
How to provide automated
feedback helping students with

negative semantic transfer when
learning a second programming

language

Jenny Strømmen
Supervisors: Anya Helene Skrove Bagge and Anna Maria Eilertsen

Master’s thesis in Software Engineering at

Department of Computer science, Electrical engineering
and Mathematical sciences,

Western Norway University of Applied Sciences

Department of Informatics,
University of Bergen

June 2022

1

Abstract
Earlier studies have shown that when students see matching syntax across programming
languages, they believe the semantics will match. Typically this is true, but occasionally
the syntax between two languages is similar while the semantics are different. Given
that the syntax in Java is correct, the code will compile with no warnings, and the cause
of the error can take a longer time to find and be harder to correct. This thesis collects
six semantic errors in Java with no preexisting error message that might be problematic
for a student when transferring from Python to Java.

We aim to find out if the errors are a problem for the students and uncover that
current environments lack feedback we believe is beneficial for novice Java students. We
develop a tool, Uncoil, to detect the errors and provide an error message to fill this gap.
Seven novice students in Java with previous Python knowledge tried to solve the errors
and evaluated Uncoil in a mixed method study. Our results indicate that novice Java
students need help with some of the errors earlier in the semester but do not transfer
the semantics from Python to Java later in the semester. At the time of the study, few
students needed Uncoil to solve the errors, but especially the weaker students found it
helpful.

2

“From then on, when anything went wrong with a
computer, we said it had bugs in it.”

— Grace Hopper

Acknowledgements
First and foremost, I would like to thank my supervisors, Anya Helene Bagge and Anna
Eilertsen, for their support and guidance.

My interest in the subject came from Anya when she proposed to create a bug tool for
Java. Having experienced the transition from Python to Java, I knew I wanted to help
students with the transfer. Reading previous research I found that semantics errors took
the longest time to solve for the students, and that programmers transfer the semantics
between programming languages. I wanted to find out if students that knew Python
before could transfer the semantics onto Python-like syntax in Java. Finding research to
support this, I wanted to help the students with this transfer and find out what errors
were at the highest risk for the students to make.

I want to thank my partner Espen for his uplifting conversations and support throughout
this time. Thank you, parents, Merethe and Kaj, stepparents Peter and Brit and my
brothers Martin and Hans Kristian, for taking an interest in the subject and motivating
me. I want to thank my friend Tellev for helping to recruit students for the study
and discussions on the subject. I want to thank my former coworker Sindre for helpful
feedback. Thank you, Magne Haveraaen, for your tips about the topic. I also want to
thank the participants in the focus group. I want to thank the students, friends and
co-students who tested and provided feedback on the tool.

A special thanks to the student in the study who suggested naming the tool Uncoil.
Python syntax, like a Pythonsnake, has a strong hold on students when transferring to
another language, making Uncoil an ideal name for the tool.

Jenny Strømmen, June 1, 2022

4

Contents

List of Figures 8

List of Tables 10

Acronyms 11

1 Introduction 13
1.1 Two critical bugs as motivation . 13
1.2 Context and Approach . 13
1.3 Problem Description . 15
1.4 Research questions . 16
1.5 Research method . 16
1.6 Contribution . 18
1.7 Outline . 18

2 Background 20
2.1 Definition of an error in this thesis . 20
2.2 Programming languages . 20

2.2.1 Why we need different programming languages 21
2.2.2 Introduction to compilers and interpreters 21
2.2.3 Python vs. Java . 21

2.3 Source code analysis . 25
2.3.1 Lexical analysis . 25
2.3.2 Syntax analysis . 26
2.3.3 Semantic analysis . 28
2.3.4 Different ways to analyse the source code 29

3 Discovering relevant semantic errors for novice Java students 30
3.1 Criteria for including an error in this thesis 30
3.2 Literature review . 31

3.2.1 Discussion . 34
3.3 Focus group . 36

5

3.3.1 Method . 36
3.3.2 Recruitment . 37
3.3.3 Setup . 37
3.3.4 Results . 37
3.3.5 Discussion . 40

3.4 Relevant errors for this study . 41

4 The detection of semantic errors and automating feedback 43
4.1 Existing error messages in other environments 43
4.2 Should the feedback for these errors be automated? 45

4.2.1 Target group . 45
4.2.2 False positives and ignoring error messages 45

4.3 Choosing analyses method . 47
4.4 Detecting errors using the abstract syntax tree 49

4.4.1 Method . 49
4.4.2 Results . 49

4.5 The structure of the error messages . 54
4.6 Discussion . 56

5 Design, implementation and development of Uncoil 57
5.1 Demonstration . 58
5.2 Code structure . 58

5.2.1 Architecture . 58
5.2.2 Implementation of the analyser . 60
5.2.3 Implementation of the API . 63
5.2.4 Implementation of the user interface 64

5.3 Development method . 65
5.3.1 Use case . 65
5.3.2 Creating a Minimal Viable Product 66
5.3.3 Deployment . 68

5.4 Distribution strategy: Software as a Service or local distribution 70

6 The evaluation of Uncoil 73
6.1 Pilot testing . 73
6.2 A mixed method study to evaluate Uncoil 74

6.2.1 Method . 74
6.2.2 Context . 76
6.2.3 Recruitment . 76
6.2.4 Setup . 77
6.2.5 Classification of errors . 78
6.2.6 Results . 79
6.2.7 Discussion . 85

7 Discussion 88

6

7.1 Limitations and threats to validity . 89

8 Related work 93

9 Further work 96

10 Conclusion 97

Bibliography 99

A Source code 105

B Data from evaluation by students 106

C Tasks for the students 121

D Errors presented by Hristova et. al. 124

E Semantic errors by Chan Mow 126

F Reproduction and testing of errors found in literature review and focus
group 127

G Errors that meet the first criteria 132

H Focus group recruitment text 134

I Focus group presentation 136

7

List of Figures

2.1 Illustration of how Java and Python are compiled and interpreted. 22
2.2 A simple tree with description of the nodes. 26
2.3 Parse tree of Listing 2.13 from grammar Listing 2.11 27
2.4 Abstract syntax tree from parse tree in Figure 2.3 28

3.1 The total time to fix for the errors Ignoring Return Error (IGN
RET), Equals

Operator Error (EQ
OP), Bitwise Operator Error (BIT

OP) and Semicolon After
If Error (IFW

SEM) . 34
3.2 Focus group answer to Q1: ”Have you seen this mistake among students

or done it yourself?” . 38
3.3 Focus group answers to Q2: ”Is it likely that an INF101 student makes

this mistake?” . 38
3.4 Focus group answers to Q3: ”Would a student that knows Python before-

hand be more likely to make this mistake than a student who does not
know Python?” . 39

4.1 Examples of valid and invalid if-statements 46
4.2 Examples of valid and invalid integer divisions 46
4.3 AST of EQ

OP . 49
4.4 AST of If No Brackets Error (IFNO

BRKT) . 51
4.5 AST of Integer Division Error (INT

DIV) . 52
4.6 AST of IFW

SEM . 53
4.7 AST of BIT

OP . 53
4.8 AST of No Equals Method Error (NOEQ

METH) 54

5.1 Architecture . 60
5.2 UML diagram of the analyser . 62
5.3 Example payload to master-thesis-backend-api 63
5.4 Example JSON response from master-thesis-backend-api 64
5.5 Development cycle for master-thesis-backend-analyser 69
5.6 Development cycle for master-thesis-backend-analyser-API 69
5.7 An example of how Uncoil-core can be used 72

8

6.1 Uncoil with the first task after pressing get tip 78
6.2 Students answers to Q1: Did you use the ”get tips”-button for this task?

and Q3: Why or why not was the task easy to solve? 80
6.3 Distribution of strong and weak students who used Uncoil 81
6.4 Mode values of students answers to Q4: Have you done this mistake before? 83
6.5 Students answers to Q7: Overall, did you find the messages from the ”get

tips”-button helpful? . 84

9

List of Tables

3.1 Examples of errors collected from literature study. 32
3.2 The frequency and time to fix for IGN

RET, EQ
OP, BIT

OP and IFW
SEM 33

3.3 Questions for focus group . 37
3.4 Collection of errors from literature review and focus group 42

4.1 Different IDEs warnings. 44

5.1 Functional requirements . 67
5.2 Non-functional requirements . 67

6.1 Questions to to find out if the error message is needed 75
6.2 Questions to to find out if the error message is useful 76
6.3 Mean values of students answers for how well they know Java and Python 79
6.4 Categories of why the students who used Uncoil found the tasks difficult. 82
6.5 Needed or not needed error messages . 83

B.1 Answers from the students . 120

D.1 Errors presented by Hristova et. al. 125

E.1 Semantic errors Chan Mow . 126

F.1 Reconstruction and testing of errors found in literature review and focus
group. 131

G.1 Error meeting criteria . 133

10

Acronyms

BIT
OP Bitwise Operator Error.
EQ
OP Equals Operator Error.
FINO
INIT Field With No Initialiser.
IFNO
BRKT If No Brackets Error.
IFW
SEM Semicolon After If Error.
IGN
RET Ignoring Return Error.
INT
DIV Integer Division Error.
NOEQ
METH No Equals Method Error.
NOSUP
METH Forget To Call Supermethod In Subclass.
NO
OVRD Forget to annotate with @Override.
ST
OB Static On Object Error.

API Application Programming Interface.

AST Abstract Syntax Tree.

CE Compilation Error.

ERE Explicit Runtime Error.

IDE Integrated Development Environment.

IRE Implicit Runtime Error.

JVM Java Virtual Machine.

MVP Minimal Viable Product.

11

NST Negative semantics transfer.

PaaS Platform as a Service.

PVM Python Virtual Machine.

SaaS Software as a Service.

TDD Test Driven Development.

12

Chapter 1

Introduction

This thesis aims to shed light on the semantic errors with no preexisting error messages
in Java that we believe students who know Python will be vulnerable to. We investigate
how we can develop a tool, Uncoil, to detect these errors and if our tool can help the
students.

1.1 Two critical bugs as motivation
In a programming language, we have both syntax: the form of the language and seman-
tics: the meaning of the language [1]. A bug is, as the preliminary quote states, when
something goes wrong with a computer or a program. Different errors can cause bugs,
but in this thesis, we focus on bugs caused by semantic errors. Semantic errors can go
unnoticed because the syntax is valid [2]. Two examples of semantic errors that were not
found before it was too late are the goto fail; bug by Apple [3] that caused a security
issue and the Chrome OS bug [4] that caused the users unable to log in after an update.
Even though these errors were not written in Java but C and C++, we will see that the
same errors can be a problem in Java.

1.2 Context and Approach
The term semantic transfer is about transferring the semantics from the language we
know to the language we are learning [5]. This thesis focuses on when semantic transfer
has a negative outcome so we will use the term Negative semantics transfer (NST) found
in [6]. True Carryover Concept, False Carryover Concept and Abstract True Carryover
Concepts are proposed by [6], where NST would be a False Carryover Concept. Mind
shift theory have been proposed by [7], where a changed concept relates to NST. However,
for the scope of this thesis, we found the term NST to be most suitable.

13

How students and programmers transfer their knowledge from one programming language
to another has been researched to some extent [6], [8], [9], [10], [11]. Similarly, the field of
what errors Java students make have been studied [2], [12], [13], [14], [15], [16], including
the semantic errors [2], [12], [15]. However, little research has been devoted to the
crossover of these fields where we try to find what semantic errors students make when
learning a new programming language, if they need help with them and how to help
them. At the University of Bergen, students in informatics are introduced to Python
in their first semester when they take the course INF1001. In the succeeding semester,
most students will have INF1012, a Java-based course. The students of INF101 are
recommended to have INF100 before INF101. Therefore we believe that these students
are good candidates for researching this field.

We know from previous research that students transfer their semantics when learning a
new programming language [6], [8], and a recent study [17] also suggests this is the case
for experienced developers. In this thesis it has been collected semantic errors that are
believed to be relevant to a novice Java student that knows Python before, especially
focusing on errors that might be caused by NST and does not have an existing error
message.

Several papers [2], [12], [13], [14], [15], [16] try to find out what errors Java students
make and some [2], [18], [19] have developed tools to help students overcome them.
The main impression is that syntax errors are the most frequent errors, but semantic
errors are more troublesome for the students. Similarly the papers [6], [8], [9], [10], [17]
studies how students and programmers transfers their knowledge when going from one
language to another, and states that NST indeed can be a problem. Some tools [11],
[20], [21], [22], have been made as an attempt to help students and programmers with
these transfers. However, only one [20] has focused on the transition from Python to
Java. There has been found no papers suggesting to create error messages tailored to
transfer from Python to Java or try to uncover how the students solve these errors in
Java.

We have conducted a literature study, focus group and a mixed method study to find
relevant errors. Moreover, we discuss how and if these errors should be automated. By
letting seven students evaluate Uncoil and try to solve relevant errors we aim to gain
knowledge on how to help them. We present the data from the evaluation and our tool
is open source for further research.

1https://www.uib.no/en/course/INF100
2https://www.uib.no/en/course/INF101

14

1.3 Problem Description
There are many different programming languages, each with its own syntax. A quick
look at some differences in the syntax in Python and Java would be

Python

print (” He l lo world ! ”) ;

Java

System . out . p r i n t l n (” He l lo world ! ”
) ;

def f u n c t i o n () :
return ” He l lo world ! ”

public S t r i n g f u n c t i o n () {
return ” He l lo world ! ” ;

}

for i in range (0 , 5) :
print (” He l lo world ! ”)

for (int i = 0 ; i < 5 ; i++) {
System . out . p r i n t l n (” He l lo

world ! ”) ;
}

The syntax between Java and Python are different in the examples above, but their
semantics are the same. Based on previous research listed in section 1.2 we assume that
students and programmers use their knowledge from a previous language when learning
a new one. This can have both benefits and be prone to error, the latter because there
are cases where the syntax across two languages are similar, but the semantics can be
different [23]. For example, transferring from Python to Java, the student can make
assumptions that the body in an if-sentence is defined by indentation and not curly
brackets. Listing 1.1 and Listing 1.2 illustrates this: The Java program would have the
correct syntax, but unexpected semantics: the method2(); statement would be called
regardless of the if-sentence. This case serves as an example of Negative semantics
transfer (NST) between two languages, where we expect the similar syntax to behave
the same way, but it is different. The mistake in Listing 1.2 is the same problem that
caused the goto fail; bug mentioned in section 1.1.
Python

1 i f (someCondition) :
2 method1 ()
3 method2 ()

Listing 1.1: Python if-statement with no
error

Java

1 i f (someCondition)
2 method1 () ;
3 method2 () ;

Listing 1.2: Java if-statement with error

Various checks take place before a program can be executed, and some of these checks
catch different syntax errors and semantic errors. However, the Java code in Listing 1.2
has a semantic error that is not checked, so the student will not know anything is wrong.
This can cause the error to persist for a long time according to [15], and as we know
from the goto fail; bug mentioned in section 1.1, it might not be caught before it is
too late.

15

It is important to point out that the errors portrayed in this thesis are not technically
errors, because it is legal Java syntax and you may want the program to behave in that
specific way. For this thesis, we focus on how students most likely will misinterpret the
semantics of the syntax, and for that matter, we will call it an error.

1.4 Research questions
The questions this thesis aims to answer are

RQ1: What semantic errors do students need help with when transferring from Python
to Java?

RQ2: How can we develop a tool to automate feedback for semantic errors when trans-
ferring from Python to Java?

RQ3: How can such a tool help students when transferring from Python to Java?

1.5 Research method
We have conducted a literature review in section 3.2, focus group [24] in section 3.3 and
a mixed method study [25] in chapter 6 to get closer to an answer to RQ1, RQ2 and
RQ3. To answer RQ1, we use knowledge from the literature review, focus group and
mixed method study. To answer RQ2, we first look at how existing environments handle
the errors and review previous research on how to represent an error message. Then,
we demonstrate how the errors can be detected at an abstract level in chapter 4 before
we present a concrete solution in chapter 5: Uncoil. To answer RQ3, we let students
evaluate Uncoil in the mixed method study.

By reviewing existing literature, we can find errors that are thought to be relevant to
research in this thesis. To limit the scope of this thesis, we have set three criteria in
section 3.1 for including an error and included a maximum of six errors. By excluding
papers that do not include semantic errors, we hope to learn more about these errors.
If an error is mentioned as a problem across different studies, we will get a stronger
indication that it should be researched further. By presenting the errors found in the
literature review to a focus group [24], we can indicate if the errors we have chosen to
include are relevant, getting closer to RQ1. We also set as a goal to discover new relevant
errors in the focus group by letting participants suggest errors. We included this in the
recruitment letter (Appendix H) such that they could think about relevant errors prior to
the focus group. To get different viewpoints and create a fruitful discussion, we focused
on recruiting different roles: lecturers, teaching assistants and students. By discussing
the errors after showing examples of them, we expect to get closer to the following
questions: Is the error relevant to novice Java students? Is the error more relevant when

16

knowing Python before? By knowing what errors are relevant we get closer to an answer
to RQ1, and by comparing the results from the literature review and focus group we get
more confidence in our results.

As a preliminary step to research RQ2, we discuss if the errors should be automated and
find existing feedback for the errors. To answer RQ2, we empirically test if the errors can
be detected using different analysis methods. We look at previous research on creating
error messages to extend our knowledge base on how to present an error message to the
novice student. Further, we demonstrate how errors can be found at an abstract and
concrete level. By creating a tool, Uncoil, to detect the errors, we give a proof of concept
that these error messages can be automated in a way that we believe will be helpful to
novice Java students that know Python.

We have chosen to use a mixed method study with an explanatory sequential design
[25] to answer RQ1 and RQ3. By using an explanatory sequential design [25], with the
qualitative questions acting as a follow-up to the quantitative questions, we hope to
get a more reliable and informative result. By letting students solve the errors while
filling out a survey, we hope to determine, together with the literature review and focus
group, if the errors are relevant to the students and answer RQ1. We aim to get a better
understanding of why the errors are a problem to the students by using the explanatory
sequential study design [25], letting the qualitative answers explain why the students
found the errors hard to solve. By analysing the qualitative answers on why an error was
challenging to solve, we categorise the answers to find out if any may be caused by NST,
bringing us closer to an answer to RQ1. This also partly answers RQ3; by categorising
the answers, we can get an idea of what the students need help with and how Uncoil can
help them. Letting the students try to solve the tasks and use Uncoil if they need help,
we aim to answer RQ3. The explanatory sequential design enables us to tell how Uncoil
can help the students by asking them why it helped (or not) as a follow-up question to
whether Uncoil helped them.

By combining the mixed method study’s results we hope to get reliable results, but
the study has some limitations. The students were unsupervised, so we can not know
whether Uncoil or some external factor helped them solve the error. The study is limited
to the students’ ability to express themselves in writing, so we allowed them to answer in
either English or Norwegian. While the study design is based on being explanatory, we
can not know the time lapse between the student’s answers, so the student might have
forgotten the reason why or given an incorrect answer. We asked the students to fill in
the survey while doing the different tasks to keep the task fresh in their memory. Even
though the students were unsupervised, which gives some limitations to the study, we
believe the study benefits from letting the students solve the tasks in a known setting.
Additionally, the study was anonymous to get honest answers from the students.

By combining the results from the literature study, focus group and mixed method
study, we hope to get a more confident result for RQ1. However, the number of errors
investigated is limited due to time constraints on this thesis, and there may be other

17

relevant errors not discovered in this thesis. We hope that the focus group will help with
this issue, collecting errors suggested by the participants. Even though we have found
one way to automate the errors to answer RQ2, there may be other ways to accomplish
this, discussed further in section 4.6 and chapter 8.

1.6 Contribution
We deliver a small data set from the focus group about the errors found in this thesis.
We also have a data set from the mixed method, evaluating both the errors found in this
thesis and Uncoil, found in Appendix B. Most of the answers are given in Norwegian.
Furthermore, we provide a list of errors found in Appendix F, based on previous research.
We present the list of errors found to be relevant in this thesis that needs to be focused
on in Table 6.5.

The work in this thesis is novel for these reasons:

• We have found no papers on what errors novice students makes when they transfer
from Python and Java.

• We found only one paper [18] focusing on semantic errors, an none that focuses
especially on error messages that do not provide an existing error message.

• Few tools, only one [20] to our knowledge, try to correct the misconceptions when
going from Python to Java.

• Earlier studies mentioned in section 1.2 try to find if the students have trouble
when transferring to another language. This thesis attempts to help them with
these struggles, and how the students think when trying to solve these errors.

• Similar tools [20], [22] to Uncoil have been evaluated by doing a pre and post-test,
but in this thesis, we present a different evaluation method for such tools to gain
insight into how the students solve the errors.

1.7 Outline
The rest of this thesis is structured as follows:

Chapter 2
Explains the theory behind this thesis. We go through the key differences between
Python and Java that are important to know for this thesis, how we can analyse code
for errors and background needed to understand Uncoil. Additionally, we define what
we mean by an error in this thesis.

Chapter 3
This chapter aims to find relevant semantic errors for novice Java students as a prelimi-
nary study for the mixed method study and discovering errors Uncoil should detect. We

18

conduct both a literature review and a focus group to achieve this.

Chapter 4
We uncover missing feedback from existing environments that we believe is crucial to
novice Java students, and further demonstrate how to produce this feedback. The ab-
stract approach for finding the errors we present in this chapter are later used to develop
Uncoil in chapter 5, and partly answers RQ2.

Chapter 5
This chapter goes through how Uncoil is implemented by using the knowledge from
chapter 4, giving a more concrete answer to RQ2. We also discuss the methods used to
implement Uncoil.

Chapter 6
Together with chapter 3, we aim to answer RQ1 and RQ3. Here we present a mixed
method study with seven participants to learn what errors are a problem to the students
and if Uncoil can help them. We try to answer if the error messages are needed and
useful.

Chapter 7
We discuss the results for the research questions in this thesis and the limitations of our
studies.

Chapter 8
We compare Uncoil and our research methods to existing literature.

Chapter 9
We propose further work and development of Uncoil.

Chapter 10
We present the conclusions of this thesis.

19

Chapter 2

Background

This chapter defines what we mean by a semantic error, compares Python and Java and
describes how to analyse code.

2.1 Definition of an error in this thesis
First, let’s define what we mean by an error in this thesis. As noted in section 1.1, a pro-
gramming language has syntax and semantics. A syntactic error is caused by a program
having the wrong form, so the program can not be executed, while a semantic error is
caused by having a wrong meaning and may stop the program from executing or give
a wrong answer [12]. A logical error appears when the programmer has misinterpreted
the task [12].

We call the errors in this thesis semantic errors based on the perspective of a novice Java
student that makes assumptions from Python syntax. Specifically, the student write
correct syntax for Java, but gives it the wrong semantics. In contrast to a type error as
we will explain in subsection 2.3.3, the errors in this thesis do not give any feedback to
the programmer.

2.2 Programming languages
This section points out some significant differences between Python and Java for this
thesis. Before diving into the differences between Python and Java, we need to know
some basics about programming languages, compilers and interpreters. This is explained
in the succeeding subsections.

20

2.2.1 Why we need different programming languages
For humans and computers to be able to communicate with each other, they need a com-
mon language: programming languages [1]. The problem depicted earlier in section 1.3
would probably not be an issue if we only had one programming language. So why do we
need different programming languages? We need different languages for different pur-
poses. For example, Python has an easy syntax and is used by beginners in programming
and scientists [26]. ANTLR (ANother Tool for Language Recognition) is a metalanguage,
used to define other programming languages [27]. JSON (JavaScript Object Notation)
is an exchange language used to communicate between different programs [28].

2.2.2 Introduction to compilers and interpreters
Compiler

Even though we stated earlier that the programmer and the machine speak the same
language with a programming language, this is a truth with some modifications. A
machine does not understand the program as we write it in a natural language, but
understands machine language that consistist of 0 and 1s. In the 1940s, programmers
had to write programs in machine language, making larger programs very complex. [23]

Assembly language is easier to understand for humans and converts easily to machine
code. The language gives an abbreviation for the corresponding machine instruction,
and translating the abbreviation to machine code was done by an assembler. Nowadays,
we can write high-level instructions like a Java program. A compiler is a program that
takes source code as input and gives machine code as output, and will translate the Java
code to assembly code or machine code for us. When the operating system understands
the code, we call it object code. The compiler can also return machine code for a virtual
machine, for example bytecode for Java Virtual Machine (JVM). Bytecode is similar to
assembly code but for Python and Java. [23]

Interpreter

Interpreters execute the code ”on the fly” without compiling everything to machine code
beforehand. An example of an interpreter is the JVM that executes Java bytecode. Java
has Java bytecode that can be executed by the JVM while Python has Python bytecode
that can be executed by Python Virtual Machine (PVM). [23]

2.2.3 Python vs. Java
This section collects the differences between Python and Java that are important for this
thesis.

21

Compiled vs interpreted

Python is called an interpreted language, while Java is called a compiled language [23].
Still, as we see in Figure 2.1, they essentially do the same thing [29], [30, §1.2]: The
source code is compiled to bytecode before the bytecode is interpreted on the Virtual
Machine.

