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Abstract Searching for the right pairs of inputs in difference-based distin-
guishers is an important task for the experimental verification of the distin-
guishers in symmetric-key ciphers. In this paper, we develop an MILP-based
approach to verify the possibility of difference-based distinguishers and extract
the right pairs. We apply the proposed method to some published difference-
based trails (Related-Key Differentials (RKD), Rotational-XOR (RX)) of block
ciphers SIMECK, and SPECK. As a result, we show that some of the reported
RX-trails of SIMECK and SPECK are incompatible, i.e. there are no right pairs
that follow the expected propagation of the differences for the trail. Also, for
compatible trails, the proposed approach can efficiently speed up the search
process of finding the exact value of a weak key from the target weak key space.
For example, in one of the reported 14-round RX trails of SPECK, the proba-
bility of a key pair to be a weak key is 2−94.91 when the whole key space is 296;
our method can find a key pair for it in a comparatively short time. It is worth
noting that it was impossible to find this key pair using a traditional search.
As another result, we apply the proposed method to SPECK block cipher, to
construct longer related-key differential trails of SPECK which we could reach
15, 16, 17, and 19 rounds for SPECK32/64, SPECK48/96, SPECK64/128, and
SPECK128/256, respectively. It should be compared with the best previous re-
sults which are 12, 15, 15, and 20 rounds, respectively, that both attacks work
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for a certain weak key class. It should be also considered as an improvement
over the reported result of rotational-XOR cryptanalysis on SPECK.
Keywords Experimental verification · Differential-based distinguishers ·
Weak keys · Related key · MILP · SPECK · SIMECK

1 Introduction

Mixed Integer Linear Programming (MILP) was introduced in [38,49] to evalu-
ate the security of a block cipher against differential and linear cryptanalysis.
Mouha et al. [38] used MILP method to minimize the number of active S-
boxes in a differential or linear trail. Later, Sun et al. in [46, 47] extended
Mouha et al.’s work from byte-oriented ciphers to bit-oriented ciphers. Re-
cently, MILP has been widely used for the cryptanalysis of block ciphers so
that [13, 17, 39, 40, 42, 53] can be mentioned as some examples among others.
Other automatic tools for the cryptanalysis of block ciphers are constraint
programming see [18,19,45], SAT/SMT/CryptoSMT see [12,21,29,35].

ARX-based ciphers are designed using only modular Addition, Rotation,
and XOR. In particular, the only source of non-linearity in an ARX scheme
is the modular addition. Algorithms built in this fashion are usually faster
and smaller than S-Box-based algorithms in software, and have some inherent
security against side-channel attacks as modular addition leaks less informa-
tion than table look-ups. However, modular addition is not very attractive in
designing hardware optimized algorithms due to its latency and “large” in-
put and output size. Some examples of ARX ciphers are: the block ciphers
SPECK [5], HIGHT [23], LEA [22], the stream cipher SALSA20 [6], and the SHA-3
finalists SKEIN [16] and BLAKE [4]. SPECK is a family of lightweight block ci-
phers that uses an ARX structure that was publicly released by the National
Security Agency (NSA) in 2013 [5]. SPECK has been optimized for performance
in software implementations. SPECK is evaluated by many cryptanalysis tech-
niques [2, 10,11,14,17,24,34,43,52].

The probability of differential trails (in differential [8] or rotational-XOR [3]
cryptanalysis) is usually built by multiplying the probabilities of each non-
linear operation, but this approach can lead to very misleading results in some
ciphers. For example, in some ARX-based ciphers, the independence assump-
tion does not hold since it is possible for an output of modular addition to be
directly given as input to another modular addition. Therefore, in such cases,
the probabilities of modular additions cannot be computed as the product of
probabilities of the individual modular additions. It is important to note that
in the case of ARX ciphers such differences were already described for some
attacks. For example, Knudsen et al. in [28], treated this issue for the differ-
ential attack on RC2 block cipher. As another example, the authors of [26],
investigated this issue for the rotational cryptanalysis on ARX structures.
Several recent works have found trails that were incompatible when analyzing
ARX hash functions [9,30,31,37,41,48] and many others. Also, Elsheikh et al.
in [15] recently studied this issue and proposed an MILP model to describe the
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differential propagation through the modular addition considering the depen-
dency between the consecutive modular additions and utilized their approach
to automate the search process for the differential trails for Bel-T cipher.

Recently, Liu et al. presented an MILP model for the automatic verification
of differential characteristics in permutation-based primitives [33]. Their main
idea is modeling the differential transitions and value transitions simultane-
ously for permutation-based primitives and then connecting the value transi-
tions and differential transitions for non-linear operations used in primitives.
They successfully applied their approach to reduced Gimli hash function [7].
To this end, in a part of their work, they described how they connected the
value and differential transitions of AND and OR operations (the only non-
linear operations used in Gimli). However, they did not explain how one can
connect the value and differential transitions simultaneously for the other non-
linear operations. Hence, our work has some advantages over [33]. In fact, our
approach in this paper can be applied easily to any cipher structure with usual
non-linear operations such as AND, OR, Addition modulo 2n, S-boxes layers,
and others. Also, as will be explained later, our approach can be efficiently used
to verify the differential, related-key differential, and rotational-XOR trails of
ciphers.

In this paper, for the first time, to the best of our knowledge, we present
an MILP-based approach to experimentally verify whether a difference-based
distinguisher includes any right pair. As for the applications, we apply our
approach to the obtained differential trails of SIMECK and SPECK family of
block ciphers. Also, the designers of SPECK family claim that SPECK is designed
to have resistance against related-key attacks. Part of this paper, focuses on
the automatic related-key differential cryptanalysis of a reduced SPECK block
cipher to find distinguishers covering more rounds than those found previously.
Moreover, the SPECK family of block ciphers is standardized by ISO in the
RFID area of Sc31. Hence, analysis from various aspects is important.

1.1 Our Contribution

Our contribution in this paper is as follows:

– In this paper, we applied the MILP approach to identify incompatible
differential trails of block ciphers. Moreover, to the best of our knowledge,
for the first time we applied the MILP approach to efficiently speed up
the search process of finding the exact value of a weak key from the target
weak key space. As the applications, we apply our approach to verify the
presented Rotational-XOR (RX) trails of SPECK and SIMECK family of
block ciphers based on papers [34] and [36], respectively.

– We find some weak keys for 15 and 20-round RX-trails of SIMECK32/64,
according to the tables 4 and 6 of [36]. Also, our approach returns this fact
that the RX-trails for 27 and 35 rounds of SIMECK48/96, and SIMECK64/128,
based on tables 7 and 8, respectively in [36], are incompatible.
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– Our approach can find the weak keys for 12, 13, and 15-round RX-trail
of SPECK48/96 based on tables 3 and 4 in [34]. Moreover, our approach
shows that RX-trails for 11 and 12 rounds of SPECK32/64, and 14 rounds
of SPECK48/96, according to tables 2 and 4 in [34], are incompatible trails.

– In addition, we explain how we can search compatible differential trails
in block ciphers and apply it to search related-key differential trails of
some variants of SPECK family. As a result, we present a search strat-
egy for the searching of related-key differential trails of SPECK family. We
also present several distinguishers for the reduced version of SPECK32/64,
SPECK48/96, SPECK64/128, and SPECK128/256, in related-key mode. We
consider our result for related-key differential as an improvement over Liu
et al.’s work [34], but from differential view. For SPECK32/64, the longest
distinguisher proposed in this paper covers 15 rounds of the cipher while
the best previous related work, i.e., rotational-XOR differential trail, covers
only 12-round [34] (of course we show that this 12-round is an invalid trail).
In total, for this version of SPECK, we present distinguishers for 10 to 15
rounds which work for a certain weak key class. It is worth noting that the
proposed distinguishers for 13 to 15 rounds are the new distinguishers for
these rounds of SPECK32/64. For SPECK48/96, our longest distinguishers
cover 16 rounds, while the best previous related work covers 15 rounds [34]
and both work for a certain weak key class. We present the distinguishers
for 13 to 17 rounds of SPECK64/128 so that the distinguishers for 16 and
17 rounds are the new distinguishers for these rounds of SPECK64/128, for
a certain weak key class. Also, we present the distinguishers for 16 and 19
rounds of SPECK128/256.

– Moreover, for every obtained related-key differential of SPECK family, we
use our MILP-based approach to test whether the key differential trails
are valid. For each one, we report a weak key to verify it. Based on our
experimental verification, our results are consistent with the theoretical
predictions.

In this paper, the computations are performed on PC (Intel Core (TM)i-5,
CPU 3.50 GHz, 8 Gig RAM, Windows 10 x64) and also on a server (36 Core,
Intel(R) Xeon(R) CPU E5-2695, 2.10GHz) with the optimizer Gurobi [20].

1.2 Outline

The remainder of this paper is organized as follows. Section 2 provides the re-
quired preliminaries, including a brief description of SPECK and SIMECK block
ciphers and as well as Rotational-XOR cryptanalysis. In Section 3, our MILP-
based method in searching for the right pairs of difference-based trails is pre-
sented. In Section 4, some applications of our approach are given. We explain
how we can search compatible differential trails in block ciphers and apply
it to search related-key differential trails of some variants of SPECK family.
Finally, the paper is concluded in Section 6.
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2 Preliminaries

2.1 Notations

In this paper, we denote an n-bit vector by x = (xn−1, · · · , x1, x0), where x0 is
the least significant bit. Also, the logical operation XOR, left circular rotation,
right circular rotation, the concatenation of x and y, the modular addition of
bit string x and y, and the bit-wise AND are referred to as ⊕, ≪, ≫, x∥y,
x� y, and &, respectively. Also, all input/output differentials (or values) are
in hexadecimal form and we omit the 0x symbol.

