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Investigating the human jejunal 
microbiota
Heidi Cecilie Villmones1*, Marius Svanevik2,3, Elling Ulvestad4,6, Tore Stenstad5, 
Inger Lill Anthonisen1, Randi Monsen Nygaard6, Ruben Dyrhovden6 & Øyvind Kommedal4,6

Descriptions of the small intestinal microbiota are deficient and conflicting. We aimed to get a 
reliable description of the jejunal bacterial microbiota by investigating samples from two separate 
jejunal segments collected from the luminal mucosa during surgery. Sixty patients with morbid 
obesity selected for elective gastric bypass surgery were included in this survey. Samples collected by 
rubbing a swab against the mucosa of proximal and mid jejunal segments were characterized both 
quantitatively and qualitatively using a combination of microbial culture, a universal quantitative 
PCR and 16S deep sequencing. Within the inherent limitations of partial 16S sequencing, bacteria 
were assigned to the species level. By microbial culture, 53 patients (88.3%) had an estimated 
bacterial density of < 1600 cfu/ml in both segments whereof 31 (51.7%) were culture negative in both 
segments corresponding to a bacterial density below 160 cfu/ml. By quantitative PCR, 46 patients 
(76.7%) had less than 104 bacterial genomes/ml in both segments. The most abundant and frequently 
identified species by 16S deep sequencing were associated with the oral cavity, most often from 
the Streptococcus mitis group, the Streptococcus sanguinis group, Granulicatella adiacens/para-
adiacens, the Schaalia odontolytica complex and Gemella haemolysans/taiwanensis. In general, few 
bacterial species were identified per sample and there was a low consistency both between the two 
investigated segments in each patient and between patients. The jejunal mucosa of fasting obese 
patients contains relatively few microorganisms and a core microbiota could not be established. The 
identified microbes are likely representatives of a transient microbiota and there is a high degree of 
overlap between the most frequently identified species in the jejunum and the recently described 
ileum core microbiota.

The longstanding debate as to whether antibacterial mechanisms of the intestinal epithelium along with peri-
stalsis prevent the formation of a resident jejunal microbiota, is still not resolved1–4. Descriptions of the jejunal 
microbiota remains vague and there is little consistency both among microbial quantifications and described 
microbial compositions. Contemporary textbooks5 and reviews6–12 report bacterial concentrations of 104 to 
107 cfu/ml, dominated by lactobacilli, streptococci, enterococci and Veillonella spp. Enterobacteriales are also 
considered to be prominent participants8–10,13,14.

Deep sequencing approaches13–21 have failed to define a consistent core microbiota. Streptococcus, Prevotella, 
Veillonella and Fusobacterium are frequently detected genera along with a range of Proteobacteria including 
Enterobacteriales, Haemophilus spp. and Neisseria spp. These studies are typically based on indirect sample col-
lection procedures like endoscopies13,14,16,17,19,20,22, nasoileal catheters18,23, capsules15 or from autopsies21. Despite 
the use of indirect sampling, the possibility for sample contamination from more abundantly colonized parts of 
the gastrointestinal tract has rarely been addressed.

We have identified four older studies on samples collected directly from the jejunal lumen during surgery3,24–26. 
These studies, published between 1953 and 1979 were based on culture-dependent techniques. They consistently 
report a high proportion of jejunal samples to be sterile, 71%, 20%, 63% and 69% respectively. The sporadic 
species detected, typically gram-positive facultative bacteria like viridans streptococci, were related to the oral 
cavity and generally considered transient microorganisms. Strict anaerobes, Enterobacteriales and enterococci 
were rarely detected.

In an attempt to provide a comprehensive and methodically sound description of the jejunal microbiota, we 
collected samples from two separate jejunal segments in a cohort of 60 patients during scheduled gastric bypass 
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surgery. The samples were characterized qualitatively and quantitatively using a combination of microbial culture, 
a universal quantitative PCR and 16S deep sequencing. The study population was a selected group of patients 
with morbid obesity otherwise considered intestinally healthy. Although some components of their microbiota 
might differ from that of a normal weight population, we believe the overall findings will be representative and 
can contribute to our understanding of the normal human jejunal microbiota.

