & Couture,  2014; 
Tripp & Wickens, 2009), which affects the ANS (LeBouef 

et al., 2020; Thorner, 1975). Importantly, dopamine is dis-
charged in bursts (Tripp & Wickens, 2009), which might 
manifest as transient and spontaneous IBI alterations that 
could be detected in analyses of shorter time windows.

In the current study, we first investigated which criterion 
of similarity best illustrated differences between the ADHD 
and control group with the similarity graph algorithm. In 
line with previous work with the sample entropy (SampEn) 
method (Hauge et al., 2011; Richman & Moorman, 2000), we 
expected group differences to be most prominent for a crite-
rion of similarity corresponding to 20% of the standard devi-
ation (SD) of the IBIs. Second, we ran the algorithm for three 
different time windows in the ADHD and control group, 
investigating inter-relatedness. Our hypothesis was that the 
ADHD group would display higher inter-relatedness, and 
that this would be most prominent in shorter time windows 
(i.e., less than five seconds), which might provide the most 
refined indices of vagal alterations. We expected indices of 
higher inter-relatedness to be more sensitive to such vagal 
alterations than indices of lacking inter-relatedness, as it is 
generally easier to distinguish groups on a present rather 
than absent occurrence. Further, we expected to find lower 
edges10+10/edges2+2 in the ADHD group compared to 
controls, as LF/HF ratios tend to be higher in ADHD sam-
ples (Griffiths et al., 2017; Tonhajzerova et al., 2009). Third, 
HRV differences between the ADHD and control groups 
were investigated. Our expectation was that indices of vagal 
activity (i.e., RMSSD, HF-HRV) would not show group dif-
ferences, in line with meta-analytical evidence (see Koenig 
et al., 2016). Still, we expected other indices to reflect ANS 
alterations in ADHD (i.e., lower SDNN, higher LF-HRV and 
LF/HF ratio). Fourth, we investigated if significantly differ-
ent IBI indices were confounded by comorbidities or anxiety 
symptoms. We hypothesized that these variables would af-
fect the HRV indices, which are associated with emotion dys-
regulation and general psychopathology (Beauchaine, 2015; 
Beauchaine & Thayer, 2015; Holzman & Bridgett, 2017), but 
not the graph theory-based indices. The latter indices might 

F I G U R E  1   Illustration of nodes and edges in a graph. We introduce an edge (black line in the figure) between two nodes (blue dots 1–5 
in the figure) if they are similar to each other and within the same time window. Each node corresponds to an IBI in the time series. The 
time window in the figure consists of five nodes. Node nr. 1, 3, and 5, as well as node 2 and 5, are connected by edges
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be more sensitive to subtle alterations and capture the com-
plexity of IBI organization more accurately, and thus the de-
tected alterations might be more ADHD-specific.

2   |   METHOD

2.1  |  Design and procedure

The current study is cross-sectional in design, investi-
gating data from the second wave of a follow-up project 
on ADHD (See Supporting Information for details). The 
study protocol was approved by the Regional committee 
for medical research ethics of western Norway (Study 
number: 2014/1304). Participants received a reimburse-
ment of £80 ($115).

Test administrators were blinded to group status 
throughout the two-day assessments. On the first day, ad-
olescents and their parents received extensive information 
about the project and procedures. ECG recordings were 
conducted between 9 a.m. and 1 p.m. to control for effects 
of circadian variation on IBIs (Malpas & Purdie, 1990). On 
the second day, adolescents and their parents were sepa-
rately interviewed with a semi-structured diagnostic inter-
view (K-SADS; outlined below). This interview reviewed 
the diagnostic group statuses (ADHD/control) that had 
been assigned during similar interviews in the first wave 
of the project and assessed current comorbid diagnoses. 
Parents also completed the DSM-IV ADHD-rating scale 
(ADHD-RS; outlined below) for assessment of dimensional 
ADHD symptoms. Further, factors that have been asso-
ciated with HRV (Gutin et al.,  2005; Koenig et al.,  2014; 
Tsang et al.,  2015) and often differ in ADHD and con-
trol groups (Cook et al.,  2015; Cortese et al.,  2008; Fliers 
et al., 2013; Sharma et al., 2011) were examined: Physical 
activity levels as assessed during the diagnostic interview; 
body mass index (BMI) computed from height and weight 
measurements; and anxiety symptoms assessed by adoles-
cent reports on the State-Trait Anxiety Inventory (STAI; 
outlined below).

2.2  |  Participants

2.2.1  |  Recruitment

In the first wave of the project, children with suspected 
ADHD were referred from child and adolescent psychiatry 
units in the Bergen municipality, Norway. Controls were 
recruited from schools in the same geographical area. An 
equal age and sex distribution in the ADHD and control 
groups was strived for. Participants in the first wave were 
asked by mail to take part in the second wave, and signed 

written informed consent in accordance with the Helsinki 
declaration. Exclusion criteria were a full-scale IQ score 
of <75, suspected autism spectrum disorder, former head 
trauma with loss of consciousness, or birth before gesta-
tion week 36.

2.2.2  |  Diagnostic assessments

Subjects were assigned to an ADHD or control group by use 
of the Schedule for Affective Disorders and Schizophrenia 
for School-Age Children—Present and Lifetime Version (K-
SADS; Kaufman et al.,  1997). The Norwegian translation 
was used (Sund & Aalberg,  2009), which has shown ade-
quate convergent and divergent validity for ADHD diagnos-
tics (Villabø et al., 2016). Diagnostic and Statistical Manual 
of Mental Disorders – Fourth edition (DSM-IV) criteria 
were applied (American Psychiatric Association,  2000). 
Interviews were performed by one of two experienced psy-
chologists. The non-interviewing psychologist provided a 
second opinion on the participants’ diagnoses.

2.3  |  Sample properties

The sample comprised n = 37 adolescents with ADHD and 
n = 36 controls between 10 and 18 years of age (mean age 
14.38; SD 1.51; Table 1). The majority of the participants 
were male (n = 48, 65.75%). All adolescents in the ADHD 
group met the criteria for the diagnosis, except for one who 
had ADHD in remission. Participants with ADHD were 
diagnosed as primarily inattentive, hyperactive-impulsive 
or combined subtypes, and were frequently diagnosed 
with comorbid disorders (See Table  2 for comorbidities 
and ADHD subtypes in the sample). Twenty two (59.46%) 
of the adolescents with ADHD used ADHD medication. 
Except for one who used atomoxetine hydrochloride, all 
were on central stimulants (nine used fast-acting formu-
las, nine used extended-release formulas and four a com-
bination or alternation between the two). Further, two 
participants with ADHD used lamotrigine, and one used 
sertraline. One control participant used risperidone and 
melatonin.