Source code

Compiler Translates

Bytecode

Virtual
machine

Interprets

Object code

Operating
system Executes

Figure 2.1: Illustrates how Java and Python are compiled and interpreted. First, the
compiler takes in the source code and compiles it to Java or Python bytecode. Then the
virtual machine translates the program to object code and executes it on the operating
system line by line. Each dotted line is supposed to be a line that is being executed.
Inspired by [23, pp. 17-20, Example 1.9].

Because of the virtual machines, both Java code and Python code are platform indepen-
dent: The virtual machine is a virtual environment that interprets bytecode to machine
dependent code. [30, §1.2]

Type system

According to Scott [23], a type can be described as the set of values a variable is allowed
to have. For example, we may have a variable, a that should only be allowed integer
values. Then we need to set the type for a to integer. Lämmel [31] states that a
programming language can choose to declare types in the syntax. For example in Java

22

we have to declare the types in the syntax, but this is not the case in Python. Further, he
explains that Java has a static type system while Python has a dynamic type system. The
first means that the types of variables are known before you run the program, and the
compiler can check that the types match. The latter means that the types are checked
during the program’s execution, at run time.

Strongly typed languages does not allow type conversion while weakly typed languages do,
and both Java and Python are thought of as strongly typed languages [23]. Still, there
are examples where they are weakly typed. In Python, the code print("python"+3)
results in an error. However, Java does a string conversion on the integer 3 behind
the scenes [32, §5.1.11] when adding "python"+3, so in this scenario, Java is weakly
typed. When performing a division on two integers like 7/5, Java returns an integer [32,
§15.17.2] and is strongly typed. Starting from Python version 3, Python is weakly typed
in the same scenario because the division operator / returns a decimal [33].

According to Khoirom et. al. [26], when we are casting a variable we are specifying
its type. They explain how to cast to types in Java and Python as follows: In Python
this can be done in two ways: a = int (1.8), telling Python that it should round a to
the integer 1. The other way is to use a function, for example s = str(a), converting
the integer a to a string. Further, they note that we have two types of type casting
in Java: implicit or explicit. The implicit type casting works when widening a type,
for example when going from byte to short: byte a = 50; short b = a;. Explicit
casting is needed when we want to narrow a type, for example from double to int:
double a = 1.8; int b = (int) a;. Another thing to consider in Java is also the
risk of overflow of numbers [32, §4.2]. This is not a problem in Python, because it
allocates bits necessary for the number dynamically [34, §3.2].

Equals method and equals operator

The equals method in a class in both Python and Java defines how to tell if two objects are
equal to each other. According to the documentations for Java [32, §4.3.2] and Python
[34, §6.10], in both languages the method has the default implementation of comparing
two objects using their memory location but we can implement a custom equals method
for a class.

As found in the documentations for Python [34, §6.10] and Java [32, §15.21], the equals
operator ==, is used for comparing elements both in Python and Java. However, the
semantics can be different when using the operator across the two languages, depending
on the type the operator is comparing. When comparing primitive types in Java, we use
the equals operator because the types are built in the language and are not objects [32,
§4.2]. However, using the equals operator on objects compares memory location, so we
need to use the equals method [32, §4.3.2]. In Python, objects that override the equals
method can be compared using the equals operator because it calls the equals method of
the class, while the is operator compares references [34, §6.10]. Java arrays inherit the
equals method from Object, so we need to use Arrays.equals(arr1, arr2) to compare

23

the content of two arrays [32, §4.3.2].

Indentation vs brackets

Python uses indentation to group parts of the code [34, §2.1.8], for example the body of
an if-statement illustrated in Listing 2.1. Consequently, Listing 2.1 and Listing 2.2 will
behave differently. The method2() in Listing 2.2 will not be in the if body, and executed
each time the code runs.

1 i f (someCondition) :
2 method1 ()
3 method2 ()

Listing 2.1: Python if-statement with
two children

1 i f (someCondition) :
2 method1 ()
3 method2 ()

Listing 2.2: Python if-statement with
one statement and a sibling

Java does not use indentation to group parts of the code, but braces: {} [32, §14]. This
means that the code in Listing 2.3 and Listing 2.4 will behave differently. In the first
Listing 2.3, the method2(); would be called each time, and has the same semantics as
Listing 2.2. In the second Listing 2.4 method2(); would be included in the if-statement
because of the brackets.

1 i f (someCondition)
2 method1 () ;
3 method2 () ;

Listing 2.3: Java if-statement with one
child and one sibling with indentation

1 i f (someCondition) {
2 method1 () ;
3 method2 () ;
4 }

Listing 2.4: Java if-statement with two
children.

We can see a syntax similarity between the first Python Listing 2.1 and the first Java
Listing 2.3, yet they have a very different outcome, which supports [23] that says syntax
can be similar between two programming languages but have different semantics.
Python

1 i f (someCondition) :
2 method1 ()
3 method2 ()

Listing 2.5: Python if-statement with
two children

Java

1 i f (someCondition)
2 method1 () ;
3 method2 () ;

Listing 2.6: Java if-statement with one
child

Python uses indentation, so it is clear what if-statement an else-clause belongs to [34,
§2.1.8]. In contrast, Java can have a dangling else [32, §14] making this harder to
determine. It would not be a problem if we used brackets to define the body. An
example of this is shown in Listing 2.7
i f (someCondition)

i f (someOtherCondition)
doSomething () ;

24

else doSomethingElse () ;

Listing 2.7: Java example of dangling else problem

Semicolon and boolean operators

For now, it suffices to know that a statement is a piece of code that tells the program
what to do and that an expression is a piece of code that evaluates to a value [35]. Python
uses a new line to end statements unless it is on the same line as other statements [34,
§2.1]. When using Java, a statement is finished with a semicolon and would cause a
syntax error if the semicolon was missing [32, §14]. The boolean operators are operators
that lets you evaluate boolean expressions, like true and false. The AND operators are &&
in Java while and in Python, and the OR operators are || in Java while or in Python [32,
§4.2.5], [34, §6.11].

2.3 Source code analysis
We have learnt from subsection 2.2.2 that a compiler takes in source code and gives
machine code as output. We can also use the compiler techniques to analyse the source
code, and the first steps of the compiler’s job are to find out the meaning of the program:
semantic analysis [23], which is what we want to do. Therefore in this section, we go
through the steps to be able to do semantic analysis.

2.3.1 Lexical analysis
Lexical analysis organises the source code into tokens, the smallest meaningful unit of a
program, for further handling [23]. For example, the Java program:

class A {}

Listing 2.8: Java program with an empty
class

is read as:

c , l , a , s , s , ,A , ,{ ,}

Listing 2.9: Java program characters

and the tokens are grouped together as showed in Listing 2.10.

25

” c l a s s ” , ”A” , ”{” , ”}”

Listing 2.10: Java program tokens

Normally the spaces are ignored. The token "class" is a keyword in Java. The class-
name "A" is an identifier, and the "{" and "}" are symbols.

2.3.2 Syntax analysis
Syntax analysis is done by a parser that checks if the tokens produced by the lexical
analysis constructs a valid program, and outputs the source code in a more analyse-
friendly format: a tree structure. [23]

Trees in a software context

Trees in a software context are, among other things, a convenient way to represent source
code. Based on [36], we describe a tree as follows: A tree consists of nodes, the top node
is the root of the tree, and the end nodes are leafs. Additionally, two nodes have the
same parent they are siblings. At last, nodes above the parent are ancestors to the node,
while nodes below the child(ren) are decedents of the node. Figure 2.2 illustrates the
nodes in a tree.

A The root. Parent of B and C. Ancestor to D.

B Leaf. Child of A and sibling of C. C Child of A and sibling of B.

D Leaf. Child of C and decedent of A.

Figure 2.2: A simple tree with description of the nodes.

Parsing and grammar

When a parser creates a tree, it is called a parse tree or concrete syntax tree, and is
defined by the grammar of the language [23]. Listing 2.11 provides a simplified grammar
for a statement in Java, and is inspired by [23, p. 29, Example 1.22] and [32, §19].
The arrow → can be read as can be, and the vertical lines | can be read as or. We can
see from the grammar in Listing 2.11 that a statement can consist of other statements
or expressions. The expression in an if-statement would in Listing 2.11 evaluate to a
boolean value.

A statement in the grammar in Listing 2.11 can be an if-statement, expression,
blockstatement, or an empty statement: ;. In this grammar the lowercase words
and symbols are tokens, also called terminals, while the non-terminals are marked with

26

uppercase letters [23]. We can see that an if-statement only allows one statement and
the condition is an expression that evaluates to a value. We also see that a statement
can be a blockstatement, that can hold several statements. For brevity the definition
of an expression in the grammar has been left out in Listing 2.11.

STATEMENT −> if (EXPRESSION) STATEMENT
| EXPRESSION ;
| BLOCKSTATEMENT
| ;

BLOCKSTATEMENT −> { STATEMENTS }
STATEMENTS −> STATEMENT STATEMENTS | STATEMENT

Listing 2.11: Simplified Java grammar for a statement

Parse trees

If our code does not agree with the rules of the grammar, the parser will return a syntax
error [23], and as mentioned in section 2.1, the program will not execute. For the
grammar in Listing 2.11 an example of illegal code can be found in Listing 2.12.

i f { someCondition } doSomething () ;

Listing 2.12: Simple syntax mistake in Java

Listing 2.12 will give a syntax error because the brackets should be parenthesis according
to the grammar in Listing 2.11. If we replace the brackets with parenthesis, the parser
can construct the parse tree illustrated in Figure 2.3.

i f (someCondition) doSomething () ;

Listing 2.13: Simple Java program that matches grammar

STATEMENT

if (EXPRESSION

someCondition

) STATEMENT

EXPRESSION

doSomething()

;

Figure 2.3: Parse tree of Listing 2.13 from grammar Listing 2.11

In a parse tree, the root is the program, and the leaves are the tokens. We would get
the original source code if we collected all the leaves left to right in the parse tree.

27

2.3.3 Semantic analysis
For the compiler to output an equivalent machine code to the source code, it needs
to know the meaning of the source code. After the parser has created the parse tree,
the semantic analyser can start to analyse the tree. Depending on the language being
analysed, different checks can take place at the semantic analysis stage. There are
two types of semantic analysis: static analysis and dynamic analysis. We know from
section 2.2.3 that Python uses dynamic types, so types are checked and decided during
execution, giving a dynamic analysis. In contrast, Java uses static typing and can do
most type checking at compile time, giving a static analysis. Consequently, in this thesis,
we focus on static analysis. [23]

The semantic analyser uses the parse tree from the syntax analysis to create an Abstract
Syntax Tree (AST) to analyse the code. Abstract Syntax Tree (AST) are parse trees
without unnecessary nodes, for example the parenthesis, and the AST for the parse tree
in Figure 2.3 is illustrated in Figure 2.4. After analysing the tree, the semantic analyser
gives the AST as output to the back-end of the compiler, where the transformation to
machine code happens. [23]

IFSTATEMENT

EXPRESSION

someCondition

THENSTATEMENT

EXPRESSIONSTATEMENT

doSomething()

Figure 2.4: Abstract syntax tree from parse tree in Figure 2.3

For the compiler to generate the correct output, the analyser needs to know the semantics
of each node, an an AST with the semantics of the nodes attached is said to be decorated
or annotated [23]. The compiler already knows the semantics of some nodes, for example,
the keyword if [37]. But how can it know the semantics of the variable someCondition
in Figure 2.4? The programmer defines the semantics for the variable name: where it is
placed in the code, the type of the variable and the variable’s value [37]. The compiler
keeps track of the semantics by using a symbol table, with the variable name as key and
the semantics attributes as values [23]. For example, the condition in Listing 2.13 should
be of type boolean. We could check this by registering the declaration of the variable
someCondition in a table

{someCondition: boolean},

where the key would be the name of the variable, and the value would be the type of

28

the variable. To check that someCondition is boolean when used in an if-condition, we
can do a lookup in the table. If the type of the someCondition is a String, we know we
have a type error. This is an example of a semantic error because the syntax is correct,
but the semantics are wrong. Since the compiler does type checking in Java, this error
would generate an error message from the compiler. [23]

2.3.4 Different ways to analyse the source code
We can, as discussed in subsection 2.3.3, use the techniques of the front-end of the
compiler to get the annotated AST and perform analysis on it. For Java, we can also
compile the file to bytecode and analyse the bytecode [38]. We will not go into how to
analyse bytecode in this thesis, but SpotBugs1 is an example of a tool that uses bytecode
to analyse Java files for bugs. Section 4.3 shows an example of why bytecode is not used
to analyse the errors in this thesis.

To analyse the annotated AST, we could use the visitor pattern. The visitor pattern is
a design pattern used to visit the nodes in a tree. The root node accepts a visitor, that
for each type of node has an implementation of the work it should do for this type of
node. When you visit an AST, you start at the root and visit each child until you reach
the leaves. [39]

For example, if you want to print every method invocation, you define the method in
Listing 2.14 that prints the methodInvocation.

1 public void v i s i t (MethodInvocation methodInvocation) {
2 System . out . p r i n t l n (methodInvocation) ;
3 }

Listing 2.14: Java visit method example

In this thesis it is used JavaParser to analyse code. JavaParser lets you inherit from a
simple visitor, the VoidVisitorAdapter class, to traverse the tree. It visits the children
in random order. [40]

1https://spotbugs.github.io/

29

Chapter 3

Discovering relevant semantic
errors for novice Java students

In this chapter, we try to get closer to an answer to

RQ1: What semantic errors do students need help with when transferring from Python
to Java?

We collect and discuss the errors studied in this thesis to contribute to the answer to RQ1.
Some of the errors are found through a literature review, while others are found during
a focus group. Some of the errors were found in the literature review and presented to
the focus group to see if they would be relevant or not for this study.

First, we define what criteria an error needs to pass to be included in this thesis, then
we present the literature review and discuss the errors found. The rest of the chapter
shows the focus group and concludes on which errors are studied further.

3.1 Criteria for including an error in this thesis
We have decided to include a maximum of six errors to limit the scope of this thesis and
set three criteria for an error to be studied:

1. The error should not give an Explicit Runtime Error (ERE) or a Compilation Error
(CE).

2. The error should be detectable by static analysis.

3. The error should be detectable by analysing the file it is present in.

A CE is an error that is caught by the compiler and gives an error message to the
programmer. As we have seen in subsection 2.3.3, this can be both syntax errors and

30

semantic errors like type errors. Therefore, we need to exclude the semantic errors
that already have an error message. By ERE, we mean that the program compiles but
has an error telling explicitly what the problem is when executed. For example, an
ArrayIndexOutOfBoundsException in Java will tell what the problem is: the index is
too large for the array being indexed. This thesis tries to catch the errors that do not
already have an error message, so the criteria are defined to exclude the explicit error
messages from the study. The second criterion is to ensure that we can reasonably detect
the error. The third criterion is to limit the requirements to Uncoil.

3.2 Literature review
This literature review focuses on collecting previous research on what semantic errors
students make to see if they can be relevant for this thesis. A paper had to include
semantic errors or classify what type of errors the students have problems with to be
included in the study. The errors found in the reviews were reconstructed and tested
empirically to see if they fit the criteria. All the errors were compiled with a 16.0.1.hs-
adpt compiler.

Most of the errors found in the literature review did not meet our criteria, and some
errors were too unclear to reproduce. The reproduction of the errors can be found in
table F.1, Appendix F. The results for errors that meet the first criteria can be found
in Table G.1, Appendix G. The second criteria for the relevant errors are shown in
chapter 4.

From a total of five relevant papers, six semantic errors that could be relevant for a Java
beginners student have been found. Two of the errors were discarded after discussing
them in the focus group. In this section, we present the papers and briefly explain the
errors.

To find out what errors students in Java make, Hristova et. al. [2] collected sixty-two
errors students make in Java, and presents twenty of them in their paper. The errors
they found are based on interviews of professors and teaching assistants, and are listed in
Appendix D. Out of all the errors they presented, five of them are investigated further:
Equals Operator Error (EQ

OP), Bitwise Operator Error (BIT
OP), Semicolon After If Error

(IFW
SEM), Static On Object Error (ST

OB) and Ignoring Return Error (IGN
RET). An example of

the errors and what they called the error is presented in Table 3.1.

31

Error
Hristova et. al.
[2] error descrip-
tion

Example

EQ
OP

== versus .equals
(faulty string com-
parisons)

Object a1 = new Object () ;
Object a2 = new Object () ;
boolean c o n d i t i o n = a1 == a2 ;

BIT
OP

&& vs. & and || vs.
|

boolean c o n d i t i o n = true & fa l se ;

IFW
SEM

incorrect semi-
colon after an if
selection struc-
ture before the if
statement or after
the for or while
repetition structure
before the respec-
tive for or while
loop

i f (c o n d i t i o n) ; {method1 () ; }

ST
OB

invoking class
method on object

Demo demo = new Demo() ;
demo . stat icMethod () ;

IGN
RET

invoking a non-void
method in a state-
ment that requires
a return value

” abc ” . toUpperCase () ;

Table 3.1: Examples of errors collected from Hristova et. al. [2]’s study.

EQ
OP is an error where two objects are being compared by using the equals operator. In
Python this operator will use the defined equals method on the objects. In Java, it will
check the references for the object to decide its equality. The error BIT

OP happens when the
bitwise operators & or | are confused with the short-circuit logical operators in Java &&
and ||. The BIT

OP was the cause of the previously discussed Chrome OS bug as mentioned
in section 1.1. The IFW

SEM occurs when there is a semicolon right after the if-condition. ST
OB

takes place when we call a static method on an object. The IGN
RET happens when we call

32

a method without storing it in a variable.

To analyse the errors proposed by Hristova et. al. [2], Brown and Altadmri [15] collected
data from students using BlueJ over two years. They stored how frequent an error
appears and how long time it took to fix the error. They found that the errors IGN

RET, EQ
OP,

BIT
OP , IFW

SEM are the top four errors that take the longest time to solve for the students, even
though they are not as frequent as syntax errors. They omitted ST

OB in their study. The
time to fix parameter had a max limit of 1000 seconds (about 15 minutes). The numbers
from Brown and Altadmri [15] are presented in Table 3.2. Frequency ranking # is the
rank of the error when sorting all the errors in their study by frequency.

Error
Brown and Al-
tadmri [15] error
name

Frequency Time to fix
(median)

Frequency
ranking #

IGN
RET N discSem 274963 1000 5

EQ
OP B strEqSem 274387 1000 6

IFW
SEM E smiConSyn 108717 387 10

BIT
OP D andOrSyn 61965 1000 12

Table 3.2: The frequency and time to fix for IGN
RET, EQ

OP, BIT
OP and IFW

SEM according to Brown
and Altadmri [15, Table 1].

To get a total time to fix for the errors, Brown and Altadmri [15] also calculates the
frequency times the mean time to fix, giving a slightly different result than in Ta-
ble 3.2. By plotting the values in Figure 3.1 we see that clearly the EQ

OP and IGN
RET are the

most troublesome errors among the four errors.

33

EQ
OP

IGN
RET

BIT
OP

IFW
SEM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·108

To
ta

lt
im

e
to

fix

Figure 3.1: The total time to fix for the errors IGN
RET, EQ

OP, BIT
OP and IFW

SEM according to [15,
Fig. 1].

Integer Division Error (INT
DIV) is mentioned by Tshukudu and Cutts [6] as a potential

problem for students transferring from Python to Java: when dividing two integers in
Java, it rounds down to the first integer, but when using Python 3 the operation will
return a float number. They also find that students have problems with EQ

OP.

The errors Chan Mow [12] found by analysing errors made by students across three
courses can be found in Appendix E. Chan Mow [12] also mentions a possible loss of
precision as a logical error, specifically storing a double in type integer that could lead
to a INT

DIV.

Rosbach [16], [41] classified errors novice students make, and found that the category
Wrong condition, that can be caused by EQ

OP, is the most common among Java novice
students.

3.2.1 Discussion
This section discusses the errors found in the literature review and how these can be
problematic for a student when transferring from Python to Java. We also justify why
we call the errors semantic errors.
EQ
OP. Looking at Figure 3.1, this is probably one of the most relevant errors when going
from Python to Java. By Hristova et. al. [2], EQ

OP is classified as a syntax error while

34

Brown and Altadmri [15] classifies this as a semantic error. Here we agree with Brown
and Altadmri [15] that this is a semantic error because the program is syntactically
correct. EQ

OP is specified by Hristova et. al. [2] as a potential error when making string
comparisons. In contrast, Tshukudu and Cutts [6] finds that students believe the equals
operator will behave the same in both Python and Java when comparing arrays, while
we know from section 2.2.3 that it does not. We believe that the students struggle with
EQ
OP for all objects. EQ

OP is also classified by Rosbach [16] as a problem with conditions, a
common problem among the novice Java students according to his results.
BIT
OP . Looking at Figure 3.1, we see that this is the error with the lowest score on total
time to fix value among the four errors, suggesting that it may be not that relevant
to the students. This is classified as a syntax error by Hristova et. al. [2] and Brown
and Altadmri [15]. Still, we classify this as a semantic error in Java: Both the short
circuit operator and the bitwise operator will give the correct syntax. We know from
section 2.2.3 that Python use the keywords and and or to evaluate logical expressions,
while Java uses && and ||. Even though the Figure 3.1 suggests that BIT

OP might not be
that relevant, the Chrome OS bug mentioned in section 1.1 shows that the bug can be
serious when it is present and should be taken into consideration.
IFW
SEM. Figure 3.1 shows that IFW

SEM may be relevant to the students, even with a significantly
lower score than EQ

OP and IGN
RET. Python uses a colon after the if-condition to define the

body. It is similar to the syntax if we put a semi-colon after the condition in Java, but
it will not behave the same. We believe the novice Java students can be vulnerable to
this error because of the matching syntax between Java and Python. We classify this as
a semantic error while Hristova et. al. [2] and Brown and Altadmri [15] classifies this as
a syntax error. Again we argue that this is a semantic error because the syntax is valid,
yet the semantics are likely to not as intended. This error can also be true for other
loop structures, but to limit the scope of this thesis, we only focus on the if-statement
structure.
ST
OB. This is described as a semantic error by Hristova et. al. [2], but Brown and Altadmri
[15] does not include this error in their study. We agree with Hristova et. al. [2] that
this is a semantic error. Calling a static method on an object would not be a problem
in Python because the method call is decided at run time, but in Java the method call
uses the method defined by the type on the object.
IGN
RET. This also looks like a relevant error for the students when looking at Figure 3.1.
The problem here is that the return value is ignored. This is described by a logical
error by Hristova et. al. [2] while Brown and Altadmri [15] classifies this as a semantic
error. We argue this is a semantic error because a logical error is when the programmer
misinterprets the task. The syntax for IGN

RET in Java and Python is similar to each other,
and it has the same semantics. Still, we included this error in the focus group to discuss
if it could be relevant for the students when learning Java.
INT
DIV. The Integer Division Error (INT

DIV) was pointed out from Tshukudu and Cutts [6] as

35

an error based on the transfer of semantics between Python and Java: integer division
in Java and Python has similar syntax but different semantics. This study was found
after the focus group, so INT

DIV was not presented to the group. However, INT
DIV is mentioned

as a possible cause for the improper casting error in Hristova et. al. [2] and Chan Mow
[12] mentions this as a logical error, further supporting that we should include INT

DIV in
this thesis. INT

DIV is not included by Brown and Altadmri [15]. However, we argue this is
a semantic error because to divide two integers in Java is legal syntax, but to expect a
decimal from the division is a semantic error.

3.3 Focus group
This section aims to discuss the errors found in the literature review to see if they can
be relevant to research in this thesis. Five of the semantic errors found in the literature
review was presented to the focus group: EQ

OP, BIT
OP , IFW

SEM, ST
OB and IGN

RET. INT
DIV was not included

because it was found after the focus group.