2.2 A brief description of SPECK

SPECK is a family of lightweight block ciphers designed by NSA in 2013 [5].
Generally, SPECKb/mn will denote SPECK with b = 2n bit block size (n ∈
{16, 24, 32, 48, 64}) and mn bits key size (m ∈ {2, 3, 4}). The round function
F : Fn

2 ×F2n
2 → F2n

2 of SPECK takes as input a n bit sub-key ki−1 and a cipher
state consisting of two n bit words (xi−1, yi−1) and produces the next round
state (xi, yi) as follows:

xi :=
(
(xi−1 ≫ α)� yi−1

)
⊕ ki−1, yi :=

(
yi−1 ≪ β

)
⊕ xi

The value of rotation constant α and β are specified as: α = 7, β = 2 for
SPECK32/64 and α = 8, β = 3 for all other variants. The SPECK key schedules
algorithm uses the same round function to generate the round keys. Let K =
(lm−2, · · · , l0, k0) be a master key for SPECK2n/mn where li, k0 ∈ F2n . The
round key ki+1 is generated as ki = ((li−1 ≫ α) � ki) ⊕ c ⊕ (ki−1 ≪ β) for
li+m−2 = ((li−1 ≫ α)� ki−1)⊕ c, with c = i− 1 the round number starting
from 1.

A single round of SPECK with m = 4 is depicted in Figure 1a.
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Fig. 1: Illustration of the SPECK and SIMECK ciphers

In this paper, we consider those members of SPECK family for which the pa-
rameter of m is 4, i.e., SPECK32/64, SPECK48/96, SPECK64/128, and SPECK128/256
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that respectively include 22, 23, 27, and 34 rounds, to produce a ciphertext
from a plaintext.

2.3 A short description of SIMECK

SIMECK is a family of block ciphers that was proposed at CHES 2015 [51]. For
n = 16, 24, and 32, SIMECKb/k has a block size of b = 2n and a key size of
k = 2b. It is a classical Feistel network shown in Figure 1b where the function
F is defined as F (xi−1) = xi−1&(xi−1 ≪ 5). In the key schedule of SIMECK,
the round keys Ki (i = 0, · · · , r) are generated from a given master key
(K3,K2,K1,K0) with the help of the feedback shift registers as follows:

Ki+4 = Ki ⊕ fci(K
i+1)⊕ ci, i = 0, 1, · · · , r − 4, (1)

where r for SIMECK32/64, SIMECK48/96, and SIMECK64/128 is 32, 36, and 44,
respectively. Also, ci ∈ {1n−201, 1n−200} is predefined constants (1n−2 is a
sequence of n− 2 bit 1) and f i

c is the SIMECK round function with ci acting as
the round key.

2.4 Rotational-XOR(RX) cryptanalysis

Rotational cryptanalysis is a generic attack targeting ARX structures [25,27].
RX-cryptanalysis is a recent technique as a related-key chosen plaintext attack
to ARX structures proposed by Ashur and Liu in 2016 [3]. This attack was
applied to the block cipher SPECK [34], SIMECK [36] and the hash function
SipHash [50]. An RX-pair is defined as a rotational pair with rotational offset
γ under translation a as (x, (x ≪ γ)⊕ a).

Definition 1 (RX-difference [3]) The RX-difference of x and x′ = (x ≪
γ)⊕ a with rotational offset γ, and translation a is denoted by

∆γ(x, x
′) = (x ≪ γ)⊕ x′.

Furthermore, we will argue that RX difference of a pair (x, x′) is ∆γ(x, x
′)

if (x ≪ γ) ⊕ x′ = ∆γ(x, x
′). It is clear that the rotation of an RX pair is

an RX pair, the XOR of two RX pairs is also an RX pair. Also, the XOR
of a constant c to each of the values in (x, x′) = (x, (x ≪ γ) ⊕ a) is the
RX-pair (z, z′) = (x⊕ c, (x ≪ γ)⊕ a⊕ c). Now, soppose that we denote the
corresponding RX-difference in c by ∆γc. Then the following condition should
be satisfied.

∆γ(x, x
′
)⊕∆γc = ∆γ(z, z

′
).

Since ∆γ(x, x
′
) = a and ∆γ(z, z

′
) = a⊕ c⊕ (c ≪ γ), therefore, the condition

above gives us ∆γc = c ⊕ (c ≪ γ). Hence, by considering the corresponding
RX-difference in c as ∆γc = c ⊕ (c ≪ γ), ∆γ(x, x

′
) propagates to ∆γ(z, z

′
)

with propability 1.
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For modular addition, in ( [3], theorem 1) the authors showed how one can
calculate the transition probability of RX pair through modular addition. In
addition, the authors of [36] extended the idea of RX-cryptanalysis to AND-
RX ciphers with applications to SIMON and SIMECK. We assume that γ = 1
throughout this paper.

3 MILP-based method to identify incompatible differential trails

In this section, we explore a simple approach based on the MILP method to
verify whether the differential trails are compatible. Also, it must be noted
that our method in this section can be very useful in most cases to find weak
keys in related-key scenarios.

3.1 Our approach

To experimentally verify whether an RX or differential distinguisher includes
any right pair, a common way is to use a simple method of guessing the keys
and check the differences of the states. However, it is often infeasible because
of the block size of the cipher and the probability of the distinguisher. In this
section, we model an MILP-based method to determine whether there exist
right pairs for the differential trails. To this end, suppose f is a function with
variables x0, x2, · · ·xnv−1. In our approach, we built some linear inequalities to
ensure that the following conditions are exactly established and added them
to the MILP model.

f(x0, x2, . . . , xnv−1) = y , f(x′
0, x

′
2, . . . , x

′
nv−1) = y′,

∆(x0, x
′
0) = X0, ∆(x2, x

′
2) = X2, . . . , ∆(xnv−1, x

′
nv−1) = Xnv−1,

∆(y, y′) = Y,

where the difference ∆(a, b) is defined as a⊕b and ∆1(a, b) in case of differential
and RX trails, respectively. In this paper, the function f is considered as the
encryption function or key expansion function of a block cipher. It is obvious
that for a given differential trail of a cipher, if its MILP model, as shown above
is infeasible then the trail will be an incompatible trail; otherwise, the model
returns the right pairs.

Each cipher is designed by combining several operations. The most impor-
tant operations used in cryptographic algorithms are AND, modular addition,
rotation, XOR operations. In the following section, we show that there is a
set of linear inequalities which can exactly describe all valid values of these
operators in the MILP model.
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3.1.1 Modeling the XOR operation

For every XOR operation, with bit-level input values x1, x2, and bit-level out-
put value y, the constraints are as follows1:{

x1 + x2 + y ≤ 2, x1 + x2 − y ≥ 0,
x1 + y − x2 ≥ 0, x2 + y − x1 ≥ 0.

(2)

3.1.2 Modeling the modular addition

In the following section, we present the basic definition of modular addition
that will be used to model the modular addition.

Definition 2 (Addition modulo 2n [32]) The carry, carry(x, y) := c ∈
{0, 1}n, x, y ∈ {0, 1}n, of addition x+ y is defined recursively as follows. First,
c0 := 0. Second, ci+1 := (xi ∧ yi) ⊕ (xi ∧ ci) ⊕ (yi ∧ ci), for every i ≥ 0.
Equivalently, ci+1 = 1 ⇔ xi + yi + ci ≥ 2.

Property 1 ( [32]) If (x, y) ∈ {0, 1}n×{0, 1}n, then x+y = x⊕y⊕carry(x, y).

Based on Definition 2 and Property 1, to model the modular addition (z =
x + y) in the MILP model, we must consider the linear inequalities whose
solution set is exactly satisfied in the following conditions.

1. c0 = 0.

2. ci+1 = 1 ⇔ xi + yi + ci ≥ 2, for i = 0, · · · , n− 2. (3)
3. zi = xi ⊕ yi ⊕ ci, for i = 0, · · · , n− 1.

Therefore, it is enough to describe these conditions of the Equatione (3) as lin-
ear inequalities. The first condition is obvious. To model the second condition,
we can consider the vector (xi, yi, ci, ci+1) as follows.

(xi, yi, ci, ci+1) ∈
{

(0, 0, 0, 0) (0, 0, 1, 0) (0, 1, 0, 0) (0, 1, 1, 1)
(1, 0, 0, 0) (1, 0, 1, 1) (1, 1, 0, 1) (1, 1, 1, 1)

}
.

Therefore, we consider the equations which prohibit the invalid (xi, yi, ci, ci+1).
Hence, for i = 0, · · · , n− 2, we have{

xi + yi − ci+1 ≥ 0, xi + ci − ci+1 ≥ 0, yi + ci − ci+1 ≥ 0,
yi + ci − ci+1 ≤ 1, xi + ci − ci+1 ≤ 1, xi + yi − ci+1 ≤ 1,

To model the third condition, we can consider the following equations.

xi + yi + zi + ci − 2di = 0, di = 0 or 1 or 2, i = 0, · · · , n− 1.

Therefore, with these inequalities, we can model the exact values of modular
addition operation to the MILP.

1 XOR operation is a linear operation and can be modeled similar to the differential
behavior of XOR based on [1].
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3.1.3 Modeling the AND operation

For every AND operation with bit-level input values x1, x2. and bit-level out-
put value y, the constraints are as follows:

x1 − y > 0, x2 − y > 0, x1 + x2 − y 6 1.

4 Applications

In this section, we apply our method to verify RX trails for SPECK and SIMECK
presented in [34] and [36], respectively.

4.1 Verifying the previous reported RX trails on SIMECK

The authors of [36] analyzed the propagation of RX-differences through AND-
RX rounds and developed a formula for their expected probability. Also, they
formulated an SMT model for searching RX-trails in SIMON and SIMECK. They
found RX-distinguishers up to 20, 27, and 35 rounds with respective probabili-
ties of 2−26,2−42, and 2−54 for SIMECK32/64, SIMECK48/94, and SIMECK64/128,
for a weak key class of size 230, 244 and 256 respectively. In most cases, these
are the longest published distinguishers for the respective variants of SIMECK.
The authours of [36] only presented the details of a 15 and 20-round RX trail
in SIMECK32/64, a 27-round RX trail in SIMECK48/96, and a 35-round RX
trail in SIMECK64/128 (see [36], tables 4, 6, 7, and 8, respectively). Here we
intend to find the right key pairs that satisfy the required RX-difference of the
sub-keys in tables mentioned in [36].

The SIMECK key schedule algorithm is designed by combining AND, bit
rotation, and XOR operations. Hence, we can model the SIMECK key schedule
with the method described in Section 3 and then fix the RX-difference in
sub-keys based on the mentioned RX trails. Our model returned the following
result:

– For 15 and 20-round RX trails of SIMECK32/64 ( [36], tables 4, 6), our
method found some weak keys (see Table 1).

– The RX trails in [36] for 27 and 35 rounds of SIMECK48/96 and SIMECK64/128,
respectively, are incompatible.

