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Abstract: Anthropogenically-driven climate change, land-use changes, and related biodiversity
losses are threatening the capability of forests to provide a variety of valuable ecosystem services.
The magnitude and diversity of these services are governed by tree species richness and structural
complexity as essential regulators of forest biodiversity. Sound conservation and sustainable manage-
ment strategies rely on information from biodiversity indicators that is conventionally derived by
field-based, periodical inventory campaigns. However, these data are usually site-specific and not
spatially explicit, hampering their use for large-scale monitoring applications. Therefore, the main
objective of our study was to build a robust method for spatially explicit modeling of biodiversity
variables across temperate forest types using open-access satellite data and deep learning models.
Field data were obtained from the Biodiversity Exploratories, a research infrastructure platform that
supports ecological research in Germany. A total of 150 forest plots were sampled between 2014 and
2018, covering a broad range of environmental and forest management gradients across Germany.
From field data, we derived key indicators of tree species diversity (Shannon Wiener Index) and
structural heterogeneity (standard deviation of tree diameter) as proxies of forest biodiversity. Deep
neural networks were used to predict the selected biodiversity variables based on Sentinel-1 and
Sentinel-2 images from 2017. Predictions of tree diameter variation achieved good accuracy (r2 = 0.51)
using Sentinel-1 winter-based backscatter data. The best models of species diversity used a set of
Sentinel-1 and Sentinel-2 features but achieved lower accuracies (r2 = 0.25). Our results demonstrate
the potential of deep learning and satellite remote sensing to predict forest parameters across a broad
range of environmental and management gradients at the landscape scale, in contrast to most studies
that focus on very homogeneous settings. These highly generalizable and spatially continuous models
can be used for monitoring ecosystem status and functions, contributing to sustainable management
practices, and answering complex ecological questions.

Keywords: essential biodiversity variables; deep neural network; Sentinel-2; Sentinel-1; spatial
ecological analysis; biodiversity

1. Introduction

Forests cover about 31 percent of the global land surface and provide a variety of
valuable ecosystem services. By taking up large amounts of atmospheric carbon, forests
act as important climate regulators; they provide habitat for the majority of terrestrial
biodiversity and hold high cultural and aesthetic values. However, forests face tremendous
challenges under climate change, deforestation, increasing disturbances, and declining
biodiversity [1]. Biodiversity is known to be a key determinant of the capability of forests
to maintain their ecosystem functioning against these impacts [2]. Quantitative information
on the state and changes of forest biodiversity is critical for sustainable management and
conservation goals [3]. To harmonize global efforts on biodiversity monitoring, the Group
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on Earth Observations Biodiversity Observation Network (GEO BON) established the
framework of essential biodiversity variables (EBVs). It is based on a minimum set of
measurable indicators that cover a broad range of biodiversity components, such as genetic
composition, ecosystem structure, and ecosystem function [4]. The potential of Earth Ob-
servation (EO) data for the global monitoring of EBVs has been recently emphasized by
Skidmore et al. [5]. Satellite remote sensing techniques allow the derivation of ecologically
meaningful information and represent a valuable tool for continuous, large-scale moni-
toring applications that are still to be operationally implemented in forest research and
management at national scales, e.g., in Germany [6]. However, modeling biodiversity from
satellite images remains a huge challenge; used data and methods differ across scientists
and study areas, and a generic, robust approach is still lacking [7,8].

Multiple studies have addressed the need for a more thorough understanding of the
relationships between plant diversity and spectral information derived from remote sensing
imagery [9,10]. Common approaches use plot-based spectral band data and vegetation
indices from optical data, such as provided by Sentinel-2 or Landsat, to model in situ
plant diversity indices in Mediterranean forests [10,11], mountainous forests [12,13], and
subtropical forests [14]. Fagua et al. [15] revealed strong relationships between backscatter
variables computed from Sentinel-1 radar data and tree species diversity in tropical forests,
while another study showed moderate correlations with structural parameters (tree height
and fractional cover) in temperate deciduous forests [16]. To provide more meaningful
insights into the relationship between plant diversity and the remote sensing signal, an
increasing number of studies have made use of the spectral variation hypothesis [9,13,17,18].
The capability of Rao’s Q index, a measure of spectral abundance and distance, to capture
vegetation heterogeneity from satellite images has been presented in [19]. Nonetheless, in
the case of forests, Rao’s Q index has only been experimentally tested without incorporating
heterogeneous forest data [13,20].