2.4  |  Measures

2.4.1  |  Inter-beat intervals

To rule out short-term effects on IBIs (Buchhorn 
et al., 2012), participants were asked to conduct a washout 
period of medication 48  h prior to participation. 90.91% 
of the adolescents on ADHD medication (n = 20, of 22) 
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conducted a washout period of minimum 24 h. Two par-
ticipants on methylphenidate had washout periods of 18 
and >12 h, respectively. Although shorter than requested, 
these timeframes were acceptable as methylphenidate has 

a half-life of two to three hours (i.e., the active ingredient 
is eliminated after 10–15 h; Ito, 2011; Kimko et al., 1999). 
Both participants on lamotrigine conducted a (48-h) 
washout period, while the participant on risperidone and 
melatonin did not.

Resting ECG recordings were assessed. As resting IBI 
indices have shown excellent test-retest reliability (Bertsch 
et al., 2012; Li et al., 2009), they might reflect “trait” neu-
rophysiological tendencies of self-regulation (Beauchaine 
& Thayer,  2015; Porges,  2007; Thayer & Lane,  2000). 
Therefore, they could generalize to situations in everyday 
life to a larger degree than “state” IBI responses during 
experimental protocols (i.e., vagal reactivity; Balzarotti 
et al.,  2017). Further, comparing our results to previ-
ous studies was more convenient with the use of resting 
ECGs, as they are often based on standardized protocols 
(Berntson et al., 1997; Camm et al., 1996).

Before initiation of the ECG recording, adolescents 
were instructed to lie down and relax while trying not 
to move or fall asleep. The ECG was recorded for six 
minutes as participants were breathing spontaneously. 
A simple lead II setup at a sampling rate of 1000 Hz was 
used. An A/D converter (Biopac, MP36, Biopac System 
Inc., Santa Barbara, CA) obtained the signal, which was 
conducted through three adhesive Ag/AgCl electrodes 
(T815 Dia. 55) and recorded with Biopac 4.0 BSL (Biopac 
Systems Inc. Santa Barbara, CA). The IBIs were man-
ually inspected in Kubios HRV version 2.2 (Tarvainen 
et al., 2014), where 11 IBI corrections were made (.4%–
1.5% of IBIs in the corrected recordings) in six record-
ings (ADHD, n = 3; controls, n = 3). One extra systole 

Variable
ADHD 
(n = 37)

Controls 
(n = 36) t χ2 df

Sex (n, %) .68 1

Male 26 (70.27) 22 (61.11)

Female 11 (29.73) 14 (38.88)

Age 14.19 (1.74) 14.58 (1.21) −1.11 71

BMI 22.37 (5.59) 21.01 (2.91) 1.30 54.52

Physical activity 
levels

1.73 (.77) 2.62 (1.20) 16.56** 5

ADHD-RS 26.33 (10.83) 5.91 (7.32) 8.96** 53.76

STAI-T 31.11 (7.08) 27.77 (4.79) 2.36* 71

Comorbidities 1.16 (1.12) .33 (.63) 13.63** 4

HF peak .25 (.063) .26 (.051) -1.05 69.00

Note: Comorbidities: The number of comorbidities each participant had. HF peak: Peak frequency of the 
high frequency band, as a proxy for respiration. Physical activity levels were scored on a Likert-type scale 
from 1 (lowest) to 5 (highest). Data are given as (mean, SD).
Abbreviations: BMI, Body Mass Index; ADHD-RS, ADHD Rating Scale; STAI-T, State-Trait Anxiety 
Inventory, trait anxiety subscale.
*p ≤ .050;; **p ≤ .010.

T A B L E  1   Descriptive statistics for 
ADHD and control groups

T A B L E  2   Comorbid diagnoses and ADHD subtypes

ADHD (n = 37)
Controls 
(n = 36)

ADHD subtype

IA 11 (29.73) –

HI 1 (2.70) –

C 25 (67.57) –

TS 13 (35.14) 7 (19.44)

Anxiety disorders 10 (27.03) 3 (8.33)

ODD 10 (27.03) –

CD 1 (2.70) –

OCD 2 (5.41) 2 (5.56)

MDD 2 (5.41) –

Eneuresis 2 (5.41) –

Epilepsy 1 (2.70) –

Chronic motor tics 1 (2.70) –

Transient motor tics 1 (2.70) –

Anorexia nervosa – 1 (2.78)

Note. Table displays number of participants (% of diagnostic group).
Abbreviations: C, combined subtype; CD, conduct disorder; HI, hyperactive-
impulsive subtype; IA, inattentive subtype; MDD, major depressive disorder; 
OCD, obsessive-compulsive disorder; ODD, oppositional defiant disorder; 
TS, tourette syndrome.
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was removed. Then, the number of IBIs in the first five 
minutes of every series was calculated (See Supporting 
Information Figure  S1 for flow chart of IBI analysis). 
The lowest IBI number in any of the series—237—was 
analyzed. This was due to the need to investigate the 
same number of time windows with the similarity graph 
algorithm in every IBI series, to compare their relative 
inter-relatedness. Although five-minute ECG recordings 
is the standard in HRV analyses (Camm et al., 1996), we 
used the first 237 IBIs of the recordings also in these 
analyses, in order to compare all IBI indices on equal 
premises.

The similarity graph algorithm (outlined below) was 
applied to the IBI series. We also performed time do-
main analyses of the SD of normal IBIs (SDNN) and the 
root mean square of successive RR interval differences 
(RMSSD). SDNN indexes total variability in HR, and 
RMSSD reflects vagal modulation (Camm et al., 1996). 
Further, a frequency analysis with the Fast Fourier 
Transformation yielded a power spectrum of activity 
in the LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) bands 
(Camm et al., 1996), expressed in non-normalized units. 
Activity in the LF band is frequently interpreted as sym-
patho/vagal activity, and the HF band indexes vagal ac-
tivity (Camm et al.,  1996). We also calculated the LF/
HF ratio, which is—although debated (Billman, 2013)—
often considered to index sympatho/vagal balance, 
in that a low LF/HF ratio reflects vagal dominance of 
the ANS (Camm et al., 1996). Further, respiration rates 
were estimated by the ECG-derived respiration, based 
on changes in R-wave amplitude (Moody et al.,  1985). 
We assessed whether respiration rates were within 
the normal range for adults (.20–.33 Hz; McCance & 
Huether,  2018), supporting our use of adult frequency 
bands (see Shader et al., 2018). Lastly, we assessed peak 
frequencies of the HF band, HF peak, reflecting respi-
ratory effects on IBIs (Grossman et al.,  1991; Thayer 
et al., 2002).