Results
Patient characteristics.  A total of 60 patients were included with a median age of 45 years and a prepon-
derance of females (70%). All patients were intestinally healthy, but due to morbid obesity and other comorbid 
conditions most are classified with an ASA risk score 3 (Table 1).

Findings by microbial culture.  Bacterial concentrations as estimated by microbial culture are presented 
in Table 2. No growth in either segment was observed for 31 patients (51.7%) and only three patients (5%) had 
growth that exceeded the upper limit of quantification (> 1.6 × 104). Cultivated bacteria are listed in Supplemen-
tary Table S1. When combining results from both jejunal segments, the most frequent bacteria at the patient 
level were: Streptococcus salivarius/vestibularis (25% of patients), S. parasanguinis (16%), S. mitis/oralis (12%), 
Rothia mucilaginosa (10%), Actinomyces odontolyticus (8%), Haemophilus parainfluenzae (8%), Neisseria flave-

Table 1.   Patient characteristics. BMI Body Mass Index, ASA American Society of Anesthesiologists, BP blood 
pressure, CPAP continuous positive airway pressure.

Population characteristics Number of patients (n = 60) Percent

Age years, median (range) 45 (19–65)

BMI kg/m2, median (range) 41 (34–57)

Gender, male 18 30

Gender, female 42 70

ASA score 1 0 0

ASA score 2 3 5

ASA score 3 56 93

ASA score 4 1 2

Current smoker 0 0

Systolic BP, mean (95%CI) 136 (132–140)

Diastolic BP, mean (95%CI) 85 (83–87)

Comorbidities 49 82

Diabetes, any type 10 17

Peroral antidiabetics 7 12

Insulin dependant 1 2

Hypertension 21 35

Dyslipidemia 12 20

Obstructive sleep apnea (OSA) 17 28

OSA with CPAP 15 25

Previous cholecystectomy 10 17

Proton pump inhibitor 14 23

Median (range)

Operative time, min 56 (31–101)

Postoperative stay, days 1 (1–7)

Table 2.   Microbiological densities estimated in jejunum by aerobic and anaerobic culture. *Counted by the 
most bacteria rich segment.

Growth cfu/ml Proximal jejunum (n) Mid jejunum (n)
Patient level (n) (Both segments 
combined)*

No growth  < 160 34 43 51.7% (31)
88.3%

Single colony/broth only 160–  < 1600 21 13 36.7% (22)

Sparse growth 1600– < 8000 3 0 3.3% (2)

11.6%Moderate growth 0.8–1.6 × 104 1 2 3.3% (2)

Abundant growth  > 1.6 × 104 1 2 5% (3)

In total 60 60 100% 100%
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scens/subflava (5%) and Neisseria parahaemolyticus (5%). Enterobacteriales were only detected in one patient 
(a Klebsiella pneumoniae). Fungi, a Candida albicans, grew in only one sample collected from a mid-segment.

Deep sequencing technical results.  The median number of reads per sample was 445,263 (range 264,689 
to 911,244). After removal of chimera, small OTUs (< 50) and contaminants, the median number of remaining 
reads was 19,568 (range 2700 to 282,249). The median percentage of retained reads was 9.9% (range 0.5% to 
97.4%) with only 16 of 120 samples having more than half of the reads left.

Microbial findings by 16S deep sequencing.  In total, after filtering of possible contaminants, we identi-
fied 218 different species (Supplementary Table S2). A per sample description at the genus level is provided in 
Fig. 1 and at the phylum level in Supplementary Fig. S1. Actinobacteria, especially Corynebacterium spp., seems 
to be more abundant in samples with low bacterial loads whereas the presence of Firmicutes, in particular Strep-
tococcus spp., Gemella spp. and Granulicatella spp. increases in samples with higher bacterial loads.

An overall species-level comparison of results from the upper and middle part of jejunum revealed no notice-
able differences (Fig. 2). In addition, most species were found at low concentrations close to the limit of detec-
tion and consequently prone to random detection. Therefore, for the remaining part of this manuscript, results 
from the two segments were merged and reported per patient. No species was detected in more than 50% of the 
population and only six species/groups of species were found in more than 30% of participants: Enterobacteriales 
were only exceptionally detected; Escherichia coli in 3 patients (5%), Serratia grimesii/proteamaculans/liquefaciens 
in 3 patients (5%) and Klebsiella pneumonia complex in 2 patients (3%).