Other researchers have switched the focus from species diversity to functional diver-
sity, which is understood as the range, abundance, and distribution of species traits, such
as structural diversity [21]. Spatially variable environments facilitate resource partitioning
and resilience against disturbances, linking species diversity with ecosystem functions [21].
There are different measures for stand structural attributes that describe the complexity of
stand structure. Measures that emerged from growth and yield sciences address the stand
density, size distribution, stand age composition as well as the horizontal and vertical ar-
rangement of trees. For size distributions, statistical metrics such as the standard deviation
of tree diameter or basal area are used [22]. On the other side, there are other approaches
that integrate multiple stand structural attributes into a single index to more adequately
address the three-dimensional characteristics of forest structure, e.g., Storch et al. [23].

Recent research has highlighted strong relationships between forest structural diver-
sity and tree species diversity [24], or bird diversity [25], at the global scale. Thus, models
of overstorey and canopy structure using remote sensing data have recently become more
common in forest biodiversity mapping [16,26]. Such approaches typically rely on active re-
mote sensing, either acquired by airborne laser scanning (ALS) [27] or spaceborne synthetic
aperture radar (SAR) systems [28]. However, multiple studies also indicated the potential
of features computed from optical data to model structural diversity variables [27,29,30].
The usage of spatial texture features as a measure of vegetation heterogeneity that is be-
ing computed from spectral bands and/or vegetation indices tends to be promising for
enhancing spatial models of plant diversity, but the evidence is still scarce [29,31].

As indices of tree species diversity and structural attributes of forests represent con-
tinuous data, statistical regression models are used for such analysis. Most prevalent are
machine learning (ML) models such as random forest (RF) [8,10,12,32]. Only a very few
studies used deep learning (DL) models for similar tasks [30], though their application
for biodiversity modeling with remote sensing data is very promising and thus should
be tested. In such studies, the validation of regression models is usually performed by
calculating a set of accuracy metrics such as the root mean squared error (RMSE) or the co-
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efficient of determination (r2). Reported r2 of tree species diversity models ranged between
0.3 and 0.7 [11,13], while according to [8,33], the relative root mean squared error (RRMSE)
ranged between 20% and 38% for tree diameter and 13% to 30% for tree height.

Reviewing previous research, we identified several knowledge gaps in the field of
the spatial modeling of forest biodiversity variables. So far, published studies that use
ML models and remote sensing data, e.g., [8,11], have addressed single components of
forest structure, either referring to species composition or growing stock. In general, the
application of DL to both optical and radar imagery for biodiversity modeling requires
more research. Another research gap in current literature is the lack of analysis that tests the
transferability of published models across heterogeneous forest types and management in-
tensities. The often-limited availability of field data results in case-specific models [8,13,28].
Considering these research gaps, the detailed objectives of our study were

1. To build and test a consistent modeling method for predicting different facets of forest
structure relevant to biodiversity research and forest management planning.

2. To examine the predictive power of DL models for different types of predictors
extracted from radar and optical image data.

3. To produce spatially explicit DL models that can generalize forest structural attributes
across temperate forest types.

In our approach, we consolidated recent findings revealing predictable relationships
between spectral image features and in situ forest variables. We employed a complete
dataset containing a broad diversity of forest types across Germany to develop a model
that can generalize forest structural attributes across forest types and thus, address the
research gap related to the model’s transferability.

2. Materials and Methods
2.1. Study Sites

The study was conducted throughout the three Biodiversity Exploratories (BE) that are
distributed across Germany, following topographic and climatic gradients, and represent
the variety of temperate forest types. Table 1 shows general geographical information of
the study sites; a map showing the locations of the study sites is given in Figure 1.