2.4.2  |  Physical activity levels

Engagement in sports and exercise was reported by the 
adolescents in the K-SADS interview, and physical ac-
tivity levels were thereafter scored on a five-point scale 
from 1 (“zero times a week”) to 5 (“seven times or more a 
week”). The scoring norm was adapted from the Physical 
Activity Questionnaire for Adolescents (PAQ-A; Kowalski 
et al.,  2004) due to its convergent validity (Kowalski 
et al., 1997). Data reported between two categories were 
lowered to the nearest category (see Sallis et al.,  1996). 
One participant in the current study did not provide infor-
mation on physical activity.

2.4.3  |  Body mass index

The participants’ BMI was calculated by dividing weight 
in kg by height in meters squared. In the current study, 
it was impossible to calculate BMI for four participants 
(ADHD, n  =  2; Controls, n  =  2) as they declined to be 
weighed or due to a technical error with the scale.

2.4.4  |  ADHD symptoms

ADHD symptoms were indexed by total scores on 
the Norwegian translation (Kvilhaug et al.,  1998) of 
the parent-reported ADHD-RS (DuPaul et al.,  1998). 
Eighteen items about symptom levels of inattention 
(e.g., “Is forgetful in daily activities”) and hyperactivity-
impulsivity (e.g., “Talks excessively”) were rated on a 
four-point Likert-type scale from 0 (“Never”) through 3 
(“Very Often”). The ADHD-RS has shown high internal 
consistency (Cronbach’s α in the current sample: .96) 
and adequate validity (DuPaul et al., 1998). ADHD-RS 
data were missing for one participant (with ADHD) in 
the current study.

2.4.5  |  Anxiety symptoms

The Norwegian translation (Haseth et al.,  1990) of the 
STAI (Spielberger et al.,  1983) assessed self-reported 
symptoms of trait anxiety (STAI-T). The inventory has 
shown adequate internal consistency (Cronbach’s α in 
the current sample: .87), test-retest reliability (Spielberger 
et al.,  1983), and construct- and concurrent validity 
(Spielberger, 1989). The STAI-T score is based on 20 items 
(e.g., “I feel nervous and restless”) rated on a four-point 
Likert-type scale from 1 (“Almost never”) to 4 (“Almost 
always”). In the current study, STAI-T scores were miss-
ing for three participants with ADHD and two controls.

2.5  |  Measures

2.5.1  |  Graph theory

The overview of graph theory principles and description 
of the similarity graph algorithm are based on the original 
publication of this method (Fasmer et al., 2018). There are 
some additional features and adaptations to the analysis 
of IBI data, as outlined below.

Graphs are mathematical structures that model rela-
tions between objects. A graph G = (V, E) consists of a col-
lection V of nodes (vertices) and a collection E of edges (if 
any) (Bondy & Murty, 2008). An edge e ∈ E is a two-element 
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subset of V that associates two nodes: e ={u, v}, for some u, 
v ∈ V (Lian, 2000). A subgraph is a graph formed from a 
subset of the nodes and edges (if any) of G.

2.5.2  |  The similarity graph algorithm

We apply a heuristic algorithm that is nonlinear and not 
chaos-based that transforms a time series into a similar-
ity graph G =  (V, E) (see Fasmer et al., 2018. Program 
code can be accessed at https://github.com/erlfa​s/Simil​
arity​Graph). In the current study every IBI in a time se-
ries is represented by a node in the graph. Thus, in a 
time series S each node ui in V, 1 ≤ I ≤ n, corresponds to 
the element xi ∈ S, and the node ui is assigned a weight 
equal to xi. An edge between two nodes signifies that the 
nodes fulfill the criterion of similarity: that the differ-
ence in IBIs is below a predefined threshold. This simi-
larity is calculated as max(xi, xj)/min(xi, xj) or max(xi, 
xj)−min(xi, xj).

In the current study, every node in the graph will be the 
index node considered by the algorithm (Figure 2). Thus, 
every IBI will be analyzed in relation to a given section 
of other IBIs in the time series: a time window (Figure 2). 
To describe the size of a time window, we use the term 
neighbors: the number (k) of preceding or subsequent 
nodes around the index node. Thus, every node has a total 
number of 2k neighbors, denoted as k+k. When analyzing 
the IBI series, the applied time window “slides” and cen-
ters around every index node, except for the first k and last 
k IBIs of the time series. Different time windows create 

different subgraphs (Figure 2), which may reveal different 
properties of the underlying time series.

In sum, we introduce an edge between two nodes if 
and only if they fulfill the criterion of similarity and are 
within the same time window. The number of edges in 
a given time window reveal how similar the index nodes 
are to the other nodes. Minimum similarity is revealed 
when the index node has no edges. Conversely, maximum 
similarity is revealed when the index node has an edge to 
every other node in the time window. In the current study, 
graphs with a higher number of similar IBIs are described 
as having higher inter-relatedness.

The described methods create a graph that can be stud-
ied by well-known algorithms from graph theory (See 
Figure 3 for the transformation of an IBI series to graphs 
and subsequent indices). The indices investigated in the 
current study and their possible interpretation in terms 
of inter-relatedness and vagal activity are described in 
Table 3. The index of bridges is more complex to interpret 
(e, an edge of G, is a bridge if G–e has more components 
than G; see Fasmer et al., 2020), and was thus included in 
supplemental analyses.

2.5.3  |  Additional nonlinear analyses

To compare the similarity graph algorithm to other non-
linear methods, we performed recurrence quantification 
analyses (RQA) and analyses of SampEn. Both methods 
assess complexity and have frequently been applied to IBI 
data (Henriques et al., 2020).