In the following lemma, we prove the incompatibility of RX trail related to 27
rounds of SPECK48/96 in [36].

Lemma 1 There are no right pair to satisfy the RX-difference of the sub-keys
of 27 rounds of SIMECK48/96 based on the table 7 in [36].

Proof To find a contradiction in the RX-difference of sub-keys in this table
7 of [36], we only consider the rounds 2, 3, and 6 of the trail. These rounds
are shown in Figure 2 in details. The red numbers show the RX-differences.
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Table 1: Some master key values to satisfy the RX-differences in 15 and 20-
round of SIMECK32/64 based on tables 4 and 6 in [36].

(∆1k3,∆1k2,∆1k1,∆1k0) = (0001, 0004, 0008, 0014)

(k3, k2, k1, k0) (k
′3, k

′2, k
′1, k

′0)

15-round

(0166, DB05, 5662, C5B3) (02CD, B60F, ACCC, 8B73)
(82EF, D0A1, 454C, 1625) (05DE, A147, 8A90, 2C5E)
(B1C3, BB1F, 1443, D4E2) (6386, 763B, 288E, A9D1)
(B26B, 9338, 1504, F7BC) (64D6, 2675, 2A00, EF6D)
(916B, D43C, 1C04, E4BC) (22D6, A87D, 3800, C96D)

...
...

(∆1k3,∆1k2,∆1k1,∆1k0) = (0002, 0001, 0000, 0004)

20-round

(5D08, 1D23, FAB7, B1BC) (BA12, 3A47, F56F, 637D)
(5D0C, 1D2B, FBA7, 918E) (BA1A, 3A57, F74F, 2319)
(7D08, 7D23, 1AB7, 31A9) (FA12, FA47, 356E, 6356)
(6D08, 5D23, 7AB7, A1AD) (DA12, BA47, F56E, 435F)
(4D08, 3D23, 9AB7, 21B8) (9A12, 7A47, 356F, 4374)

...
...
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Fig. 2: Part of the 27-round RX-trail of sub-keys for SIMECK48/96 based on
table 7 in [36]

As can be seen in Figure 2, the AND operations in rounds 2, 3, and 6 sat-
isfy the conditions of Lemma 1 in [36] and so they hold with probabilities
of 2−2, 2−4, and 2−4, respectively. Assuming independency, the probability
of the RX-difference of these three rounds should hold with a probability
of 2−32; however, we show that it is an incompatible trail. To this end, let
f(x) = x&(x ≪ 5) be the F-function of key schedule of SIMECK. Also, assume
that ∆1α and ∆1β respectively are RX-differences of the input and output
of f(x), such that the probability ∆1α to ∆1β is non-zero. If we consider the
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input pairs of f(x) as (x, (x ≪ 1)⊕∆1α), then there is the following relation
between ∆1α,∆1β, and x:

(f(x) ≪ 1)⊕ f(x ≪ 1⊕∆1α) = ∆1β.

By considering x as x = (x23, · · · , x1, x0), the j-th bit of ∆1β (i.e., ∆1βj) is
determined as follows.

(xj−1&xj−6)⊕ ((xj−6 ⊕∆1αj−5)&(xj−1 ⊕∆1αj−1)) = ∆1βj . (4)

Now, in the second round by considering the sub-key k2 as the input of f(x)
and for j = 6, we have(

k25&k20
)
⊕
(
(k20 ⊕∆1α1)&(k25 ⊕∆1α5)

)
= ∆1β6,

since in the second round ∆1α = ∆1β = 000002, we have(
k25&k20

)
⊕
(
(k20 ⊕ 1)&k25

)
= 0,

and this gives k25 = 0. Now, in the third round by considering the sub-key k3 as
the input of f(x), for j = 6, and due to the ∆1α = 000003 and ∆1β = 000001

we have (
k35&k30

)
⊕
(
(k30 ⊕ 1)&k35

)
= 0,

so we have k35 = 0. Also, for j = 5,(
k34&k323

)
⊕
(
(k323 ⊕ 1)&k34

)
= 0,

so this concludes

k34 = 0. (5)

In the sixth round, k6 will be the input of f(x) and also ∆1α = ∆1β = 000003,
therefore, by considering j = 6 in Equation (4), we have(

k65&k60
)
⊕
(
(k60 ⊕ 1)&k65

)
= 0,

so we have k65 = 0. On the other hand according to the third round, we have

k65 =
(
(k30&k35)⊕ k34 ⊕ k25 ⊕ c5

)
.

For the third round the constant c = fffffd and so c5 = 1. As was shown
above, we have k25 = k35 = k65 = 0 so the equation above concludes k34 = 1.
Hence, by considering the Equation 5, we reach a contradiction.
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4.2 Verifying the previous reported RX trails on SPECK

In [34], the authors formulated a SAT/SMT model for RX cryptanalysis in the
ARX primitives and applied it to the block cipher family SPECK. They obtained
longer distinguishers than the ones previously published for the block cipher
family SPECK working for a certain weak key class. They presented several
distinguishers for SPECK32/64, SPECK48/96, SPECK64/128, SPECK96/144, and
SPECK128/256. Note that the authors only presented the details of several
trails and for other trails they only reported the probabilities. Hence, in this
section, we just verified the trails that are presented in detail in [34]. We
modeled the SPECK key schedule with the method described in Section 3 to
verify the trails in [34]. Our MILP model returned the following result.
– Our model found the weak keys for 12, 13, and 15-round RX-difference of

SPECK48/96 with respective probabilities of 2−26.75, 2−31.98, and 2−43.81,
for a weak key class of size 243.51, 224.51, and 21.09, respectively (for more
details of these trails refer to tables 3 and 4 in [34]). Note that based on
the authors’ claim, for experimental verification of trails they injected key
differences artificially and only tested the probability of the RX character-
istics over the cipher part. The resultant weak key for these RX trails are
listed in Table 2. Note that, [34] did not report the RX-differences for the
master keys (∆1l

2,∆1l
1,∆1l

0). Therefore, in our MLP model we did not
fix the RX-differences of these master keys and let the MILP model choose
any appropriate differences.

Table 2: Some master key values to satisfy the RX-differences in 12, 13, and
15-round of SPECK48/96 based on tables 3 and 4 in [34].

12-round

(∆1l2,∆1l1,∆1l0,∆1k0)

(003E00, 104F00, 0E0900, 000008)

(l2, l1, l0, k0)

(CC2F12, 0BBC98, EB5E6F, 375180)

(l
′2, l

′1, l
′0, k

′0)

(986025, 073630, D8B5DF, 6EA308)
13-round

(003F00, F1C000, 060900, 000008)
(8FCFF8, 4070DA, 7DA7EF, CA1913)
(1FA0F1, 7121B4, FD46DE, 94322F)

15-round
(001F00, 744000, 021800, 000008)
(62C8CC, 253EA3, 14D708, 8D41E7)
(C58E98, 3E3D46, 2BB610, 1A83C7)

– Our model did not find any weak keys for the following RX trails:
◦ RX trails for 11 and 12 rounds of SPECK32/64 with respective probabil-

ities of 2−22.15 and 2−25.57, for a weak key class of size 218.68 and 24.92,
respectively (for more details of these trails refer to table 2 in [34]).

◦ RX trails for 14 rounds of SPECK48/96 with respective probabilities of
2−37.40, for a weak key class of size 20.34 (for more details of this trail
refer to table 4 in [34]).



Title Suppressed Due to Excessive Length 13

In the following lemma, we prove the incompatibility of RX trail related to
11 rounds of SPECK32/64 in [34]. In fact, the reason for this incompatibility
is that the independence assumption in the key schedule algorithm of SPECK
does not hold since an output of modular addition is given as input to
another modular addition. A schematic view of this fact is depicted in
Figure 3.

Lemma 2 There are no right pairs to satisfy the RX-difference of the
sub-keys of 11 rounds of SPECK32/64 based on the table 2 in [34].

Proof Based on Equationes (3), the bit values of x, y, z (z = x + y), with
the carry c, belong to the following set.

(xj , yj , zj , cj , cj+1) ∈
{
(0, 0, 0, 0, 0), (0, 0, 1, 1, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 1)
(1, 0, 1, 0, 0), (1, 0, 0, 1, 1), (1, 1, 0, 0, 1), (1, 1, 1, 1, 1)

}
(6)

We denote the two n-bit vectors representing RX-differences at the input of
modular addition in the round i where i = 5, 8, as ∆1x

i = (∆1x
i
n−1, · · · ,∆1x

i
1,∆1x

i
0)

and ∆1y
i = (∆1y

i
n−1, · · · ,∆1y

i
1,∆1y

i
0) and the n-bit vectors representing

RX-difference for output of modular addition as ∆1z
i = (∆1z

i
n−1, · · · ,∆zi1,∆1z

i
0)

and the n-bit vectors representing RX-difference for carry as ∆1c
i = (∆1c

i
n−1, · · · ,∆1c

i
1,∆1c

i
0).

It should be noted that based on the third condition of Equation (3), the
RX-difference of carry bit ci can be obtained as ∆1c

i = ∆1x
i⊕∆1y

i⊕∆1z
i.

Therefore, the input/output RX-differences and the carry RX-difference of
modular additions for the 5-th and 8-th rounds based on Figure 3 can be
written as binary notation as follows.

∆1x
5 = 0000000000000000, ∆1x

8 = 0000011000000000,
∆1y

5 = 0000000000000000, ∆1y
8 = 0000001000000101,

∆1z
5 = 0000000000001111, ∆1z

8 = 0000000000011100,
∆1c

5 = 0000000000001111, ∆1c
14 = 0000010000011001.

By considering the modular addition operation for the 11-th round, we have
(∆1x

5
0,∆1y

5
0 ,∆1z

5
0 ,∆1c

5
0,∆1c

5
1) = (0, 0, 1, 1, 1). It should be noted that the

pair values that can have RX-difference (0, 0, 1, 1, 1) must be selected from
the Set (6). Therefore, according to the Set (6), the following pairs have
the differential (0, 0, 1, 1, 1).

{
(x5

0, y
5
0 , z

5
0 , c

5
0, c

5
1)
}
∈
{{

(0, 1, 1, 0, 0)
(0, 1, 0, 1, 1)

}
,

{
(1, 0, 1, 0, 0)
(1, 0, 0, 1, 1)

}}
.