Quantification by PCR.  Bacterial genome concentrations as determined by the quantitative 16S rRNA 
PCR are presented in Table 3. The median density was found to be below our limit of genomic quantification 
i.e. < 2.9 × 103 bacterial genomes per ml.

Intra-patient concentration differences between proximal and mid-jejunal samples were generally small, and 
there was no overall tendency towards a higher bacterial load in neither of the segments. In four patients (9, 49, 
53 and 55) we observed a more than tenfold concentration difference between the two samples, two of them with 
the highest load in the proximal sample and two with the highest load in the more distal sample.

Results from microbial culture and 16S deep sequencing compared.  A comparison of findings by 
microbial culture versus by deep sequencing is provided in Supplementary Table S3. As expected, deep sequenc-
ing identified far more species than culture. Out of 120 samples, only 43 were culture positive. Still, culture made 
22 identifications not reproduced by sequencing. These identifications were most often from the species Haemo-
philus parainfluenzae, Actinomyces odontolyticus, Micrococcus luteus, Streptococcus mitis group and Streptococcus 
salivarius/vestibularis.

Comparison of sequencing results from this study with previously reported results from the 
ileum.  In a recent study on peroperative ileal samples from patients undergoing radical cystectomy27 we 
defined an ileum core microbiota consisting of 22 species, each present in more than half of the patients. In 
Fig. 3a, we show that except from the provisional species TM7(G-1) oral taxon 346, all 22 ileum core microbiota 
species were also detected in the jejunal samples although much more sporadically. In Fig. 3b we compare the 
most frequent species in jejunum with their corresponding frequencies in ileum. Except from Corynebacterium 
kroppenstedtii, C. aurimucosum/minutissimum/singulare and Acinetobacter junii, all these were also part of the 
ileum core microbiota. Again, most of them were much more frequently detected in ileum. Granulicatella adia-
cens, Streptococcus mitis group and Streptococcus sanguinis group were the three most frequent identifications in 
both ileum and jejunum.

Discussion
Our results indicate that the jejunum is more scarcely populated by bacteria than specified by contemporary 
reviews and textbooks. Using a combination of cultivation and deep sequencing with a limit of detection in the 
range 102 to 103 cfu/genomes per milliliter of sample material, we were unable to recover a resident core micro-
biota in the proximal and middle parts of the human jejunum.

Keystone species are thought to be important for shaping the organization and diversity of an ecological 
community, and a common core microbiota has been variably defined as microbial taxa present in between 
30 and 95% of a population28. In our material, only five identifications were made in more than 30% of the 
patients: Streptococcus mitis group (48%), Streptococcus sanguinis group (47%), Granulicatella adiacens/para-
adiacens (45%), Schaalia odontolytica complex (42%) and Gemella haemolysans/taiwanensis (40%). All of these are 
groups of species not possible to differentiate by 16S rRNA sequencing, and therefore most likely, as previously 
demonstrated in ileum27, represent more than one species each. Further, microbial resemblance between samples 
was low both between the upper and middle segments in each patient and between patients.

We detected a wide range of Corynebacterium species in this study, and they also dominated in some of 
the weak positive samples. Among these, Corynebacterium kroppenstedtii, Corynebacterium aurimucosum and 
Corynebacterium durum were detected rather frequently (18–25% of patients). Corynebacterium kroppenstedtii 
was first isolated from a sputum sample, C. durum from respiratory samples and C. aurimucosum from human 
clinical samples. Also the other Corynebacteria deemed relevant in this study are associated with the human 
microbiota and/or human infections with the exception of C. vitaeruminis, a vitamin-B producing microbe 
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isolated from the rumen of cows. It could be argued that C. vitaeruminis should be removed as biologically 
unexpected, but is was detected in seven patient samples.

The jejunal samples also generally revealed low bacterial densities, both by cultivation and by 16S rRNA 
quantification. The median density was < 1600 cfu/ml or < 2.9 × 103 bacterial genomes/ml. Only 23.3% of the 
samples had an estimated bacterial concentration above 104 genome copies per ml. In contrast to cultivation, 
16S deep sequencing was positive in all samples, although sometimes only with a single species.