F I G U R E  2   Illustration of the concept of index nodes, time windows and subgraphs. The figure illustrates three time windows of 5+5 
neighbors. Each node in the time series is used as an index node (In1–3) considered by the similarity graph algorithm. Five nodes (i.e., 
neighbors) on the left and right side of the index node, respectively, make up a time window of 5+5 neighbors. Within the time window, 
nodes are connected by edges based on the similarity of the nodes. This collection of nodes and edges within a time window makes up a 
subgraph

https://github.com/erlfas/SimilarityGraph
https://github.com/erlfas/SimilarityGraph
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2.6  |  Statistical analyses

Statistical analyses were performed in the Statistical 
Package for the Social Sciences version 24.0 (SPSS; IBM 
Corp., Armonk, NY, 2016). HRV frequency bands were 
transformed with their natural logarithm to approximate 
a normal distribution (Ellis et al.,  2008). We examined 
potential outliers, i.e., values > ±3  SD from the mean, 
in variables used as covariates (i.e., age, sex, BMI, physi-
cal activity levels, HF peak, number of comorbidities and 
STAI-T scores). Outliers were imputed with the value of 
the sample mean ±3 SD. Missing data were imputed with 
the sample mean, or the mean of the ADHD group (for the 
missing ADHD-RS score). Differences between the ADHD 
and control groups in age, sex, BMI, physical activity lev-
els, ADHD-RS and STAI-T scores, number of comorbidi-
ties, and HF peak were investigated with the independent 
samples t test or chi-square tests. Unless otherwise noted, 
differences between the ADHD and control group in the 
remaining analyses were investigated with independent 
samples t tests, with Cohen’s d as an effect size measure.

First, to investigate which setting of the similarity 
graph algorithm best accentuated IBI differences between 
the ADHD and control groups, we ranged criteria of sim-
ilarity from 1% to 5% (i.e., 95%–99% similarity) and 5 to 
50 ms. Differences in edges between the ADHD and con-
trol groups were assessed. We used a time window of 2+2 

neighbors, hypothesized to provide the most refined index 
of vagal activity. The settings that yielded the largest effect 
size of a significant difference from the percentage-based 
and msec-based approaches were then compared. Here, 
we investigated differences in edges between the ADHD 
and control groups for time windows of 2+2 and 10+10 
neighbors, and edges10+10/edges2+2. The criterion 
yielding the largest significant effect size in any index was 
applied in the remaining analyses.

Second, we ran the similarity graph algorithm with 
three different time windows to test the hypothesis that 
we would find higher inter-relatedness in the ADHD 
group compared to the control group. Based on our 
hypothesis that vagal activity might be captured best 
in a time window of 2–5  s, which we aimed to com-
pare to two longer time windows, we applied values of 
k = 2, k = 5 and k = 10. This corresponded to approx-
imately 2–5, 6–13, and 12–25 s, respectively (mean IBI: 
900.61 ms; range: 606–1261 ms). In these time windows, 
we investigated differences between the ADHD and 
control groups in the average number of edges, compo-
nents, missing edges, maximum edges, zero edges, and 
cliques. We also calculated edges10+10/edges5+5 and 
edges10+10/2+2. Group differences in cliques were in-
vestigated with the Mann-Whitney U test. As post-hoc 
analyses, we investigated differences in edges and ratios 
derived from the number of edges in two different time 

F I G U R E  3   Illustration of the 
procedure for deriving graph theoretical 
indices from inter-beat intervals (IBIs). 
First, IBIs are collected. Then, the IBIs 
are converted to a graph, where nodes 
that fulfill the criterion of similarity (in 
the current figure: 1.5%) and are within 
the same time window are connected 
by edges. Lastly, the values of the graph 
theory-based indices are derived from the 
properties of the graph

Index Value

Edges 3

Components 2

Missing edges 2

Max edges 3

Zero edges 0

Cliques 1

745 ms            950 ms             750 ms          760 ms            770 ms
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T A B L E  3   Overview of graph theory-based indices calculated in the current study, and their suggested physiological interpretation in 
terms of inter-relatedness

Index Definition Illustration
Interpretation 
of high value

Edges A two-element subset that 
associates two nodes that 
a) fulfill the criterion of 
similarity, and b) are located 
within the same subgraph 
(i.e., time window). The 
index refers to the mean of 
the number of edges in all 
subgraphs

↑ Inter-
relatedness

The subgraph has three edges: Those connecting nodes nr. 1, 
2 and 3, and nr. 3 and 5

↓ Vagal activity

Components A graph can be divided into 
separate components. The 
nodes in each component 
are connected by edges and 
the different components 
are not interconnected by 
edges. A node with no edges 
is itself a component. We are 
for each subgraph interested 
in the total count of these 
components

↓ Inter-
relatedness

The subgraph consists of three components: Those including 
node nr. 1 and 2, nr. 3 and 4, and nr. 5, respectively

↑ Vagal activity

Missing edges The total count of the number 
of nodes that are nearest 
neighbors in a subgraph 
and do not have an edge 
connecting them

↓ Inter-
relatedness

The subgraph has two missing edges: There are no edges 
between node nr. 2 and 3, or nr. 3 and 4

↑ Vagal activity

Comparable 
to RMSSD 
(see Fasmer 
et al., 2020)

Maximum edges The highest number of edges 
found in any subgraph of the 
time series

↑ Inter-
relatedness

The number of maximum edges is four. Subgraph 1 has two 
edges, subgraph 2 has zero edges, and subgraph 3 has 
four edges

↓ Vagal activity

Zero edges The number of subgraphs with 
zero edges

↓ Inter-
relatedness

The number of subgraphs with zero edges is one: Subgraph 1 
has two edges, subgraph 2 has zero edges, and subgraph 
3 has four edges

↑ Vagal activity

(3-) Cliques The total count of subsets of three 
nodes in which every pair of 
distinct nodes are connected 
by an edge (i.e., a sequence 
of three nodes with similar 
values)

↑ Inter-
relatedness

The subgraph has one clique: The one consisting of nodes nr. 
2, 3, and 4

↓ Vagal activity

(Continues)
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windows, between the ADHD and control group in time 
windows close to the k value (k ± 1) that had best dis-
tinguished the groups, to investigate if this yielded even 
larger effect sizes.

Third, we performed time- and frequency domain 
analyses to investigate HRV differences between the 
ADHD and control groups. This tested the hypothesis 
that we would find a lower SDNN, and a higher LF-
HRV and LF/HF ratio in the ADHD group compared 
to controls, but no significant differences in RMSSD or 
HF-HRV.