3.3.1 Method
By discussing the errors found in a focus group we can compare the results to the
literature review, either strengthening or weakening if we should include an error in this
thesis. After the group was presented with an error, they answered three questions on
a poll about the error, aiming to know if the error was frequent, relevant to an INF101
student and relevant if the student know Python before. The participants could not
see the answers while voting. After the participants had voted, we used the results
to create a discussion. Data was collected by asking questions about the errors to the
group, let the participants vote on a poll, and take notes from the discussion. At the end
the participants were encouraged to propose errors they thought were relevant. Even
though we collect quantitative data from the poll, we realise that the group is too small
to do any statistical analysis. However, we found the data useful to create a discussion.
The poll was mainly created to make the participants interact in the group and start
a discussion, because the meeting setup had to be changed to a digital meeting due to
Covid-19 restrictions.

Questions

The questions asked on the poll for each question were quantitative and are presented
in Table 3.3.

36

Question Answer type

Q1
Have you seen any cases
of this mistake among stu-
dents or done it yourself?

Yes often, Yes, No, No answer

Q2
Is it likely that an INF101
student makes this mis-
take?

Yes, Maybe, No, No answer

Q3

Would a student that
knows Python beforehand
be more likely to make
this mistake than a stu-
dent who does not know
Python?

Yes, Maybe, No, No answer

Table 3.3: Questions for focus group

In addition, as a qualitative method, it was also asked why the group voted as they did
to create a discussion.

3.3.2 Recruitment
Both lecturers, teaching assistants and students were invited to get a representative
group. The students and teaching assistants were recruited by sending out a recruitment
letter via informal conversations in the study hall for informatics at the University of
Bergen. The letter can be found in Appendix H and is written in Norwegian. The stu-
dents were asked to send a mail if they were interested. For the lecturers, the recruitment
happened via mail and informal conversations at the offices. The focus group had six
participants: two lecturers in Java, one former teaching assistant in Java and a former
lecturer in Python, one teaching assistant in Java and two students with both Python
and Java backgrounds.

3.3.3 Setup
The focus group was held digitally due to Covid-19 restrictions. The presentation used
in the group can be found in Appendix I.

3.3.4 Results
Figure 3.2 depicts how often the error has occurred either among students or themselves.
We see that the group strongly agrees that EQ

OP and IGN
RET is a frequent error, while BIT

OP ,
IFW
SEM and ST

OB are less frequent according to the group, with ST
OB being the least frequent

error. Even though two answered yes on having observed IFW
SEM it was commented during

37

the discussion that this was cases of for-loops or while-loops. It was mentioned that the
BIT
OP was a normal mistake for beginners in Java to make. The group discussed that even
though students struggle with static methods in Java, the ST

OB was rarely or never seen.

0 1 2 3 4 5 6

IFW
SEM

BIT
OP

ST
OB

IGN
RET

EQ
OP

NA

N

N

N

Y

Y

Y

Y

Y

YO

YO

YO

YO=Yes often, Y=Yes, N=No, NA=No answer.

Figure 3.2: Focus group answer to Q1: ”Have you seen this mistake among students or
done it yourself?”

Figure 3.3 shows what the participants answered when asked if a beginners Java student
would make these errors. Everyone in the group agreed that EQ

OP and IGN
RET is likely to be

made by an INF101 student. The errors BIT
OP and IFW

SEM is less likely according to the group.
The group answers that the ST

OB is the least likely relevant error for the students. During
the discussion some in the group mentioned that regarding IFW

SEM, the students might just
place semicolons randomly until it compiles and that this might cause the error to be
relevant.

0 1 2 3 4 5 6

IFW
SEM

BIT
OP

ST
OB

IGN
RET

EQ
OP

NA

NA

NAN

M

M

M

M

Y

Y

Y

Y

Y=Yes, M=Maybe, N=No, NA=No answer.

Figure 3.3: Focus group answers to Q2: ”Is it likely that an INF101 student makes this
mistake?”

38

Figure 3.4 shows the answers to the participants when asked if the errors would be more
likely to make when being a beginners students in Java and knowing Python before. The
group thinks IFW

SEM is the most likely error for this, and EQ
OP error is also a likely error. The

BIT
OP and ST

OB errors are not likely to be more relevant when knowing Python before, with
IGN
RET being the least likely. The participants who answered either yes or maybe on this
answer for EQ

OP meant that the students would use the equal operator on object because
they were used to it in Python. The participant who answered no said that the students
would be confused by this regardless, because it is used to comparing primitive types in
Java. Regarding IFW

SEM, some participants thought it would be relevant because the syntax
is familiar to Python. On the contrary, a participant argued that IFW

SEM would be less
relevant, because students from Python would be more likely to underuse the semicolons
than overuse them not having used them before.

0 1 2 3 4 5 6

IFW
SEM

BIT
OP

ST
OB

IGN
RET

EQ
OP

NA

NA

NA

N

N

N

N

M

M

M

M

Y

Y

Y=Yes, M=Maybe, N=No, NA=No answer.

Figure 3.4: Focus group answers to Q3: ”Would a student that knows Python beforehand
be more likely to make this mistake than a student who does not know Python?”

The participants were asked to suggest other errors to get more input on what errors
might be relevant. The group suggested these errors:

If No Brackets Error (IFNO
BRKT). If you have an if-statement without brackets, the

then-branch will only consist of the following statement. Even though the following
statements are indented, Java only reads the first statement as the then-branch.

Field With No Initialiser (FINO
INIT). If you use a field without initialising it, you get a

NullPointerException. It was also commented that experienced programmers tend to
make this mistake. FINO

INIT gives a NullPointerException, making it an Explicit Runtime
Error (ERE), because it tells the programmer what is wrong. Therefore, even though it
might be relevant, it does not pass the first criteria to be included in this thesis.

No Equals Method Error (NOEQ
METH). It was mentioned that the students generally

had problems with understanding the equals method and that this method is something
they need to implement in Java.

39

Forget To Call Supermethod In Subclass (NOSUP
METH). If you want to add function-

ality to a method in a subclass, you have to call the super method inside it. However,
this violates the third criteria for including an error in this thesis by having to analyse
several files.

Forget to annotate with @Override (NO
OVRD). When overriding a method, for exam-

ple the equals method, it should always be annotated with @Override to get a warning
if you have misspelt the name of the method you are overriding. NO

OVRD also contradicts
the third criteria, demanding other files to be analysed.

3.3.5 Discussion
The group agrees that EQ

OP is the most relevant error, while ST
OB is the least relevant error

for the students. Then, the group believes the IGN
RET is very relevant to the students but

not at all affected by knowing Python beforehand. The BIT
OP error might be relevant to

the students but is not more likely to be made by a student that knows Python before.
The IFW

SEM error was rare but might be more likely to make when knowing Python. At
last, the ST

OB error was found to be less relevant in all cases.

As expected from the literature review, both EQ
OP and IGN

RET are indicated as relevant and
frequent errors. The contradicting result of EQ

OP being more frequent than IGN
RET is expected

due to considering a broader scope of the EQ
OP error than Brown and Altadmri [15]. Also,

as expected, the group agrees that IGN
RET is not affected by learning Python before. The

group did not think the ST
OB error was relevant nor affected by learning Python beforehand.

ST
OB is omitted from Brown and Altadmri [15]’s study, so we can not compare the results,
but given that the group agreed on the error, we feel more confident in the answers. A
more complex error to analyse if it is relevant or not would be BIT

OP . With only two in the
group who had seen it before and the majority have not, the group did not give a clear
indication as to the previous ones. However, the group seem to think that BIT

OP might be
relevant but not caused by a transfer from Python.

An interesting result was the IFW
SEM error. Here the group think it is a rare error, yet they

believe the students would likely transfer their semantics from Python to Java and be
relevant in this sense. This response was a bit off given that the majority of the group
have said they did not find the IFW

SEM relevant or have not seen it. Because this was the
first error presented to the group, it might be that the participants misinterpreted the
question giving a skewed result. The contradicting result of IFW

SEM being less relevant than
BIT
OP is again expected because IFW

SEM has a smaller scope than in the study by Brown and
Altadmri [15].

The group did not vote for the IFNO
BRKT because a participant suggested it, but Rosbach [16]

mentions this as an Incorrect grouping error made by Java students. Additionally, IFNO
BRKT

is the issue that caused the goto fail; bug mentioned in section 1.1. The group agreed
that IFNO

BRKT would be relevant for the Python students because it is caused by not using
brackets but indentation. NOEQ

METH was also suggested by a participant, and the lecturers

40

agreed that NOEQ
METH is common among the students throughout the semester. The group

agreed that students, in their experience, have difficulties understanding the importance
of implementing the equals method in a class. Still, we do not have any previous data
to compare this. The equals method is something the students are not used to from the
previous course, so the NOEQ

METH error was included as well. Even though the errors BIT
OP and

NOEQ
METH are not strictly related to a negative semantic transfer between Python and Java,
they are included for further investigation in this thesis to see if they are relevant to the
students.

3.4 Relevant errors for this study
Initially, we wanted to find relevant errors in order to investigate:

RQ1: What semantic errors do students need help with when transferring from Python
to Java?

By doing a literature review and a focus group, we present the errors in Table 3.4,
which is thought to be relevant for further investigating the question above. Using a
mixed method in chapter 6 we hopefully will get closer to an answer to RQ1. For the
rest of this thesis, by the phrase these/the errors we mean the errors found relevant in
Table 3.4.

41

Error Description Relevant

EQ
OP

Using == to com-
pare objects Yes

IGN
RET

Ignoring return
value from method
call

No

ST
OB

Call static method
on object No

INT
DIV

Expect double from
integer division Yes

IFNO
BRKT

If-statement with-
out brackets Yes

NOEQ
METH

Not implementing
equals method in
class

Yes

BIT
OP

Confusing bit-
wise operators
with conditional
operators

Yes

IFW
SEM

Put a semicolon af-
ter if-condition Yes

FINO
INIT

Forget to initialise
field No

NOSUP
METH

Not call superme-
thod No

NO
OVRD

No override annota-
tion No

Table 3.4: Collection of errors from literature review and focus group

42

Chapter 4

The detection of semantic
errors and automating
feedback

In this chapter, we go through the errors found to be relevant from Table 3.4 and aim
to partly answer

RQ2: How can we develop a tool to automate feedback for semantic errors when trans-
ferring from Python to Java?

by looking at how existing environments handle the errors in section 4.1, discuss false
positives and challenges by automating these errors in section 4.2, how to detect the errors
using static analysis in section 4.4 and investigate how an error should be presented in
section 4.5. A concrete description of the implementation of Uncoil can be found in
chapter 5.

4.1 Existing error messages in other environments
We reconstructed the errors and registered the warnings generated by four different
Integrated Development Environment (IDE)s: IntelliJ1 Ultimate, Intellij Community,
Visual Studio Code2 and Eclipse3. By finding other instances where the errors are being
automated, we can get an idea of how to create Uncoil and what might be lacking from
existing tools to automate the errors.

1https://www.jetbrains.com/idea/
2https://code.visualstudio.com/
3https://www.eclipse.org/

43

The plugins used were downloaded for Mac OS with versions:

• IntelliJ IDEA 2021.3.1 (Ultimate Edition)

• IntelliJ IDEA 2022.1.1 (Community Edition)

• Visual Studio Code 1.67.2 (Universal)

• Eclipse IDE for Java Developers Version: 2021-12 (4.22.0)

We chose these IDE’s because they are recommended in the INF101 course in the
semester of writing this thesis. We can see in table Table 4.1 that only IntelliJ has
warnings for the errors, and the two editions, Ultimate and Community, warn about
different errors.

Error IntelliJ Eclipse VSCode

EQ
OP

New object is com-
pared using ’==’
(Ultimate edition)

None None

NOEQ
METH None None None

INT
DIV

Integer division in a
floating-point con-
text (Community
edition)

None None

IFNO
BRKT

Suspicious indenta-
tion (Community
edition)

None None

BIT
OP None None None

IFW
SEM

If statement has
empty body (Ulti-
mate and Commu-
nity edition)

None None

Table 4.1: Different IDEs warnings.

Comparing the IntelliJ Community edition with the Ultimate edition, we see that Com-
munity warns for IFNO

BRKT, IFW
SEM and INT

DIV while lacking a warning for EQ
OP. In contrast, the

Ultimate edition only warns for EQ
OP and IFW

SEM. We believe a tool is needed to warn for
all the errors, and as indicated from the literature review and focus group, we should
automate feedback for EQ

OP. It is expected that none of the environments warns for NOEQ
METH,

44

but we are somewhat surprised by not being warned of the BIT
OP error, being the cause of

the ChromeOS bug mentioned in section 1.1. Because three of the errors are warned by
the Intellij Community edition, it might be an idea to recommend this IDE for novices.
However, then the students will not be warned of the crucial EQ

OP bug, so we believe that
an additional tool to automate these error messages is needed. During the testing of the
errors it was observed that IntelliJ uses highlighting in the code to present the errors.

We noticed some problems with the EQ
OP error when testing for this in Intellij Ultimate.

The first was when objects where given as parameters to a method and compared using
the equals operator, the warning was not generated. This probably is intentional, but
in our case we want a warning for this as well. The second was that the warning was
not flagged when comparing two ArrayLists or arrays using the equals operator, which
is almost always wrong. To make troubles worse, as noted in section 2.2.3, the equals
method behaves the same as the equals operator on arrays. We think this can further
frustrate the student, being insecure of when the equals method is safe to use, so we aim
to tailor the suggestion to this special case. Further, the warning for IFW

SEM only states
that the if-statement is empty. While this is not untrue, we believe it can be frustrating
for a student to look at the code and, in contrast to the message, observe a non-empty
if-statement. Therefore, we aim to create the error message for IFW

SEM to explain to the
student why Java reads this as an empty statement.

4.2 Should the feedback for these errors be automated?
In this section, we investigate if the errors should have automated feedback by discussing
the target group, risk of false positives and how to ignore error messages.

4.2.1 Target group
Uncoil is targeted at novice Java students that know Python beforehand. Therefore
we believe the errors would be less beneficial to automate for experienced developers.
However, if the code containing the Chrome OS bug and goto fail; bug mentioned in
section 1.1 were analysed for these errors, the bugs would probably not happen. Suppose
we changed the error messages to target experienced Java developers and show all the
error messages at once. In that case, we believe it would be helpful to give warnings for
these errors during code reviews or before deploying code to production. As we will see
in chapter 5, Uncoil can easily be adapted for further use, and other applications can
tailor the results from the analysis to show multiple errors or change the presentation of
the messages.

4.2.2 False positives and ignoring error messages
A false positive is when we do not have an error but still get an error message, and this is
an important aspect to consider when deciding if these errors should be automated. False
positives for these errors are not hard to find because they are based on the programmer’s

45

intent. Some errors may be more likely to have false positives than others. For example,
the IFNO

BRKT has a very clear case of when it is an error, like in Listing 2.6, so it gives
few false positives. For the BIT

OP , there can be many false positives: often, two booleans
evaluated by a bitwise operator is not a problem.

We see that the warning for IntelliJ in Table 4.1 warns about a ”suspicious indentation”,
only flagging an error when there is second statement in an if-statement without brackets.
Generally we want Listing 4.1 and Listing 4.2 to generate an error while Listing 4.3 should
be ignored.

i f (c o n d i t i o n)
m1() ;
m2() ;

Listing 4.1: An invalid if-
statement.

i f (c o n d i t i o n)
m1() ; m2() ;

Listing 4.2: An invalid if-
statement.

i f (c o n d i t i o n)
m1() ;

m2() ;

Listing 4.3: A valid if-
statement.

Figure 4.1: Examples of valid and invalid if-statements

As mentioned, there might be many cases of BIT
OP without it being a problem. This might

be why there is no warning for this mistake by IntelliJ in Table 4.1, but being the cause
of the Chrome OS bug mentioned in section 1.1, we will try to automate BIT

OP . We do
not have any thoughts on how to limit the false positives for BIT

OP . The INT
DIV is a false

positive when we expect an integer. We see in Table 4.1 that IntelliJ has solved this
by warning for this error in a ”floating-point context”. We have accomplished this in
Uncoil, by ignoring the cases of Listing 4.6 and flagging an error for Listing 4.4 and
Listing 4.5. We do this by going up the AST and check the expected type of either the
method declaration or variable declaration. Other instances of false positives for INT

DIV are
out of the scope of this thesis.

double a = 7/5 ;

Listing 4.4: An invalid
integer division

public double m() {
return 7/5 ;

}

Listing 4.5: An invalid
integer division

int a = 7/5 ;

public int m() {
return 7/5 ;

}

Listing 4.6: Valid integer
divisions

Figure 4.2: Examples of valid and invalid integer divisions

We also recognise that the NOEQ
METH can give many false positives. A possible way to limit

the false positives for NOEQ
METH would be to search for usages of the equals method of the

analysed class in the codebase. If it is used, we could warn the student that the equals
method is used but not implemented. However, this is out of the scope of this thesis.

46

To combat alert fatigue caused by many false positives [42], we need a way to ignore error
messages . Listing 4.7 shows an example where the errors NOEQ

METH and INT
DIV are ignored by

Uncoil using annotations. We chose to use annotations to avoid being dependent on a
specific user interface to ignore the errors, and to be able to configure the errors directly
in the code.

1 @NoEqualsMethod
2 @IntegerDiv i s ionAl lowed
3 class A {
4

5 public double d i v i d e (int a , int b) {return a/b ; }
6

7 }

Listing 4.7: INT
DIV example Java with annotation

Results from [43] indicate that students use printing to debug code. For this reason, an
error is not flagged if it is inside a print statement. We need to be able to compare two
objects using the equals operator when implementing the equals method. Therefore the
EQ
OP is disabled when it is inside the equals method declaration.

4.3 Choosing analyses method
This section discusses which analysis method to use to discover the errors.

After the annotated AST is created by the semantic analyser, it can be sent to an
optional code optimiser before the machine code (bytecode) generation [23]. Because of
the optimisation, the bytecode loses some information, making it difficult to get back
the source code [44].

One example of this is found in Listing 4.8, the IFNO
BRKT.

1 public class DemoByteCode {
2

3 public void method1 () {}
4 public void method2 () {}
5

6 public void m(boolean someCondition) {
7 i f (someCondition)
8 method1 () ;
9 method2 () ;

10 }
11

12 }

Listing 4.8: Java if-statement without brackets

By compiling the file using a 16.0.1.hs-adpt compiler with the command

$ javac filename.java

47

we get the bytecode by using

$ javap -c filename

The bytecode for Listing 4.8 is in Listing 4.9
public class DemoByteCode {

public DemoByteCode () ;
Code :

0 : a load 0
1 : i n v o k e s p e c i a l #1 // Method java / lang / Object .”<

i n i t >” : ()V
4 : return

public void method1 () ;
Code :

0 : return

public void method2 () ;
Code :

0 : return

public void m(boolean) ;
Code :

0 : i l o a d 1
1 : i f e q 8
4 : a load 0
5 : i n v o k e v i r t u a l #7 // Method method1 : ()V
8 : a load 0
9 : i n v o k e v i r t u a l #12 // Method method2 : ()V

12 : return
}

Listing 4.9: Java bytecode for Listing 4.8

According to the documentation [30, §6.5], if the if-condition is true, it will proceed to
line 4 in public void m(boolean), the line under the if-condition. If the condition is
false, it will proceed to line number 8 in public void m(boolean), which was meant
to be inside the if-body. However, we can not tell if the programmer meant for line 9 to
be inside the if-statement or not with this information.

If we were to use the annotated AST from the semantic analyser, we would get a tree
as in Figure 4.4. The first thing we can see is that the ThenStatement does not have
a BlockStatement. Furthermore, as we learnt in subsection 2.3.3, the annotated AST
holds the semantics of the nodes as attributes. This includes the column position of
the ExpressionStatement, and we can check if it has the same indention level as the
ThenStatement.

48

The above example shows that AST analysis is best for these types of errors.

4.4 Detecting errors using the abstract syntax tree
This section describes an abstract approach on how to find the errors, while a concrete
implementation is described in chapter 5.

4.4.1 Method
By creating an example for each error, we empirically investigate how to analyse code
for the errors using semantic analysis on the AST. The AST have been simplified for
brevity. The AST for each error has been created with the help of Eclipse ASTView4, a
plugin for visualising AST for a Java file in Eclipse.

4.4.2 Results
Equals Operator Error (EQ

OP)

This error should be present when two objects are compared using the equals operator.
An example of this can be viewed in Listing 4.10.

1 Object a1 = new Object () ;
2 Object a2 = new Object () ;
3 boolean c o n d i t i o n = a1 == a2 ;

Listing 4.10: Example of equals operator on
object

The expression a1 == a2 is an infix expression, because it uses an operator (==) and
applies it to the left operand a1 and the right operand a2. By using the visitor pattern,
as explained in subsection 2.3.3, we can match on an infix expression in the source code.
The AST for the expression a1 == a2 is showed in Figure 4.3.

InfixExpression

LeftOperand

Identifier

a1

Operator

EQ

RightOperand

Identifier

a2

Figure 4.3: AST of EQ
OP

4https://www.eclipse.org/jdt/ui/astview/index.php

49

The first thing to check is that the operator is the EQ sign (== or !=). Since we need
to be able to use the equal operator on primitive types, we check that the operands
are objects by looking up the types in the symbol table. In addition to checking that
the operands are not primitives, we also need to check that the operands are not null.
The latter ensures that we can perform a null-check on an object. By traversing the
tree upwards, we can find the ancestor to the InfixExpression. We need to check if
one of the ancestors is a print statement or equals method declaration to limit the false
positives as described in subsection 4.2.2. For the special case for arrays as explained
in section 2.2.3, we check if the type for the operands are arrays allowing us to create a
different suggestion for this specific error.

If No Brackets Error (IFNO
BRKT)

This error occurs when the if-statement has no brackets, and the statements after the
condition are indented in such a way that they look like they should belong to the if-body,
illustrated in Listing 4.11.

1 boolean c o n d i t i o n = fa l se ;
2 i f (c o n d i t i o n)
3 method1 () ;
4 method2 () ;

Listing 4.11: Example of if no brackets error

As explained thoroughly in subsection 2.2.3, the statement method2(); will be executed
regardless of the if-statement. By using the visitor pattern we can match an if-statement,
and analyse it. We construct the AST for the if-statement in Figure 4.4 for the example
in Listing 4.11.

50

Statements

IfStatement

Expression

Identifier

condition

ThenStatement

ExpressionStatement

Expression

MethodCall

Identifier

method1

ExpressionStatement

Expression

MethodCall

Identifier

method2

Figure 4.4: AST of IFNO
BRKT

First, we need to check that the if-statement is without brackets. This is easily done by
checking the type of the child to the ThenStatement. In Figure 4.4 we see that the type
is an ExpressionStatement, confirming that this if-statement is without brackets. If the
if-statement has no sibling, we have no error because there is nothing following the body
of the if-statement. To find out if we have a sibling or not, we go up to the parent and
check how many children it has. In Figure 4.4 the rightmost ExpressionStatement is
the sibling, so we need to check if this ExpressionStatement has the same indentation
level as the body of the if-statement. We also need to check if it is on the same line
as the body. As discussed in subsection 2.3.3 the nodes in the AST are decorated with
the semantics of the node attached to it. This often includes the node’s position, so we
can extract the indentation level and line number of the sibling to check for this error.
In general, we want Listing 4.1 and Listing 4.2 to produce an error, while Listing 4.3 is
valid as discussed in subsection 4.2.2.

Integer Division Error (INT
DIV)

This error appears when we do an integer division in Java and expect a decimal number
in return. Section 2.2.3 goes through the difference between integer division in Python
and Java. Even though we are casting to a double in Listing 4.12 we will get 1.0 as an
answer. The AST of the expression 7/5 is illustrated in Figure 4.5.

51

1 double a = 7/5 ;

Listing 4.12: Example of integer division in Java

The expression 7/5 is also an infix expression like EQ
OP. However, now the operator is the

dividing operator (DIV), and the operands are integers.

InfixExpression

LeftOperand

7

Operator

DIV

RightOperand

5

Figure 4.5: AST of INT
DIV

The approach is very similar to detecting the EQ
OP: When visiting an InfixExpression

in the AST, we then need to check that the operator used is the dividing operator, and
if the operands are integers by using a symbol table. Also, we need to check if one of
the ancestors is a print statement. We get a false positive of this error by expecting an
integer from the division, as discussed in subsection 4.2.2. Therefore, we need to be able
to have statements like int a = 7/5; without producing an error. We can achieve this
by walking up the tree, matching on a VariableDeclaration or MethodDeclarations
and checking its type. If it is of type int, we can discard the error.