Despite being performed on two different patient populations, the overall spectrum of bacteria identified 
from the jejunal samples in the present study, bears a striking resemblance to the ileal core microbiota as defined 
by our recent studies on surgically collected ileal samples (Fig. 3a,b)27,29. 16S Ct-values indicate that the bacterial 
concentration in ileum is at least 100 fold higher than in jejunum. The overall impression is that bacterial cells 
are capable of multiplying and forming a stable microbiota with a definable core microbiota only more distally 
in the ileum. Consequently, our results revitalize discussions as to whether the human jejunum harbors only 
transient microbes and no resident microbiota.

The higher bacterial concentrations in jejunum reported by previous 16S deep sequencing studies might 
reflect the use of indirect sample collection methods by endoscopies, nasoileal catheters and capsules with an 
inherent risk of contamination from the more abundantly colonized upper gastrointestinal tract. The human 
oral cavity has a rich and dense microbiota30 and saliva is estimated to contain 109 cfu/ml31. Provided a bacte-
rial density of maximum 103–104 in jejunum, this represents a gradient of at least 1:105 suggesting that both 
endoscopies and nasoileal tubes introduce a considerable risk for contamination32. This can also affect microbial 
composition. In a study using endoscopy to collect samples33 they found Bacteroides, Prevotella and Helicobacter 
to be among the most frequent and dominant genera. Although we also found multiple species from these genera 
in our samples they were mainly represented as only minor constituents. To the best of our knowledge, the present 
study is the first to combine 16S deep sequencing with samples collected directly from the jejunal mucosa during 
surgery. Our results are more in line with older culture-based studies on samples collected by needle aspiration 
from the jejunum of intestinally healthy individuals during abdominal surgery.

This investigation has some notable limitations. There might be differences in the microbiota of obese patients 
versus a normal weight population. Obesity has earlier been associated with increased risk of small intestinal 
bacterial overgrowth34 in which case the bacterial load in jejunum from non-obese might be even lower than 
observed in this study. On the other hand, our patients were subjected to a 3 week low calorie diet with an 
unknown impact on the jejunal microbiota. Further, the patients were in a fasting state. Earlier publications 
have found the small intestine to harbor more bacteria after meals35 and that environmental and food-related 
bacteria then make up a considerable part of the findings36. Therefore, as the goal of this study was to describe 
a normal physiological core microbiota, data from a fasting state might be preferable.

The antibiotic prophylaxis in this study, trimethoprim/sulfamethoxazole (TMP/SMX), is active against both 
gram negative and gram positive bacteria, but less effective against anaerobic bacteria. The antibiotic prophylaxis 
could interfere with results from cultivation. However, in 1978, Corrodi et al.25 collected jejunal content by sterile 
needle aspiration in eight obese patients during a gastric bypass procedure without antibiotic prophylaxis. They 
found 63% of samples to be cultivable sterile, even more than in our material (51.7%). The 16S deep sequenc-
ing is less likely to be noticeably affected by the antibiotics given only 2 h before surgery. Finally, although the 
surgeons were instructed to rub the sample collection swab firmly against the intestinal mucosa it could be that 
some mucosa-associated bacteria were not effectively sampled.

The strengths of this study are a high number of subjects compared to previous studies, the investigation 
of two separate jejunal segments from each patient and the use of surgically collected mucosal samples free of 
contamination from other parts of the gastrointestinal tract. Future studies on the small intestine should attempt 
to reduce the sampling biases by also using surgically collected samples. Unfortunately, it is a significant chal-
lenge to obtain these samples from patients not a priori in need of surgery on the small intestines. Sterile needle 
sampling during other types of elective abdominal surgery as used in the older culture-based studies, could 
represent an alternative. Although ethical and patient safety aspects need to be re-evaluated by contemporary 
experts in both ethics and clinical medicine, this might represent an acceptable approach in order to provide 
reliable data from the understudied segment of the gastrointestinal tract most essential for nutrient uptake and 
probably also host-microbe interactions.

Conclusion
Proper sample collection methods is crucial for studies on the small intestine. To the best of our knowledge, this 
is the largest study of the jejunal bacterial microbiota collected surgically on intestinally healthy patients. Our 
data fail to demonstrate a jejunal resident core microbiota. Most species identified by both cultivation and deep 

Table 3.   Microbial densities estimated by quantitative 16S rRNA PCR. *Counted by the most microbial 
genome-rich segment.