So, for each pair we get the condition

z50 = c51, (7)

where c is the bit-wise NOT of c. Now, in a similar way and by considering
the RX-difference (∆1x

5
1,∆1y

5
1 , ∆1z

5
1 ,∆1c

5
1,∆1c

5
2) = (0, 0, 1, 1, 1), for each

possible pair we have
z51 = c51, (8)
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Fig. 3: Part of the 11-round RX-trail of sub-keys for SPECK32/64 based on
Table 2 in [34].

By considering the Equation (7) and Equation (8), we have

z50 = z51 . (9)

Now, in the modular addition operation for the 8-th round, we have

(∆1x
8
9,∆1y

8
9 ,∆1z

8
9 ,∆1c

8
9,∆1c

8
10) = (1, 1, 0, 0, 1).

Thus, from Set (6) the following pairs will lead to the RX-difference (1, 1, 0, 0, 1).

(x8
9, y

8
9 , z

8
9 , c

8
9, c

8
10) ∈

{{
(0, 0, 1, 1, 0)
(1, 1, 1, 1, 1)

}
,

{
(0, 0, 0, 0, 0)
(1, 1, 0, 0, 1)

}}
.
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Hence, for these pairs we can get the condition

x8
9 = c810. (10)

Now, by considering the RX-difference (∆1x
8
10,∆1y

8
10,∆1z

8
10,∆1c

8
10,∆1c

8
11)

= (1, 0, 0, 1, 0) for the 10-th bit, the following pairs will lead to this differ-
ential.

(x8
10, y

8
10, z

8
10, c

8
10, c

8
11) ∈

{{
(0, 0, 1, 1, 0)
(1, 0, 1, 0, 0)

}
,

{
(0, 1, 0, 1, 1)
(1, 1, 0, 0, 1)

}}
.

Therefore, we have the condition

x8
10 = c810. (11)

By combining the Equation (10) and Equation (11), we have

x8
9 = x8

10. (12)

Since x8 = (z5 ⊕ 0004) ≫ 7 (see Figure 3), we have z50 = x8
9 and z51 = x8

10.
Hence, by considering the Equation (9) and Equation (12), we reach a
contradiction.

5 Searching compatible differential trails in block ciphers

The two following steps can help us to search the compatible differential trails
in the block ciphers.

1 Build an MILP-based model for searching a (related-key) differential trail
or a SMT-based model for a RX trail (targeting ARX/AND structures) to
obtain a satisfactory differential trail2.

2 Check if there exists a right pair of messages/keys based on the method
mentioned in Section 3.

It is worth noting that if there exist no right pairs, the differential trail found
above is an incompatible differential trail3.

5.1 Application on SPECK family of block ciphers

In the following section, we search the compatible related-key differential trails
of SPECK family of block ciphers.

2 The papers [34,36,46,47] can help to model the difference behavior of the ciphers based
on MILP and SMT methods. However, this step can also be performed with other automated
solvers.

3 In this case, we can check the alternative solutions in step 1. For example, by using
”PoolSearchMode” function in the optimizer Gurobi solver [20].
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5.1.1 Searching the related-key differential trails of SPECK family of block
ciphers

In this section, first, thanks to the MILP method, we present several distin-
guishers for the reduced version of SPECK32/64, SPECK48/96, SPECK64/128,
and SPECK128/256, in related-key mode. Then, we apply the method described
in Section 3 to find the incompatible trails. Our result in this section should be
considered as an improvement over Liu et al.’s work [34], but from differential
view. Both works analyze SPECK-family in weak key models but Liu et al.
presented RX trails while we intend to present differential trails. However, as
can be seen in the following section, we obtain significantly better results, in
terms of weak key(s), class-size, or the number of rounds of the distinguishers.

5.1.2 Attack models

Let QD be the encryption datapath and QK be the key expansion datapath
of SPECK block cipher and Pr(QD) and Pr(QK) show probability over the
data path and the key expansion datapath, respectively. In this paper, inspired
by the rotational-XOR analysis [34], we also consider 3 models of weak key
attacks. In these models, an adversary can obtain data encrypted under two
different keys with a known relation, for plaintexts that are chosen by the
adversary. Attack models considered in this paper are as follows where b =
2n, and mn denote the length of the block size and the length of the key,
respectively.

1. Finding a good related-key differential trail of the cipher such that Pr(QD)×
Pr(QK) > 2−b.

2. Finding a good related-key differential trail of the cipher with probability
Pr(QD) > 2−b such that Pr(QD)×Pr(QK) > 2−mn. This case of attacks is
in a weak key class and the results are marked with † in the results tables.

3. Finding a good related-key differential trail of the cipher with probability
Pr(QD) > 2−b over the data part, and the key expansion part with prob-
ability Pr(QK) > 2−mn (i.e., ensuring that at least one weak key exists).
This case of attack can only be used in the open-key model, i.e., in ad-
dition to being in the weak key class and knowing the differential of the
two related-keys; the adversary also knows the key values. These results
are marked with ‡ in the results tables.

5.1.3 MILP-based differential trail search for SPECK family block cipher

In order to model the differential behavior of SPECK block cipher with the
linear constraints expression in the MILP, it is sufficient to express XOR, bit-
wise rotation, and modular addition. Both XOR and bit rotation are linear
operations and can be modeled similar to the ones in Section 3.
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MILP model for modular addition

Definition 3 (The differential of addition modulo 2n [32]) We define
the differential of addition modulo 2n as a triplet of two input and one output
differences, denoted as (α, β 7→ γ), where (α, β, γ) ∈ {0, 1}n. The differential
probability of addition (DP+) is defined as follows:

DP+(α, β 7→ γ) := 2−2n.# {x, y : (x+ y)⊕ ((x⊕ α) + (y ⊕ β)) = γ} .

In order to characterize the feasible differential trails for the modular addition
and their corresponding probabilities, Lipmaa and Moriai in [32] proposed two
theorems as follows.
Theorem 1 The necessary and sufficient condition for the differential (α, β →
γ) to have a probability > 0 is the following two conditions.
1. α0 ⊕ β0 ⊕ γ0 = 0,
2. if αi−1 = βi−1 = γi−1, thenαi−1 = βi−1 = γi−1 = αi ⊕ βi ⊕ γi, i =

1, · · · , n− 1.

Theorem 2 When the differential (α, β → γ) has a probability > 0, the
probability is

2
−

n−2∑
i=0

∼eq(αi,βi,γi)

where
eq (αi, βi, γi) = eqi =

{
1 αi = βi = γi
0 o.w

(13)

Based on these theorems, Fu et al. proposed an MILP modeling method for
modular addition operation in [17]. The first feasibility condition α0⊕β0⊕γ0 =
0, in Theorem 1 can be represented in MILP model as Inequalities (2). To de-
scribe the second conditions of Theorem 1 and also the definition of eqi in the
MILP model, Fu et al. considered the vectors (αi−1, βi−1, γi−1, αi, βi, γi,∼ eqi−1)
(for i = 1, · · · , n − 1) such that it is satisfied in the conditions. For example,
the differential patterns (0, 0, 0, 1, 0, 1, 0) and (1, 0, 0, 0, 0, 1, 1) are possible pat-
terns and the differential pattern (0, 0, 0, 1, 0, 0, 0) is an impossible pattern as
αi−1 = βi−1 = γi−1 ̸= αi ⊕ βi ⊕ γi. Hence, 56 vectors were generated in each
bit in total. Fu et al. used the ”inequality generator()” function in the sage. ge-
ometry. polyhedron class of SAGE [44] and the greedy algorithm in [46] to get
13 linear inequalities satisfying all these 56 possible transitions. Then, given
Theorem 2, it is sufficient to set the objective function as sum of ∼ eqi−1’s for
i = 1, · · · , n− 1.

Hence, for n-bit words of the modular addition, the total number of the
constraints contains 13(n− 1) + 4 linear inequalities.

5.1.4 Searching for differential trails of SPECK

In this paper, we use the MILP model for related-key differential (RKD) crypt-
analysis of reduced SPECK block cipher. Hence, first, we explain our strategy
for searching the RKD trails and then present the searching result of SPECK.
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Fig. 4: Our strategy for searching the differential trails of SPECK.

Our searching strategy

We will give the details on how to search for the differential trails for SPECK.
Based on the structure of the key schedule of SPECK, the maximum number
of consecutive rounds of sub-keys that there are no differentials is 3 rounds.
Based on the observation from our identified differential trail for the small
number of rounds, we found that the differential probability is better when
these 3 consecutive rounds of sub-keys lead to four consecutive rounds with
zero input differential in the encryption datapath of SPECK. The details of this
strategy are shown in Figure 4. In this figure, we do not have any differentials
in the input of i-th round to (i+3)-th round, such that i can be 2 to r− 3 for
r-round of SPECK.

The only non-linear operation in the SPECK round function is the modular
addition, and the only key-dependent operation is the sub-key addition. Given
that the sub-key addition happens after the modular addition, i.e., the cipher
operation is completely predictable until this first sub-key addition, we can
ignore the modular addition in the first round of the distinguishers.

5.1.5 Search results

In this section, we apply the technique described above in order to find a good
differential trail of the reduced-round variants of SPECK.
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Differential Trails of SPECK32/64

Table 3 shows the RKD trail covering up to 15 rounds found by our model.
To the best of our knowledge, the best published distinguisher trail so far has
covered 12 rounds of SPECK32/64 with a probability of 2−25.57 for a weak key
class of size 24.92 [34]. Based on Table 3, our 13-round trail has a much better
probability of 2−23.85 for a weak key class of size 241. Tables 9 to 14 in the
Appendix A.1, show the differential trails covering 10 to 15 rounds found by
our program.

Table 3: The comparison of our related-key differentials (RKD) with
rotational-XOR (RX) result of [34] for SPECK32/64. Entries marked with †
can be used in weak key model and entries marked with ‡ can only be used in
the open-key model (see Section 5.1.2 for more details of these marks).