Fourth, we performed follow-up ANCOVAs on sig-
nificantly different IBI indices in the ADHD and control 
groups from the graph theory-based and HRV analyses, 
investigating potential confounding effects. The IBI in-
dices, respectively, were used as the dependent variable, 
and diagnostic group status (ADHD/control) as the in-
dependent variable. As covariates, we used (A) Age, sex, 
BMI, physical activity levels, and HF peak. Covariates 
that significantly predicted any of the indices were in-
cluded in a final ANCOVA model, (B) The number of co-
morbid disorders each participant had, and (C) STAI-T 
scores.

Fifth, supplemental analyses assessed (A) Differences 
between the ADHD and control groups in RQA and 
SampEn, to compare results from the similarity graph 
algorithm to other nonlinear approaches, (B) Bivariate 
correlations between HRV indices, edges10+10/
edges2+2 and edges10+10/edges5+5, aiding in the 
interpretation of the ratios, (C) The probability of an 

index node having an edge to a neighbor for time win-
dows of 2+2, 5+5 and 10+10 neighbors, in the ADHD 
and control groups. The largest group difference in this 
probability further elucidated which time window best 
illustrated group differences, (D) Differences in bridges 
between the ADHD and control groups for time win-
dows of 2+2, 5+5, and 10+10 neighbors, providing 
additional information about inter-relatedness, (E) 
Bivariate correlations of ADHD-RS scores and signifi-
cant IBI indices from the main analyses, investigating 
if ADHD symptom severity correlated with the indices, 
and (F) HRV analyses of five-minute IBI series, to see 
if this yielded comparable results to analysis of the first 
237 IBIs of the series.

3   |   RESULTS

3.1  |  Preliminary analyses

There were no outliers for values obtained by time- and 
frequency domain analyses or the similarity graph algo-
rithm, or for physical activity levels, HF peak, number of 
comorbidities, ADHD-RS or STAI-T scores. The exception 
was one outlier for missing edges (in the ADHD group), 
and that the cliques displayed a skewed distribution in 
both groups. There was one outlier in the BMI values (in 
the ADHD group).

The adolescents with ADHD reported signifi-
cantly higher STAI-T scores than the control group (for 

Index Definition Illustration
Interpretation 
of high value

Edges10+10/
edges 5+5

The ratio between the number 
of edges detected when 
analyzing 10+10 neighbors 
(i.e., the longest time window 
applied in the current study) 
and 5+5 neighbors (i.e., the 
intermediate-length time 
window applied in the current 
study)

Relatively ↑ 
vagal activity 
of total ANS 
activity

Edges10+10/edges5+5 is 2. The time window of 10+10 
neighbors has ten edges, and the time window with 5+5 
neighbors has five edges (i.e., 10/5)

Inverse of LF/HF 
ratio

Less refined than 
edges10+10/
edges2+2

Edges10+10/
edges2+2

The ratio between the number of 
edges detected when analyzing 
10+10 neighbors (i.e., the 
longest time window applied 
in the current study) and 2+2 
neighbors (i.e., the shortest 
time window applied in the 
current study)

Relatively ↑ 
vagal activity 
of total ANS 
activity

Edges10+10/edges2+2 is 5. The time window of 10+10 
neighbors has ten edges, and the time window with 2+2 
neighbors has two edges (i.e., 10/2)

Inverse of LF/HF 
ratio

More refined than 
edges10+10/
edges5+5

T A B L E  3   (Continued)
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descriptive statistics for the ADHD and control group, see 
Table 1). The ADHD group also had higher parent-rated 
ADHD-RS scores than the controls, and a higher number 
of comorbidities. Further, controls reported higher levels 
of physical activity than their ADHD counterparts. There 
were no significant differences in age, sex, BMI or HF 
peak between adolescents with ADHD and controls. The 
mean ECG-derived respiratory frequency in the sample 
corresponded to .26 Hz (SD .050; Supporting Information 
Table S1).

3.2  |  IBI assessment with the similarity 
graph algorithm

3.2.1  |  Systematically varying 
criteria of similarity

First, we systematically varied the criterion of similar-
ity from 1% to 5% (Supporting Information Figure  S2) 
and 5–50  ms (Supporting Information Figure  S3), re-
spectively, to investigate which setting best illustrated 
differences in IBI organization between the ADHD and 
control group. The only significant differences in the 
number of edges between adolescents with ADHD and 
controls were found applying the 1.5% criterion and the 
10 msec criterion. For both these approaches, we found 
significant group differences in the number of edges in a 
time window of 2+2 neighbors but not 10+10 neighbors. 
Further, group differences in edges10+10/edges2+2 
were significant for both approaches (Supporting 
Information Table S2). The largest effect size for both 
approaches was found for edges10+10/edges2+2. The 
effect size was larger using the 1.5%-based approach 
compared to the 10 ms-based approach. Therefore, 1.5% 
was chosen as the criterion of similarity for the remain-
der of the analyses.

3.2.2  |  IBI assessment in different 
time windows

Second, in order to investigate differences in inter-
relatedness between adolescents with ADHD and controls, 
and which time window best illustrated such differences, 
we ran the similarity graph algorithm in three different 
time windows. Applying a time window of 2+2 neigh-
bors, we found a significantly higher number of edges, 
maximum edges and cliques, and a lower edges10+10/
edges2+2 in the ADHD group compared to controls as 
analyzed by the independent samples t test (Table  4). 
Differences in components, missing edges, and zero edges 
were non-significant.

Analyzing a time window of 5+5 neighbors, the inde-
pendent samples t test found no significant differences 
in the number of edges, components, missing edges, 
maximum edges, zero edges, cliques or edges10+10/
edges5+5 between the ADHD and control groups 
(Table 5).

Analysis of a time window of 10+10 neighbors de-
tected no significant differences between the ADHD and 
control groups regarding number of edges, components, 
missing edges, maximum edges, zero edges or cliques 
(Table 6).

As a time window of 2+2 neighbors best distinguished 
differences in IBI organization in the ADHD and control 
group, we performed post-hoc analyses investing group 
differences in time windows of 1+1 and 3+3 neighbors 
to see if these yielded even larger effect sizes (Supporting 
Information Table S3). Independent samples t-tests de-
tected a significantly lower edges10+10/edges1+1 and 
edges10+10/edges 3+3 in the ADHD group compared 
to controls. However, effect sizes were smaller compared 
to what was found for edges10+10/edges2+2. The differ-
ences in number of edges were non-significant for both 
time windows.