Semicolon After If Error (IFW
SEM)

This error is caused by a semicolon after the condition in the if-statement. Listing 4.13
shows an example of this, and Figure 4.6 shows the AST of the error.

1 i f (c o n d i t i o n) ; {method1 () ; }

Listing 4.13: Example of semicolon after if in Java

The AST of the statements are illustrated in Figure 4.5.

52

Statements

IfStatement

Expression

Identifier

condition

ThenStatement

EmptyStatement

ExpressionStatement

Expression

MethodCall

Identifier

method1

Figure 4.6: AST of IFW
SEM

We can find this error in the AST by visiting if-statements, and check if it has an empty
ThenStatemement. This differs from an empty block, where the ThenStatement would
be a BlockStatement.

Bitwise Operator Error (BIT
OP)

This error occurs when evaluating boolean expressions with one of the bitwise operators
illustrated in Listing 4.14.

1 boolean c o n d i t i o n = true & fa l se ;

Listing 4.14: Example of bitwise operator in Java

This is also an infix expression like EQ
OP and INT

DIV. The AST of the boolean expression true
& false is drawn in Figure 4.7.

InfixExpression

LeftOperand

true

Operator

&

RightOperand

false

Figure 4.7: AST of BIT
OP

The approach to detect this error is very similar to EQ
OP and INT

DIV. If the left operand and
right operand are of type boolean, we need to check if the bitwise operators have been

53

used. Additionally, we need to check if one of the ancestors is a print statement.

No Equals Method Error (NOEQ
METH)

This error should be flagged when a class without an equals method is implemented.

1 class A { public void m() {} }

Listing 4.15: Example of missing equals method
in Java

The AST of the class is illustrated in Figure 4.8.

TypeDeclaration

BodyDeclarations

MethodDeclaration

m

Figure 4.8: AST of NOEQ
METH

By visiting a class declaration in the AST, we can get the body of the class. The body
holds the field declarations and method declarations. To find this error, we need to go
through the list of declarations in the body and find all MethodDeclarations. If we find
a MethodDeclaration, we need to check that the name is equals and the return type
is boolean. If the body has no MethodDeclarations, or no equals method, we flag an
error. The error will not be flagged if it is an interface or abstract class.

4.5 The structure of the error messages
This section lists how previous studies have investigated how to present error messages
to students. By building on previous knowledge, we contribute to answering how we can
create the error messages for Uncoil and, in turn, partly answer RQ2.

Studying what students found helpful in error messages, Becker [45] found that explaining
the error in simple terms and providing a solution is helpful for students. Furthermore,
Brækken [46] found in her studies that when providing an example for the students to
describe an error, it may confuse the students: Some of the students in her research
thought that the example was the solution. The structure of the message is essential
for students to understand the error message according to [47]. Additionally, a recent
study [48] has tried to find out what helps students understand error messages. The key

54

factors they found were message length, jargon and sentence structure. Similar tools [20]
[22] to Uncoil have displayed the different code side by side, but we focused on creating
a suggestion.

Considering previous research, the error messages should be on point, written in simple
terms, and have suggestions. A link is added with a more comprehensive explanation for
each error to avoid long error messages. A suggestion is displayed with the error message
tailored to the analysed code to avoid confusion. For example, if we analyse the code in
Listing 4.16

1 @NoEqualsMethod
2 class A {
3

4 public double d i v i d e (int a , int b) {return a/b ; }
5

6 }

Listing 4.16: INT
DIV example Java

the error message is shown in Listing 4.17.

1 In c l a s s A, on l i n e number 4
2

3 You are doing an i n t e g e r d i v i s i o n ! In Python , you could d i v i d e two
4 i n t e g e r s and get a decimal as a r e s u l t . In Java we need to change the
5 i n t e g e r s to dec imals b e f o r e we d i v i d e to get the same r e s u l t .
6

7 You should try (double) a /(double)b
8

9 More i n f o ? Check out :
10

11 https : // master−t h e s i s −frontend−prod . herokuapp . com/ i n t e g e r d i v i s i o n

Listing 4.17: Error message produces by INT
DIV

Note that we have used the word ”decimal” instead of ”double” to use simple terms. On
line one in Listing 4.17, we see the first line of the error message. This should tell where
to find the error. On line number three, the first sentence describes what the mistake is.
The preceding sentences describe why this is a problem and how it relates to Python.
The seventh line proposes the suggestion for how to fix the error and is adapted to the
source code. The last section of the error message holds a link with more information,
where the student can get more into the depth of the problem. The jargon is kept on a
non-formal level. It has been chosen to show only the first error not to overwhelm the
students in thread with other similar tools [22].

55

Generally, the error message have the form in Listing 4.18:

[POSITION]

[CAUSE OF THE ERROR] [EXPLANATION]

[SUGGESTION]

[MORE INFO]

Listing 4.18: Error message form

4.6 Discussion
To get closer to an answer to RQ2, we have constructed the AST for each error and
described a method to find the errors in the source code. We have proposed some
methods for how to avoid false positives for EQ

OP, INT
DIV and IFNO

BRKT and, even though not in
the scope of this thesis, sketched a solution for how to avoid false positives for NOEQ

METH as
well. Furthermore, we propose to use annotations to ignore error messages. We have
chosen to represent the errors in a text format using natural language. Based on previous
research, we have found that an error message should contain the position, cause of the
error, a suggestion and a link with more info. We have discussed the target groups
for Uncoil and specified that we believe the error messages should be automated for
beginners in Java that knows Python. However, Uncoil could be further developed to
target more experienced Java developers. In section 4.1 we found some limitations to
existing tools, lacking functionality we believe is essential for a novice Java student. We
proposed a solution for developing the features needed and believe that a tool like Uncoil
is needed to automate the errors.

As noted in section 4.1 IntelliJ highlights the errors in the code to present them. However,
Uncoil could not implement this due to time constraints and limited access to the code
being analysed. We will go more into detail about this in chapter 5. We saw in section 4.3
that we could not use bytecode analysis to find these errors. Consequently, we could not
have used SpotBugs as an analysis tool to find them. SonarQube5 is another tool that
was considered to find the errors but was discarded. We considered it too heavy-weight
for the relatively small scope of analysis. Additionally, we could make the error messages
use more jargon as the students gets more advanced, possibly like a language localisation
tool.

5https://www.sonarqube.org/

56

Chapter 5

Design, implementation and
development of Uncoil

This chapter discusses the implementation of the concepts in chapter 4 and the chal-
lenges with implementing it. Specifically, we answer

RQ2: How can we develop a tool to automate feedback for semantic errors when trans-
ferring from Python to Java?

by implementing a solution. The first section 5.1 shows a demonstration of Uncoil. Then
we go over the overall architecture of how Uncoil is built in section 5.2. Further, in sub-
section 5.2.2, subsection 5.2.3 and subsection 5.2.4 we go deeper into the implementation
and usages of the different components of Uncoil. In section 5.3 we go trough the devel-
opment methods and present a use case for Uncoil to uncover the functionalities needed.
In subsection 5.3.3 we describe how Uncoil is tested during development and deploy-
ment. At last, in section 5.4 we discuss how Uncoil should be distributed and provide
an example of how Uncoil can be used for further work.

57

5.1 Demonstration
The code in Listing 5.1 is an example of an EQ

OP. By using Uncoil on this code we get the
error message in Listing 5.3.

1 @NoEqualsMethod
2 class A {
3 public void method (A a1 , A a2) {
4 i f (a1 == a2) {System . out . p r i n t l n (”a1 i s equal to a2”) ; }
5 }
6 }

Listing 5.1: Simple example of EQ
OP

In c l a s s A, on l i n e number 4

You are us ing ”==” to compare o b j e c t s ! In Python you could do th i s ,
but in Java we use the equa l s method .

You should try a1 . equa l s (a2)

More i n f o ? Check out :

https : // master−t h e s i s −frontend−prod . herokuapp . com/ equa l s ope ra to r

Listing 5.2: Feedback from Uncoil in this thesis detecting EQ
OP

5.2 Code structure

5.2.1 Architecture
The architecture of an application shows how it is structured and set together [49], and
the overall architecture for Uncoil is shown in figure Figure 5.1. Maven1 is a build tool
that handles project dependencies, so we do not have to download them manually, and
a Maven repository2 holds artefacts and dependencies. Uncoil core is a Maven package,
master-thesis-backend-analyser, that performs the analysis of the given source code.
The master-thesis-annotations holds the annotations that can be used to ignore the
errors. Both master-thesis-backend-analyser and master-thesis-annotations are
accessible from a Maven repository deployed on repsy.io3, where you can administrate
and deploy your repositories. Maven was used because it is well-known among de-
velopers, and the dependency is usable by other applications. Other applications can
either download the package as a dependency in their application or use the Application

1https://maven.apache.org/
2https://maven.apache.org/guides/introduction/introduction-to-repositories.html
3https://repsy.io/

58

Programming Interface (API): master-thesis-backend-api. An API lets instances de-
veloped with different programming languages communicate with each other, enabling
other applications to use Uncoil.

The architecture for Uncoil is layered [49], separating different concerns: presenting the
data using master-thesis-web-frontend, control the action of a request using master-
thesis-backend-api, and analyse the code using master-thesis-backend-analyser.
The layers are named, respectively, the representation, controller, and business layers.
Uncoil does not have a data layer. The master-thesis-web-frontend and master-
thesis-backend-api are deployed in two different instances on a Platform as a Service
(PaaS), providing the infrastructure needed to run and scale the instances [50]. As a
PaaS we chose to use Heroku4 to deploy Uncoil, and by being available for users through
the browser, Uncoil is a Software as a Service (SaaS) [50]. The layers are deployed
independently, taking the web-application in the direction of a microservice architecture
[49]. Furthermore, the presentation layer and controller communicate with each other
using a remote access API that speaks in favour of being a microservice architecture.
The master-thesis-backend-analyser is also deployed separately but does not allow
remote access - the package needs to be downloaded by master-thesis-backend-api
and deployed as a monolithic application [49] on Heroku. Nevertheless, other applications
can use master-thesis-backend-analyser by downloading it as a dependency to enable
future work.

4https://www.heroku.com/home

59

master-thesis-
web-frontend

Heroku

master-thesis-
backend-api

Heroku

Maven repository

master-thesis-
backend-analyser

master-thesis-
annotations

Figure 5.1: Architecture

5.2.2 Implementation of the analyser
The master-thesis-backend-analyser uses JavaParser [40], a tool to parse and anal-
yse Java code. Other language handling tools were also considered, like ANTLR, but
JavaParser was chosen due to the ease of setup with maven and the smaller scope of
focusing on parsing Java.

Figure 5.2 is an UML (Unified Modelling Language) diagram [51] for the master-thesis-
backend-analyser, describing how the analyser is structured. The diagram is somewhat
simplified, but shows the main lines of the analyser. The heart of the master-thesis-
backend-analyser package is the BugFinderVisitor class, that does the analysis on
the source code and creates the BugReport. The BugFinderVisitor inherits from Void-
VisitorAdapter from JavaParser, that visits the children of the nodes in the AST in
random order [40]. Two classes inherits from VoidVisitorAdapter: BugFinderVisitor
and AnnotationsVisitor. In Figure 5.1 VoidVisitorAdapter contains only the meth-
ods used in this thesis for brevity. The BugFinderVisitor visits the nodes in the AST
created by JavaParser, and add errors to the BugReport if it is found. All errors inherit

60

from BaseError, an abstract class implementing the common functionality across the
errors, and provides a contract if the implementation needs to be done for each error.
The abstract methods are marked with recursive text in Figure 5.2. The BaseError
implementation allows for reuse of code, along with the implementation of BinaryEx-
prError and IfStatementError. As we know from section 4.4 the errors EQ

OP, INT
DIV and

BIT
OP are all InfixExpression, and IfWithoutBracketsError and SemiColonAfterI-
fError are similar to each other. This implementation takes advantage of this, creating
a common class BinaryExprError that implements their common functionality, avoiding
duplicating code. We also do the same for IfWithoutBracketsError and SemiColon-
AfterIfError by letting both inherit from IfStatementError. From section 2.2.3 we
have found one specific case of the EqualsOperatorError, where we should produce
a different suggestion for the Arrays class: Arrays.equals(array1, array2). This is
solved by a flag in the EqualsOperatorError when comparing two arrays with the equals
operator.

The Analyser class depends on the interface AnalyserConfiguration, where a concrete
implementation of the interface can decide how errors should be ignored. The Annota-
tionsAdapter has the responsibility of transforming the annotations in the source code
to suit the demands of the AnalyserConfiguration. Here we implement the adapter
pattern [39], converting from annotations to the name of the error. The Annotation-
sAdapter uses the AnnotationsVisitor to find the annotations in the source code. The
annotations are coupled with the class it belongs to, allowing the configuration of errors
to be class-based. The default configuration uses annotations in the source code, but it
can easily be extended to use a user interface implementing the interface.

The Analyser’s method analyse(String code) takes in Java source code as text, and
analyses it. If JavaParser gives an error during analysis, the error is propagated and
stored in the BugReport. We can get the exception by calling getException(), that
optionally gives an exception.

Uncoil can be adopted to different target groups - for example to experienced Java
developers. One way to change the error messages could be to change the actual strings
for each error, but a possible better way would be to implement the strategy pattern [39]
in Java, allowing different strategies to create different instances of the errors. This way
it could easily be shifted between novices in Java or experienced developers by using
different strategies, and it could be added a new strategy for other groups. Also, a new
application can match on the different types of errors and display the errors as wanted.
However, this is left for further work.

61

<<abstract>>

VoidVisitorAdapter
visit(BinaryExpr expr) : Void
visit(ClassOrInterfaceDeclaration
decl) : Void
visit(IfStmt stmt) : Void
visit(MarkerAnnotationExpr
expr) : Void

AnnotationsVisitor
getAnnotations() : Ar-
rayList«String»

<<interface>>

AnalyserConfiguration
getErrorsToIgnoreForClass(String
className) : ArrayList«String»

AnnotationsAdapter
visitor : AnnotationsVisitor
fromAnnotationToName :
HashMap«String, String»

Analyser
analyse(String code) : BugRe-
port
addConfiguration(
AnalyserConfiguration configu-
ration) : void

BugFinderVisitor
errorsToIgnore : Ar-
rayList«String»
getReport() : BugReport

BugReport
exceptionFromJavaParser :
Throwable
bugs : ArrayList«BaseError»
className : String
getClassName() : String
setClassName(String class-
Name) : Void
getBugs() : Ar-
rayList«BaseError»
addBug(BaseError error) : Void
attach(Throwable exception-
FromJavaParser) : Void
getException() : Op-
tional«Throwable»

<<abstract>>

BaseError
lineNumber : int
containingClass : String
getContainingClass() : String
setContainingClass(String con-
tainingClass) : Void
getLineNumber() : int
setLineNumber(int lineNumber)
: Void
getSuggestion() : Op-
tional«String»
getTip() : Optional«String»
getCauseOfError() : String
getMoreInfoLink() : Op-
tional«String»
getName() : String

BinaryExprError
leftOperand : String
rightOperand : String
operator : String
setLeftOperand(String left-
Operand) : Void
setRightOperand(String right-
Operand) : Void
setOperator(String operator) :
Void

EqualsOperatorError
setArraysSuggestion() : Void

IntegerDivisionError

BitwiseOperatorError

IfStatementError
condition : String
thenBranch : String
setCondition(String condition) :
Void
setThenBranch(String then-
Branch) : Void

IfWithoutBracketsError

SemiColonAfterIfError

MissingEqualsMethodError

implements
inherits

aggregation
composition

Figure 5.2: UML diagram of the analyser

62

5.2.3 Implementation of the API
The master-thesis-backend-api was created with Spark5, a lightweight framework for
creating endpoints in a web application. The Spring framework was also considered but
discarded in favour of the easy set-up for Spark. The API is built with Maven and uses
the analyser maven package when deployed. The API has two main endpoints: /runjava
and /analyse. The first endpoint is created for evaluation purposes. It takes in Java
code, stores the code in a temporary file on the server, executes it and returns the result.
This lets participants of the study run Java code from the browser. The functionality
for executing the Java code should be separated in another deployment to maintain a
microservice architecture and for security reasons, but this was not done due to timing
constraints. The second endpoint accepts a payload as Java code, analyses the code and
returns the result in JSON such that the representation layer can parse it an represent
it. An example of the JSON response from the API can be found at Figure 5.4.

According to [50] RESTful (REpresentational State Transfer) API is a stateless API that
also follows conventions on how to handle requests: GET (get an instance), POST (create
a new instance), PUT (update an instance) and DELETE (delete an existing instance).
Having a stateless API means that two consecutive calls are independent from each
other, and the service does not remember the previous call. Our API is a RESTful
API, following the needed conventions. Consequently, the data that should be analysed
needs to be sent and returned to the client in one request. For this purpose, the HTTP
POST request is suitable [52], where the code to be analysed is given as a payload in the
request, and the server can return the result. We use the POST method instead of GET
method due to security and length restrictions [52]. When sending a GET request, the
data is visible in the URL and with a maximum of 2048 characters we would not be able
to analyse large Java files [52]. The POST method is somewhat more secure in that the
data is stored in the payload of the request, and it does not have a max length [52].

By sending the data in Figure 5.3 as a POST request to the API, we get the response in
Figure 5.4. master-thesis-backend-api creates the JSON and sends it to the client.
The client side parses the response and presents the data in the browser. If the analyser
returns an exception from the analysis, it is added to the JSON response.

1 @NoEqualsMethod
2 class A {
3

4 boolean a = true & fa l se ;
5

6 }

Figure 5.3: Example payload to master-thesis-backend-api

5https://sparkjava.com/

63

1 {
2 "errors": [
3 {
4 "containingClass": "A",
5 "suggestion": "replacing & with &&: true &&

false",
6 "type": "master.thesis.backend.errors.

BitwiseOperatorError",
7 "explanation": "You are using the bitwise

operator (&). In Python we use "and" and "or"
as boolean operators , but in Java we use "&&

" (and) and "||" (or)!",
8 "lineNumber": 4,
9 "moreInfoLink": "https ://master -thesis -frontend -

prod.herokuapp.com/bitwiseoperator"
10 }
11]
12 }

Figure 5.4: Example JSON response from master-thesis-backend-api

5.2.4 Implementation of the user interface
The master-thesis-web-frontend is implemented using JavaScript6 and is a lightweight
web application. Uncoil consists of a simple editor, where you can paste in the code you
want to analyse and use a button to send it for analysis at the backend. When the
students evaluated Uncoil, they got access to a simple online editor with the tasks ready
in the editor integrated with Uncoil. The students could run the code and check if it
had passed the task or get a hint (use Uncoil).

Several attempts were made to highlight the code to make the code more readable in
the editor. A simple tokeniser was made, where the keywords and identifiers to be
highlighted were specified. Unfortunately, the tags that coloured the words made the
editor unusable. It was also made an attempt to use embedded editors, highlight.js7

and CodeMirror8, to highlight the code. This worked locally but caused a dependency
problem when deployed to a different environment. Due to little time, the highlighting
of code was not prioritised. The editor has line numbers to localise the error. The editor
has an observer that notifies about change in the editor, allowing the line numbers to be
repopulated. A console below the editor to display the error was added after feedback
from the first student. The tasks are created as a single page application, where the

6https://www.javascript.com/
7https://highlightjs.org/
8https://codemirror.net/

64

button for the previous task and next task updates the text in the editor. The error
message provides a link to more info, which will open in a new tab. During evaluation
of Uncoil we filtered the errors after retrieving them from the API instead of using
annotations, to avoid students being confused by annotations in the code.

5.3 Development method
This section goes through the development method and presents a case to uncover the
requirements for Uncoil. Further, we describe the methods used to Uncoil and the
deployment methods for the artifacts.

5.3.1 Use case
A usecase describes the flow and requirements for a system, using actors and goals. The
actor is either a person that uses the system or another system, and the goal is what the
user wants to accomplish with the system. [53]

Use case: Analysing Java code with INT
DIV error

Actor: The actor, in this case, will be an INF101 student, that knows Python before.

Context: It is the second week of learning Java, and the student is trying to implement
a simple calculator. One of the methods should take two integers, divide them and return
the result. The student ends up with the code in Listing 5.3.1.

1 class Calcu la to r {
2

3 public stat ic void main (S t r i n g [] arg) {
4 Calcu la to r c a l c u l a t o r = new Calcu la to r () ;
5 System . out . p r i n t l n (c a l c u l a t o r . d i v i d e (7 , 5)) ;
6 }
7

8 public double d i v i d e (int a , int b) {
9 return a/b ;

10 }
11 }

Testing the calculator with a=7 and b=5 gives the student a surprising result, namely
1.0. Finally getting the code to compile, the student is frustrated to find out that it does
not work as expected, knowing from Python that an integer division returns a decimal.

Having defined the context, we can now define the goal:

Goal: Find out why the output is wrong.

The student copy and paste the code into Uncoil, and press the button to analyse the
code. Uncoil should behave as follows:

65

1. The code is retrieved from the text field and it is created a POST request with the
code as the body.

2. The API retrieves the POST request and gets the Java code as a string from the
request body.

3. An instance of the analyser is created and the API calls the analyse method with
the source code.

4. The analyser parses the code and returns a parse error immediately if it is unsuc-
cessful.

5. The analyser checks if annotations are present in the code and register them.

6. The analyser analyses the code for errors and returns them in a bug report.

7. The API creates a JSON containing a list of the errors, or if present an exception,
from the report and sends it as a response.

8. The frontend parses the JSON and displays the response to the user, as seen in
Listing 5.3.

In c l a s s Calcu lator , on l i n e number 9

You are doing an i n t e g e r d i v i s i o n ! In Python , you could d i v i d e two
i n t e g e r s and get a decimal as a r e s u l t . In Java we need to change the
i n t e g e r s to dec imals b e f o r e we d i v i d e to get the same r e s u l t .

You should try (double) a /(double)b

More i n f o ? Check out :

https : // master−t h e s i s −frontend−prod . herokuapp . com/ i n t e g e r d i v i s i o n

Listing 5.3: Feedback from Uncoil in this thesis

5.3.2 Creating a Minimal Viable Product
A Minimal Viable Product (MVP) is a product where you serve the bare minimum of the
requirements, and a product can have both functional and non-functional requirements.
Functional requirements are those that are accessible to the user, and what the user could
do with the software, while non-functional requirements are properties the application
should have. [50]

The use case in subsection 5.3.1 uncovered many of the requirements, for example, that
a parse error in the code should return an error. For the MVP we set the functional
requirements as in Table 5.1 and the non-functional requirements as in Table 5.2.

66

Functional requirement Priority Implemented
Return an error message for the errors
in this thesis Need to have Yes

Return error when code can not be
analysed Need to have Yes

An error message should contain where
it is and what causes the error Need to have Yes

Can ignore error messages Nice to have Yes

Table 5.1: Functional requirements

Non-functional requirement Priority Implemented
Easily accessible for the students Need to have Yes

Distributed in a known environment for
the students Nice to have No

Separate analyser for easily maintain-
ing Nice to have Yes

Scalability Need to have Yes

Table 5.2: Non-functional requirements

By using annotations, we have fulfilled the demand Can ignore error messages. We gave
this requirement a lower priority because it is not strictly needed to analyse the code.
Still, because of the risk of false positives, we wanted to include this in the MVP. We
made Uncoil Easily accessible for the students by providing it as a SaaS, allowing for
using Uncoil in the browser. The Scalability requirement is solved by deploying Uncoil
on a PaaS. By Distributed in a known environment to the students we mean, for example,
to give the feedback in their IDE. However, we did not manage to do this.

Development style

Agile methods are strategies for developing a product. We will not go into the depths of
the different agile methods in this thesis but briefly explain that they favour a change of
requirements during development over rigour requirements that can not change [54].

We have not adopted a specific agile approach, but Uncoil has been adapted to new
requirements during development. For example, two plugins were developed with the

67

desired functionality to meet the requirement Distributed in a known environment for
the students from Table 5.2. Still, the plugins did not fulfil this requirement because they
were created for different environments than the students used that semester. Deciding to
construct a web application instead, we now had to add Scalability as a new requirement.