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(♯ trails)

32/64

10 † 2−19.15 - 2−35.9 (228.10)
RX [34]11 ‡ 2−22.15 - 2−45.32 (218.68)

12 ‡ 2−25.57 - 2−59.08 (24.92)

10 2−13 2−12.95(3) 2−7 (257)

RKD Our

11 2−17 2−16.85(15) 2−14 (250)
12 † 2−24 2−23.79(90) 2−13 (251)
13 † 2−24 2−23.85(27) 2−23 (241)
14† 2−30 2−29.17(≥ 180)∗ 2−29 (235)
15‡ 2−32 2−31.73(≥ 100) 2−62 (22)

∗: The (≥ a) means we can have more than a trails for this differential but at least a
trails are enough to have the mentioned differential. For example, for 14 rounds, the
program finds 2181 trails, while only 180 trails affect the increase of the probability of
differential and other trails do not have more effect on the probability of differential.

Note that the authors of [34] wrote that ” We extended our search to 13-
round trails and found that none exists, suggesting that a 12-round RX-trail is
the longest possible one.” So, our result shows that the related-key differential
is more powerful against SPECK32/64, compared to the rotational-XOR.

Differential Trails of SPECK48/96

We found RKD trails covering up to 16 rounds for SPECK48/96. Table 4 shows
the summary of searching result and also a comparison of our results with [34]
for SPECK48/96. The trails for 11 to 16 rounds are shown in Tables 15 to 20
in the Appendix A.2.

Differential Trails of SPECK64/128

For SPECK64/128, we successfully extended a distinguisher up to 17 rounds
with a probability of 2−60.81 for a weak key class of size 278. Our results for
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Table 4: The comparison of our related-key differentials (RKD) with
rotational-XOR (RX) result of [34] for SPECK48/96. Entries marked with †
can be used in weak key model and entries marked with ‡ can only be used in
the open-key model (see Section 5.1.2 for more details of these marks).

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(♯ trails)

48/96

11 † 2−24.15 - 2−70.32 (225.68)

RX [34]

11 ‡ 2−23.15 - 2−81.07 (214.93)
12 † 2−26.57 - 2−68.5 (227.5)
12 † 2−26.57 - 2−52.49 (243.51)
13 ‡ 2−31.98 - 2−71.49 (224.51)
14 ‡ 2−37.40 - 2−95.66 (20.34)
15 ‡ 2−43.81 - 2−94.91 (21.09)

11 2−17 2−16.95(3) 2−13 (283)

RKD Our

12 2−21 2−20.90(20) 2−23 (273)
13 † 2−33 2−32.69(≥ 50) 2−18 (278)
14 † 2−43 2−42.38(≥ 200) 2−25 (271)
15† 2−46 2−45.63(≥ 100) 2−43 (253)
16‡ 2−47 2−46.61(≥ 100) 2−94 (22)

13 to 17 rounds of SPECK64/128 are shown in Table 5. Tables 21 to 25 in the
Appendix A.3, show the RKD trail for these 13 to 17 rounds of SPECK64/128.

Table 5: The comparison of our related-key differentials (RKD) with
rotational-XOR (RX) result of [34] for SPECK64/128. Entries marked with
† can be used in weak key model and entries marked with ‡ can only be used
in the open-key model (see Section 5.1.2 for more details of these marks).

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(♯ trails)

64/128

13 ‡ 2−37.98 - 2−106.08(221.92) RX [34]

13 2−36 2−35.67(≥ 150)) 2−18 (2110)

RKD Our
14 † 2−37 2−36.81(≥ 50)) 2−51 (277)
15 † 2−45 2−44.81(≥ 30) 2−60 (268)
16 † 2−60 2−58.81(≥ 200) 2−43 (285)
17 † 2−62 2−60.81(≥ 200) 2−50 (278)

Differential Trails of SPECK128/256

We present the distinguishers for 16 and 19 rounds of SPECK128/256 as shown
in Table 6. Also, Tables 26 and 27 in the Appendix A.4, show the RKD trail
for these 16 and 19 rounds of SPECK128/256.
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Table 6: The comparison of our related-key differentials (RKD) with
rotational-XOR (RX) result of [34] for SPECK128/256. Entries marked with
† can be used in weak key model and entries marked with ‡ can only be used
in the open-key model (see Section 5.1.2 for more details of these marks).

Ver. Rounds
Data Prob. Data Key Prob. Method Ref.trail differential (Key class size)(♯ trails)

128/256
13 2−31.98 - 2−73.49(2182.51) RX [34]

16 2−76 2−75.19(≥ 100) 2−45 (2211) RKD Our19† 2−111 2−109.75(≥ 250) 2−79(2177)

5.1.6 Experimental verification

Here we intend to measure the accuracy of our estimates for the probabilities,
and therefore, we first try to identify a weak key and then encrypt 232 (for
case of SPECK32/64) plaintexts, and measure the probability such that the
differential feature is met.

We modeled the SPECK key schedule with the method described in Section
3 and fixed the key input differentials based on Tables 9 to 14 for rounds 10
to 15 of SPECK32/64, respectively. The time of solving the model to find the
first weak key is shown in the third column of Table 7. Also in this table,
the number of pairs that is satisfied in the encryption datapath are listed in
the fifth column. This table shows that the results matched the theoretical
predictions. For all versions of SPECK mentioned above, we tested whether the
key differential trail is followed. For each version, we reported a weak key (see
Tables 9 to 27 in Appendix A)

5.1.7 Incompatible trails

It must be noted that the method mentioned in Section 3 can be very useful
in most cases to find a weak key. For example, our MILP model to find the
related-key trails can find a 14-round related-key trail with the input differ-
ential (1805, 1281), the output differential (DA52, 25AD), and the key input
differential (0201, 4080, 1891, 4A25) with the data probability of 2−26 and key
probability of 2−63 (key class size of 21). In this case, our model, after 150 sec-
onds shows that there are no keys which can satisfy the differentials of round
keys. Note that without using our MILP method, we had to run the SPECK
key schedule algorithm for 264 times to know it. As a few other examples, in
Table 8, we listed some of the differential trails for which there are not any
key values to reach the differentials of round-keys. In fact, the independency
assumption between the two continuous modular addition of the key sched-
ule algorithm of SPECK is not enough to ensure the validity of the some of
the differential trails. As an example, in the following lemma, we show that
the modular additions used in the key schedule algorithm of SPECK are not
independent. To show this, we consider one of the differential trails shown in
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Table 7: The number of pairs for rounds 10 to 15 of SPECK32/64 with a weak
key. In this table, we show the values of two input keys as: K = (l2, l1, l0, k0),
K ′ = (l′2, l

′
1, l

′
0, k

′
0) and the differential of them as ∆K = (∆l2,∆l1,∆l0,∆k0).

Rounds Tested weak key Time ♯ right pairs ♯ right pairs
expected obtained

10
K = (10CD, 31BF, A172, E11F)

≤ 1 Sec. 219.05 524729 w 219K′ = (38CD, 33BF, A1F2, E11E)
∆K = (2800, 0200, 0080, 0001)

11
K = (8D43, 1D53, ED28, C242)

≤ 1 Sec. 215.15 32922 w 215K′ = (8F43, 1DD3, ED59, 8842)
∆K = (0200, 0080, 0071, 4A00)

12
K = (89C6, B836, 00B4, B223)

≤ 1 Sec. 28.21 287 w 28.16K′ = (8946, B867, 00BC, A023)
∆K = (0080, 0051, 0008, 1200)

13
K = (0502, DB48, E36E, 75EC)

141 Sec. 28.15 246 w 27.95K′ = (4502, C3C8, E76E, 75E5)
∆K = (4000, 1880, 0400, 0009)

14
K = (96D6, C06E, 877E, 8860)

75 Sec. 22.83 8 = 23K′ = (8256, C4AE, 8656, 9862)
∆K = (8256, C4AE, 8656, 9862)

15
K = (7A1F, D850, C89F, B35A)

2420 Sec. 20.27 3 w 21.58K′ = (3A1F, CDD0, CC9F, B353)
∆K = (4000, 1580, 0400, 0009)

Table 8: The list of some of the related-key differential trails of SPECK for
which there are not any key values to satisfy the differential of key rounds.

Ver. # rounds Pr(QK) Pr(QD) Ref.

32/64 14 2−36 2−27 Table 28
48/96 16 2−69 2−47 Table 29
64/128 16 2−41 2−57 Table 30
128/256 21 2−94 2−122 Table 31

Table 8 shows that the cause of the invalidity of that trail is the dependence
of the modular additions.

Lemma 3 There are no right pair to satisfy the RK-difference of the sub-keys
of 16 rounds of SPECK48/96 as shown in Table 29.

Proof The proof is almost the same with proof of Lemma 2 and its detrails
are presented in Appendix C.

6 Conclusion and future works

Thanks to the MILP method, in this study, we presented an efficient method
to verify differential trails and also search for the right pairs. We applied
our approach to the the previously known RX trails of SIMECK and SPECK
family of block ciphers to verify their corectness. In addition, we presented
related-key differential distinguishers on different variants of the SPECK block
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cipher and obtained longer distinguishers compared to the ones previously
published. For each variant of the SPECK family of block ciphers, we presented
several distinguishers. The longest distinguishers for SPECK32/64, SPECK48/96,
SPECK64/128, and SPECK128/256, cover 15, 16, 17, and 19 rounds, respectively,
which are working on a certain weak key class. In addition, we showed that
the transitional probability over two consecutive modular addition operations
in the key schedule structure of SPECK is not independent and our approach
in this paper could find this case of the trails.

To the best of our knowledge, the current method for searching RX trails
is based on SAT/SMT solvers and thus proposing an MILP-based method
to find the RX trails can be considered as a future work. Also, based on
our result, some previously reported RX trails of SPECK and SIMECK were
incompatible, for instance, 11 and 12 rounds of SPECK32/64, 27 and 35 rounds
of SIMECK48/96 and SIMECK64/128, respectively, therefore, finding compatible
RX trails or prove nonexistence of them can be considered as another future
work. In addition, in our analysis to find a good differential distinguisher for
SPECK family, we noticed that most of the obtained trails are incompatible
(especially in case of SPECK128/256). Thus, considering a direct approach to
find a compatible differential trail may help improve the results (e.g., inspired
by [15, 33]). As another work, considering our search to find a weak key in
this paper may help find a collision in hash functions at a reasonable time.
Besides, the results of this paper could be used to verify many differential
trails which have been already considered as theoretical trails and we were not
sure whether there could be any pair of inputs following that trail (as we did
this for recent results on SPECK and SIMECK, in this article).
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A RKD trails of SPECK variants

A.1 RKD trails of SPECK32/64

Tables 9 to 14.