Genome copies/ml Proximal jejunum (n) Mid jejunum (n) Patient level (n) (Both segments combined)*

105– < 106 5% (3) 5% (3) 5% (3)

104– < 105 16.7% (10) 6.7% (4) 18.3% (11)

2.9 × 103– < 104 20% (12) 25% (15) 36.7% (22)

 < 2.9 × 103 58.3% (35) 63.3% (38) 40% (24)
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Figure 3.   (a) Previously reported ileum core microbiota (based on 27 patients) sorted by frequency (%) 
compared to observed frequency in jejunum (upper and middle segment combined for all 60 patients) and (b). 
Most frequently detected species in jejunum (upper and middle segment combined) sorted by frequency (%) 
compared to previously reported frequency in ileum. Based on all 60 patients.
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sequencing appear only sporadically with high intra-individual differences and also considerable differences 
between the upper and mid segments in each patients.

Patients and methods
Population.  Sixty patients scheduled for gastric bypass surgery at Vestfold Hospital Trust (SiV HF) were 
consecutively enrolled from December 2017 to September 2018. The study was approved by The Regional Com-
mittee for Medical and Health Research Ethics in the South-Eastern Norway Regional Health Region (2017/106 
REK sør-øst D). All methods were performed in accordance with this approval and in accordance with the 
relevant guidelines and regulations. Informed consent was obtained from all participants. There were no prede-
fined exclusion criteria.

All patients were prescribed a preoperative low-calorie diet (< 1000 kcal/day) 3 weeks before surgery, and 
recommended a preoperative weight loss of approximately 5%. Patients underwent fasting for solid foods a mini-
mum of 6 h before surgery, and fluids were withheld 2 h before the procedure. Standard per oral preoperative 
antibiotic prophylaxis was given in the form of TMP/SMX (160 mg/800 mg) 2 h prior to surgery. All patients 
were examined preoperatively by a surgeon and there were no evidence of intestinal disease.

Surgical sample collection.  A standard laparoscopic gastric bypass was performed in all patients with an 
antegastric antecolic Roux-en-Y configuration using linear staplers. Four microbiological samples were collected 
from the openings of the small bowel prior to forming the two intracorporal anastomoses. Two samples were 
taken 60 cm from the ligament of Treitz prior the gastrojejunostomy, and two 120 cm further along the jejunum 
(180 cm from the ligament of Treitz) before creating the jejunojejunostomy. The swab from a standard Transwab 
medium (MWE, Medical Wire, UK), was introduced through a clean laparoscopy trocar and rubbed against the 
luminal wall to absorb the jejunum mucosal secretion. One sample from each site was cultivated within 2 h. The 
other pair of samples were frozen at − 70° for later DNA extraction.

Sample cultivation and identification of bacterial colonies.  50 μl of vortexed content from the 
Transwab medium was distributed on blood, chocolate, MacConckey and Sabouraud Dextrose agars respec-
tively for incubation in 5% CO2 enriched air at 37 °C for 5 days. The same amount was spread on blood and 
Menadione agar plates and inoculated to a Thio broth and incubated anaerobically for 5 days. Growth was evalu-
ated by experienced lab technicians and all colony variants were submitted for matrix assisted laser desorption/
ionization-time of flight mass spectrometry (MALDI-TOF) (Bruker Daltonics, Bremen, Germany) identifica-
tion using the Biotyper version 4.1.70.0–4.1.90.0 software. Scores above 2000 with consistent naming (category 
A) were accepted for identification at the species level. Scores between 1700 and 1999 were accepted for a genus 
level identification. For each species, colonies were quantified on the plate with the most abundant growth.

Quantification by microbial culture.  The swab in the Transwab kit absorbs 150 μl of sample material. 
The Transwab tube contains 1050 μl of solution, giving a 1:8 dilution of the sample. Provided 50 μl are spread on 
an agar plate, one colony (or growth in broth exclusively) corresponds to 1 × 8 × 20 = 160 cfu/ml in the original 
sample which was our lower limit of detection. Quantification by bacterial growth was performed according to 
Table 4.