Table 1. Characteristics of the three study sites, modified from [34].

Geographic Characteristics Schorfheide-Chorin Hainich-Dün Swabian Alb

Location NE Germany Central Germany SW Germany
Size 1300 km2 1300 km2 422 km2

Geology Young glacial landscape Calcareous bedrock Calcareous bedrock
Dominant forest type Pine and beech Beech Beech and spruce

Main soil type Cambisol, Albeluvisol Luvisol, Stagnosol Cambisol, Leptisol
Altitude a.s.l. 3–140 m 285–550 m 480–860 m

Annual mean temperature 8–8.5 ◦C 6.5–8 ◦C 6–7 ◦C
Annual mean precipitation 500–600 mm 500–800 mm 700–1000 mm

2.1.1. Schorfheide-Chorin

Schorfheide-Chorin is embedded in an undulating moraine landscape in north-eastern
Germany. Figure 2 shows the spatial distribution of forest types within the study area.
The 1300 km2 big UNESCO biosphere reserve is located within one of the driest regions of
Germany, dominated by extensive pine forests that grow on alluvial quartz sands upon
the Pleistocene ground moraine accounting for 67% of the area. Another 28%, where the
ground moraine surfaces, are covered by deciduous forests [35].
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2.1.2. Hainich-Dün

The National park Hainich, with a size of about 1300 km2, is located in northern
Thuringia in central Germany. The regional climate is more humid here than in Schorfheide-
Chorin due to the crossing of a low mountain ridge. Forests grow on limestone bedrock,
with deciduous forests covering 83% of the area [32]. Figure 3 gives an overview of the
spatial distribution of forest types.
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2.1.3. Swabian Alb

The exploratory Swabian Alb is the smallest among the three study sites, with an
area of about 430 km2. The low mountain range landscape exhibits a stronger topographic
control with heights of up to 860 m a.s.l. Forests grow on limestone, and around 78% of
the forest area can be classified as deciduous, including mixtures of Fagus and Picea [35].
Figure 4 shows a forest cover map of the study site.

2.2. Data
2.2.1. Sampling Design

The collection of in situ data on forest structure variables drew on the network of
field plots established by the BE project across the three study sites. From 500 grid plots
of diverse forest areas, 150 forest plots (50 per exploratory) of 1 ha size were accounted
as experimental plots (EPs) for more extensive research. The selection of EPs followed
a stratified sampling design to cover the variation in soil depth and land-use intensities
within each exploratory. During inventory surveys between 2014 and 2018, data on stand
structure were sampled within the frame of the BE core project on forest structure. From
single tree data, leaving out thickets with a diameter below 7 cm, a dataset on stand
structural attributes was constructed by Schall et al. [36] and used in this study.
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2.2.2. Forest Management Types

In general, the definition of management types within the study regions results from
harvesting practices rather than specific structural characteristics [35]. Furthermore, forests
within the exploratories were structurally shaped by diverse management practices rather
than by species diversity which is relatively low across Central European forests [36]. Age-
class forests are among the most extensive management type, being either dominated by
Fagus sylvatica, Picea abis, or Pinus sylvestris. A few stands are dominated by Fraxinus excelsior
and Acer pseudoplatanus. Plots in Schorfheide-Chorin cover Scots pine, European beech,
pine/beech, and oak forests. Plots of pine forests show different development stages
compared to other mature forest stands. Forest plots in Hainich-Dün are dominated by
beech with different development stages as well as unmanaged and selection systems. In
Swabian Alb, age-class beech forests of all development stages were selected, while the
topographic conditions have favored extensive plantations of Norway spruce, of which
immature stands were included [36]. In total, the inventory covered field data on 14 forest
types according to management and dominating species.