Table 9: 10-round related-key differential trail in SPECK32/64 with
(∆l2,∆l1,∆l0,∆k0) = (2800, 0200, 0080, 0001).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 0001 0204||0005
1 0004 -1 0205||0200
2 0010 -1 0800||0000 -3
3 0000 -2 0000||0000 -1
4 0000 0 0000||0000 0
5 0000 0 0000||0000 0
6 8000 0 0000||0000 0
7 8002 0 8000||8000 0
8 8008 -1 0102||0100 -1
9 812A -2 850A||810A -3
10 152A||1100 -5

log2
(
Pr(QK)

)
: -7 log2

(
Pr(QD)

)
: -13

A pair of weak keys:
K = (10CD, 31BF, A172, E11F)
K′ = (38CD, 33BF, A1F2, E11E)

A.2 RKD trails of SPECK48/96

Tables 15 to 20.

A.3 RKD trails of SPECK64/128

Tables 21 to 25.

A.4 RKD trails of SPECK128/256

Tables 26 to 27.
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Table 10: 11-round related-key differential trail in SPECK32/64 with
(∆l2,∆l1,∆l0,∆k0) = (0200, 0080, 0071, 4A00).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 4A00 4B21||C121
1 0008 -4 0121||C000
2 0004 -1 0203||0200 -3
3 0010 -1 0800||0000 -4
4 0000 -2 0000||0000 -1
5 0000 0 0000||0000 0
6 0000 0 0000||0000 0
7 8000 0 0000||0000 0
8 8002 0 8000||8000 0
9 8008 -1 0102||0100 -1
10 812A -2 850A||810A -3
11 152A||1100 -5

log2
(
Pr(QK)

)
: -11 log2

(
Pr(QD)

)
: -17

A pair of weak keys:
K = (8D43, 1D53, ED28, C242)
K′ = (8F43, 1DD3, ED59, 8842)

Table 11: 12-round related-key differential trail in SPECK32/64 with
(∆l2,∆l1,∆l0,∆k0) = (0080, 0051, 0008, 1200).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 1200 16E4||144C
1 4A00 -2 04E4||10A8
2 0008 -4 02A1||4001 -7
3 0004 -1 0205||0200 -4
4 0010 -1 0800||0000 -3
5 0000 -2 0000||0000 -1
6 0000 0 0000||0000 0
7 0000 0 0000||0000 0
8 8000 0 0000||0000 0
9 8002 0 8000||8000 0
10 8008 -1 0102||0100 -1
11 812A -2 850A||810A -3
12 152A||1100 -5

log2
(
Pr(QK)

)
: -13 log2

(
Pr(QD)

)
: -24

A pair of weak keys:
K = (89C6, B836, 00B4, B223)
K′ = (8946, B867, 00BC, A023)

B Some of incompability RKD trails of SPECK variants

Tables 28 to 31.

C Manual verification of one of the incompatible RKD trails

Lemma 4 There are no right pair to satisfy the RK-difference of the sub-keys of 16 rounds
of SPECK48/96 as shown in Table 29.
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Table 12: 13-round related-key differential trail in SPECK32/64 with
(∆l2,∆l1,∆l0,∆k0) = (4000, 1880, 0400, 0009).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 0009 560B||020A
1 0025 -2 5602||5408
2 0080 -4 5081||00A0 -7
3 0200 -1 0281||0001 -4
4 0800 -1 0004||0000 -3
5 0000 -2 0000||0000 -1
6 0000 0 0000||0000 0
7 0000 0 0000||0000 0
8 0040 -1 0000||0000 0
9 01C0 -2 0040||0040 0
10 0140 -5 8100||8000 -2
11 8440 -2 8042||8040 -2
12 1543 -3 8100||8002 -3
13 9443||9449 -2

log2
(
Pr(QK)

)
: -23 log2

(
Pr(QD)

)
: -24

A pair of weak keys:
K = (0502, DB48, E36E, 75EC)
K′ = (4502, C3C8, E76E, 75E5)

Table 13: 14-round related-key differential trail in SPECK32/64 with
(∆l2,∆l1,∆l0,∆k0) = (1480, 04C0, 0128, 1002).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 1002 1418||A418
1 8008 -3 041A||A002
2 0023 -2 5402||D408 -6
3 0080 -5 5083||00A0 -6
4 0200 -2 0281||0001 -5
5 0800 -1 0004||0000 -3
6 0000 -3 0000||0000 -1
7 0000 0 0000||0000 0
8 0000 0 0000||0000 0
9 0040 -1 0000||0000 0
10 01C0 -2 0040||0040 0
11 0140 -5 8100||8000 -2
12 8440 -2 8042||8040 -2
13 1543 -3 8100||8002 -3
14 9443||9449 -2

log2
(
Pr(QK)

)
: -29 log2

(
Pr(QD)

)
: -30

A pair of weak keys:
K = (96D6, C06E, 877E, 8860)
K′ = (8256, C4AE, 8656, 9862)

Proof To find a contradiction in the key expansion datapath of the key differences of the
trails in Table 29, we fixed the input differential of sub-keys in all 16 rounds. Our MILP
model gives us an infeasible solution. This means that there are not any key values to satisfy
the differential of round keys for 16 rounds of SPECK48/96 based on Table 29. After that,
we tried to find the key values for fewer rounds by removing some last rounds. When we
removed the fourteenth round, the MILP model found two key values whose differential was
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Table 14: 15-round related-key differential trail in SPECK32/64 with
(∆l2,∆l1,∆l0,∆k0) = (4000, 1580, 0400, 0009).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 0009

1 0023 -4 543E||D408
2 0080 -5 5083||00A0 -6
3 0200 -1 0281||0001 -5
4 0800 -3 0004||0000 -3
5 0000 -3 0000||0000 -1
6 0000 0 0000||0000 0
7 0000 0 0000||0000 0
8 0040 -1 0000||0000 0
9 01C0 -2 0040||0040 0
10 0140 -5 8100||8000 -2
11 8440 -2 8042||8040 -2
12 6AFD -15 8100||8002 -3
13 C01E -12 EBFD||EBF7 -2
14 4753 -9 2FC0||801F -5
15 476D||4713 -3

log2
(
Pr(QK)

)
: -62 log2

(
Pr(QD)

)
: -32

A pair of weak keys:
K = (7A1F, D850, C89F, B35A)
K′ = (3A1F, CDD0, CC9F, B353)

Table 15: 11-round related-key differential trail in SPECK48/96 with
(∆l2,∆l1,∆l0,∆k0) = (020000, 004000, 000882, 120008).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 120008 12504A||405040
1 000040 -3 005042||400002
2 000200 -1 020012||020000 -5
3 001000 -1 100000||000000 -3
4 000000 -2 000000||000000 -1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 000080 -1 000000||000000 0
8 000480 -1 000080||000080 0
9 002080 -2 800400||800000 -1
10 812480 -2 80A084||80A080 -2
11 VV8504A0||8000A4 -5

log2
(
Pr(QK)

)
: -13 log2

(
Pr(QD)

)
: -17

A pair of weak keys:
K = (426E81, 01E2A0, 23AD82, 401C62)
K′ = (406E81, 01A2A0, 23A500, 521C6A)

the differential of the key rounds for 14 rounds of SPECK48/96. So, the fourteenth round of
key expansion datapath can be effective in finding a contradiction. Note that the left input
differential of round 14 is the same as the left output differential of round 11 (see Figure 5).

We denote the two n-bit vectors representing differentials at the input of modular ad-
dition in the round i where i = 11, 14, as ∆xi = (∆xi

n−1, · · · ,∆xi
1,∆xi

0) and ∆yi =

(∆yin−1, · · · ,∆yi1,∆yi0) and the n-bit output differential as ∆zi = (∆zin−1, · · · ,∆zi1,∆zi0)
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Table 16: 12-round related-key differential trail in SPECK48/96 with
(∆l2,∆l1,∆l0,∆k0) = (020000, 004000, 000882, 120008).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 120008 12504A||405040
1 000040 -3 005042||400002
2 000200 -1 020012||020000 -5
3 001000 -1 100000||000000 -3
4 000000 -2 000000||000000 -1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 000080 -1 000000||000000 0
8 000780 -3 000080||000080 0
9 000080 -7 800400||800000 -3
10 800480 -1 808084||808080 -2
11 002085 -4 840480||800084 -3
12 00A405||00A021 -4

log2
(
Pr(QK)

)
: -23 log2

(
Pr(QD)

)
: -21

A pair of weak keys:
K = (3BC6A8, 4B6ED8, EBC297, C8A20E)
K′ = (39C6A8, 4B2ED8, EBCA15, DAA206)

Table 17: 13-round related-key differential trail in SPECK48/96 with
(∆l2,∆l1,∆l0,∆k0) = (000200, 0000C0, 820008, 081200).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 081200 4A12D0||4040D0
1 400000 -4 4200D0||024000
2 000002 -1 120200||000200 -5
3 000010 -1 001000||000000 -3
4 000000 -2 000000||000000 -1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 800000 0 000000||000000 0
8 800004 0 800000||008000 0
9 800020 -1 008004||008000 -1
10 808124 -2 8480A0||8080A0 -3
11 840800 -4 A08504||A48000 -5
12 A0C804 -3 242885||002880 -7
13 25CCAC||2488AC -8

log2
(
Pr(QK)

)
: -18 log2

(
Pr(QD)

)
: -33

A pair of weak keys:
K = (34AF36, 1AA373, C48D92, 2B0794)
K′ = (34AD36, 1AA3B3, 468D9A, 231594)

and the n-bit vectors representing carry differential as ∆ci = (∆cin−1, · · · ,∆ci1,∆ci0). It
should be noted that based on the third condition of Inequality (3), the differential of carry
bit ci can be obtained as ∆ci = ∆xi ⊕∆yi ⊕∆zi. Therefore, the input/output differentials
and the carry differentials of modular additions for the 11-th and 14-th rounds based on
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Table 18: 14-round related-key differential trail in SPECK48/96 with
(∆l2,∆l1,∆l0,∆k0) = (020000, 004010, 248801, 102088).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 102088 10625A||5042C2
1 900040 -6 0042D2||500010
2 000204 -2 120012||920090 -6
3 001024 -2 841449||141010 -8
4 008000 -4 A08400||000480 -9
5 040000 -1 002404||000004 -5
6 200000 -1 000020||000000 -3
7 000000 -2 000000||000000 -1
8 000000 0 000000||000000 0
9 000000 0 000000||000000 0
10 010000 -1 000000||000000 0
11 090000 -1 010000||010000 0
12 410000 -2 080100||000100 -2
13 490102 -3 410901||410101 -3
14 09410A||014900 -6

log2
(
Pr(QK)

)
: -25 log2

(
Pr(QD)

)
: -43

A pair of weak keys:
K = (A45E80, E09F24, F047C1, 4608BA)
K′ = (A65E80, E0DF34, D4CFC0, 562832)

Figure 5, can be written as binary notation as follows.

