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Introduction

As the incidence of kidney stone disease (KSD) rises 
worldwide, this is mirrored by the volume of minimally 
invasive endourological procedures performed.1 Based on 
findings shared from national databases of hospital records, 
this trajectory is most notable for ureteroscopy (URS).2 
For example, Perera et al.3 reported that over the past 
15 years in Australia, the volume of URS procedures has 
increased by 9.3% per year while shockwave lithotripsy 
(SWL) has decreased by 3.5% per year. Indeed, the tech-
nology now available is hugely different to the early 
descriptions recorded by Pérez-Castro Ellendt and 
Martinez-Piñero4 in 1982 at a time when the authors stated 
that URS was considered ‘a forbidden field’. In the con-
temporary era, URS is routinely performed in the day case 
setting and is a treatment option for many non-indexed 

patients.5,6 This includes special populations such as preg-
nancy, the extremes of age and individuals with anomalous 
anatomy (e.g. transplant kidney).7–9 Advances that have 
fuelled this growth include development of next-genera-
tion ureteroscopes, the introduction of laser and a range of 
ancillary devices (Figure 1).10
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This review article serves to provide an overview of 
recent technological advances in URS for treatment of uro-
lithiasis including ancillary devices and the principles they 
are founded upon.

Lasers

Holmium lasers

Holmium:yttrium–aluminium–garnet (Ho:YAG) also 
referred to as simply ‘Holmium’ laser is the current laser 
recommended by the European Association of Urology 
(EAU) guidelines for intracorporeal lithotripsy during 
URS and is able to ablate all stone types.11 The most com-
monly accepted principle of function is that it relies princi-
pally on a photothermal effect with energy absorption 
mainly into water molecules within pores and cracks of 
stones, resulting in stone breakage and chemical decompo-
sition.12 A key contributing factor for its success in the 
therapeutic setting of stone lithotripsy is the high peak 
power (ca. 1000 to 2000 W) emerging from pulsed energy 
delivery to stones, rather than a continuous mode laser. 
The benefits of a pulsed laser can be compared to using a 
hammer drill versus rotary drill to bore a hole in a hard 

surface such as concrete.13 The former is more efficient, 
faster and generates less heat. Two key parameters, which 
the surgeon can adjust are pulse energy (PE – total energy 
emitted in a single pulse) measured in Joules (J) and fre-
quency (Fr – pulse repetition rate i.e. number of pulses 
emitted per second) measured in Hertz (Hz). Power (Watts 
(W)) is the product of PE multiplied by the Frequency.14 
Increasing PE is directly proportional to the stone ablation 
volume.15 Increasing PE results in improved fragmentation 
but at the cost of increased retropulsion.16 The latter is 
most probably a result of the vapour bubble collapsing, as 
well as stone particles being released from stone surface. 
Using high PE also results in increased degradation of 
fibre tip (so-called ‘burnback’ effect), which in turn may 
reduce laser ablation efficiency, but most importantly 
causes regular interruption of the operation cycle due to 
the need for laser fibre manipulation to compensate the 
length loss.15,17

Next-generation holmium systems

Earlier low-power Ho:YAG laser generators were only 
capable of a limited set of ‘traditional’ operating ranges 
(e.g. > 0.5 J, < 15–20 Hz and < 15–20W).5,18 For this 