To make sure that the MVP meets the requirements in Table 5.1, we can test the appli-
cation. As a part of agile methodology, to shorten the feedback loop and finding bugs
early, we have used Test Driven Development (TDD) [50] to develop Uncoil. We have
focused on unit tests, testing parts of the applications, and some integration tests, testing
the application as a whole. Figure 5.5 and Figure 5.6 displays where in the development
cycle the requirements are tested. Technical debt is when you postpone the refactoring of
the code [55]. When doing TDD, you should ideally refactor once the tests pass, but due
to time pressure, this did not always happen. It was willingly taken on some technical
dept during development when creating the MVP before getting feedback from the user
testing. However, after the evaluation of Uncoil the code has been refactored and made
more understandable.

5.3.3 Deployment
Development cycle and feedback loop

When deploying software, we can set up a pipeline that consists of different environ-
ments for the application. We have used three environments in our development cycle:
Local environment: where the development happens and local testing, Development en-
vironment: the application is deployed in another environment and tested, Production
environment: the application is deployed to be accessible to the public. [56]

Figure 5.5 illustrates how the backend analyser is deployed to a Maven repository. The
different environments are separated by a vertical line, and arrows indicate the flow
between the different environments. The code is stored on the development platform
GitHub9. When pushed to GitHub, the unit tests are run automatically using GitHub
Actions10. In this case, GitHub Actions act as a development environment, and this has
been very helpful before deploying to Maven. Several times the tests have worked locally
but not in a different environment. GitHub sends feedback when the tests fail. When
deploying the analyser to the Maven repository, tests are run locally before deploying.

9https://github.com/
10https://docs.github.com/en/actions

68

Local

backend-
analyser

Unit tests

GitHub repository

backend-
analyser

GitHub actions

Maven repository

backend-
analyser
artifact

Figure 5.5: Development cycle for master-thesis-backend-analyser

In Figure 5.6, we can see how the API is deployed to Heroku and that it deploys together
with the master-thesis-backend-analyser-artifact from the Maven repository in
Figure 5.5. The different environments are separated by a vertical line, and arrows in-
dicate the flow between the different environments. When we push the code to GitHub,
it can be accessed from Heroku and deployed in the development environment. The
integration tests are created sending POST requests to the API using Postman11. Post-
man scripts [57] allows us to make assertions based on the response from the API. The
integration tests are run before we promote the artifact to the production environment.

Local

backend-
analyser-API

backend-
analyser-API

GitHub repository

backend-
analyser-API

backend-
analyser
artifact

Heroku development
environment

backend-
analyser-API

artifact

backend-
analyser
artifact

Postman tests

Heroku production
environment

backend-
analyser-API

artifact

backend-
analyser
artifact

Figure 5.6: Development cycle for master-thesis-backend-analyser-API

11https://www.postman.com

69

Changelog and semantic versioning

Separating the analyser and API from each other comes with the advantage that we can
easily replace the analyser. However, some issues are worth noting when developing these
separately. The API does not note changes made to the analyser before the analyser is
redeployed and the API has changed the version number for downloading the analyser.
Use of semantic versioning [58] and keeping a changelog makes this issue easier, where
we can roll back a non-working version to the latest working version of the analyser.
The semantic version follows the pattern MAJOR.MINOR.PATCH where a major version is
a breaking version, the minor version is a new feature, and the patch version fixes a bug
[58]. The need to reflect on the changes and how it affects the usage of the analyser
before deploying was a great learning process and helped organise the changelog and
version numbers.

5.4 Distribution strategy: Software as a Service or
local distribution

To deploy an application as a SaaS has one major benefit: it can be accessed through
a browser, making it easily accessible. There are some drawbacks, however: we need
internet access to use the application and using remote API’s between the client and the
server could lead to timing issues due to the transfer of data. Another aspect to consider
when creating a SaaS is scaling. When many users simultaneously use the application,
we need to be able to scale out [50].

Initially we created plugins for both IntelliJ and Eclipse with the desired functionality
for the students, with highlighting in the editor to locate the error in addition to display
the error message in the source code. IntelliJ and Eclipse are the IDE’s the students
normally use in INF101, but this semester it was also recommended to use Visual Studio
Code. After an informal talk with one of the teaching assistants for the semester, it
became apparent that most of the students used Visual Studio Code because they were
used to it from the Python course before. Consequently, we discarded the plugins and
created a web-application instead. This section discusses some pros and cons with using
a plugin to distribute the software locally versus distribute the software as a service, and
shows how the core package can be used in a plugin for further work.

For the specifics of the problem where we want to analyse code, we have a problem when
using SaaS: the analyser tool is detached from the development environment where the
code that should be analysed resides. Unless the students would upload the whole project
to the web-page, all the dependencies for the file that is being analysed has to be in the
respective file. This would be solved by doing a local distribution, where the users
can download a plugin for their IDE, the developer environment, giving access to the
project files. In addition to resolving dependencies, the students can interact with the
errors in a known environment. Another aspect that is resolved when using a plugin to

70

distribute the software is scaling. However, by deploying the software using PaaS the
scaling is handled automatically. A problem with distributing the software locally would
be possible security issues if the users do not update when new versions are available, or
having to adopt the software to different platforms. Even though the SaaS model have
some drawbacks as mentioned for this problem, we created a web-application to evaluate
Uncoil such that hopefully more students would want to try it, not having to download
anything.

Figure 5.7 shows an ideal architecture of our tool, showing how Uncoil can be extended
using both plugins and a web-interface. The core package, master-thesis-backend-
analyser, could be bundled in an IntelliJ plugin or Eclipse plugin by downloading it
with a build tool. A Visual Studio Code plugin would have to use the API, because it is
written in JavaScript or TypeScript [59]. An IntelliJ plugin with the architecture as in
Figure 5.7 has been created to enable further work and illustrates how the analyser can
be used.

JavaParser allows to add a context for resolving dependencies [40], but after an attempt
to implement this we discovered some problems causing us to drop the feature. Java-
Parser takes in a path or jar to where the dependencies resides [40], meaning we would
have to create new files containing the dependency code, as well as delete them after
analysis. We argue it would be bad practice to have this as a side effect to a plugin, as
we would not expect a plugin to save and delete files on the operating system. Possibly
a better way to resolve dependencies and allow for several files to be analysed could be
to use IntelliJ’s PSI (Program Structure Interface)12 interface to analyse the code, as
the same theory in section 4.4 is applicable here as well. However, this is left for further
work. The source code for Uncoil is open source (see Appendix A) together with the
other code bases for this project. Evaluation of the IntelliJ plugin and creation of the
Visual Studio Code plugin is left for further work. We could also have presented the
Eclipse plugin, but due to timing constraints this plugin have not been updated to be
compatible with the latest version of the analyser.

12https://plugins.jetbrains.com/docs/intellij/psi.html

71

Visual studio
code pluginIntelliJ plugin master-thesis-

web-frontend

Heroku

master-thesis-
backend-api

Heroku

Maven repository

master-thesis-
backend-analyser

master-thesis-
annotations

Figure 5.7: An example of how Uncoil-core can be used

72

Chapter 6

The evaluation of Uncoil

This chapter aims to answer

RQ1: What semantic errors do students need help with when transferring from Python
to Java?
RQ3: How can such a tool help students when transferring from Python to Java?

by letting students try to solve the errors and evaluate Uncoil using a survey. Uncoil
was pilot-tested by experienced Java developers to get early feedback. The rest of this
chapter represents the evaluation of Uncoil by the students.

6.1 Pilot testing
The pilot testing helped reformulate the questions in the survey and find some bugs with
Uncoil. The testers were recruited through informal conversations with co-students and
giving them a link with access to Uncoil and project with tasks containing the errors. The
testers were given no incentive to participate, but we still had five participants. Overall,
the pilot study gave valuable feedback for further developing Uncoil. For example, at
the time of the pilot testing we marked IFNO

BRKT as an error when there was no brackets,
not taking into consideration that it is legal to have one statement in the body without
brackets. One of the pilot testers pointed out this issue, further motivating us to focus
on the indentation of the body as a way to detect this error.

73

6.2 A mixed method study to evaluate Uncoil

6.2.1 Method
By letting the students solve the errors and use Uncoil if they have problems, we want to
get closer to an answer to RQ1 and RQ3. This mixed method study has an explanatory
sequential design [25], where we aim to gain more insight into what makes the errors
challenging to tackle and how Uncoil can help with the errors. We gave the students five
tasks containing at least one of the errors and asked them to fix the mistake(s) while
filling out an anonymous survey. The survey contained some introductory questions
followed by questions about the tasks and, in the end, some general questions about
Uncoil.

Using a Likert scale [60] with a scale from one to five, we measure how much each
participant knew Java and Python. By taking the mean values of these answers, we
indicate if we have the correct target group to evaluate Uncoil, expecting the mean value
for Java to be lower than Python. To indicate if the knowledge level of the students
affects the usage of Uncoil, we will define a weak student as one who answered less than
three on the Likert scale when asked how much they know Java and a strong student
as one who answered more or equal to three. We hope to get closer to an answer to RQ1
by asking if they had made a mistake before. We use the mode values [61] from these
answers as a descriptive statistics method to represent these numbers. We recognise that
the group is too small to do a statistical analysis of the data but find the representation
of data valuable for a discussion.

The students were asked to solve the errors, use Uncoil if needed, and solve the tasks
for themselves. By only using Uncoil when needed, we can indicate how challenging the
tasks were, getting closer to an answer to RQ1. We asked the students to fill in the survey
after each task to get a more reliable answer, keeping a fresh memory of the mistake. The
student is required to put more thoughts into their answers using open ended questions
[47], so the survey is created with some long text questions. For each task, the student
was asked to explain the error(s) such that we know if the student understood it, which
we believe can give us an indication if Uncoil is useful or not, contributing to an answer
to RQ3. By inspecting the qualitative answers manually, we aim to get closer to an
answer to both RQ1 and RQ3. We categorise the answers to why the students needed
help, looking for indications of NST as a reason. To get closer to RQ3, we inspect the
answers for why or why not the students found Uncoil helpful.

The students were unsupervised and could perform the study on their computers, adding
some limitations to the study. The students were unsupervised primarily due to Covid-
19, recruitment issues, and to let the students solve the errors in a known setting without
external pressure. We prioritised having an anonymous survey and letting the students
explore the errors in a familiar setting, hopefully contributing to getting honest answers
from the students. The qualitative answers were designed to act as an explanation for
the quantitative answers. Specifically, the follow-up question asked why the student

74

answered the previous question. We believe the quantitative data will be more reliable
by getting a reason why the students answered as they did.

Questions

We created questions to collect both quantitative and qualitative data, and the questions
are listed in Table 6.1 and Table 6.2, omitting the introductory questions and the question
asking what the mistake for each task was. Q1-Q6 are questions asked for each task. Q4
and Q5 were asked for each error for tasks with several errors. The last two questions,
Q7 and Q8, are asked to get more general feedback for Uncoil.

Table 6.1 lists the questions that are asked to find out if the error messages are needed.
Table 6.2 lists the questions that try to answer if the message was helpful.

Question Answer type

Q1 Did you use the ”get tips”-
button for this task? Yes or no

Q2 Was the task easy to
solve? Yes or no

Q3 Why or why not was the
task easy to solve? Long answer

Q4 Have you done this mis-
take before? Yes, no or maybe

Table 6.1: Questions to to find out if the error message is needed

75

Question Answer type

Q5

Did the message from the
”get tips”-button help you
understand the mistake in
the code?

Yes or no

Q6

Why or why not did the
message help you under-
stand the mistake in the
code?

Long answer

Q7
Overall, did you find the
messages from the ”get
tips”-button helpful?

Yes, no or sometimes

Q8 Why or why not did you
find the messages helpful? Long answer

Table 6.2: Questions to to find out if the error message is useful

6.2.2 Context
The participants were students taking the undergraduate INF101 Java based course at
the University of Bergen. The first response to the study was about six weeks into the
semester. At that time, according to the lecture plan given by the lecturer that semester
they should have learned:

• classes, interfaces, encapsulation, inheritance, composition, abstract classes

• memory locations and how to compare objects

• lists, tables and iterators

• abstraction and modularity, documentation, class diagrams, generics

• test-driven development

6.2.3 Recruitment
From the first response to the last, the study went over eleven days and had seven
responses in total. The students were first recruited on 05.02.22 via a letter on the
INF101 lecture site, inviting them to join the study. They were told some background
information about the study, that the survey was anonymous, how they could join, and
how long it was expected to participate. The first recruitment was around three weeks
after starting the semester, aligning with Tshukudu and Cutts [6]’s study. The students
were asked to send a mail if they wanted to join. While some students were interested,

76

none responded when they got access to the study. They were asked to give their response
to the survey within a week.

The first recruitment letter asked the respondents to join via mail because we wanted a
small group of students to test Uncoil before recruiting more students for a large scale
study. The thought that the students should be recruited by sending a mail was also
to allow for a control group if many participated. However, as time went by and none
responded to the survey, it became apparent that it would be hard to recruit enough
students for a large scale study.

After a week with no responses to the study, the students were motivated to participate
before 27.02.22 to win two cinema tickets. The first answer of the study was recorded
at 22.02.22. Having only one response by the end of the deadline, the deadline was
postponed. They were invited personally during a lecture three weeks after the first
recruitment letter to reach more students. They were informed about the project, that
their response would be anonymous, that they could win two cinema tickets and that the
deadline was by the end of the week, 06.03.22. The lecturers also posted direct links for
the study at the lecture site and Discord to participate, so the students did not need to
send a mail. The direct posting of links and personal recruitment was the most effective
recruitment method, giving six more responses.

It is not clear why so few students answered, but when reminding the first students to
answer, it was given an impression that the students had very little time and had a busy
schedule. Also, given that many got Covid-19 at that time, it might be that many had
low motivation and did not have the energy left to join. Similarly, Brækken [46] also
reports on difficulties getting students to join her study.

6.2.4 Setup
There were two setups for the study: one where the participants cloned a repository
containing the tasks, ran the code locally, and copied and pasted the code into Uncoil
if they needed help. The second setup was in the browser. The code was run from the
browser and integrated with Uncoil. The latter was created to lower the threshold for
the students to participate after weeks of unsuccessfully trying to recruit students. With
Uncoil behaving the same for both setups, we do not believe this makes a significant
difference in the results.

The web page the students gained access to when they participated was a very lightweight
editor, and Figure 6.1 is a screenshot of Uncoil. By pressing check code, the output
in the console would tell if they had solved the task or not, accompanied by the output
of the executed code. If a hint was needed, the student was told to press get tip, and
the error message for the task would be printed as shown in Figure 6.1. The student
could go back and forth between the different tasks. If they wanted to start over with
the tasks, they were asked to reload the page.

The link that was given to the students was a survey, where they would get access to

77

Uncoil and answer questions. They also had to consent to participate in the study and
that their answers could be used in this thesis. After they had submitted the form, they
would get access to register to win two cinema tickets.

For each task, there was at least one error, and the code for the tasks can be found in
Appendix C. The errors were distributed as follows:

• Task one: IFW
SEM

• Task two: NOEQ
METH and EQ

OP

• Task three: INT
DIV

• Task four: BIT
OP

• Task five: IFNO
BRKT

The tasks were not randomised.

Figure 6.1: Uncoil with the first task after pressing get tip

6.2.5 Classification of errors
We will make use of the classification of enhanced error messages proposed by Brækken
[46], and we will use this classification on the error messages to find out if they are needed
or useful. The classifications she proposes are:

• not needed

• needed

• not useful

• useful

78

The classifications have been adapted by considering an error message needed if any of
the following:

• the task was difficult to solve by more than half of the students

• the mistake has been done before by more than half of the students

• the error message was needed to solve the mistake by more than half of the students

An error message is classified as not needed if none of the above applies.

An error message is considered useful if any of the following:

• the error message helped more than half of the students solving the mistake

• the error message helped more than half of the students understand the mistake

An error message is classified as not useful if none of the above applies.

An error can be useful, but not needed. It can also be needed, but not useful
[46].

6.2.6 Results
All the answers from the students can be found in Table B.1.

First of all, we want to ensure we have evaluated Uncoil on the target group, namely
beginners students in Java who know Python beforehand. To indicate this, we take the
mean value of the answers from the questions asking how well they know the different
programming languages and expect the mean value for Java to be less than the mean
value for Python.

Question Mean value
How well do you know Python?
(1=not at all, 5=very well) 3.9

How well do you know Java?
(1=not at all, 5=very well) 2.6

Table 6.3: Mean values of students answers for how well they know Java and Python

As expected, we can see that the mean value for Java is less than the mean value for
Python, and we have an indication that we have the correct group to evaluate Uncoil.

The questions asking the students what causes the errors allowed us to see if they have
understood the error. We found only one unsatisfactory answer to the explanation of the
error, and this was for BIT

OP . The student did not know why it was an error, even though
the student used Uncoil to solve the task. However, the student says that Uncoil helped

79

by finding the error and marked it as helpful: “[...] tool pointed it out very precisely and
made me see it”. This student used the local setup of the study.

The answers showed that many of the students had done most of the errors before, and
therefore it was easy for them to solve at the time of the study. Consequently, few
students needed Uncoil to solve the different tasks. As seen in Figure 6.2, Uncoil was
barely used by the students, except for the second task where the EQ

OP and NOEQ
METH errors

were present. We note that most of the students here give a reason that they had trouble
implementing the equals method.

0 1 2 3 4 5 6 7
Task five: IFNO

BRKT

Task four: BIT
OP

Task three: INT
DIV

Task two: NOEQ
METH and EQ

OP

Task one: IFW
SEM

”The answer was easy
when I discovered
the syntax error”

”[...] forgotten how to turn
an integer into a float.”

”Did not remember
how the equals method

worked”

”Did not notice semicolon.
First thought I had to

change if (value) to e.g.
if (value == true)”

NO

NO

NO

NO

NO

YES

YES

YES

YES

Number of participants

Ta
sk

w
ith

er
ro

rs

Figure 6.2: Students answers to Q1: Did you use the ”get tips”-button for this task? and
Q3: Why or why not was the task easy to solve?. Presentation is inspired by [62]

Even though the students did not need to use Uncoil to solve IFNO
BRKT, one student said,

“Provided a better understanding of how Java reads the code.”, showing how Uncoil can
be useful even not needed. We also find the same type of answer when looking at the BIT

OP
error, where the student who did not need to use Uncoil still found it helpful: “Checked
get tips after I solved the problem, understood more about the difference between & and
&&”.

One student found task one, IFW
SEM, difficult, while another student found task four, BIT

OP ,
to be difficult. Three students answered that they thought task two with EQ

OP and NOEQ
METH

was hard to solve, and all gave the same reason: they struggled with implementing the
equals method. The fourth student in Figure 6.2 that used Uncoil to solve task two said
it was not difficult, but had trouble understanding the task. Similar to IFW

SEM and BIT
OP ,

only one student said task three, INT
DIV, was difficult to solve. The student tried casting

to float first. The other two students in Figure 6.2 that used Uncoil to solve task three
reported that it was easy to solve, still one had trouble placing the parenthesis and the

80

other did not remember how to cast to a double.

The splitting of students gave three strong students and four weak students. Figure 6.3
shows if the different groups used Uncoil to solve the tasks, the strong students are
shaded. We see that all the students who used Uncoil to solve task one and task two
are weak students. Two weak students used Uncoil to solve task three, while only one
strong student used Uncoil to solve this task. One strong students used Uncoil to
solve task four. We have omitted IFNO

BRKT from Figure 6.3 because no student used Uncoil
for this task. The strong student who needed Uncoil to solve the third task said that
float was tried first, while the weak students did not remember how to convert to double
or place the parentheses.

0 1 2 3 4
Task four: BIT

OP

Task three: INT
DIV

Task two: NOEQ
METH and EQ

OP

Task one: IFW
SEM

Number of participants using Uncoil

Ta
sk

w
ith

er
ro

rs

strong students
weak students

Figure 6.3: Distribution of strong and weak students who used Uncoil

To investigate if any of the students transferred the semantics from Python to Java,
causing the error to be difficult, we divide the answers for Q3 into four categories.
Unnoticed: The student did not notice the mistake but solved it after finding it. Un-
solved: The student saw the error but needed help solving it. Task: The student had
trouble understanding the task. Transfer: The student did not think it was a mistake
because it reminded them of Python.

Of those students who used Uncoil, we classify the reasons for why in Table 6.4. Note
that none of the answers from Q3 can be classified as a possible problem of transfer from
Python.

81

Unnoticed Unsolved Task Transfer Total used the tool

Task one: IFW
SEM 1 0 0 0 1

Task two: NOEQ
METH and EQ

OP 0 3 1 0 4

Task three: INT
DIV 0 3 0 0 3

Task four: BIT
OP 1 0 0 0 1

Task five: IFNO
BRKT 0 0 0 0 0

Table 6.4: Categories of why the students who used Uncoil found the tasks difficult.

We will decide if an error is needed mainly by looking at if many participants have done
them before and mark an error message as needed if more than half of the students had
done it before. Figure 6.4 shows the mode values of Q4, aiming to know if the error has
been a previous problem for the students. These numbers are also supported by reasons
given by the students explaining why a task was easy to solve, e.g. “I have struggled
with this mistake earlier in the semester [...]”. For every error except IFNO

BRKT and IFW
SEM, we

have found a text answer that mentions they have done the mistake before.

For Figure 6.4, on the x-axis, we have the errors together with the mode for that error
below. The y-axis is the mode value, which tells how many participants voted for that
answer. If the answer is positive, the bar is coloured green. If negative, the bar is
coloured red. Generally, if we have a large mode value, the group agrees because many
participants voted equally (on the mode). If we have a minor mode or several modes,
the group does not agree because they have voted differently. The participants agree
that EQ

OP has been a mistake they have made before. We also notice that the participants
agree that IFW

SEM error is a rare error.

82

BIT
OP
Yes

IFW
SEM
No

INT
DIV
Yes

IFNO
BRKT
Yes

NOEQ
METH
Yes

EQ
OP
Yes

0

1

2

3

4

5

6

7

3

5 5

3

6

7

3

5

3

6

7

5

Error
Mode

Fr
eq

ue
nc

y
of

m
od

e

Figure 6.4: Mode values of students answers to Q4: Have you done this mistake before?

Generally, if we classify the errors needed or not needed based on subsection 6.2.5,
we present the table

Error Needed
IFW
SEM No

EQ
OP Yes

NOEQ
METH Yes

INT
DIV Yes

BIT
OP No

IFNO
BRKT No

Table 6.5: Needed or not needed error messages

83

Figure 6.5 shows how many of the students found Uncoil helpful by splitting the students
into two groups, strong students are shaded.

0

1

2

3

4

5

6

7
”Did not use tips”

”I managed most of
them without, but

they probably would have
helped if not”

”clear messages with
additional information

available to
explain why things

work or dont”

”[...] ”More info?” - links
were very useful [...]”

N
O

SO
M

ET
IM

ES
Y

ES

Pa
rt

ic
ip

an
ts

weak students
strong students

Figure 6.5: Students answers to Q7: Overall, did you find the messages from the ”get tips”-
button helpful? Presentation is inspired by [62]

The strong students did not find the error messages as helpful as the weak students.
One of the students who said the tips were helpful said: “The tips explained the problem
very well. In particular, ”More info?” - links were very useful. It gave a very good
understanding of how things worked. Even on the tasks I managed, I could look at the
tips and learn even more / get a deeper understanding.”. The main reason why the
participants answered that they did not find Uncoil helpful was that they did not use
it. We have two responses from where Uncoil was used but reported to be not helpful:
EQ
OP and INT

DIV. For the EQ
OP, the student does not give a reason for why. For the INT

DIV the
student replied: “I understood where the error was right away, but needed ”get tips” to
remember how to change from int to float.”. The students who did not need help with
the task containing EQ

OP and NOEQ
METH are the strong students, and the feedback from these

students were generally that they had done the mistake before or learnt about it at this
time.

84

Even though it felt natural to explain both NOEQ
METH and EQ

OP at the same time, this made it
harder to analyse the results. Due to inconsistency in the answers to Q5 and the corre-
sponding qualitative question Q6, we discarded the results for Q5. As a consequence, the
classification of errors as useful or not useful is inconclusive. However, by analysing
the results for Q6 we get the impression that Uncoil was helpful even though not needed
at the time. One student found Uncoil very helpful for understanding EQ

OP: “Made it eas-
ier to understand the difference between == in Java and Python. Better understanding
of when to use .equals () and when to use ==.”.