ADHD (n=37)
Controls 
(n = 36) p d CI

Edges .70 ± .38 .54 ± .26 .037* .50 [.030, .96]

Components 162.43 ± 35.68 177.03 ± 26.54 .052 .46 [.00, .93]

Missing edges 189.14 ± 24.59 198.00 ± 17.81 .083 .41 [-.050, .88]

Max edges 3.24 ± .72 2.69 ± .86 .0040** .69 [.23, 1.16]

Zero edges 120.14 ± 41.21 137.25 ± 35.26 .061 .45 [-.021, .91]

Cliques 7.78 ± 9.58 3.31 ± 4.07 .0080* .61 [.14, 1.07]

Edges10+10/
edges2+2

4.52 ± .88 5.57 ± 1.20 <.0010** 1.00 [0.54, 1.47)

Note: Data were analyzed by the independent samples t tests, except for cliques, where the Mann-Whitney 
U test was applied. CI: 95% confidence interval of d. Data are given as (mean ± SD).
*p ≤ .050;; **p ≤ .010.

T A B L E  4   IBI analyses based on the 
similarity graph algorithm. 2+2 neighbors
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3.3  |  Time- and frequency 
domain analyses

Third, applying time- and frequency domain analyses 
to investigate differences in HRV between the ADHD 
and control groups, independent samples t-tests showed 
a significantly higher LF/HF ratio in the ADHD group 
compared to controls. There were no significant group 
differences in SDNN, RMSSD, LF-HRV or HF-HRV 
(Table 7).

3.4  |  Follow-up analyses

Fourth, we adjusted for effects of possible confounding 
factors. We performed ANCOVAs with the significantly 
different IBI indices, respectively, as dependent vari-
ables, and diagnostic group status (ADHD/controls) as 
the independent variable. As covariates, we included (A) 
Age, sex, physical activity levels, BMI, and HF peak. HF 
peak predicted edges10+10/edges2+2 (R2 = .29, F = 4.43, 
p = .033). Age (R2 = .26, F = 8.12, p = .0060) and physical 
activity levels (R2 = .26, F = 5.53, p = .022) predicted the 
LF/HF ratio. Neither sex nor BMI significantly predicted 
any of the IBI indices. Thus, HF peak, age, and physical 
activity levels were included as covariates in a follow-up 
ANCOVA on significant results. In this final model, the 
effect of diagnostic status was still significant for edges, 
maximum edges, cliques, and edges10+10/edges2+2, but 
not for the LF/HF ratio (Table 8, Figure 4). HF peak sig-
nificantly predicted edges10+10/edges2+2, but no other 
indices. Age and physical activity levels covaried with the 
LF/HF ratio, but no other indices.

(B) The number of comorbidities. The effect of diagnos-
tic status on maximum edges and edges10+10/edges2+2 
remained significant (Supporting Information Table S4). 
The effect of diagnostic status on edges, cliques, and the 
LF/HF ratio was no longer significant. The number of 

comorbidities covaried significantly with the LF/HF ratio, 
but not with any of the graph theory-based indices, and 
(C) STAI-T scores. The effect of diagnostic status on maxi-
mum edges, cliques, and edges10+10/edges 2+2 remained 
significant (Supporting Information Table S5). The effect 
of diagnostic status on the number of edges and the LF/
HF ratio was no longer significant. STAI-T scores covaried 
significantly with the LF/HF ratio, but not with any of the 
graph theory-based indices.

3.5  |  Supplemental analyses

Fifth, we performed supplemental analyses. These analy-
ses found that (A) Comparing our method to established 
nonlinear approaches, there were no significant differ-
ences between the ADHD and control groups by apply-
ing RQA (Supporting Information Table S6) or SampEn, 
(B) Aiding in the interpretation of the graph theory-
based ratios, edges10+10/edges2+2 and edges10+10/
edges5+5 correlated positively with each other, RMSSD 
and HF-HRV, and negatively with the LF/HF ratio. The 
ratios did not covary with SDNN or LF-HRV (Supporting 
Information Table S7), (C) Aiding in the question of 
which time window best illustrated differences in IBI or-
ganization between adolescents with ADHD and controls, 
the largest group difference in the probability of an index 
node having an edge to one of its neighbors was found for 
a time window of 2+2 neighbors (Supporting Information 
Table S8), (D) As an additional index of inter-relatedness, 
we did not find any significant differences in the num-
ber of bridges between the ADHD and control groups 
(Supporting Information Table S9), (E) Higher ADHD-RS 
scores correlated significantly with a lower edges10+10/
edges2+2 (ρ = −.37, p = .0010) and a higher number of 
maximum edges (ρ  =  −25, p  =  .030). The LF/HF ratio, 
number of edges or cliques did not correlate significantly 
with the ADHD-RS scores, and (F) In order to compare 

T A B L E  5   IBI analyses based on the similarity graph algorithm. 5+5 neighbors

ADHD (n = 37) Controls (n = 36) p d CI

Edges 1.64 ± .89 1.50 ± .65 .44 .18 [−.29, .65]

Components 105.24 ± 41.25 106.14 ± 37.83 .92 .023 [−.44, .49]

Missing edges 190.30 ± 24.16 198.83 ± 17.37 .088 .40 [−.062, 0.87]

Max edges 5.62 ± 1.53 5.22 ± 1.27 .23 .28 [−.18, .75]

Zero edges 67.95 ± 30.36 67.19 ± 30.69 .92 .025 [−.44, .49]

Cliques 73.51 ± 85.19 52.19 ± 49.39 .58 .31 [−.16, .77]

Edges 10+10/edges 5+5 1.88 ± .12 1.91 ± .14 .32 .24 [−.23, .70]

Note: Data were analyzed by the independent samples t tests, except for cliques, where the Mann-Whitney U test was applied. CI: 95% confidence interval of d; 
Data are given as (mean ± SD).
*p ≤ .050;; **p ≤ .010.
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results from analyses of the first 237 of the IBI series to 
analyses of the conventional recording length, we did not 
detect any group differences in time- and frequency do-
main analyses when analyzing five-minute ECG record-
ings (Supporting Information Table S10).