Quantification by real‑time PCR.  The quantitative 16S rRNA gene-PCR was based on the dual priming 
oligonucleotide (DPO) principle to avoid interference from human DNA37. The 5-end of the primers were modi-
fied according to Dyrhovden et. al.38 (16S_DPO_Short-F: 5’-AGA​GTT​TGATCMTGG​CTC​AIIIIIAAC​GCT​-3’ 
and 16S_DPO_Short-R: 5’-CGG​CTG​CTG​GCA​IIIAITTRGC-3’). The universal anti-sense probe was designed 
for this study and placed in a highly conserved region of the 16S rRNA gene (Escherichia coli 16S rRNA position 
360 to 341)39 (16S-Pb: FAM-CCY​ACT​GCT​GCC​TCC​CGT​AG-BBQ). The PCR reaction mixture consisted of 
12.5 µL Premix Ex Taq Mastermix (TaKaRa Bio, Kusatsu, Japan), 1.5 µL of each primer (from a 10 µM solution), 
0.5 µL probe (from a 10 µM solution), 7 µL PCR grade water and 2 µL of template giving a total reaction volume 
of 25 µL. The PCR was run on a QuantStudio5 real-time PCR instrument (ThermoFisher) using a two-step ther-
mal profile: (1) Enzyme activation at 95 °C for 30 s (2) melting at 95 °C for 10 s (3) annealing/extension at 60 °C 
for 20 s. Step (2) and (3) were repeated 40 times.

Streptococcus pneumoniae was selected as a quantitative standard due to its similarity to the other bacteria in 
the mitis group constituting an important part of the small intestinal microbiota. It also possesses four copies 
of the 16S rRNA gene which is close the estimated average number of 16S copies in bacterial genomes40,41. We 

Table 4.   Quantification by microbial culture.

Growth Colonies on plate Cfu/ ml Growth

No growth (lower limit of detection) 0  < 160 Non-substantial
 < 1600 cfu/mlSingle colonies/ broth only 1–9 160– < 1600

Sparsely growth 10–49 1600– < 8000
Substantial
 ≥ 1600 cfu/mlModerate growth 50–100 0.8–1.6 × 104

Abundant growth (upper limit of detection)  > 100  > 1.6 × 104
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extracted total nucleic acids from a heavy suspension of Streptococcus pneumoniae ATCC 49619 in PCR grade 
water using a MagNaPure Compact automated extractor (Roche, Mannheim, Germany). The DNA concentra-
tion in two individual samplings of the eluate was measured on a Qubit Fluorometer (Qiagen). Based on these 
measurements (37.3 and 39.3 ng/µl; average 38.3 ng/µl) and a genome size of 2,096,423 basepairs (ATCC 49619/
GenBank accession GCA_003966485.1) we calculated the concentration of S. pneumoniae in our eluate to be 
1.69 × 107 genomes/µl. From this eluate we made a ten-fold dilution series from 1.69 × 107 to 1.69 × 10–2. Each of 
the nine dilution steps was run in triplet in the quantitative real-time 16S PCR. The PCR was found to be linear 
down to dilution step 7, i.e. 1.69 × 100 genomes/µl with an average Ct-value of 34.17 (Supplementary Fig. S2). 
Provided 2 µl of template and 4 copies of the 16S rRNA gene per genome this corresponds to approximately 14 
target copies per PCR reaction. Taking into account the 1:833 dilution of our clinical samples during sample 
collection and DNA extraction, it further corresponds to 2816 bacterial genomes/ml of jejunal content which 
was therefore our lower limit of molecular quantification.

The S. pneumoniae 1.69 × 106 dilution step was included as a standard in the subsequent analysis of the jejunal 
samples. The standard was run in triplet and the average Ct-value used to adjust the quantitative estimates for 
the jejunal samples. The observed inter-run variation for the standard was small (average Ct-values 31.25, 31.11 
and 30.93 respectively). The estimated genome copy number per PCR reaction for the standard was 2 × 1.69 × 101 
i.e. 33.8 genomes which corresponds to ~ 2.9 × 103 bacterial genomes/ml in a jejunal sample.