6.2.7 Discussion
Even though most students did not need Uncoil at the time, the main impression is that
it is useful for the weak students. Furthermore, our results indicate that the students
have done most of the mistakes before, so we believe Uncoil would be needed and useful
earlier in the semester.

The fact that we saw no indication in Table 6.4 of semantic transfer was unexpected to
us, because this contradicts with other similar studies [6], [8]. We believe the results are a
cause of having conducted the study later than intended, indicated by students answering
that they had made the mistakes earlier in the semester. Tshukudu and Cutts [8] found
indications that students transfer the semantics of the two languages two weeks into the
semester, and the follow up study [6] found this for three weeks. However, at the similar
time our study was conducted, six weeks into the semester, it is found that students
had troubles with objects [8]. The strong students in our study had no problems with
NOEQ
METH and EQ

OP, while the weak did, supporting Tshukudu and Cutts [8] that students
have problems with objects.
NOEQ
METH is a new concept for the students, so the result for this error is somewhat expected.
The students who did not need help with this task were the strong students, indicating
that the error messages might be useful for students that have trouble following the
course. We see this in Figure 6.5 where we split the student into two groups. This is a
result similar to Aalvik [63], who also found that the weaker students had more use of the
VisAST tool than the stronger students. The results for EQ

OP being needed are supported
across different studies: Rosbach [16] found that the Wrong condition mistakes were the
most common among students, Tshukudu and Cutts [6] found students had problem with
this error when transferring from Python, Hristova et. al. [2] found this error regarding
strings, and Brown and Altadmri [15] found that the error regarding strings is the 6th
frequent error the students make when ranking Hristova et. al. [2]’s list. Comparing the
focus group result with the students’ responses, we see the same trend when deciding if
EQ
OP is a frequent error: all participants have either made this mistake or seen it before.
We indicate that the students need help with the EQ

OP error.

Having found no previous research mentioning the NOEQ
METH error, we have less evidence

to tell if students need help with this error. Nonetheless, this error was proposed by a
lecturer in Java during the focus group due to the experience that Java students had

85

persistent troubles with the equals method throughout the course. The results from
our study support this, with six students saying they had made this mistake before in
Figure 6.4. The qualitative answers from three students who said they struggled with
implementing the equals method also strengthened this result. From this, we indicate
that the students need help with the NOEQ

METH error. We do not get a clear enough picture
of if or how Uncoil helped the students with the NOEQ

METH error.

Finding the INT
DIV or a variation of it mentioned across three different studies [2], [6], [12]

we have some indication that this is a common error, and this is strengthened by our
study. The feedback for INT

DIV gives an impression that the suggestion helped solve this
error, supporting the results from [45]. The less notable errors we think the students
need help with are BIT

OP and IFNO
BRKT, with less than half of the students report they have

done it before. One student mentioned that the BIT
OP error was made before as a text

answer, while none of the students mentions this for the IFNO
BRKT error.

A surprising finding is that no students used Uncoil to solve the IFNO
BRKT error. This

was the last task, which might have affected the answers somehow. The text answers
also supports this, saying that it was similar to IFW

SEM and therefore easy to solve. The
randomising of tasks could, in hindsight, be solved by creating a separate page for each
task and attaching the respective link to the question in the survey. However, there was
no time to conduct the study again and recruit new students, so this is left for further
work. We do not believe the lack of randomisation affected Q4 because it does not ask
to solve the error. Because the other errors are not similar like IFW

SEM and IFNO
BRKT, we also

believe these results were not significantly affected by not randomising the tasks. We
know that Rosbach [16] found that IFNO

BRKT, as a Grouping problem, does not occur that
often among the students, aligning with our results from asking if the error was made
before. In the focus group, half of the participants had not seen the BIT

OP error before, and
Brown and Altadmri [15] ranked this as the 12th most frequent error among Hristova
et. al. [2]’s list. This concurs with the findings in this study in that BIT

OP is less frequent.
Even though both BIT

OP and IFNO
BRKT are less frequent, being the cause of two real-life errors

as mentioned in section 1.1, we have indications that the errors should be focused on
when teaching novice Java students.

An interesting finding was that one of the students used the tool to solve BIT
OP but could

not answer the cause of the error, indicating that the error message did not help in
understanding the problem. It is mentioned by [64] that the programmer might read the
first part of an error message, look at the code again and try to correct the mistake. This
might explain why the student did not know the cause: the student read where the error
was and added the extra operator without any further ado. However, this case could
indicate that the student found the error message too long or hard to read, agreeing
with [64]’s results that natural language errors can be harder to read than errors in code.
Nevertheless, the student found the message helpful by answering that it helped find the
bug.

Based on the literature review for finding relevant errors we got an indication that IFW
SEM

86

would be a relevant error. During our studies, both the result from the focus group and
the mixed method study contradicts this assumption and indicate that the IFW

SEM error is
a rare error. In Brown and Altadmri [15] it was counted the number of occurrences of
semicolon after loop structures, giving a larger scope and possibly a higher frequency
than IFW

SEM alone, so we believe this is the reason for the contradiction. Only one student
had trouble with this error because it was unnoticed, and five students said they had
not made this mistake before in Figure 6.4. Even though we found that the IFW

SEM error
is not relevant for students, there might be other variations of the error that would be
relevant, like a while or for structure, mentioned by the focus group. We indicate that
the students do not need help with the IFW

SEM error, partly contradicting Hristova et. al.
[2]’s result.

Since the students barely needed Uncoil, it is difficult to conclude what error messages
are helpful. However, we have indications that the students might learn from using it,
even though they did not need it at the time.

87

Chapter 7

Discussion

By doing a literature review, focus group and a mixed method study our collective results
suggest that novice Java students need help with the errors EQ

OP, NOEQ
METH and INT

DIV at an early
stage when learning Java. Some students might also benefit from error messages for BIT

OP
and IFNO

BRKT even though we have marked them as not needed in our study. We also indicate
that the students do not need help with IFW

SEM. We found no indications that the students
transfer the semantics from Python to Java at the time of the mixed method study. We
found that the errors can be detected by doing semantic analysis on the AST and that
bytecode analysis is not suitable for finding these particular errors, but it is likely to be
useful in other cases. Uncoil can be distributed as a SaaS to make it easily available or
as a plugin presenting the error in a known environment. Based on previous research
[45], [46], [47], [48], we developed a template for the error message’s structure, containing
position, the cause of the error, how it relates to Python, a suggestion to solve the error
and a link with more info. Based on our evaluation of Uncoil, we found that it helped
some students to gain more knowledge about the difference between Python and Java
and that it helped with solving some of the errors using suggestions.

Our results for RQ1 strengthen some of the results for Hristova et. al. [2], while it
weakens some. First off, we feel confident that the EQ

OP error is a problem for the students
and that we should extend the error from only considering string comparisons to include
all objects. The latter is also supported by Tshukudu and Cutts [8], finding that students
struggle with array equality as well in Java. Some of the errors Hristova et. al. [2]
suggest students make, like IFW

SEM, are weakened by our studies. Considering the results
from Brown and Altadmri [15], our results might be off because we have chosen a smaller
scope of the error, focusing only on the if-statement. Further research should include
other control constructs to get a reliable result. To our surprise our results contradict
previous research [6], [8] that suggests students transfers their semantics from Python
to Java in a negative way. Our results indicate that none of the students transferred the
semantics six weeks into the semester. However, our study was performed three weeks

88

later than Tshukudu and Cutts [6], giving a plausible explanation for the contradicting
result. Our results indicate that the students have had previous problems with the errors,
in turn supporting Tshukudu and Cutts [6].

To answer RQ2 on how to develop Uncoil, we developed a tool with the desired func-
tionality. We can use Uncoil both as a web application and plugin by providing a core
functionality deployed as a Maven dependency. A proper editor is out of the scope of this
thesis, but Uncoil can easily be used by other applications like TurtleDuck [65], an online
learning environment, or online IDEs such as Replit1. We provide a demonstration of
Uncoil used by TurtleDuck in Appendix A. Based on previous studies, we focus on the
structure of the error message, creating a suggestion and not having a too long error
message. We saw in section 4.1 that IntelliJ generates a warning for some of the errors.
This provides an alternative for presenting the error messages by highlighting code in
the editor to notify the programmer, and shows another downside to developing a web
application instead of a plugin. Highlighting was initially implemented in the plugins.
Using visual representation of the error, like highlighting, helps improve the response
time for the students [47], and highlighting is used in [22] as a way to show the errors.

To answer RQ3, we conducted a mixed method study on seven students, and even though
Uncoil was not needed at the time, the primary impression is that it is still useful. Similar
to Aalvik [63], we found that the weak students found the messages helpful. Another
way to evaluate Uncoil and test the errors on students could be to do a pre and post
test with the errors and compare the results. This has been done in previous studies
[20], [22], to evaluate tools with similar functionality as this tool. Since our study
was conducted later in the semester than planned, the pre and post-test study design
might not have been ideal because most students did not use Uncoil to solve the tasks.
Moreover, recruiting students could be more complex because the study would be more
comprehensive. We suggest to do a pre and post-test of Uncoil earlier in the semester
for further work.

7.1 Limitations and threats to validity
The focus group was conducted to discover what errors found at the time might be
relevant and discover more relevant errors. The problem description was quite general
at the time. Afterwards, it was narrowed down to a more specific problem asking how
students handle semantic errors when going from Python to Java. Thus, the INT

DIV error
was not found until after the focus group, and some errors that were presented to the
group were no longer relevant. In an ideal situation, we would run a new focus group
when we had more knowledge about the subject and had found more relevant errors. Due
to time limitations, there was no time to hold a second focus group. Nevertheless, the
results from the group were beneficial to strengthen the results from the mixed method
study, where we see that both groups agree that IFW

SEM is not needed, while EQ
OP is needed.

1https://replit.com/

89

Additionally, the focus group helped with eliminating some errors, like the ST
OB and IGN

RET
and adding more relevant errors, NOEQ

METH and IFNO
BRKT.

After analysing the data from the mixed method study, it is clear that the study should
have been done earlier in the semester. Even though students were recruited about three
weeks into the semester, none of the students answered until three weeks later. The
students were unsupervised during the study because of Covid-19, and the thought that
some students would be nervous about meeting in person. Also, we wanted the students
to be comfortable and not stressed by being observed when doing the tasks. The students
were asked to solve the tasks themselves, but we can not guarantee this since they were
unsupervised. One of the students answered ”we” in one of the text answers, but we can
not know if this is a way of speaking or a participant that got help. Regardless, if the
participant collaborated and still got stuck, we think this speaks in favour that the errors
are a problem for the students. However, there should be no motive for the students
to not try for themselves because they were informed that the answers were anonymous
and had no effect on their grades. The students were asked to fill in the form after trying
to solve a task and only use Uncoil for help, but by not supervising the students we do
not know if they actually used the tool, or if they gained knowledge elsewhere during
the study. By inspecting the qualitative answers though we do get the impression that
they indeed used the tool when reporting it.

Because the tasks were given in the browser, some students solved them in an unfamiliar
environment. The editor in the browser only contained non-highlighted code and line
numbers, causing the mistakes to be more difficult to notice than in a familiar environ-
ment. As we saw in Table 6.4 two students had problems with seeing two of the mistakes,
and two students reported that it was challenging to place the equals method when im-
plementing it. Interestingly, the participant who did not notice the BIT

OP error used the
local setup for the study. Implementing the functionality in a plugin or developing the
web prototype further would have eliminated the variable of not having syntax high-
lighting. It would also allow the whole project to be analysed, possibly making the tasks
easier to work with for the students. However, some disadvantages might also arise, like
downloading the plugin, and the threshold for participating in the study might be higher.
Some students might not feel comfortable with cloning repositories, causing them not
to participate. By allowing the students to solve the tasks in the browser we believe we
have covered a larger span of the students, especially the weaker ones, than we would
have done by asking them to set up the tasks locally.

A better way to measure how well a student knows Java would be to collect their grades
from the exam, as previous studies on students have done [46], [63]. This was not possible
because the deadline for this thesis was before the students got their grades. Additionally,
we wanted the study to be anonymous to get honest answers and maintain privacy
issues. Because the responses to how much they know each programming language
are self-reported, there is some insecurity about the correctness of these answers. The
inconsistency of the answers shows that a mixed method was a good choice for this study,

90

unlike other studies that have experienced difficulties using this method to evaluate tools
[46]. A qualitative follow-up question to the quantitative question acted as a validator
for the quantitative question. For example, where the students have answered if they had
made a mistake before, we found this mentioned as a reason why the student thought
the task was easy, giving more confidence to the quantitative answers. Vice versa, some
of the qualitative answers weakened the quantitative responses, causing us to discard
some of the answers.

It is possible that a ”think out loud” study [66] like others [8], [9], [11], [22], [46] have done
would give more informative answers, because the qualitative answers in our study are
based on the students ability to write. While think out loud studied might have given
us more information, they have some limitations in regards to the student’s comfort
level and how they express their thoughts and the collection of data can be very time
consuming [66]. Even though our unsupervised study design gives more insecurity, we
believe it benefited from letting the students solve the errors in a known setting. Some
students may feel more comfortable by writing their thoughts instead of saying them,
and our belief is that by having an anonymous survey we will get honest answers from
the students, not being afraid to give a wrong answer.

In an ideal setting and with more time we would have conducted the study again, making
changes as follows:

Separate all errors into different tasks. Having both EQ
OP and NOEQ

METH in the same task
made it challenging to analyse the answers and give a clear result.

Rephrase Q5 to ask whether Uncoil helped solving the error or not. Rephrasing
this question would have made the results clearer.

Randomise the errors. It is hard to tell if the results for IFNO
BRKT is caused by being the

last task.

Control group. If we had enough students it would be ideal to set up a control group
to compare the results.

Conduct the study in a familiar environment to the students. The tasks were
given in a browser with no highlighting. Therefore we may have false positives if
Uncoil was needed.

Conduct the study earlier. Based on the answers the students did not have troubles
with the errors this far in the semester, so an earlier study can give a more accurate
picture of whether the errors are needed.

Unfortunately, there was not enough time to conduct a new study, and the results of
this study already show that the students know the errors at this time. Therefore, a new
study on Java novices, preferably with the corrections mentioned above implemented, is
left for further work. Even though the mixed method study has several flaws, it provides
valuable insight in how the students think when they solve the errors and if the error
messages provided helped them. Furthermore, we chose to present the study with the

91

corrections as guidelines for further work. To add up for the flaws in the mixed method
study, we see that the focus group and mixed method group participants generally agreed
about the different errors, strengthening our result. Additionally, the qualitative answers
from the students build more confidence in the quantitative data.

92

Chapter 8

Related work

Looking at previous work [6], [8], [9], [10], [11] on how students or programmers transfer
to a new programming language has been crucial to assuming that students experience
problems with the transfer. To investigate this topic, Tshukudu and Cutts [8] and Fix and
Wiedenbeck [11] have performed experiments where they ask students to choose different
options to pair code or solve a task, with some of the options containing concepts from
the previous language. Shrestha et. al. [17] have examined StackOverflow posts to
get closer to how programmers transition to a new language. Tshukudu and Cutts [6],
as a follow-up study to [8], asked students to output the result from code examples
in Python and Java. Both [8] and [6] found that the students transfer semantics from
Python to Java at an early stage and that this happens for array equality, string coercion,
string multiplication and integer division. Tshukudu and Cutts [8], Scholtz [9], Fix and
Wiedenbeck [11] records the students screen or ask them to think out loud, or both, when
the students solve a problem. Unlike the studies mentioned examining NST between
programming languages, we ask the students to solve tasks with existing bugs. In the
first experiment by Brækken [46], though not aiming to find semantic transfer, she also
let students solve errors to evaluate her tool. Like the latter study’s first experiment, we
let the students solve the errors unsupervised and instead of thinking aloud, we collect
text answers. This was because of the difficulty of recruiting students and Covid-19, but
we also believe our study benefits from not putting the students in an unknown setting.

When looking at how [9], [10], [11], [20], [21], [22], [46], and [67] have evaluated a tool
on students, we see that mainly qualitative methods like screen recording and thinking
out loud protocol studies have been used. Holvitie et. al. [20] and Shrestha et. al. [22]
have performed a pre and post test to evaluate ViLLE and Transfer Tutor, respectively.
Brækken [46] did both a mixed method study and a think out loud study, while Rigby
and Thompson [67] did a mixed method study to evaluate Gild. Unlike in our mixed
method study, Brækken [46] found that the qualitative data in the mixed method study
was hard to obtain. This might be due to a different study design. While Brækken

93

[46] asked for feedback from the students in the tool, we asked for this in a separate
survey. Nevertheless, a major benefit of giving feedback integrated with the tool is the
possibility of recording if the students had used the tool or not, eliminating some of the
uncertainty in our study. Additionally, Brækken [46] had more students in the mixed
method study and therefore allowed for a control group. Similar to our mixed method
study, Krpan et. al. [21] used a short anonymous online form to measure what the
students thought of their tool. As mentioned in chapter 7, the study design of a ”think
out loud” was not chosen due to Covid-19, getting honest answers from the students and
the time-consuming task of collecting data.

To create Uncoil, we used a static analysis tool, and this has also been done to find
similar errors by Hristova et. al. [2] creating Expresso and Flowers and Carver [19] cre-
ating Gauntlet. We tried without success to download and test Expresso and Gauntlet.
The papers [2], [19] were written in 2003 and 2004, respectively so this is perhaps not
unexpected. Uncoil has been created with ease of access in mind by being available in
the browser and as a plugin. Uncoil can easily be further developed using the tool’s core,
a Maven package. Unlike Uncoil, Expresso and Gauntlet, one paper has used dynamic
template matching models [18] to give feedback to students on semantic errors. Another
[11] has used artificial intelligence to give solutions to what the code should do explained
in a natural language for the students. Given that both Expresso and Gauntlet used
static analysis to find some of the errors in this thesis, we adopted a similar approach.

While Brækken [46] enhance existing error messages and Hristova et. al. [2] and Flowers
and Carver [19] provide error messages for both syntax and semantic errors, Uncoil
focuses on the transfer from Python to Java. We have some tools [11], [20], [22], [21],
that focus on transfer between programming languages, while only one of them, ViLLE,
from Holvitie et. al. [20] can transfer from Python to Java. ViLLE allows the student
to see a program in different languages side by side and observe the behaviour. It does
not appear to inspect the code when the student writes the code but provides a tutorial.
Uncoil is used during development to help the students, even after a tutorial. We believe
that by pointing out the error while the student experiences it, they will learn it better.
Additionally, even though a student can observe the different behaviours using ViLLE,
it might not be apparent to the student why it behaves differently.

Shrestha et. al. [22] created Transfer Tutor to help transfer from Python to R. Similar
to Uncoil, Transfer Tutor only focuses on one error at a time. However, Transfer Tutor
also points out the positive transfer from Python to R. We did not prioritise the positive
transfer in this thesis due to previous research [6], [8] indicating this is not a problem
for the students. Both ViLLE and Transfer Tutor allow the student to view the new
and old language code side by side for comparison. While this was a feature considered
when developing Uncoil, we prioritised creating a suggestion on how to solve the error.
Different from the others mentioned, Krpan, Mladenovic and Zaharija [21] developed
Snap! to transfer from a block-based language to C or Python by translating the block to
the target language. In the early phases of this thesis, a similar approach was considered.

94

However, it was discarded due to similar technology already existing1 and the thought
that students would learn less Java if they could transfer the Python code. Fix and
Wiedenbeck [11] created ADAPT (Ada Packages Tool) to help transfer from a procedural
language to Ada.

1https://www.jython.org/

95

Chapter 9

Further work

Based on the findings in this study, we propose the following further work:

• Conduct the mixed method study with the corrections as discussed in chapter 7.
The main factor would be to do the study earlier in the semester. It could also be
done a pre and post test to evaluate Uncoil.

• Evaluate the plugin in IntelliJ created in this thesis.

• Use Uncoil-core to create other plugins.

• Develop Uncoil-core to detect more errors and ignore all the false positives. For
example, interesting semantic errors could be the dangling else problem as an
extension of the IFNO

BRKT, or the overflow and wraparound of numbers in Java.

• Continue researching the error messages found relevant in this study. More param-
eters can be looked at, for example, time to fix and frequency of the errors.

• Create a similar tool for experienced Java developers, possibly integrated with
GitHub. One possibility could be to analyse the code of a pull request before
allowing merge or before promoting it to production. Alternatively, adapt Uncoil-
core to use different strategies for the error messages based on different user groups.

As a contribution to further research we provide two datasets from the focus group and
an evaluation of Uncoil, a Maven package and API to analyse source code, a collection of
semantic errors relevant to students and at last the source code Appendix A. For further
work, it is recommended to download the Maven package: master-thesis-backend-
analyser that contains the core functionality of the application. Documentation is
found in the repositories at GitHub at Appendix A.

96

Chapter 10

Conclusion

The initial questions asked were:

RQ1: What semantic errors do students need help with when transferring from Python
to Java?

RQ2: How can we develop a tool to automate feedback for semantic errors when trans-
ferring from Python to Java?

RQ3: How can such a tool help students when transferring from Python to Java?

By performing a literature review in section 3.2 and a focus group in section 3.3, we
found relevant errors to detect when developing Uncoil. In section 4.1 we found some
limitations to existing tools, lacking warnings for errors we believe is important for a
novice Java student. To fill the gaps found in section 4.1 we have investigated how to
detect the errors both at the abstract level in section 4.4 and at the concrete level in
chapter 5. By gaining knowledge from previous research in section 4.5 we got guidelines
for how to present the error message to the students. Doing a mixed method study in
chapter 6 we aimed to evaluate if the students needed help with the errors found and if
Uncoil could help them.

RQ1. We indicate that the errors EQ
OP, NOEQ

METH and INT
DIV would be worth focusing on in

further research and should be addressed when learning Java. Even though not classified
as needed, we would recommend to detect IFNO

BRKT and BIT
OP as well. We found little

indication that the students needed help with the IFW
SEM, but the students might need help

with other variations of this error. We found no evidence that the students transfer the
semantics from Python to Java at the time of the study.

RQ2. We have seen that the feedback for semantic errors from Python to Java can be
automated by using a static analyser and provided a tool to do this. When presenting the

97

error message, we focus on structure, creating a suggestion and providing more info in a
link. Uncoil is developed with a core functionality as a Maven package and is therefore
easily distributed and accessible for usage and further development. Additionally Uncoil
is accessible through a web service, making it easily integrated into online tools.

RQ3. Our impression is that the students found Uncoil helpful, even though most of
them did not need it when the study was conducted. We note that the use of suggestions
in the error message and more info available seems helpful for the students.

Our study suggests that the students do not struggle with Negative semantics transfer
from Python to Java later in the semester, but they still need help with some of the
errors. Based on our findings, we believe novice Java students who know Python will
find Uncoil helpful at an early stage when learning Java to get help with the errors.

98

Bibliography

[1] A. H. Bagge and V. Zaytsev, “Languages, models and megamodels,” in
Post-proceedings of SATToSE 2014, V. Zaytsev, Ed., vol. 1346. CEUR, 2015, pp.
132–143.

[2] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and correcting
Java programming errors for introductory computer science students,” ACM
Sigcse Bulletin, vol. 35, pp. 153–156, 01 2003.

[3] P. Ducklin, “Anatomy of a “goto fail” - Apple’s SSL bug explained, plus an
unofficial patch for OS X!” https://nakedsecurity.sophos.com/2014/02/24/anatom
y-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/, 2014,
Accessed: 2022-01-12.

[4] A. T. Samsonsen, “Kunne ikke logge inn i Chrome OS p̊a grunn av kodefeil p̊a ett
enkelt tegn,” digi.no, 2021, Accessed: 2022-03-31. [Online]. Available:
https://www.digi.no/artikler/kunne-ikke-logge-inn-i-chrome-os-pa-grunn-av-kode
feil-pa-ett-enkelt-tegn/512109

[5] N. Jiang, “Semantic Transfer and Its Implications for Vocabulary Teaching in a
Second Language,” The Modern Language Journal, vol. 88, pp. 416 – 432, 08 2004.

[6] E. Tshukudu and Q. Cutts, “Understanding Conceptual Transfer for Students
Learning New Programming Languages,” 08 2020, pp. 227–237.

[7] D. J. Armstrong and B. C. Hardgrave, “Understanding Mindshift Learning: The
Transition to Object-Oriented Development,” MIS Quarterly, vol. 31, no. 3, pp.
453–474, 2007.

[8] E. Tshukudu and Q. Cutts, “Semantic Transfer in Programming Languages:
Exploratory Study of Relative Novices,” 06 2020, pp. 307–313.