2.2.3. Selection of Study Variables

Forest structure may be concisely defined as the spatial distribution of trees of different
sizes and ages within a stand. A variety of characteristics exist to describe the different
components of forest structure, such as species and age composition, stand density, and
size distribution [36]. As derivatives of stand productivity, biodiversity, and ecosystem
resilience, stand structural attributes provide valuable information for forest management
authorities and ecologists [36]. For our study, we obtained quantitative, in situ data on
species composition and size distribution as measures of forest structure.
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Species composition encompasses the number of species and their frequency dis-
tribution within a stand [37]. Here, the Shannon Wiener diversity index was used as a
proxy of tree species diversity that was calculated from tree species abundance data. This
index is commonly gathered for estimating local alpha-diversity [36] as in similar studies
before [13,17,18].

The determination of stand tree size distribution often includes the use of statistical
descriptions of dendrometric state variables such as basal area, tree diameter, height, and
volume [38]. In this study, the standard deviation of tree diameter at breast height (DBH)
was selected as an indicator of tree size heterogeneity. Moreover, we applied our approach
to other stand structural attributes, namely the standard deviation of tree height, basal area,
and Reineke’s stand density index [36].

2.2.4. Selection of Predictors Extracted from Satellite Data

For this study, different types of satellite data have been gathered that were resampled
to 10 m pixel resolution. Sentinel-1 data have majorly been used for modeling structural
diversity and Sentinel-2 data for species diversity. However, also multi-sensor models
have been produced for both study variables. As the field sampling took place between
2014 and 2018, so that the plots have been measured in different years, it was the most
convenient to select 2017 as one common year in between for the acquisition of the satellite
data. Moreover, 2017 was the year with the highest frequency of valid observations, being
partly attributed to the launches of Sentinel-1 in 2016 and Sentinel-2B in 2017.

Sentinel-1 SAR acquisitions have been extracted from the collection provided in
Google Earth Engine (GEE). This catalog includes ground range detection imagery that
was preprocessed with the Sentinel-1 toolbox. Detailed information on the standardized
preprocessing steps of Sentinel-1 SAR data can be found in [39]. Based on images from
2017 and the winter season 2017/2018, median backscatter composites have been produced
for both polarizations (VH and VV) and both orbit paths (ascending and descending)
separately for each study site. In addition, the normalized difference of both polarizations
for the winter season has been computed. Then median backscatter values for the plot
areas were extracted so that in the end, there were ten Sentinel-1 predictors, as shown in
Table 2.

Table 2. List of model predictors used according to the sensor and feature type and corresponding
abbreviations.

Feature Group Feature Name Wavelength [nm] Abbreviation

Sentinel-2 spectral bands

Band 2—blue 443 blue
Band 3—green 490 green

Band 4—red 560 red
Band 5—vegetation red edge 665 re1
Band 6—vegetation red edge 705 re2
Band 7—vegetation red edge 740 re3

Band 8—near infrared 842 nir
Band 8A—narrow near infrared 865 nirb
Band 11—short wave infrared 1610 swir1
Band 12—short wave infrared 2190 swir2

Sentinel-2 EVI
EVI median EVI_mean
EVI std.dev. EVI_std

Sentinel-2
Rao’s Q diversity index Rao’s Q index Q

Sentinel-2 EVI
texture

EVI contrast EVI_contrast
EVI dissimilarity EVI_diss

EVI entropy EVI_entr
EVI homogeneity EVI_idm
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Table 2. Cont.

Feature Group Feature Name Wavelength [nm] Abbreviation

Sentinel-1 C-Band
backscatter

VH ascending (year) VH_asc_year
VH descending (year) VH_desc_year
VV ascending (year) VV_asc_year