Sample preparation and DNA extraction for 16S deep sequencing.  Two-hundred μl of nuclease-
free water (Ambion, Thermo Fisher Scienfic) and 450  μl sample solution from the Transwab media (MWE, 
Medical Wire, England) were transferred to Matrix E glasses (mpbio, MP Biomedicals, United States) and run on 
a FastPrep 24 instrument for 2 × 45 s. After bead-beating, the samples were centrifuged for 2 min at 13,000 rpm. 
Thereafter 200 μl of supernatant from each sample was used for DNA extraction and purification on a QIAsym-
phony automated extractor using the “DSP DNA Mini kit” (Qiagen, Hilden, Germany).

Negative controls.  Unused Transwab sample collection tubes from the two batches used in this study 
were included as negative controls. In addition, one Transwab tube from each batch was spiked with 1 μl of a 
0.5 McFarland suspension of Legionella pneumophila (corresponding to 1.5 × 105 bacterial cells) and included as 
weak positive extraction controls. Each extraction set-up therefore included two negative and two weak positive 
controls. Five extraction set-ups were necessary to process all samples, resulting in a total of ten negative and ten 
weak positive controls. Air-swabs were not included as negative controls in this study.

16S deep sequencing.  Deep sequencing of the 16S rRNA gene was based on the Illumina V3-V4 16S 
metagenomics protocol with some modifications as described previously38: PCR amplification of the V3-V4 
region was done as a real time PCR reaction on a LightCycler 480 PCR instrument (Roche) using the TBGreen 
Premix Ex Taq (TaKaRa, Shiga, Japan) mastermix instead of the KAPA HiFi HotStart ReadyMix. The PCR mix-
ture consisted of 12.5 μl mastermix, 8.5 μl PCR-grade water, 1 μl of each primer (from a 10 μM solution, giving 
a final concentration of 0.4 μM in the PCR) and 2 μl template. After an initial polymerase activation step of 30 s 
at 95 °C the thermal profile included 45 cycles of 20 s at 95 °C (melting), 30 s at 60 °C (annealing), and 30 s at 
72 °C (extension). The PCR products from the real time TBGreen reaction were used directly in downstream 
steps. The rest of the procedure was performed according to the Illumina protocol without further modifica-
tions. Sequencing was done on a MiSeq instrument (Illumina, San Diego, CA) using the Miseq reagent kit V3 
(2 × 300 bp reads).

Sequence data analysis.  After sequencing, FASTQ-files were analyzed using the RipSeq NGS software 
(Pathogenomix, Santa Cruz, CA). After merging of R1 and R2 files, sequences shorter than 300 base pairs were 
removed before de novo clustering into operational taxonomic units (OTUs) using a 99% similarity threshold. 
OTUs with fewer than 50 sequences were rejected. Remaining OTUs were annotated using a blast search against 
the Pathogenomix Prime database. For an unambiguous species-level identification, we required ≥ 99.0% homol-
ogy with a high-quality reference sequence combined with a minimum distance of  > 0.8% to the next alternative 
species. For hits above 99% but with less than 0.8% distance to the next alternative species the alternative species 
is presented in parenthesis. Slashed results were used for OTUs that obtained identical scores against more than 
one species. Homologies between 97 and 99% qualified for genus-level identification.

Elimination of chimera and contaminant background DNA.  Chimeric OTUs were filtered from 
all samples using the RipSeq NGS chimera check. Sequencing results from all twenty negative/weak positive 
controls were pooled. The most abundant contaminant species (Cutibacterium acnes, Ralstonia pickettii and 
Staphylococcus capitis/caprae/epidermidis, Aquabacterium and Hydrotalea flava) were highly consistent across 
all controls and used to define sample-specific cutoffs for valid identifications42. All species/sequence-types 
detected in any of the negative controls were removed from the sample sequencing results unless when they 
appeared in higher concentrations than all the most abundant contaminants listed above. All cultured bacteria 
were accepted as valid findings. Some of the cultured species were also represented in the negative sequencing 
controls, and therefore could not be included based on the sequencing data. This illustrates the value of combin-
ing two independent detection principles. A complete list of bacteria identified in our negative/weak positive 
sequencing controls is provided in Supplementary Table S4. Finally, species appearing only once among all the 
120 samples, and species considered clearly biologically unexpected were removed. A complete list of rejected 
identifications is presented in Supplementary Table S5.
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Data availability
The data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under 
accession number PRJEB46597 (https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​46597).
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