∆x11 = 100000000000000000000000, ∆x14 = 100000000000011111101100,
∆y11 = 100000010010010010000000, ∆y14 = 001000111001000110000100,
∆z11 = 000001111110110010000000, ∆z14 = 100111001000110000100000,
∆c11 = 000001101100100000000000, ∆c14 = 001111110001101001001000.

As can be seen in Figure 5, the modular addition operations in rounds 11 and 14 sat-
isfy the conditions of Theorem 1 and they hold with probabilities of 2−9 and 2−17, re-
spectively. Assuming independency, the differential probability of these two rounds should
hold with probability of 2−26; however, we show that it is an incompatibility differential.
To this end, by considering the modular addition operation for the 11-th round, we have
(∆x11

13,∆y1113 ,∆z1113 ,∆c1113,∆c1114) = (0, 1, 1, 0, 1). It should be noted that the values that can
have this differential must be selected from the set (6). According to the set (6), the following
pairs have the differential (∆x11

13,∆y1113 ,∆z1113 ,∆c1113,∆c1114) = (0, 1, 1, 0, 1).

{
(x11

13, y
11
13 , z

11
13 , c

11
13, c

11
14)

}
∈

{{
(0, 0, 1, 1, 0)
(0, 1, 0, 1, 1)

}
,

{
(1, 0, 1, 0, 0)
(1, 1, 0, 0, 1)

}}
.

So, for each pair we get the condition

z1113 = c1114, (14)

where c is the bit-wise NOT of c. Now, by considering the differential (∆x11
14,∆y1114 ,∆z1114 ,∆c1114,

∆c1115) = (0, 0, 1, 1, 1), for the 14-th bit, the following pairs can reach to this differential.

(x11
14, y

11
14 , z

11
14 , c

11
14, c

11
15) ∈

{{
(0, 1, 1, 0, 0)
(0, 1, 0, 1, 1)

}
,

{
(1, 0, 1, 0, 0)
(1, 0, 0, 1, 1)

}}
.

So, these pairs conclude the condition

z1114 = c1114. (15)
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Table 19: 15-round related-key differential trail in SPECK48/96 with
(∆l2,∆l1,∆l0,∆k0) = (000010, 000002, 441000, 004090).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 004090 825092||820202
1 020000 -4 821002||001200
2 100000 -1 009010||000010 -5
3 800000 -1 000080||000000 -3
4 000000 -1 000000||000000 0
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 040000 -1 000000||000000 0
8 1C0000 -4 040000||040000 0
9 040000 -5 200400||000400 -5
10 240400 -2 042404||040404 -3
11 042001 -6 240420||042400 -4
12 240409 -7 202005||010005 -5
13 042044 -6 20242C||282404 -6
14 250664 -5 002464||410445 -7
15 C00245||C8206F -8

log2
(
Pr(QK)

)
: -43 log2

(
Pr(QD)

)
: -46

A pair of weak keys:
K = (0C8E5B, 240ABD, 8BFBE8, 73CFA3)
K′ = (0C8E4B, 240ABF, CFEBE8, 738F33)

By combining the equations (14) and (8), we have

z1113 = z1114 . (16)

Now, in the modular addition operation for 14-th round, we have (∆x14
5 ,∆y145 ,∆z145 ,∆c145 ,∆c146 ) =

(1, 0, 1, 0, 1). Thus, the following pairs will lead to the differential (1, 0, 1, 0, 1).

(x14
5 , y145 , z145 , c145 , c146 ) ∈

{{
(0, 0, 1, 1, 0)
(1, 0, 0, 1, 1)

}
,

{
(0, 1, 1, 0, 0)
(1, 1, 0, 0, 1)

}}
.

Hence, for these pairs, we can get the condition

x14
5 = c146 . (17)

Now, by considering the differential (∆x14
6 ,∆y146 ,∆z146 ,∆c146 ,∆c147 ) = (1, 0, 0, 1, 0) for the

6-th bit, the following pairs will lead to this differential.

(x14
6 , y146 , z146 , c146 , c147 ) ∈

{{
(0, 0, 1, 1, 0)
(1, 0, 1, 0, 0)

}
,

{
(0, 1, 0, 1, 1)
(1, 1, 0, 0, 1)

}}
.

Therefore, we have the condition
x14
6 = c146 . (18)

By combining the equations (17) and (18), we have

x14
5 = x14

6 . (19)

Since x14 = (z11 ≫ 8) (see Figure 5), we have z1113 = x14
5 and z1114 = x14

6 . Hence, by
considering the equations (16) and (19), we reach a contradiction.
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Table 20: 16-round related-key differential trail in SPECK48/96 with
(∆l2,∆l1,∆l0,∆k0) = (000010, 000020, 00441000, 004090).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 004090 825092||820202
1 020000 -4 821002||001200
2 100000 -1 009010||000010 -5
3 800000 -1 000080||000000 -3
4 000000 -1 000000||000000 0
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 040000 -1 000000||000000 0
8 1C0000 -4 040000||040000 0
9 040000 -5 200400||000400 -5
10 240400 -2 042404||040404 -3
11 042001 -6 240420||042400 -4
12 1A1C77 -19 202005||010005 -5
13 DA03C7 -15 183C54||103C7C -8
14 FFFEC1 -21 FE1FFF||7FFC1F -8
15 83C4D4 -14 8000FF||7FE004 -3
16 FC24D0||0324F3 -3

log2
(
Pr(QK)

)
: -94 log2

(
Pr(QD)

)
: -47

A pair of weak keys:
K = (E768B7, 64197F, A32B17, E346B7)
K′ = (E768A7, 64197D, E73B17, E30627)

Table 21: 13-round related-key differential trail in SPECK64/128 with
(∆l2,∆l1,∆l0,∆k0) = (00000200, 00000040, 00820008, 08001200).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 08001200 18421240||10404040
1 40000000 -4 10420040||00024000
2 00000002 -1 00120200||00000200 -5
3 00000010 -1 00001000||00000000 -3
4 00000000 -2 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 80000000 0 00000000||00000000 0
8 80000004 0 80000000||80000000 0
9 80000020 -1 00800004||00800000 -1
10 80800124 -2 84808020||80808020 -3
11 84000800 -4 20840184||24800080 -6
12 A0804804 -3 24A08481||00A08080 -9
13 20046800||25006C00 -8

log2
(
Pr(QK)

)
: -18 log2

(
Pr(QD)

)
: -36

A pair of weak keys:
K = (10477738, AA9DC904, 8E451208, 7556C2C3)
K′ = (10477538, AA9DC944, 8EC71200, 7D56D0C3)
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Table 22: 14-round related-key differential trail in SPECK64/128 with
(∆l2,∆l1,∆l0,∆k0) = (00000002, 40000000, 08008200, 00080012).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 00080012 40184212||40104040
1 00400000 -4 40104200||00000240
2 02000000 -1 00001202||00000002 -5
3 10000000 -1 00000010||00000000 -3
4 00000000 -1 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 00800000 -1 00000000||00000000 0
8 07800000 -3 00800000||00800000 0
9 00800000 -7 04008000||00008000 -4
10 03808000 -5 00848080||00808080 -3
11 00840000 -9 84008400||80048000 -7
12 05A08000 -7 80048084||80208080 -5
13 10A50080 -12 01000400||00040004 -6
14 10A00080||108000A0 -3

log2
(
Pr(QK)

)
: -51 log2

(
Pr(QD)

)
: -37

A pair of weak keys:
K = (BE466B7E, F02B57A6, 6F474116, 3E245A23)
K′ = (BE466B7C, B02B57A6, 6747C316, 3E2C5A31)

Table 23: 15-round related-key differential trail in SPECK64/128 with
(∆l2,∆l1,∆l0,∆k0) = (00000002, 40000000, 08008200, 00080012).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 00080012 40184212||40104040
1 00400000 -4 40104200||00000240
2 02000000 -1 00001202||00000002 -5
3 10000000 -1 00000010||00000000 -3
4 00000000 -1 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 00800000 -1 00000000||00000000 0
8 07800000 -3 00800000||00800000 0
9 00800000 -7 04008000||00008000 -4
10 038080000 -5 00848080||00808080 -3
11 00840000 -9 84008400||80048000 -7
12 05A08000 -7 80048084||80208080 -5
13 10A50080 -12 01000400||00040004 -6
14 95908480 -9 10A00080||108000A0 -3
15 04002420||800002120 -8

log2
(
Pr(QK)

)
: -60 log2

(
Pr(QD)

)
: -45

A pair of weak keys:
K = (BE466B7E, F02B57A6, 6F474116, 3E245A23)
K′ = (BE466B7C, B02B57A6, 6747C316, 3E2C5A31)
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Table 24: 16-round related-key differential trail in SPECK64/128 with
(∆l2,∆l1,∆l0,∆k0) = (00000200, 00000040, 00820008, 08001200).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 08001200 18421240||10404040
1 40000000 -4 10420040||00024000
2 00000002 -1 00120200||00000200 -5
3 00000010 -1 00001000||00000000 -3
4 00000000 -2 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 80000000 0 00000000||00000000 0
8 80000004 0 80000000||80000000 0
9 80000020 -1 00800004||00800000 -1
10 80800124 -2 84808020||80808020 -3
11 84000800 -4 20840184||24800080 -6
12 A0804804 -3 24A08C81||00A08880 -8
13 84020821 -6 21046000||24002400 -10
14 8092592C -8 A0232801||80220800 -8
15 84808078 -11 01104004||00000000 -11
16 80819038||80819038 -4

log2
(
Pr(QK)

)
: -43 log2

(
Pr(QD)

)
: -60

A pair of weak keys:
K = (7009EF82, 01B2A171, C4E14153, 2A5CEE20)
K′ = (7009ED82, 01B2A131, C463415B, 225CFC20)