[9] J. C. Scholtz, “A study of transfer of skill between programming languages,”
Ph.D. dissertation, The University of Nebraska – Lincoln, 1989.

[10] K. Walker and S. Schach, “Obstacles to Learning a Second Programming
Language: An Empirical Study,” Computer science Education, vol. 7, pp. 1–20, 01
1996.

99

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://www.digi.no/artikler/kunne-ikke-logge-inn-i-chrome-os-pa-grunn-av-kodefeil-pa-ett-enkelt-tegn/512109
https://www.digi.no/artikler/kunne-ikke-logge-inn-i-chrome-os-pa-grunn-av-kodefeil-pa-ett-enkelt-tegn/512109

[11] V. Fix and S. Wiedenbeck, “An intelligent tool to aid students in learning second
and subsequent programming languages,” Computers Education, vol. 27, pp.
71–83, 09 1996.

[12] I. T. Chan Mow, “Analyses of Student Programming Errors In Java Programming
Courses,” Journal of Emerging Trends in Computing and Information Sciences,
vol. 3, pp. 740 – 749, 2012.

[13] P. Jegede, E. Olajubu, A. Ejidokun, and I. Elesemoyo, “Concept–based Analysis of
Java Programming Errors among Low, Average and High Achieving Novice
Programmers,” Journal of Information Technology Education: Innovations in
Practice, vol. 18, pp. 49–59, 06 2019.

[14] J. Jackson, M. Cobb, and C. Carver, “Identifying Top Java Errors for Novice
Programmers,” in Proceedings Frontiers in Education 35th Annual Conference, 11
2005, pp. T4C – T4C.

[15] N. C. C. Brown and A. Altadmri, “Novice Java Programming Mistakes:
Large-Scale Data vs. Educator Beliefs,” ACM Transactions on Computing
Education, vol. 17, no. 2, pp. 1–21, Jun. 2017.

[16] A. H. Rosbach, “Novice difficulties with language constructs,” Master’s thesis,
University of Bergen, 2013. [Online]. Available: https://hdl.handle.net/1956/7167

[17] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: why is it
difficult for developers to learn another programming language?” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. Seoul
South Korea: ACM, Jun. 2020, pp. 691–701. [Online]. Available:
https://dl.acm.org/doi/10.1145/3377811.3380352

[18] M. Razali, S. Suhailan, M. Mohamed, and M. Sufian, “Online Programming
Semantic Error Feedback using Dynamic Template Matching,” International
Journal of Advanced Computer Science and Applications, vol. 12, no. 9, 2021,
Accessed: 2021-12-01. [Online]. Available:
http://dx.doi.org/10.14569/IJACSA.2021.0120936

[19] T. Flowers, C. Carver, and J. Jackson, “Empowering students and building
confidence in novice programmers through Gauntlet,” in 34th Annual Frontiers in
Education, 2004 (FIE 2004), 11 2004, pp. T3H/10 – T3H/13 Vol. 1.

[20] J. Holvitie, T. Rajala, R. Haavisto, E. Kaila, M.-J. Laakso, and T. Salakoski,
“Breaking the Programming Language Barrier: Using Program Visualizations to
Transfer Programming Knowledge in One Programming Language to Another,” in
2012 IEEE 12th International Conference on Advanced Learning Technologies,
2012, pp. 116–120.

[21] D. Krpan, S. Mladenovic, and G. Zaharija, “Mediated Transfer from Visual to
High-level Programming Language,” 05 2017.

100

https://hdl.handle.net/1956/7167
https://dl.acm.org/doi/10.1145/3377811.3380352
http://dx.doi.org/10.14569/IJACSA.2021.0120936

[22] N. Shrestha, T. Barik, and C. Parnin, “It’s Like Python But: Towards Supporting
Transfer of Programming Language Knowledge,” in 2018 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2018, pp. 177–185.

[23] M. L. Scott, Programming Language Pragmatics, 4th ed. Amsterdam: Morgan
Kaufmann, 2016.

[24] T. O.Nyumba, K. Wilson, C. J. Derrick, and N. Mukherjee, “The use of focus
group discussion methodology: Insights from two decades of application in
conservation,” Methods in Ecology and Evolution, vol. 9, no. 1, pp. 20–32, 2018,
Accessed: 2022-05-30. [Online]. Available:
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12860

[25] J. Schoonenboom and R. B. Johnson, “How to Construct a Mixed Methods
Research Design,” Kolner Zeitschrift Fur Soziologie Und Sozialpsychologie, vol. 69,
no. Suppl 2, pp. 107–131, 2017, Accessed: 2022-05-30. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602001/

[26] M. S. Khoirom, M. Sonia, B. Laikhuram, J. Laishram, and T. D. Singh,
“Comparative Analysis of Python and Java for Beginners,” vol. 07, no. 08, p. 24,
2020.

[27] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf, 2013.

[28] D. Crockford, “The application/json Media Type for JavaScript Object Notation
(JSON),” Internet Requests for Comments, RFC Editor, RFC 4627, July 2006.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4627.txt

[29] Python 3.10.4 documentation, Accessed: 2022-05-31. [Online]. Available:
https://docs.python.org/3/glossary.html#term-bytecode

[30] T. Lindholm, F. Yellin, G. Bracha, A. Buckley, and D. SMith, The Java Virtual
Machine Specification, Java SE 18 ed., Accessed: 2022-05-31. [Online]. Available:
https://docs.oracle.com/javase/specs/jvms/se18/html/index.html

[31] R. Lämmel, Software languages : syntax, semantics, and metaprogramming.
Cham: Springer International Publishing, 2018.

[32] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, D. Smith, and G. Bierman,
The Java Language Specification, Java SE 18 ed., Accessed: 2022-05-31. [Online].
Available: https://docs.oracle.com/javase/specs/jls/se18/html/index.html

[33] M. Zadka and G. van Rossum, “PEP 238 – Changing the Division Operator,”
https://www.python.org/dev/peps/pep-0238/, 2001, Accessed: 2022-02-15.

[34] Python 3.11 documentation, Accessed: 2022-05-31. [Online]. Available:
https://docs.python.org/3.11/index.html

[35] A. Downey, Think Python, 2nd ed. Needham, Massachusetts: Green Tea Press,

101

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.12860
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602001/
http://www.rfc-editor.org/rfc/rfc4627.txt
https://docs.python.org/3/glossary.html#term-bytecode
https://docs.oracle.com/javase/specs/jvms/se18/html/index.html
https://docs.oracle.com/javase/specs/jls/se18/html/index.html
https://www.python.org/dev/peps/pep-0238/
https://docs.python.org/3.11/index.html

2015, Accessed: 2022-05-23. [Online]. Available:
https://greenteapress.com/thinkpython2/thinkpython2.pdf

[36] J. Kleinberg and Éva Tardos, Algorithm Design. London: Pearson, 2014.

[37] P. Calingaert, Assemblers, compilers and program translation. London: Pitman,
1979.

[38] J. Zhao, “Static analysis of Java bytecode,” Wuhan University Journal of Natural
Sciences, vol. 6, pp. 383–390, 03 2001.

[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley.

[40] N. Smith, D. van Bruggen, and F. Tomassetti, JavaParser: Visited – Analyse,
transform and generate your Java code base. Leanpub, 2021, Accessed:
2022-04-20. [Online]. Available: https://leanpub.com/javaparservisited

[41] A. H. Rosbach and A. H. Bagge, “Classifying and measuring student problems and
misconceptions,” in Proceedings of Norsk informatikkonferanse (NIK’2013),
E. Tøssebro and H. Meling, Eds. Trondheim, Norway: Akademika Forlag, 2014,
pp. 110–121.

[42] J. S. Ancker, A. Edwards, S. Nosal, D. Hauser, E. Mauer, and R. Kaushal,
“Effects of workload, work complexity, and repeated alerts on alert fatigue in a
clinical decision support system,” BMC Medical Informatics and Decision Making,
vol. 17, p. 36, Apr. 2017, Accessed: 2022-05-31. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387195/

[43] L. Murphy, G. Lewandowski, R. Mccauley, B. Simon, L. Thomas, and C. Zander,
“Debugging: The good, the bad, and the quirky -a qualitative analysis of novices’
strategies,” ACM SIGCSE Bulletin, vol. 40, pp. 163–167, 02 2008.

[44] M. M. Nicolas Harrand, César Soto-Valero and B. Baudry, “The Strengths and
Behavioral Quirks of Java Bytecode Decompilers,” 08 2019.

[45] B. A. Becker, “An effective approach to enhancing compiler error messages,” in
Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, ser. SIGCSE ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 126–131. [Online]. Available:
https://doi.org/10.1145/2839509.2844584

[46] S. M. Brækken, “Enhancing Error Messages for Novices in Computer Science
Education,” Master’s thesis, University of Bergen, 2019.

[47] M. Pedroni and B. Meyer, “Compiler error messages: what can help novices?”
ACM SIGCSE Bulletin, vol. 40, pp. 168–172, 02 2008.

[48] P. Denny, J. Prather, B. A. Becker, C. Mooney, J. Homer, Z. C. Albrecht, and
G. B. Powell, “On Designing Programming Error Messages for Novices:

102

https://greenteapress.com/thinkpython2/thinkpython2.pdf
https://leanpub.com/javaparservisited
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387195/
https://doi.org/10.1145/2839509.2844584

Readability and Its Constituent Factors,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’21. New York,
NY, USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445696

[49] M. Richards, Software Architecture Patterns. O’Reilly Media, Inc., February 2015.

[50] I. Sommerville, Software engineering 10th edition. London: Pearson, 2016.

[51] K. Fakhroutdinov, “The Unified Modeling Language,”
https://www.uml-diagrams.org/, Accessed: 2022-05-20.

[52] “HTTP Methods GET vs POST,”
https://www.w3schools.com/tags/ref httpmethods.asp, Accessed: 2022-05-02.

[53] K. Brush, “What is a Use Case?” Accessed: 2022-05-02. [Online]. Available:
https://www.techtarget.com/searchsoftwarequality/definition/use-case

[54] D. Cohen and P. Costa, “An Introduction to Agile Methods,” Advances in
Computers, vol. 62, pp. 1–66, 12 2004.

[55] A. Martini, T. Besker, and J. Bosch, “Technical Debt tracking: Current state of
practice: A survey and multiple case study in 15 large organizations,” Science of
Computer Programming, vol. 163, pp. 42–61, 2018, Accessed: 2022-04-19. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0167642318301035

[56] “DevOps Pipeline | Atlassian,”
https://www.atlassian.com/devops/devops-tools/devops-pipeline, Accessed:
2022-05-08.

[57] Scripting in Postman, Accessed: 2022-05-24. [Online]. Available:
https://learning.postman.com/docs/writing-scripts/intro-to-scripts/

[58] “Semantic Versioning 2.0.0 | Semantic Versioning,” https://semver.org/, Accessed:
2022-05-08.

[59] “Your First Extension | Visual Studio Code Extension API,”
https://code.visualstudio.com/api/get-started/your-first-extension, Accessed:
2022-05-08.

[60] W. M. Vagias, “Likert-type scale response anchors,” 2006, Clemson International
Institute for Tourism Research Development, Department of Parks, Recreation
and Tourism Management. Clemson University.

[61] K. J. DeAngelis and S. Ayers, “What Does Average Really Mean? Making Sense of
Statistics,” SCHOOL BUSINESS AFFAIRS, pp. 18–22, 2009.

[62] A. K. Emery, “How to Visualize Qualitative Data,”
https://depictdatastudio.com/how-to-visualize-qualitative-data/, September 25.
2014, Accessed: 2022-04-17.

103

https://doi.org/10.1145/3411764.3445696
https://www.uml-diagrams.org/
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.techtarget.com/searchsoftwarequality/definition/use-case
https://www.sciencedirect.com/science/article/pii/S0167642318301035
https://www.atlassian.com/devops/devops-tools/devops-pipeline
https://learning.postman.com/docs/writing-scripts/intro-to-scripts/
https://semver.org/
https://code.visualstudio.com/api/get-started/your-first-extension
https://depictdatastudio.com/how-to-visualize-qualitative-data/

[63] R. Aalvik, “VisAST: Generic AST Visualiser for Software Language Education,”
Master’s thesis, University of Bergen, 2019.

[64] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C. Parnin,
“Do Developers Read Compiler Error Messages?” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). Buenos Aires: IEEE,
May 2017, pp. 575–585. [Online]. Available:
http://ieeexplore.ieee.org/document/7985695/

[65] A. H. Bagge. (2022) Turtleduck v0.2.0. Accessed: 2022-05-31. [Online]. Available:
https://turtleduck.puffling.no/

[66] C. Seaman, “Qualitative methods in empirical studies of software engineering,”
IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 557–572, Jul. 1999,
conference Name: IEEE Transactions on Software Engineering.

[67] P. C. Rigby and S. Thompson, “Study of Novice Programmers Using Eclipse and
Gild,” in Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology
EXchange, ser. eclipse ’05. New York, NY, USA: Association for Computing
Machinery, 2005, p. 105–109. [Online]. Available:
https://doi.org/10.1145/1117696.1117718

[68] M. Krishna, “What is the cause of NoSuchElementException and how can we fix it
in java?” Accessed: 2021-11-02. [Online]. Available: https://www.tutorialspoint.c
om/what-is-the-cause-of-nosuchelementexception-and-how-can-we-fix-it-in-java

[69] J. Nordfalk, Objektorienteret programmering i Java. Globe, 2007.

104

http://ieeexplore.ieee.org/document/7985695/
https://turtleduck.puffling.no/
https://doi.org/10.1145/1117696.1117718
https://www.tutorialspoint.com/what-is-the-cause-of-nosuchelementexception-and-how-can-we-fix-it-in-java
https://www.tutorialspoint.com/what-is-the-cause-of-nosuchelementexception-and-how-can-we-fix-it-in-java

Appendix A

Source code

Demo plugin For testing the plugin it can either be downloaded from the GitHub
links below or use a finished setup with Ubuntu that can be imported using
VirtualBox. We recommend to use the VM setup. Go to

https://universityofbergen-my.sharepoint.com/:u:/g/personal/quk010_uib_
no/EeJH_QT9RGJHkKDLRKe3_VsBCQbx2SKShQenYSeyLnqTnw?e=PHdGVx

and download the .ova file, use the VirtualBox vizard to import it. Start the VM.
Password is osboxes.org (same as username). Open IntelliJ, wait till the project has
loaded. Go to Tools, press ”Find bugs!”. The error message should appear in the
console. Try to comment out different bugs to test the tool. The file needs to be saved
after the change before a new analysis.

Demo with TurtleDuck Write some Java code in the editor and press ”Quality”.
https://uncoil.puffling.no/

Frontend for the tool: https://master-thesis-frontend-prod.herokuapp.com/
Tasks for the students:
https://master-thesis-frontend-prod.herokuapp.com/tasks

Source code on GitHub

https://github.com/JennStro/master-thesis-backend-analyser
https://github.com/JennStro/master-thesis-backend-analyser-api
https://github.com/JennStro/master-thesis-web-frontend
https://github.com/JennStro/master-thesis-intellij

105

https://universityofbergen-my.sharepoint.com/:u:/g/personal/quk010_uib_no/EeJH_QT9RGJHkKDLRKe3_VsBCQbx2SKShQenYSeyLnqTnw?e=PHdGVx
https://universityofbergen-my.sharepoint.com/:u:/g/personal/quk010_uib_no/EeJH_QT9RGJHkKDLRKe3_VsBCQbx2SKShQenYSeyLnqTnw?e=PHdGVx
https://uncoil.puffling.no/
https://master-thesis-frontend-prod.herokuapp.com/
https://master-thesis-frontend-prod.herokuapp.com/tasks
https://github.com/JennStro/master-thesis-backend-analyser
https://github.com/JennStro/master-thesis-backend-analyser-api
https://github.com/JennStro/master-thesis-web-frontend
https://github.com/JennStro/master-thesis-intellij

Appendix B

Data from evaluation by
students

106

Question Student 1 Student 2 Student 3 Student 4 Student 5 Student 6 Student 7
How well do you
know Python?
(1=not at all,
5=very well)

4 5 4 5 3 3 3

How well do you
know Java? (1=not
at all, 5=very well)

3 2 3 2 4 2 2

Task 1: IFW
SEM

How can the text
be printed even
though ”value” is
false?

pga syntax-error
”if (value);”,
hvor ; avslut-
ter linjen og
koden inni if-
statementet blir
kjørt uansett
om if er true
eller ikke, vil jeg
anta

printe uten if-
statement

Semikolon etter
if(value)

Pga semikolon
etter if (value);
Da forteller
du ikke Java
hva som skal
gjøres n̊ar if-
statementet blir
møtt. Neste
linje printer
da ut teksten
uavhengig av
value.

Forid if state-
mentet avsluttes
før teksten
skrives ut

Fordi
semikolonet
gjør at Sys-
tem.out.println()
ikke er en del av
if-setningen.

ensure the if
command ac-
tually affects
the body by
removing the
semicolon mak-
ing it separate
from the body

Task 1: IFW
SEM Did

you use the ”get
tips”-button for
this task?

Nei Nei Nei Ja Nei Nei No

Task 1: IFW
SEM

Did you manage to
solve the task?

Ja Ja Ja Ja Ja Ja Yes

107

Task 1: IFW
SEM Was

the task easy to
solve?

Ja Ja Ja Nei Ja Ja Yes

Task 1: IFW
SEM Why

or why not was the
task easy to solve?

N̊ar jeg op-
pdaget syntax-
feilen var det
enkelt å løse
problemet.

har forst̊att
det slik at ”;”
kun skal brukes
i slutten av
kodelinjer, men
her var ikke
if-setningen
ferdig

Kjørte først
med if(!Value)
for å se hva
som skjedde,
siden dette
ikke p̊avirket
print state-
ment m̊atte
feilen ligge i
syntaksen et
sted. Siden lin-
jen ble printet
kunne feilen i
syntaksen ikke
være inne i
krøllparentesene
til if-klausulen.
Da oppdaget jeg
semikolon etter
if.

La ikke merke
til semikolon.
Tenkte først
jeg m̊atte endre
if(value) til for
eks if (value ==
true)

S̊a semikolonet
etter if-
statementet
med en gang

Fordi jeg
kjenner til
forskjellen i
syntax for if-
setninger fra
Python til Java.

simple one step
solution

Task 1: IFW
SEM Have

you done this mis-
take before?

Nei Nei Nei Nei Nei Kanskje Yes

108

Task 1: IFW
SEM

Did the message
from the ”get tips”-
button help you un-
derstand the mis-
take in the code?

Nei Ja Ja Ja Nei Nei Yes

Task 1: IFW
SEM Why

or why not did
the message help
you understand
the mistake in the
code?

Jeg brukte ikke
verktøyet

sjekka den et-
terp̊a og den
forklarte godt

Jeg nyttet jo
ikke get tips
før jeg løste
oppgaven, men
tipset er svaret
p̊a oppgaven.

Fikk bedre
forst̊aelse av
hvordan Java
leser semikolon

Fordi jeg ikke
trengte den

Jeg brukte den
ikke.

it was clearly
formulated, but
i did not need it
for this instance

109

Task 2:
NOEQ
METH/EQ

OP How
can the condition
”bag1 == bag2”
be false? What
method do you
need to implement
in the class Bag?

bag1 og bag2 er
objekter og ==
spør om de er
det samme ob-
jektet, som ikke
stemmer. En
egen equals()
metode m̊a
implementeres i
Bag-klassen for
å sammenligne
feltvariablene i
Bag-objektene
og bedømme ut
ifra det om de
er like.

== sjekker om
bag1 og bag2
er lagret p̊a
samme plass i
stack/heap, der-
for m̊a vi bruke
equals-metoden

Equals-metode
m̊a iple-
menteres. De
er to objekter
som holder
samme verdi,
men de har ulik
referanse.

== sjekker om
minneadressene
er like, alts̊a
om bag1 og
bag2 er det
samme objektet
og ikke om
de har samme
innhold. For
å sammenligne
innhold trenger
vi .equals()
metoden.

Fordi skjekker
om de er det
samme ikke om
de er lik

equals()

== checks
memory loca-
tion instead of
content. equals.
needs to be
implemented

Task 2:
NOEQ
METH/EQ

OP Did
you use the ”get
tips”-button for
this task?

Nei Ja Nei Ja Nei Ja Yes

Task 2:
NOEQ
METH/EQ

OP Did
you manage to
solve the task?

Ja Ja Ja Ja Ja Ja Yes

110

Task 2:
NOEQ
METH/EQ

OP Was
the task easy to
solve?

Ja Nei Ja Nei Ja Ja No

Task 2:
NOEQ
METH/EQ

OP Why or
why not was the
task easy to solve?

Det var litt
krøkkete å finne
ut hvor jeg
skulle skrive,
men ellers har
jeg lært masse
om akkurat
dette i INF101
s̊a langt i
semesteret, s̊a
det var lett
å komme p̊a
at dette var
løsningen.

Husket ikke
hvordan equals
metoden funket

En del øving
med equals-
metoder.

Forstod at jeg
m̊atte bruke
.equals(), men
var ikke sikker
p̊a hvordan
jeg skulle im-
plementere
metoden.

Slet med denne
feilen tidligere i
semesteret s̊a s̊a
med eng gang
hva som var feil

Den var grei å
løse s̊a fort jeg
forstod hva som
ble etterspurt.

i failed to put
the equals
method inside
the bag class,
took a while to
figure that out

Task 2:
NOEQ
METH/EQ

OP Have
you done this
mistake before?
(Not implementing
equals method)

Ja Ja Ja Ja Kanskje Ja Yes

111

Task 2:
NOEQ
METH/EQ

OP Have
you done this
mistake before?
(Using == to
compare objects)

Ja Ja Ja Ja Ja Ja Yes

Task 2:
NOEQ
METH/EQ

OP Did
the message from
the ”get tips”-
button help you
understand the
mistake in the
code? (Not im-
plementing equals
method)

Nei Ja Ja Ja Nei Ja Yes

Task 2:
NOEQ
METH/EQ

OP Did
the message from
the ”get tips”-
button help you
understand the
mistake in the
code? (Using ==
to compare objects)

Nei Ja Ja Ja Nei Nei Yes

112

Task 2:
NOEQ
METH/EQ

OP Why
or why not did
the message help
you understand
the mistakes in the
code?

Brukte ikke
verktøyet. god forklaring

Gjorde det
lettere å forst̊a
forskjellen p̊a
== i Java og
Python. Bedre
forst̊aelse for
n̊ar jeg skal
bruke .equals()
og n̊ar jeg skal
bruke ==.

Fordi jeg klarte
det uten

it was clear
and helped
me understand
the mistake
the problem
wanted, still
managed to
have prob-
lems with the
brackets on the
class

Task 3: INT
DIV How

can the condition
”a/b == 1.4” be
false?

fordi a og b er
definert som int
og svaret vil der-
for ogs̊a være
int. 1.4 er
en double, s̊a å
endre a og b
til doubles løser
problemet.

fordi a og b er
heltall/int

Integer division
runder ned.
Løste ved å
type.caste a til
(double)

a og b er inte-
gers, s̊a svaret
blir ogs̊a en in-
teger. For å f̊a
desimaltall m̊a
vi bruke double.

forid a og be er
begge heltall og
gir et avrundet
heltall som svar

Fordi a og b er
begge heltall, og
kan dermed ikke
ha et svar som er
en float.

the typing of a
and b are incor-
rect to match up
to the decimal
value of 1.4

Task 3: INT
DIV Did

you use the ”get
tips”-button for
this task?

Nei Nei Nei Ja Ja Ja No

Task 3: INT
DIV Did

you manage to
solve the task?

Ja Ja Ja Ja Ja Ja Yes

113

Task 3: INT
DIV Was

the task easy to
solve?

Ja Ja Ja Ja Nei Ja Yes

Task 3: INT
DIV Why

or why not was the
task easy to solve?

Enkel løsning p̊a
et velkjent prob-
lem

visste at int var
heltall og da blir
ogs̊a resultatet
heltall

Fordi typer
og operatorer
er gangske
innarbeidet.

Forstod at a og
b var int og jeg
derfor m̊atte
gjøre det om
til double først.
Litt problem
med å sette
parantesene
p̊a riktig sted,
prøvde først
double (a) /
double (b)

brukte float
først som ikke
fungerte

Den var enkel å
løse, men hadde
glemt spesifikt
hvordan man
gjør om et
heltall til en
float.

had and solved
this problem be-
fore

Task 3: INT
DIV Have

you done this mis-
take before?