Figure 1.  Summary of advances in ureteroscopy.
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reason, stone fragmentation and active stone retrieval (e.g. 
basketing) was the default technique until next-generation, 
high-power Ho:YAG systems (e.g. 0.2–6.0 J, 5–100 Hz 
and 2–120 W) became available.18 Applying high-power 
settings to traditional systems was not possible as the flash 
lamp system would quickly overheat.19 Collimation of 
multiple synchronised laser cavities enabled the construc-
tion of high-powered Ho:YAG systems. By maintaining 
low PE but increasing Fr, the stone can be ablated into fine 
particles, which can pass spontaneously and do not require 
active removal.16 A recent study aimed to determine what 
size particles should be defined as dust and proposed an 
upper limit of 250 µm to be the cut-off for the so-called 
‘stone dust’.20 After performing this technique known as 
‘dusting’, it is possible to aspirate the fluid and submit the 
dust for composition analysis – although some stone com-
position changes may have occurred from stone litho-
tripsy.21 These techniques are referred to as contact laser 
lithotripsy, where the operator tries to maintain a minimal 
distance between the laser fibre tip and stone surface. An 
alternative strategy, which has gained popularity, is ‘pop-
dusting’.22 This form of non-contact lithotripsy is usually 
selected as a completion method when the stone fragment 
has been reduced in size. When the stone mass becomes 
less, fragments will bounce in front of the laser fibre when 
it is activated, which makes it difficult for the surgeon to 
ablate it efficiently. The surgeon can then change the set-
tings (e.g. 0.3–0.6 J x 20–40J) and adopt this ‘end-game 
strategy’ (a termed coined by Aldoukhi et al.16). The laser 
fibre is held in a fixed position close to the fragment col-
lection.23 The resultant interaction between laser fibre and 
stone fragment(s) delivers a ‘popcorn’ effect.24,25 This 
delivers greatest effect if positioned in a small calyx, based 
on in vitro studies. It is now possible to customise these 
strategies even further through adjustment of the pulse 
width (PW), also referred to as pulse duration (PD). This 
offers the ability to alter the emission period of the pulse 
over a microsecond (μs) although the energy output itself 
does not differ.12,26 In practice, PW settings are typically 
categorised as short pulse (SP, 180–330 μs) or long pulse 
(LP, 650–1215 μs).15 Early lithotripter models were 
restricted to SP only. In the in vitro setting, LP mode offers 
advantages of reduced retropulsion, fibre burnback and 
lower risk of fibre fracture.17,27 Whether LP is superior to 
SP for pop-corning is under debate. Overall, it is PW com-
bined with PE and Fr which determines the volume of 
fragments, which can be generated in a fixed time period 
(referred to as ablation efficacy).19

Pulse shape modulation

A more recent innovation for Ho:YAG systems and pulse 
modulation is Moses™ technology (MT; Lumenis®), 
which takes advantage of the known ‘Moses effect’ and 
refers to how the laser creates a vapour channel, which 

separates the fluid.28 Moses™ technology generates a 
‘split-pulse’ by modulating the pulse shape to more effi-
ciently deliver the energy transmitted to the stone in this 
channel created. If retropulsion can be minimised, this 
offers potential for improved operative efficiency as less 
time is lost in re-locating the displaced fragment(s). While 
dissemination of this novel technology is limited by higher 
costs, Elhilali et al.29 demonstrated that its application 
reduced stone movement by 50 times (0.8 J x 10 Hz). In a 
double-blind randomised trial of 72 patients reported by 
Ibrahim et al.,30 this newer technology was associated with 
significantly reduced procedural time compared to regular 
mode (50.9 minutes versus 41.1 minutes, p = 0.03), but 
there was no significant difference in SFR at 3 months 
follow-up (83.3% versus 88.4%, p > 0.05). EAU guide-
lines do not currently make any recommendations regard-
ing this technology yet and further studies are warranted to 
determine its true clinical benefits.11 Nomenclature can be 
confusing, and it is, therefore, worth noting that several 
other systems are available that rely on similar pulse mod-
ulating principles, e.g. Virtual Basket® & Vapor Tunnel® 
technologies (Quanta™).