VV descending (year) VV_desc_year
VH ascending (winter) VH_asc_winter

VH descending (winter) VH_desc_winter
VV ascending (winter) VV_asc_winter

VV descending (winter) VV_desc_winter
normalized difference of winter

VV and VH median S1_ndi_mean

normalized difference of winter
VV and VH std.dev. S1_ndi_std

Sentinel-1 VV VH normalized
difference

texture

Sentinel-1 contrast S1_contrast
Sentinel-1 dissimilarity S1_diss

Sentinel-1 entropy S1_entr
Sentinel-1 homogeneity S1_idm

In GEE, the ML algorithm s2cloudless [40] was implemented to create cloud and cloud
shadow masked median Sentinel-2 composites for the growing season 2017 for each study
site based on images from the surface reflectance collection provided in the GEE data
catalog. This Level-2A product comes already atmospherically corrected and orthorectified.
Optical data from the winter season were not included due to snow cover interferences and
pronounced cloud contamination in the images. Median and standard deviation values of
Enhanced Vegetation Index (EVI) composites were extracted in GEE. The EVI uses the red,
blue, and NIR bands [29]:

EVI = 2.5 × ( NIR − RED )

( ( NIR + 6 × RED − 7.5 × BLUE )+1 )
(1)

and has been proven to be useful for dense canopy areas superior to other vegetation
indexes such as the Normalized Vegetation Index (NDVI). An overview of the 12 predictors
extracted from Sentinel-2 spectral band composites is given in Table 2.

Additional metrics were calculated that describe the spatial texture, or more specifi-
cally, the spatial distribution of reflectance intensities [41]. Multiple studies could make
out relationships between the spatial texture in remote sensing images and habitat het-
erogeneity of grassland and forest ecosystems [29,42,43]. From the EVI and normalized
difference of VV and VH backscatter [16], four texture features (contrast, homogeneity,
entropy, dissimilarity) were calculated based on the Gray-Level-Co-Occurrence-Matrix
(GLCM) using the function glcmTexture in GEE [29]. For this, a fixed window with a size of
3 × 3 pixels had to be specified. A description of the texture features is provided in Table 3.

Spectral heterogeneity is another method to assess plant diversity patterns. Rao’s Q
diversity index applied to satellite data was recently tested as a proxy of environmental
heterogeneity. Rao’s Q index measures the regional abundance and spectral distance of
pixel values [19]:

Q = ΣΣ dij × pi × pj (2)

where dij is the spectral distance between pixels i and j and p the proportion of occupied
area [19]. Studies revealed correlations with tree species diversity [13,18,44,45]. Rao’s Q
index measures the regional abundance and spectral distance of pixel values [19]. We
included the index to test for its application in predicting tree species and structural
diversity. It was calculated in ArcGIS based on the ten Sentinel-2 bands using a 3 × 3 pixel
kernel [44].
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Table 3. Overview, description, and formula of applied textural metrics based on [29,41].

Texture Metric Description Formula 1

Contrast

Exponentially weighted
difference in adjacent pixels.

Measure of local variations in
Digital Numbers (DN) within

an image region.

N=1
∑

ij=0
p(i, j)(i − j)2

Inverse Difference Moment
(Homogeneity)

Similarity of features between
adjacent pixels or smoothness

of the image.

N=1
∑

ij=0

p(i,j)
1+(i−j)2

Entropy “Randomness” in spatial
distribution of pixels.

N=1
∑

ij=0
p(i, j) log(p(i, j))

Dissimilarity
Linear difference in values of

adjacent pixels.
N=1
∑

ij=0
p(i, j) log(p(i, j))

1 Where N is the number of grey levels; i and j being the row and column of the GLCM; p is the probability of i,
and j being adjacent [29].

2.3. Deep Neural Network Regression

For biodiversity modeling, we implemented a feed-forward deep neural network
(DNN) using Keras sequential model in Python. The architecture, together with the overall
workflow of this study, is presented in Figure 5. The DNN was built with five layers: A
normalization layer, an input layer with 64 neurons, two inner layers with 64 neurons each,
and an output layer with one neuron. We chose the rectified linear unit (relu) as activation
function, the optimizer RMSprop, and the mean absolute error as a loss function. The
loss function achieved a stable minimum at 100 epochs. DNN architecture (number of
layers and nodes) and hyper parameters were fine-tuned empirically by minimizing the
root mean squared error in the training data. More information about the nature of these
parameters is given in [46–49].
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We based the validation of our models on a set of common accuracy metrics. The
RMSE and RRMSE were used to assess the differences between in situ data and predictions.
The latter is standardized by the mean of the validation observations. The coefficient of
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determination (r2) is the most commonly used metric for the validation of prediction models.
It represents the proportion of variance of the response variable that has been explained
by the model predictors. However, r2 alone is not sufficient to assess the performance of a
model since it can not estimate bias. For the detection of bias, scatterplots of predictions
versus in situ values were used in this study. Additionally, the RMSE and derivatives, such
as the RRMSE, allowed the comparison of different models. Each model was run ten times
while selecting training and validation data randomly each time. The average results, as
well as their variation across the ten folds, were finally calculated.