4   |   DISCUSSION

The purpose of the current study was to assess IBI organi-
zation with a nonlinear, graph theory-based method not 
hitherto applied to IBIs: the similarity graph algorithm. 
We investigated whether the algorithm could detect group 
differences in IBI organization as exemplified in a sample 
of adolescents with ADHD compared to a control group. 
As hypothesized, we found higher inter-relatedness (i.e., a 
higher number of similar IBIs) in a time window of 2–5 s 
in the ADHD group compared to controls. This might 
suggest altered vagal activity in the ADHD group. As ex-
pected, traditional HRV analyses detected a higher LF/HF 
ratio in the ADHD group. However, this effect was non-
significant after controlling for possible confounding fac-
tors. In contrast, the graph theory-based indices were in 
large part unaffected by such confounding factors. Other 
nonlinear approaches (RQA and SampEn) did not detect 

any significant IBI differences between the ADHD and 
control groups. Altogether, our findings suggest that the 
similarity graph algorithm might provide additional infor-
mation to other methods for IBI analysis as a proxy for 
ANS functioning.

Using the similarity graph algorithm, we detected the 
largest effect size for differences in IBI organization be-
tween the ADHD and control groups when applying a 1.5% 
criterion for defining IBIs as similar. This was in line with 
our hypothesis based on previous work with the SampEn 
method (Hauge et al., 2011; Richman & Moorman, 2000), 
where it is customary to use a threshold of 20% of the SD 
for defining two points as similar. The mean SD of the IBI 
time series in the current study was approximately 70 ms, 
and the mean IBI approximately 900 ms, giving 1.5% of the 
mean as a reasonable threshold for similarity (0.20*SD/
mean = 14/900 ≈ 1.5%).

Applying the 1.5% criterion of similarity in the sim-
ilarity graph algorithm, several differences between the 
adolescents with ADHD and controls were detected in 
the graph theory-based IBI indices. The ADHD group dis-
played a higher number of edges, maximum edges, and 
cliques. These indices reflect higher inter-relatedness, 
as a result of a higher number of similar IBIs. Contrary 
to our expectations, the difference in components was 

ADHD (n = 37)
Controls 
(n = 36) p d CI

Edges 3.06 ± 1.61 2.83 ± 1.18 .50 .16 [−.31, .62]

Components 66.05 ± 29.98 62.44 ± 30.29 .61 .12 [−.35, .59]

Missing edges 192.35 ± 23.16 200.72 ± 16.18 .078 .42 [−.049, .88]

Max edges 8.92 ± 2.95 8.42 ± 2.37 .43 .19 [−.28, .65]

Zero edges 46.78 ± 17.11 44.47 ± 17.37 .57 .13 [−.33, .60]

Cliques 310.30 ± 340.48 231.61 ± 209.91 .81 .28 [−.019, .74]

Note: Data were analyzed by the independent samples t tests, except for cliques, where the Mann-Whitney 
U test was applied. CI: 95% confidence interval of d. Data are given as (mean ± SD).
*p ≤ .050;; **p ≤ .010.

T A B L E  6   IBI analyses based on 
the similarity graph algorithm. 10+10 
neighbors

ADHD 
(n = 37)

Controls 
(n = 36) p d CI

SDNN 69.75 (30.33) 68.34 (27.27) .84 .049 [−.42, .52]

RMSSD 69.93 (42.74) 75.27 (36.23) .57 .13 [−.33, .60]

LF (ms2) 6.67 (1.05) 6.51 (1.05) .51 .16 [−.31, .62]

HF (ms2) 7.19 (1.28) 7.46 (1.08) .33 .23 [−.24, .70]

LF/HF .94 (.11) .88 (.11) .018* .54 [.079, 1.01]

Note: CI: 95% confidence interval of d. HRV frequency bands were naturally log transformed to 
approximate a normal distribution. Data are given as (mean, SD).
Abbreviations: HF (ms2), high frequency-HRV given in ms2; HRV, heart rate variability; LF (ms2), low 
frequency-HRV given in ms2; LF/HF, low frequency/high frequency ratio; RMSSD, root mean square of 
successive differences; SDNN, standard deviation of normal IBIs.
*p ≤ .050;; **p ≤ .010.

T A B L E  7   Time- and frequency 
domain analyses of HRV
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non-significant, although this index also reflects higher 
inter-relatedness. This non-finding could be due to lack 
of statistical power in our study. Still, as expected, the in-
dices reflecting inter-relatedness generally appeared to be 
more sensitive than the indices representing lack of inter-
relatedness (i.e., missing edges and zero edges), which 
were non-significant. The similarity graph algorithm fur-
ther detected a significantly lower edges10+10/edges2+2 
in the ADHD group compared to controls. As expected, 
this index was inversely related to the LF/HF ratio calcu-
lated by HRV analyses. Although the interpretation is de-
bated (Billman, 2013), a higher LF/HF ratio is frequently 
considered to index sympathetic dominance of the ANS, 
and a lower edges10+10/edges2+2 might represent a 
comparable construct. Our results therefore seem to be 
in line with previous findings of higher LF/HF ratios 

in ADHD samples (Griffiths et al.,  2017; Tonhajzerova 
et al., 2009).

Differences between the ADHD and control groups in 
our sample were most prominent in analyses of time win-
dows of 2–5 s. In line with our hypothesis, this suggests 
that the IBI organization occurring over a few seconds 
is most affected in ADHD. This could be due to altered 
functioning of the vagus nerve, which normally has a 
rapid course of action compared to the sympathetic ner-
vous system (Nunan et al.,  2010). As a result of altered 
vagal functioning, HR changes are not induced as rapidly 
as with optimal functioning, resulting in more similar 
IBIs. This could be reflected in higher inter-relatedness 
and relatively more sympathetic regulation of IBIs—in 
line with the aforementioned results from analyses of the 
graph theory-based indices in the ADHD group. As the 
control group, on the other hand, displayed lower inter-
relatedness, our findings are in line with expectations of 
higher vagally medicated HRV in controls compared to in-
dividuals with ADHD (Rash & Aguirre-Camacho, 2012). 
There were no significant differences between adoles-
cents with ADHD and controls in the time windows of 
6–13 or 12–25 s, respectively. In line with our hypothesis, 
we suggest that these time windows provide less refined 
indices of vagal activity compared to the time window 
of 2-5 seconds. As vagally mediated HRV is considered 
to mark self-regulatory abilities and general psychopa-
thology (Beauchaine,  2015; Beauchaine & Thayer,  2015; 
Holzman & Bridgett,  2017), we suggest that our indices 
of inter-relatedness in a time window of 2–5  s, as well 
as edges10+10/2+2, could represent similar constructs. 
This is supported by ADHD symptom severity correlat-
ing negatively with edges10+10/edges2+2 and positively 
with maximum edges. Interestingly, maximum edges and 
edges10+10/edges2+2 appeared to be the most robust of 
the graph theory-based indices when controlling for co-
morbidities and trait anxiety symptoms, and therefore 
seem to be most sensitive to ADHD-specific IBI alterations.