Thulium fibre laser

Thulium fibre laser (TFL) is a newer laser platform to the 
field of urology and has now been introduced to clinical 
practice although benchside studies were investigating its 
potential role more than 15 years ago.5,13,15,31 It has attracted 
considerable attention due to several favourable proper-
ties.32 These offer the potential to overcome key limita-
tions of Ho:YAG, namely energy transmission through 
water and retropulsion.18 In vitro studies have demon-
strated that its higher water absorption coefficient (WAC) 
results in a fourfold lower stone ablation threshold com-
pared to Ho:YAG.5 Similar to Ho:YAG, TFL can fragment 
all stone types.33 Fr levels exceeding 2000 Hz are possible 
as well as lower PE settings than what can be achieved 
with Ho:YAG. These characteristics set it up to be efficient 
at dusting. Interestingly, while extremely high-frequency 
values are possible in theory, early clinical experiences 
reported with the technology reveal that even settings 
below 100 Hz generate a blizzard effect, which cause the 
surgeon to be forced to pause and wait for adequate vision 
is regained.32,34 Use of lower settings and patience can, 
therefore, pay dividends in such situations. Ho:YAG is 
restricted to a fibre size lower limit of 200 µm, whereas 
TFL theoretically can use sizes down to 50 µm. General 
advantages of smaller fibres are improved fibre and endo-
scope deflection, improved irrigation, lower risk of fibre 
fracture and lower risk of stone retropulsion.15,17,35 The lat-
ter can serve to not only improve vision but reduce intra-
renal temperatures.36 In a recent prospective randomised 
trial comparing the clinical outcomes of URS lithotripsy 
using TFL and Ho:YAG, superior SFR (92% versus 67%, 
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p = 0.001), less intraoperative adverse events (8% versus 
27%, p = 0.011) and shorter operative time (49 minutes 
versus 57 minutes, p = 0.008) were achieved using TFL.37 
TFL may, therefore, evolve to take over as the preferred 
and recommended laser of choice for URS lithotripsy.

Modern ureteroscopes

In addition to lasers, the anatomy of modern ureteroscopes 
has also undergone many changes. This includes the switch 
from fibre-optic to digital systems with improved vision 
accordingly, albeit this has taken time to achieve.10 The 
spaces between the fibre-optic strands result in a honey-
comb (also termed ‘moiré’) appearance. These quartz bun-
dles are susceptible to damage particularly in circumstances 
where extreme deflection is applied.38 Vision can steadily 
be reduced with repeat use of the scope until repair is man-
dated. Digital systems aim to overcome these limitations. 
Since the first ACMI (later purchased by Olympus) model 
was released in 2006, they have continued to improve and 
address issues such as image flickering caused by acoustic 
shockwaves of the laser interacting with the image sen-
sor.39 The image sensor is located at the tip (hence referred 
to as a ‘chip on tip’ set up).38 Miniaturisation of endo-
scopes offers potential advantages of lower insertion-fail-
ure rates (and, therefore, lower pre-stenting rates), better 
irrigation outflow (and, therefore, irrigation turnover, 
hence visibility), better manipulation and possibly lower 
risk of ureteral damage. New models, such as the Uscope 
3022 (Pusen™), are the slimmest (7.5Fr tip and shaft) 
single-use ureteroscopes available and early reports indi-
cate they may serve to offer such advantages without com-
promising factors such as deflection, and vision quality.40,41 
However, miniaturisation of digital ureteroscopes is still 
hindered by the current sizes possible for these chips. It is 
for this reason that the URS models with the slimmest tips 
are still fibre-optic systems such as the Olympus URF-P7 
(4.9Fr tip and 7.95 proximal insertion shaft), which allows 
for easier access into the ureteral orifice and negotiating 
narrow segments of the ureter. The smaller fibre sizes pos-
sible with TFL could allow for the working channel to be 
made smaller from the conventional 3.6Fr. It is worth not-
ing that improved image resolution has supported advances 
in kidney-sparing management of upper tract urothelial 
cancer.42 Further studies are required to assess how 
smaller calibre ureteroscopes could affect rates of stent-
ing post-URS.