Ja Nei Ja Ja Kanskje Ja Yes

Task 3: INT
DIV

Did the message
from the ”get
tips”-button help
you understand
the mistake in the
code?

Nei Nei Ja Ja Ja Nei No

114

Task 3: INT
DIV Why

or why not did
the message help
you understand
the mistake in the
code?

Brukte ikke
verktøyet

brukte ikke get
tips

Jeg brukte ikke
tips

Hjalp med å
sette parante-
sene p̊a riktig
sted.

Forid jeg brukte
float sum ikke
virket, men med
double som i
tipset virket det

Jeg forstod hvor
feilen var med
en gang, men
trengte ”get
tips” til å huske
hvordan man
endrer fra int til
float.

checked the tip
after solving
then rebreaking
the code and it
is clear in telling
why it does not
initially work

Task 4: BIT
OP How

can we get an
ArrayIndexOutOf-
BoundsException
even though we
check that the list
”strings” is not
empty?

Vet ikke helt
hvorfor, men vi
fikk det ikke n̊ar
jeg rettet & til
&&

and er to ”&”-
tegn, ikke bare
ett

Mangler en ”&”
for å faktisk
kjøre sjekken.

Må bruke && i
stedet for &

Fordi && er
skrevet med
bare en & s̊a
skjekker den
ikke om begge
er true, og siden
det er feil i
statementet
som blir det
false

Fordi AND i
Java skrives
&&. Men litt
usikker p̊a hvor-
dan Java tolker
koden n̊ar man
bare bruker &.

& is not the de-
sired operator as
it will still check
the next com-
ponent in the
if statement re-
gardless of the
first component

Task 4: BIT
OP Did

you use the ”get
tips”-button for
this task?

Ja Nei Nei Nei Nei Nei No

Task 4: BIT
OP Did

you manage to
solve the task?

Ja Ja Ja Ja Ja Ja Yes

115

Task 4: BIT
OP Was

the task easy to
solve?

Ja Ja Ja Ja Ja Ja Yes

Task 4: BIT
OP Why

or why not was the
task easy to solve?

Svaret var
enkelt n̊ar
jeg oppdaget
syntax-feilen

visste at and er
det samme som
to ”&”-tegn

Fordi det var en
enkel syntaks-
krøll

Har grei kontroll
p̊a && og ||
fra før (men har
ikke brukt & i
Java)

S̊a med en gang
at det manglet
en &

Jeg kjenner til
at AND skrives
&& i Java.

an addition of
a single symbol
was all that was
needed, having
done this mis-
take before it
made this easier
to spot

Task 4: BIT
OP Have

you done this mis-
take before?

Ja Nei Nei Ja Kanskje Kanskje Yes

Task 4: BIT
OP Did

the message from
the ”get tips”-
button help you
understand the
mistake in the
code?

Ja Ja Ja Ja Nei Nei Yes

116

Task 4: BIT
OP Why

or why not did
the message help
you understand
the mistake in the
code?

Jeg oppdaget
ikke at det bare
stod & og ikke
&&, verktøyet
poengterte det
veldig presist og
fikk meg til å se
det.

brukte ikke get
tips

Jeg brukte ikke
tips

Sjekket get
tips etter jeg
løste oppgaven,
forstod mer om
forskjellen p̊a &
og &&

Jeg klarte det
uten

Jeg brukte den
ikke.

it was compre-
hensive, a bit
annoying that i
have to break
the code each
time to check
the get tips as it
wont show oth-
erwise

Task 5: IFNO
BRKT

The boolean shoul-
dAddToList is false,
so why does it still
add numbers to the
list?

if statementet
manglet {}

fordi det er ikke
krøllparantes
rundt if setnin-
gen

Fordi (shoul-
dAddToList)
ikke blir
evaluert da
det mangler
krøllparenteser
etter forkravet.

Det mangler
{} for å vise at
begge linjene
i if-blokken
hører til if-
statementet.

Siden det ikke
er brukt {} i if-
statementet s̊a
blir bare første
list.add() del av
det, der kjører
list.add(2) etter
if-statementet

Fordi man ikke
har brukt {}
i den først if-
setningen. Da
er ikke list.add()
en del av if-
setningen og
kjøres utansett
om shouldAd-
dToList er false
eller true.

because like in
the first task
the brackets
are wrong, the
if statement
affects nothing

Task 5: IFNO
BRKT

Did you use the
”get tips”-button
for this task?

Nei Nei Nei Nei Nei Nei No

Task 5: IFNO
BRKT

Did you manage to
solve the task?

Ja Ja Ja Ja Ja Ja Yes

117

Task 5: IFNO
BRKT

Was the task easy
to solve?

Ja Ja Ja Ja Ja Ja Yes

Task 5: IFNO
BRKT

Why or why not
was the task easy to
solve?

enkelt å se hva
som var feil

prøvde berre
å sette inn
krøllparantes
fordi eg trudde
det m̊atte vara
det

Enkel syntak-
skrøll

Var samme
tema som i
oppgave 1.

S̊a det manglet
{} med en gang

Fordi jeg visste
at man trenger
{} rundt en if-
setning.

same problem as
first task, easy
to spot the flaw

Task 5: IFNO
BRKT

Have you done this
mistake before?

Kanskje Nei Ja Ja Kanskje Nei Yes

Task 5: IFNO
BRKT

Did the message
from the ”get tips”-
button help you un-
derstand the mis-
take in the code?

Nei Ja Nei Ja Nei Nei Yes

Task 5: IFNO
BRKT

Why or why not
did the message
help you under-
stand the mistake
in the code?

Brukte ikke
verktøyet

brukte ikke get
tips Brukte ikke tips

Ga en bedre
forst̊aelse av
hvordan Java
leser koden.

Fant ut av feilen
uten

Jeg brukte den
ikke.

clear get tips re-
sponse

118

Overall, did you
find the messages
from the ”get tips”-
button helpful?

Av og til Ja Nei Ja Av og til Ja Yes

Why or why not did
you find the mes-
sages helpful?

Jeg har brukt et
lignende verktøy
i python som
var veldig nyt-
tig, dette kan
være nyttig hvis
man har en
kort kode og
bare trenger en
pekepinn p̊a hva
som kan være
feil.

godt forklart Brukte ikke tips

Synes tipsene
forklarte prob-
lemet veldig
godt. Spe-
sielt var ”More
info?” - linkene
veldig nyttige.
Det ga en veldig
god forst̊aelse
av hvordan ting
fungerte. Selv
p̊a oppgavene
jeg klarte
kunne jeg se p̊a
tipsene og lære
enda mer/f̊a
en dypere
forst̊aelse.

Jeg klarte de
fleste uten, men
de hadde nokk
hjulpet visst
ikke

De var nyttige
n̊ar man trengte
dem. Men flere
av oppgavene
var s̊apass lette
at man ikke
trengte tipsene.

clear messages
with additional
information
available to
explain why
things work or
dont

119

Do you have any
tips or comments
on how to improve
the tool? (Name
suggestions for the
tool would be really
appreciated!)

Designet kan bli
litt finere, sleng
p̊a en instruk-
sjonstekst ogs̊a.
Tilbakemeldin-
gen fra
verktøyet kunne
kanskje vært
printet i en egen
liten rute s̊a
det blir mer
oversiktlig.

”Uncoil” er
gøy, siden en
pyton er en
kvelerslange,
utviklerne av
Python elsker
ordspill og
tørr humor, og
Pythonsyntaks
har en tendens
til å ha et fast
grep p̊a nye
java-brukere
om de har
g̊att gjennom
Python først.

Burde nok g̊a
enda dypere
i syntax-
forskjeller.
Ville trodd at
de ulikhetene
som presen-
teres her er
ting man bare
sliter med helt
i begynnelse,
men tar veldig
fort. Det er
andre aspekter
ved Java som er
vanskeligere å
huske p̊a.

in a testing
setting allow
get tips to still
respond with
the information
after a success
message though
it should still
clearly show
that the code
worked as
intended

Table B.1: Answers from the students

120

Appendix C

Tasks for the students

1 public class TaskOne {
2

3 public stat ic void main (S t r i n g [] a rgs) {
4 TaskOne taskOne = new TaskOne () ;
5 taskOne . doIt (fa l se) ;
6 }
7

8 public void doIt (boolean value) {
9 // TODO: Change the i f −statement such that nothing p r i n t s ! (va lue

should always be f a l s e) .
10 i f (va lue) ; {
11 System . out . p r i n t l n (”Uh oh , t h i s should not p r i n t when value i s

”+ value +” ! ”) ;
12 }
13 }
14 }

Listing C.1: Task one

1 public class TaskTwo {
2 public stat ic void main (S t r i n g [] a rgs) {
3 TaskTwo taskTwo = new TaskTwo () ;
4 taskTwo . doIt () ;
5 }
6

7 public class Bag {
8

9 private int s i z e ;
10

11 public Bag(int s i z e) {
12 this . s i z e = s i z e ;
13 }
14

15 }
16

121

17 public void doIt () {
18 // Two equal bags , because they have the same s i z e .
19 Bag bag1 = new Bag (5) ;
20 Bag bag2 = new Bag (5) ;
21

22 // TODO: Change the c o n d i t i o n such that the bags are compared
c o r r e c t l y . Implement the miss ing method in c l a s s Bag above .

23 i f (bag1 == bag2) {
24 System . out . p r i n t l n (”bag1 i s equal to bag2 , good job ! :) ”) ;
25 } else {
26 System . out . p r i n t l n (”bag1 i s not equal to bag2 ! ”) ;
27 }
28 }
29

30 }

Listing C.2: Task two

1 public class TaskThree {
2 public stat ic void main (S t r i n g [] a rgs) {
3 TaskThree taskThree = new TaskThree () ;
4 taskThree . doIt () ;
5 }
6

7 public void doIt () {
8 int a = 7 ;
9 int b = 5 ;

10

11 // TODO: Change the c o n d i t i o n such that ”a/b” i s equal to 1 . 4 .
12 i f (a/b == 1 . 4) {
13 System . out . p r i n t l n (”Woho, a/b has the c o r r e c t va lue ! ”) ;
14 } else {
15 System . out . p r i n t l n (”Oh no , a/b should be ” + 1 .4 + ” but i s ” +

a/b) ;
16 }
17 }
18

19 }

Listing C.3: Task three

1 public class TaskFour {
2 public stat ic void main (S t r i n g [] a rgs) {
3 TaskFour taskFour = new TaskFour () ;
4 taskFour . doIt () ;
5 }
6

7 public void doIt () {
8 // TODO: Change the i f −c o n d i t i o n ”(s t r i n g s . l ength > 0 & s t r i n g s [0] .

equa l s (” java ”)) ” such that the ArrayIndexOutOfBoundsException
i s avoided . (The l i s t ∗ should ∗ be empty !)

9 S t r i n g [] s t r i n g s = new S t r i n g [] { } ;
10 i f (s t r i n g s . l ength > 0 & s t r i n g s [0] . equa l s (” java ”)) {

122

11 System . out . p r i n t l n (”Uh oh , we should have an empty l i s t ! ”) ;
12 } else {
13 System . out . p r i n t l n (”Woho ! You avoided the

ArrayIndexOutOfBoundsException , good job ! :) ”) ;
14 }
15 }
16

17 }

Listing C.4: Task four

1 import java . u t i l . ArrayList ;
2

3 public class TaskFive {
4 public stat ic void main (S t r i n g [] a rgs) {
5 TaskFive taskFive = new TaskFive () ;
6 taskFive . doIt (fa l se) ;
7 }
8

9 private ArrayList<Integer > l i s t = new ArrayList <>() ;
10

11 public void doIt (boolean shouldAddToList) {
12 l i s t = new ArrayList <>() ;
13

14 // TODO: Make changes to the i f −statement below such that no
numbers are added to the l i s t . (Both numbers should be added i f

shouldAddToList i s t rue !)
15 i f (shouldAddToList)
16 l i s t . add (1) ;
17 l i s t . add (2) ;
18

19 // This should ∗ not ∗ be changed in t h i s task !
20 i f (l i s t . isEmpty ()) {
21 System . out . p r i n t l n (”Woho, the l i s t i s empty ! ”) ;
22 } else {
23 System . out . p r i n t l n (” This l i s t should be empty , but i s ” + l i s t)

;
24 }
25 }
26 }

Listing C.5: Task five

123

124

Appendix D

Errors presented by Hristova
et. al.

Error Classification
= versus == Syntax
== versus .equals (faulty string comparisons) Syntax
mismatching, miscounting and/or misuse of { },
, (), “ ”, and ‘ ’ Syntax
&& vs. & and ‖‖vs.‖& Syntax
incorrect semi-colon after an if selection
structure before the if statement or after the for
or while repetition structure before the respective
for or while loop Syntax
wrong separators in for loops (using commas
instead of semi-colons) Syntax
an if followed by a bracket instead of by a
parenthesis Syntax
using keywords as method names or variable
names Syntax
invoking methods with wrong arguments Syntax
forgetting parentheses after method call Syntax
incorrect semicolon at the end of a method
header Syntax
leaving a space after a period when calling a
specific method Syntax
>= and =< Syntax
invoking class method on object Semantic
improper casting Logical
invoking a non-void method in a statement
that requires a return value Logical
flow reaches end of non-void method Logical
methods with parameters: confusion between declaring
parameters of a method and passing parameters in a
method invocation Logical
incompatibility between the declared return type of a
method and in its invocation Logical
class declared abstract because of missing function Logical

Table D.1: Errors presented by Hristova et. al.

125

Appendix E

Semantic errors by Chan Mow

Error
non-static method printBools() cannot be referenced from a static context

arrayindex out of bounds exception
java.utils NoSuchElement exception

class’ or ’interface’ expected
cannot access class; neither class nor source found

system cannot find the path specified

Table E.1: Semantic errors Chan Mow

126

Appendix F

Reproduction and testing of
errors found in literature
review and focus group

Error Reproduction Error produced

= versus == i f (a = 5) {}
error: incompatible types:
int cannot be converted to
boolean

== versus .equals
(faulty string com-
parisons)

Bag bag = new Bag(” 123 ”) ;
Bag bag2 = new Bag(” 123 ”) ;
i f (bag == bag2) { }

None

mismatching, mis-
counting and/or
misuse of { }, [], (
), “ ”, and ‘ ’

i f (bag == bag2) { error: reached end of file
while parsing

&& vs. & and
‖‖vs.‖&

i f (args != null & args .
l ength == 5) None

127

incorrect semi-
colon after an if
selection struc-
ture before the if
statement or after
the for orwhile
repetition structure
before the respec-
tive for or while
loop

i f (a != null) ; {return a} None

wrong separators
in for loops (using
commas instead of
semi-colons)

for (int i = 0 , i <= 5 , i
++) error: ’;’ expected

an if followed by a
bracket instead of
by a parenthesis

i f {a != null} {} error: ’(’ expected

using keywords as
method names or
variable names

int new ; error: <identifier> ex-
pected

invoking meth-
ods with wrong
arguments

ArrayList<Str ing > a = new
ArrayList <>() ;

a . add (1) ;

error: incompatible types:
int cannot be converted to
String

forgetting paren-
theses after method
call

” 123 ” . t o S t r i n g ; error: not a statement

incorrect semicolon
at the end of a
method header

public void t e s t () ; { } error: missing method
body, or declare abstract

>= and =< i f (5 =< args . l ength) error: > expected

128

invoking class
method on object

Demo demo = new Demo() ;
demo . stat icMethod () ; None

invoking non-static
method as static

Demo . nonStaticMethod () ;

error: non-static method
nonStaticMethod() can-
not be referenced from a
static context

improper casting f loat f = (5 . 0 / 6 . 0) ;
error: incompatible types:
possible lossy conversion
from double to float

invoking a non-void
method in a state-
ment that requires
a return value

” abc ” . toUpperCase () ; None

flow reaches end of
non-void method

public int method (int a) {
i f (a == 2) {

return 3 ;
}

}

error: missing return
statement

methods with
parameters: con-
fusion between
declaring parame-
ters of a method
and passing param-
eters in a method
invocation

ArrayList<Str ing > a = new
ArrayList <>() ;

a . add (S t r i n g ” s t r i n g ”) ;
error: ’)’ expected

incompatibility be-
tween the declared
return type of a
method and in its
invocation

S t r i n g s = r e t u r n s I n t () ;
error: incompatible types:
int cannot be converted to
String

129

class declared ab-
stract because of
missing function

interface IDemo { public
void method () ; }

class Demo implements IDemo
{ }

error: Demo is not
abstract and does not
override abstract method
method() in IDemo

arrayindex out of
bounds exception

int [] a = new int [5] ;
a [1 0] = 5 ;

Exception in
thread ”main”
java.lang.ArrayIndexOutOf-
BoundsException:
Index 10 out of
bounds for length 5 at
Demo.main(Demo.java:8)

java.utils No-
SuchElement
exception

HashSet<Str ing > a = new
HashSet <>() ;

I t e r a t o r <Str ing > a i = a .
i t e r a t o r () ;

a i . next () ;

[68]

Exception in
thread ”main”
java.util.NoSuchElementException
(Shortened for brevity)

class’ or ’interface’
expected

int i = 0 ;
class Demo { }

error: class, interface,
enum, or record expected

cannot access class;
neither class nor
source found

system . out . p r i n t l n (”a”) ;

[69]

error: package system
does not exist

integer division
public double method () {

return 7/5 ;
}

None

if without brackets
i f (c o n d i t i o n)

method1 () ;
method2 () ;

None

130

no equals method class A {} None

Table F.1: Reconstruction and testing of errors found in literature review and focus group.

131

Appendix G

Errors that meet the first
criteria

In this thesis, by CE we mean a compile time error. By ERE we mean a runtime error
that when the program runs, states exactly what the problem is. For example, that an
index is out of bounds error. When we have an Implicit Runtime Error (IRE), we mean
that it is a runtime error, but it does not state exactly what the problem is.

Error CE ERE IRE First criteria met
= versus == Yes - - No
== versus .equals (faulty string
comparisons) No No Maybe Yes

mismatching, miscounting
and/or misuse of { }, [], (), “ ”,
and ‘ ’

Yes - - No

&& vs. & and ‖‖vs.‖& No No Maybe Yes
incorrect semi-colon after an if
selection struc-ture before the if
statement or after the for or-
while repetition structure before
the respec-tive for or while loop

No No Maybe Yes

wrong separators in for loops
(using commas instead of semi-
colons)

Yes - - No

an if followed by a bracket in-
stead of by a parenthesis Yes - - No

using keywords as method names
or variable names Yes - - No

132

invoking methods with wrong ar-
guments Yes - - No

forgetting parentheses after
method call Yes - - No

incorrect semicolon at the end of
a method header Yes - - No

>= and =< Yes - - No
invoking class method on object No No Maybe Yes
invoking non-static method as
static Yes - - No

improper casting Yes - - No
invoking a non-void method in a
statement that requires a return
value

No No Maybe Yes

flow reaches end of non-void
method Yes - - No

methods with parameters: con-
fusion between declaring param-
eters of a method and passing pa-
rameters in a method invocation

Yes - - No

incompatibility between the de-
clared return type of a method
and in its invocation

Yes - - No

class declared abstract because
of missing function Yes - - No

arrayindex out of bounds excep-
tion No Yes - No

java.utils NoSuchElement excep-
tion No Yes - No

class’ or ’interface’ expected Yes - - No
cannot access class; neither class
nor source found Yes - - No

integer division No No Maybe Yes
if without brackets No No Maybe Yes
no equals method No No Maybe Yes

Table G.1: Error meeting criteria

133

Appendix H

Focus group recruitment text

Forst̊ar Java studenter semantiske feil?

Universitetet i Bergen Institutt for Informatikk

Er du eller har du vært en gruppeleder for et Javakurs? Har du hjulpet studenter med
å finne feil i koden? Eller er du en student som har eller har hatt Java? Hjelp oss å
lage et verktøy som kan hjelpe studenter med å finne og forst̊a semantiske feil i Java!

Vi ønsker å fokusere p̊a semantiske feil, spesifikt feil som b̊ade kjører og kompileres
uten noen feilmelding.Tidligere studier har vist at disse feilene ikke opptrer like ofte
som syntaktiske feil, men n̊ar de først oppst̊ar s̊a bruker studentene lang tid p̊a å finne
ut av dem.

Hvis DU vil hjelpe oss å hjelpe studenter, del dine erfaring i v̊ar fokusgruppe! Vi
trenger 6-8 personer som kan møtes p̊a Universitetet i Bergen for å finne ut hvilke feil
vi bør fokusere p̊a, og hvordan best hjelpe studentene med disse feilene. Vi beregner at
vi bruker ca. en time p̊a dette.

Hvis du velger å delta, vil du bli spurt om å ta del i en diskusjon hvor m̊alet v̊ares er å
bestemme hvilke semantiske feil som er mest relevante for v̊are studier. Vi har valgt
noen feil som vi ønsker å presentere og skal bli diskutert, og du er ogs̊a velkommen til å
foresl̊a andre feil du tenker kan være relevant.

Det vil bli tatt notater under diskusjonen.

Ta kontakt med Jenny p̊a Jenny.Strommen@student.uib.no for å delta! Din kontaktinfo
blir bare brukt til å formidle informasjon om denne fokusgruppen. Kontaktinfo slettes
n̊ar fokusgruppen er ferdig.

Denne fokusgruppen vil være en del av master-oppgaven: Semantic errors in Java

Veileder: Anya Helene Skrove Bagge anya.bagge@uib.no

134

Veileder: Anna Maria Eilertsen anna.eilertsen@uib.no

Masterstudent: Jenny Strømmen Jenny.Strommen@student.uib.no

135

Appendix I

Focus group presentation

136

Focusgroup
Semantic errors in Java

Plan

● 13:00-13:15

Introduction

● 13:15-13:45

Discuss the errors

● 13:45-14:00

Free discussion, other errors can be added here.

What errors are we looking for?

● Semantic = meaning
● Semantic errors - errors that are syntactically correct, but does not do what

we intended to do.
For example: Use of “==” on objects in Java

● Criteria for including an error:
Should not give an explicit runtime error or any compile time error.
Should be detectable by static analysis.

Questions

● Have you seen any cases of this mistake among students?

● Is it likely that an INF101 student makes this mistake?

● Why or why not?

● Do you think a student that knows Python beforehand can easier make this
mistake then another student that does not know Python beforehand?

● Why or why not?

Semicolon after if

Semicolon after if

Use of bitwise operator instead of logical operators

And operator Java google search: link

Use of bitwise operator instead of logical operators

Calling a static method as a normal method

Calling a static method as a normal method

Ignoring return value

Using == instead of .equals()

Using == instead of .equals()

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Two critical bugs as motivation
	Context and Approach
	Problem Description
	Research questions
	Research method
	Contribution
	Outline

	Background
	Definition of an error in this thesis
	Programming languages
	Why we need different programming languages
	Introduction to compilers and interpreters
	Python vs. Java

	Source code analysis
	Lexical analysis
	Syntax analysis
	Semantic analysis
	Different ways to analyse the source code

	Discovering relevant semantic errors for novice Java students
	Criteria for including an error in this thesis
	Literature review
	Discussion

	Focus group
	Method
	Recruitment
	Setup
	Results
	Discussion

	Relevant errors for this study

	The detection of semantic errors and automating feedback
	Existing error messages in other environments
	Should the feedback for these errors be automated?
	Target group
	False positives and ignoring error messages

	Choosing analyses method
	Detecting errors using the abstract syntax tree
	Method
	Results

	The structure of the error messages
	Discussion

	Design, implementation and development of Uncoil
	Demonstration
	Code structure
	Architecture
	Implementation of the analyser
	Implementation of the API
	Implementation of the user interface

	Development method
	Use case
	Creating a Minimal Viable Product
	Deployment

	Distribution strategy: Software as a Service or local distribution

	The evaluation of Uncoil
	Pilot testing
	A mixed method study to evaluate Uncoil
	Method
	Context
	Recruitment
	Setup
	Classification of errors
	Results
	Discussion

	Discussion
	Limitations and threats to validity

	Related work
	Further work
	Conclusion
	Bibliography
	Source code
	Data from evaluation by students
	Tasks for the students
	Errors presented by Hristova et. al.
	Semantic errors by Chan Mow
	Reproduction and testing of errors found in literature review and focus group
	Errors that meet the first criteria
	Focus group recruitment text
	Focus group presentation