It is crucial to address the question of whether our 
study is sufficiently powered in terms of the ability to de-
tect group differences in IBI organization, as we have in-
vestigated a method not previously applied to IBI analysis. 
Performing an a priori power analysis was challenging due 
to no previous studies applying a similar method to ours 
in an ADHD sample. We could therefore not calculate 
appropriate estimates of expected effect sizes. However, 
we will suggest that the similarity graph algorithm might 
provide larger power than traditional methods as the al-
gorithm systematically compares every IBI in a given time 
window to every other IBI in the time window. This gives 
a substantially higher number of data points compared to 
traditional analyses of whole IBI series. It is important to 
note in this regard that our analyses were performed in 

T A B L E  8   Prediction of diagnostic status on selected IBI 
indices, controlling for potential confounders

Predictor R2 df F p
Edges

ADHD .13 4 4.32 .041*

HF peak 3.62 .061

Age 2.51 .12

Physical activity levels .46 .50

Maximum edges

ADHD .14 4 7.46 .0080**

HF peak .11 .75

Age 2.22 .14

Physical activity levels .12 .73

Cliques

ADHD .11 4 5.32 .024*

HF peak 1.37 .25

Age .28 .60

Physical activity levels .24 .63

Edges10+10/edges2+2

ADHD .27 4 11.32 <.0010**

HF peak 4.20 .044*

Age .27 .61

Physical activity levels .41 .53

LF/HF

ADHD .22 4 2.81 .098

HF peak .53 .47

Age 5.45 .023*

Physical activity levels 4.06 .048*

Note: Time window applied: 2+2 neighbors .
Abbreviations: ADHD, ADHD diagnostic status; LF/HF, Low frequency/
high frequency ratio; HF peak, Peak of high frequency heart rate variability.
*p ≤ .050;; **p ≤ .010.



      |  15 of 19KVADSHEIM et al.

a relatively small sample, and we therefore cannot rule 
out that some of the statistically significant graph theory-
based differences have occurred due to multiple testing or 
sampling error. With regard to the traditional HRV analy-
ses, we did not find group differences in SDNN or LF-HRV, 
contrary to expectations. This could be due to a lack of sta-
tistical power in these analyses. Further, also of relevance 
to the statistical power is the IBI recording length. Often, 
30,000 data points are used to validate novel methods 
that assess indices of complexity (see Costa et al.,  2002; 
Yang et al., 2020). Our investigation of 237 IBIs does not 
provide as many data points. However, the reason that a 
longer data series is often required is to gain enough com-
plexity for the method to detect group differences (Costa 
et al., 2002; Yang et al., 2020). Although we had a shorter 
data length than often required, the statistically signifi-
cant group differences detected by the similarity graph 
algorithm were in line with our a priori hypotheses. This 
supports the notion that our findings did not appear by co-
incidence, along with the fact that several of the detected 
group differences appeared to be robust also when con-
trolling for confounding factors.

The current study has several strengths and limita-
tions. Among several strengths, we assessed IBIs ap-
proximately at the same time of day for all participants, 
controlling for circadian influences. In addition, we as-
sessed physical activity levels and BMI, which are not 
regularly investigated in IBI studies despite influencing 
IBIs (Gutin et al., 2005; Koenig et al., 2014). Further, the 
ADHD and control groups were matched on age and sex, 
and there were no significant group differences in BMI, 
reducing potential confounding effects of these factors 
on IBIs. Individuals with ADHD generally have higher 
BMI than controls (Cortese et al., 2008; Fliers et al., 2013); 
however, our finding of a non-significant BMI difference 
could be due to a substantial number of adolescent girls 

with ADHD in our sample, who seem to be at lower risk of 
being overweight (Fliers et al., 2013). However, the control 
group had higher physical activity levels than the ADHD 
group, and the adolescents with ADHD had higher symp-
toms of trait anxiety and number of comorbidities, in line 
with expectations (Cook et al., 2015; Gnanavel et al., 2019; 
Sharma et al.,  2011). Regarding limitations and threats-
to-validity, in addition to the already discussed aspects re-
lated to the power of the current study, possible effects of 
medication on IBIs cannot be ruled out. Still, short-term 
effects were reduced by almost all participants conducting 
a washout period. Also important to note is that ADHD 
medication tend to shift IBI indices toward control val-
ues (see Buchhorn et al.,  2012; Kim et al.,  2015; Negrao 
et al.,  2011), and have probably not contributed to any 
false group differences in the current study. Yet, a partici-
pant in the control group used other types of medication 
that were not subjected to a washout period, which could 
have influenced their IBIs. The graph theory-based indices 
have further not been investigated in relation to ANS func-
tioning, and our interpretation of them is of an explorative 
nature. In addition, IBI organization investigated in short 
time windows might not be reproducible for a given indi-
vidual to the same extent as the traditionally used HRV 
indices. Future studies investigating the reliability of the 
graph theory-based indices from the similarity graph algo-
rithm, and their sensitivity and specificity as “trait” mark-
ers of self-regulatory abilities are called for.

5   |   CONCLUSION

Our study suggests that the similarity graph algorithm can 
provide complementary information to other analyses of 
IBI organization, which has potentially important theo-
retical and clinical implications. The indices computed by 

F I G U R E  4   Estimated marginal means for inter-beat interval indices that show significant group differences in adolescents in ADHD 
and controls. The means were adjusted for the effect of HF peak as a proxy of respiration, age, and physical activity levels. Error bars 
represent standard errors. Abbreviations: LF/HF: low frequency/high frequency ratio.
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the algorithm seem to detect complex features of the IBI 
series that reveal spontaneous or transient ANS alterations 
and might thus be sensitive markers of psychopathology. 
As the graph theory-based indices were largely unaffected 
by comorbidities or trait anxiety symptoms, the indices 
might represent more disorder-specific patterns of vagal 
alterations compared to traditional HRV indices – which 
have been suggested as transdiagnostic markers of psy-
chopathology (Beauchaine & Thayer,  2015). This might 
have further implications for the etiological understand-
ing and treatment of various disorders. These implications 
are, however, largely hypothetical as of now, and further 
research is needed to investigate them.
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