Disposable technology

Ureteroscopes require careful handling and are at risk of 
damage particularly when associated with high-volume 
use and especially in cases of complex anatomy such as 
urinary diversion. Decontamination, sterilisation and the 
repair process are costly and time intensive. Careful 

handling is required during reprocessing as damage can 
occur during this period too. Single-use (‘disposable’) 
scopes such as LithoVue™ (Boston Scientific) are one 
solution to this problem, and there are now over 20 models 
available.43 The performance outcomes (e.g. manoeuvra-
bility, vision and deflection) associated with these single-
use devices appear comparable to digital reusable 
ureteroscopes.44 The critical question that remains unan-
swered is the true cost-benefit ratio. Consensus in the lit-
erature is lacking and this is largely because the rates of 
number of URS uses/repair vary. Talso et al.45 found that 
the number of procedures varied from eight to 29 before 
repair was required. However, higher number of proce-
dures before repair is probably possible. It is, therefore, 
difficult to accurately estimate cost burden for repairs, 
which has been reported between $120 and $957.44 
Contributing factors to these differences include hospital 
setting (e.g. academic, teaching and district), different han-
dling protocols for URS repairs and the individual finan-
cial contract each centre has with suppliers. We recommend 
that clinicians perform a cost analysis at their own institu-
tions to determine an accurate and individualised cost-ben-
efit ratio. The key disadvantage of single-use scopes is the 
high cost (range $700–$1500), and so their implementa-
tion is unlikely to be feasible in many health systems.44 
Most studies reported have not been funded independently. 
Rather than using disposable ureteroscopes routinely for 
all cases, a hybrid model for use in select cases appears to 
be the current modus operandum in high-volume centres 
that have introduced disposable scope technology. This 
includes use for complex anatomy such as lower pole 
stones with a difficult infundibulopelvicureteric angle, 
e.g. < 50°, patients with a history of recurrent urosepsis 
post-intervention and/or multi-resistant urine strains.46 
Another important point discussing the role of disposable 
ureteroscopes, which is sometimes forgotten in this debate, 
is the impact on the environment and carbon footprint.

Ureteral access sheaths

Attention surrounding use of UAS has increased in recent 
years and has become more popular both in adult and pae-
diatric populations.47 Initial designs were introduced in the 
1970s but really it was not until 30 years later when mod-
ern versions were introduced, which had hydrophilic coat-
ings and a hub-locking mechanism that outcomes improved 
considerably.48 In a global survey of endourologists, 76% 
responded that they routinely use UAS for renal stones.49 
UAS offers the benefits of improving visibility, reduced 
intra-renal pressure (IRP) and ease of access for multiple 
passages to the upper urinary tract during active stone 
retrieval.50 It can also offer some protection against high 
intra-renal temperatures. It should be noted, however, that 
the protective features, such as reducing IRP and tempera-
tures, using UAS apply for the larger size sheaths only. 
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This should be considered carefully when recommending 
routine use of smaller UAS for URS. The positive charac-
teristics using large-size UASs lend themselves to the 
treatment of complex and large renal stone burdens. 
However, long-term follow-up data are lacking, and there 
remain concerns regarding trauma incurred to the urothe-
lium with subsequent stricture formation and risk of early 
postoperative complications such as infection and pain.51,52 
In 2021, Meier et al.53 shared findings from a state-wide 
study, which included data from over 5000 URS proce-
dures and revealed that UAS use significantly increased 
risk of hospital visit and did not increase likelihood of 
becoming stone free. Recent meta-analysis by Huang et 
al.,54 which included data from eight trials and over 3000 
patients, concluded that use of UAS does not lead to any 
significant difference in SFR but was associated with 
higher complication rates.