Table 25: 17-round related-key differential trail in SPECK64/128 with
(∆l2,∆l1,∆l0,∆k0) = (00000200, 00000040, 00820008, 08001200).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 08001200 18421240||10404040
1 40000000 -4 10420040||00024000
2 00000002 -1 00120200||00000200 -5
3 00000010 -1 00001000||00000000 -3
4 00000000 -2 00000000||00000000 -1
5 00000000 0 00000000||00000000 0
6 00000000 0 00000000||00000000 0
7 80000000 0 00000000||00000000 0
8 80000004 0 80000000||80000000 0
9 80000020 -1 00800004||00800000 -1
10 80800124 -2 84808020||80808020 -3
11 84000800 -4 20840184||24800080 -6
12 A0804804 -3 24A08C81||00A08880 -8
13 84020821 -6 21046000||24002400 -10
14 8092592C -8 A0232801||80220800 -8
15 84811040 -12 01104004||000000000 -11
16 A409920C -6 80800000||80800000 -4
17 2409120C||20091208 -2

log2
(
Pr(QK)

)
: -50 log2

(
Pr(QD)

)
: -62

In this case, after limiting the time for two weeks of running the MILP model,
we could not find a weak key, while based on our test for each of the two
consecutive rounds there are not any independed modular addition.
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Table 26: 16-round related-key differential trail
in SPECK128/256 with (∆l2,∆l1,∆l0,∆k0) =
(0200000000000000, 0040000000000010, 0008000001248000, 1000080000002080).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 1000080000002080 50402c02c0442012||40002426c0944082
1 9000400000000000 -6 40402402C0440092||0040000400D04010
2 0002000000000004 -2 0200002002100410||0000000004920490 -13
3 0010000000000024 -2 0200002002100410||0000000004920490 -14
4 0080000000000000 -4 8000000000208400||000000000000480 -10
5 0400000000000000 -1 0000000000002404||0000000000000004 -5
6 2000000000000000 -1 0000000000000020||0000000000000000 -3
7 0000000000000000 -2 0000000000000000||0000000000000000 -1
8 0000000000000000 0 0000000000000000||0000000000000000 0
9 0000000000000000 0 0000000000000000||0000000000000000 0
10 0100000000000000 -1 0000000000000000||0000000000000000 0
11 0F00000000000000 -3 0100000000000000||0100000000000000 0
12 0100000000000000 -7 0801000000000000||0001000000000000 -4
13 0901000000000000 -2 0109010000000000||0000000000000000 -3
14 4108000000000000 -5 0801080100000000||0009000100000000 -5
15 C947000000000002 -9 4109010901000000||4141010101000000 -6
16 0841080008010002||0249000800010000 -12

log2
(
Pr(QK)

)
: -45 log2

(
Pr(QD)

)
: -76

A pair of weak keys:
K = (535876A8F21D9DE0, 3CCC449DCEECCBFE, A0BAEDD3FAF2F38F, 6032F128F67FD07E)
K′ = (515876A8F21D9DE0, 3C8C449DCEECCBEE, A0B2EDD3FBD6738F, 7032F928F67FF0FE)

>>>8

<<<3

>>>8

<<<3

8000019C8C20

07EC80 239184

07EC80 0EC884

000080 812480

Round 11 
of key path

Round 14
of key path

The key 

differential 

for round 10 

of data path

The key 

differential 

for round 13 

of data path

000008

812480

07EC80

>>>8

239184

9C8C20

000008

812480

07EC80

>>>8

239184

9C8C20

8007EC

Fig. 5: Part of the 16-round incompatible differential trail of SPECK48/96 based
on Table 29.
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Table 27: 19-round related-key differential trail
in SPECK128/256 with (∆l2,∆l1,∆l0,∆k0) =
(0200000000000000, 0040000000000010, 0008000001248000, 1000080000002080).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 1000080000002080 50402C02C0442012||40002406C0944082
1 9000400000000000 -6 40402402C0440092||0040000400D04010
2 0002000000000004 -2 0200002002100410||0000000004920490 -13
3 0010000000000024 -2 0200002002100410||0000000004920490 -14
4 0080000000000000 -4 8000000000208400||000000000000480 -10
5 0400000000000000 -1 0000000000002404||0000000000000004 -5
6 2000000000000000 -1 0000000000000020||0000000000000000 -3
7 0000000000000000 -2 0000000000000000||0000000000000000 -1
8 0000000000000000 0 0000000000000000||0000000000000000 0
9 0000000000000000 0 0000000000000000||0000000000000000 0
10 0100000000000000 -1 0000000000000000||0000000000000000 0
11 0F00000000000000 -3 0100000000000000||0100000000000000 0
12 0100000000000000 -7 0801000000000000||0001000000000000 -4
13 0901000000000000 -2 0109010000000000||0000000000000000 -3
14 4108000000000000 -5 0801080100000000||0009000100000000 -5
15 C947000000000002 -9 4109010901000000||4141010101000000 -6
16 03F8010000000010 -11 0841080008010002||0249000800010000 -12
17 0001090000000090 -13 0249400000090110||1001404000010110 -14
18 0148400000000410 -10 0002000000010881||8008020000090001 -12
19 0040400000090509||0000500000410505 -9

log2
(
Pr(QK)

)
: -79 log2

(
Pr(QD)

)
: -111

A pair of weak keys:
K = (A86999C9C3C38FDA, 800A91FA534F6705, 843997FC7C0B7F01, CE6525B90E522DB6)
K′ = (AA6999C9C3C38FDA, 804A91FA534F6715, 843197FC7D2FFF01, DE652DB90E520D36)

Table 28: An incompatible differential trail for 14 rounds of SPECK32/64 with
(∆l2,∆l1,∆l0,∆k0) = (0001, 4000, 0880, 0025).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 0025 50A4||5021
1 0080 -4 5081||00A0
2 0200 -1 0281||0001 -4
3 0800 -1 0004||0000 -3
4 0000 -2 0000||0000 -1
5 0000 0 0000||0000 0
6 0000 0 0000||0000 0
7 0040 -1 0000||0000 0
8 0140 -1 0040||0040 0
9 0240 -4 8100||8000 -1
10 87C0 -5 8142||8140 -3
11 0042 -7 8002||8500 -5
12 8140 -4 8042||9440 -2
13 0557 -6 9000||C102 -4
14 C575||C17E -4

log2
(
Pr(QK)

)
: -36 log2

(
Pr(QD)

)
: -27
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Table 29: An incompatible differential trail for 16 rounds of SPECK48/96 with
(∆l2,∆l1,∆l0,∆k0) = (020000, 004000, 000882, 120008).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 120008 12504A||405040
1 000040 −3 005040||400002
2 000200 −1 020012||020000 −5
3 001000 −1 100000||000000 −3
4 000000 −2 000000||000000 −1
5 000000 0 000000||000000 0
6 000000 0 000000||000000 0
7 000080 −1 000000||000000 0
8 000480 −1 000080||000080 0
9 002080 −2 800400||800000 −1
10 812480 −2 80A084||80A080 −2
11 0EC884 −9 84C4A0||81C0A4 −6
12 840CA0 −11 2E03A4||200680 −11
13 239184 −11 002421||001020 −9
14 800001 −17 008180||000080 −6
15 00F245 −8 000000||000400 −2
16 00F645||00D645 −1

log2
(
Pr(QK)

)
: −69 log2

(
Pr(QD)

)
: −47

Table 30: An incompatible differential trail for 16 rounds of SPECK64/128 with
(∆l2,∆l1,∆l0,∆k0)=(00208002, 40000000, 08000200, 00080012).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 00080012 82888292||90C09080
1 00400080 -3 82808280||12401200
2 02000480 -2 92829202||00820202 -10
3 10000000 -4 04108010||00009000 -11
4 80000000 -1 00048080||00000800 -5
5 00000004 0 00000400||00000000 -2
6 00000000 -2 00000000||00000000 -1
7 00000000 0 00000000||00000000 0
8 00000000 0 00000000||00000000 0
9 20000000 -1 00000000||00000000 0
10 E0000001 -2 20000000||20000000 0
11 20000000 -6 00200001||00200000 -3
12 20200001 -2 21202000||20202000 -3
13 21000008 -5 00210021||01200020 -5
14 20200049 -7 01202128||08202028 -6
15 21002200 -6 00010040||41000100 -8
16 A0002200||A8002A02 -3

log2
(
Pr(QK)

)
: -41 log2

(
Pr(QD)

)
: -57
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Table 31: An incompatible differential trail for 21
rounds of SPECK128/256 with (∆l2,∆l1,∆l0,∆k0)=
(00500040000005A4, 0008000800000034, 4001400100010400, 0240014001000024).

Round Differential
log2 Pr

Differential
log2 Prin Key in Data

0 0240014001000024 1248414801001224||100A000800001202
1 1000080008000000 -9 1008400800001200∥0002400000000002
2 A400500040000000 -6 1012404000000010||1000404000000000 -8
3 2002000200000000 -8 8410020000000000||0412000000000000 -8
4 001C001000000000 -6 2C90100000000000||0C00100000000000 -8
5 0000008000000000 -7 0400800000000000||6400000000000000 -9
6 0700040000000000 -4 E404000000000000||C404000000000003 -5
7 0000200000000000 -8 C06000000000001F||E040000000000001 -14
8 0001000000000000 -3 030000000000000F||0100000000000000 -15
9 0008000000000000 -3 0800000000000000||0000000000000000 -6
10 0000000000000000 -4 0000000000000000||0000000000000000 -1
11 0000000000000000 0 0000000000000000||0000000000000000 0
12 0000000000000000 0 0000000000000000||0000000000000000 0
13 0000400000000000 -1 0000000000000000||0000000000000000 0
14 0003C00000000000 -3 0000400000000000||0000400000000000 0
15 0000400000000000 -7 0002004000000000||0000004000000000 -4
16 0002404000000000 -2 0000424040000000||0000404040000000 -3
17 0010420000000000 -5 0002004200400000||0000024000400000 -5
18 0092404000000000 -7 0010424042404000||0010504040404000 -6
19 0400420040000000 -6 0082004200020040||0000824002000040 -10
20 2402504240000000 -5 4400424000000240||4404504010000040 -8
21 2042004010000042||0060824090000240 -12

log2
(
Pr(QK)

)
: -94 log2

(
Pr(QD)

)
: -122