Pressure control

Physiological IRP is normally only a few cmH2O; how-
ever, this is increased when URS is performed owing to 
use of irrigation.55 The latter offers benefits to the surgeon 
including improved vision. Intra-operative IRP is multi-
factorial and is influenced by scope size, UAS, UAS/scope 
calibre ratio and size of the occupied working channel.56 
Elevated IRP can lead to complications such as infection 
and forniceal rupture. Pyelovenous backflow can occur as 
low as 13.6–27.2 cmH2O.57 It is generally recommended 
to aim to maintain pressures below 30 cmH2O. Multiple 
systems now exist to improve irrigation delivery such as 
continuous flow single action pumping system (SAPS™), 
foot-operated systems (Peditrol™) as well as using man-
ual control such as Pathfinder Plus™ or a simple syringe. 
However, a recent in vitro study, which performed a com-
parison of six such models, concluded that all of them can 
result in excessively high pressures even if the working 
channel is occupied.58 Despite the availability of many 
novel systems of this kind, routine use of passive gravita-
tional pressure is the safest approach. To improve surgeon 
control of IRP, monitoring devices have been trialled. This 
includes continuous monitoring using a wire with an 
embedded sensor (PressureWire, St. Jude Medical, 
USA).59 The next step is for an automated system, which 
can not only measure but also control pressure. One exam-
ple is a patented intelligent system reported by Deng et 
al.,60 which maintains stable IRP using pressure feedback 
technology via a vacuuming platform and UAS with a 
pressure-sensitive tip. Early experiences in humans are 
promising but further research remains warranted.

Operative planning and aftercare

In addition to new technologies at the surgeon’s disposal, 
other innovations have been introduced to optimise 

patient care. One example is the use of nomograms, 
which can aid operative planning and patient counsel-
ling.61 An example is the Resorlu-Unsal Stone Score 
(RUSS) which has a scoring system based on the follow-
ing factors, which they found to predict SFR: stone size, 
stone number, stone composition, infundibulopelvicure-
teric angle and renal malformations.62 Understanding has 
also improved regarding patients most at risk of infec-
tious complications. Southern et al.63 performed a study 
of 2746 patients undergoing URS and found female gen-
der, longer surgical time, medical complexity and posi-
tive preoperative urine culture to be risk factors for 
postoperative fever and systemic inflammatory response 
syndrome. Pietropaolo et al.64 recently devised a predic-
tive model for predicting infectious complications post-
URS. As well as objective outcome measures such as 
SFR, subjective parameters are being increasingly used 
both in the clinical and research setting.65 This includes 
implementation of patient-reported outcome measures 
(PROMs), which have been specifically designed for 
KSD such as Wisconsin Stone Quality of Life 
Questionnaire (WISQOL).66

Future directions for URS

Further advances are anticipated in all areas discussed in 
this review (Figure 2). Several surveys have been pub-
lished, which highlight the diversity of practice patterns 
such as regarding use of UAS, high-power laser systems 
and post-endoscopic ureteral stenting.49,67 Further studies 
will help direct the most evidenced-based choices.

Regarding new technology, robotic platforms for URS 
have been introduced and early results have been reported 
but the high upfront costs, space requirement and success-
ful outcomes associated with conventional URS render it 
unlikely to achieve dissemination in the near future at 
least.68 While such technology does reduce the ergonomic 
burden for the surgeon, the tactile feedback that is enabled 
through handheld manipulation of the scope is also lost.10 
Introducing such haptics and multiple axis tip deflection 
would be valuable additions to robotic systems. Regarding 
improving peri-operative care, enhanced recovery after 
surgery (ERAS) protocols have recently been introduced 
for stone surgery and this is likely to become increasingly 
popular, particularly in an effort to reduce opioid use in the 
recovery period.69,70 This issue has attracted increased 
attention in North America where over 50% of patients 
receive opioid prescription post-URS.71

TEST

These advances across all areas of endourological treat-
ment allow for a tailored strategy to be planned and imple-
mented for a particular patient. To this end, we propose a 
new term to capture this, TEST (Figure 3).
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Figure 2.  Future of URS.

Figure 3.  Tailored endourological stone treatment.
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Conclusion

There have been many advances in URS over recent dec-
ades. While new technology stands at the centre of this, 
innovations have also introduced such as those to improve 
operative planning and aftercare, which bring health pro-
fessionals another step closer to stone surgery, which is 
truly customised. As such, the clinician is now able to offer 
a TEST.
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