To have a thorough understanding of the capabilities of our models, we also analyzed
the predictor importance by a leave-one-out approach, separately for each feature group
and each target variable. That type of approach leaves one predictor out with each iteration
in order to evaluate the loss in accuracy when the said predictor is removed. Spatial
autocorrelation was taken into account by calculating Moran’s I.

3. Results

In the following section, we will separately report on the model accuracies and predic-
tor importance of the models of tree species diversity and tree diameter variation.

3.1. Tree Species Diversity
3.1.1. Predictors Importance

The importance of used model predictors is presented in Figure 6. We categorized
all 31 predictors into four general feature groups: (i) Sentinel-2 spectral bands, Rao’s Q
and EVI, (ii) Sentinel-1 backscatter features, and the normalized difference of winter VV
and VH, which was found to be more useful for prediction than VV and VH data from the
growing season, (iii) Sentinel-2 texture based on EVI and (iv) Sentinel-1 texture based on
the normalized difference of winter VV and VH. For each of the models, we evaluated the
individual contribution of features to the predictive performance. The standard deviation
of EVI was the most relevant predictor within the Sentinel-2 group (i).
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We observed no significant differences between Sentinel-2 multi-spectral bands. How-
ever, vegetation red edge and narrow NIR bands performed slightly better for tree species
diversity. Rao’s Q index revealed the second highest importance. Regarding the second
feature group (ii), the normalized difference of winter VV and VH showed the highest im-
portance, followed by single-year VV and VH. The Sentinel-2 texture features (iii) showed
a more distinct variability in importance compared to the Sentinel-1 texture features
(iv). EVI-based entropy was by far the best predictor within the group of multi-spectral
texture features.

3.1.2. Model Accuracies

Accuracies of tree species diversity models, summarized over ten iterations, are
reported in Table 4 according to the feature group used. We trained and tested several
models using different sets of predictors. The lowest RMSE and highest r2 were obtained
when all 31 predictors were used. Texture metrics of EVI achieved the same RMSE, and
differences in r2 were not significant.

Table 4. Model accuracy metrics (root mean squared error, relative root mean squared error, co-
efficient of determination) of tree species diversity models. The table with heatmap (red = low
accuracy, blue = high accuracy) shows the median and standard deviation values summarized over
ten model iterations.

Feature Group Predictors RMSE Std RRMSE Std r2 Std
S2 spectral bands, Rao’s Q, EVI 13 0.37 0.05 0.71 0.10 0.09 0.09
S1 backscatter features + NDI 10 0.39 0.03 0.69 0.07 0.04 0.07
S2 EVI texture 4 0.34 0.04 0.61 0.09 0.20 0.11
S1 texture winter-based NDI 4 0.37 0.05 0.70 0.06 0.03 0.03
All predictors 31 0.34 0.05 0.60 0.11 0.25 0.10
Only S2 features 16 0.35 0.04 0.68 0.11 0.15 0.14
Best predictors from each group 4 0.35 0.02 0.66 0.07 0.16 0.08

Overall, the models incorporating Sentinel-1 features tended to show lower accuracies.
A scatterplot showing the correlation between predicted and in situ values of the best model
for tree species diversity, which is based on EVI texture features, is presented in Figure 7.
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The assessments of spatial autocorrelation revealed values of Moran’s I near zero, thus
indicating low spatial dependency in our dataset, in the case of tree species diversity as a
study variable shown in Table 5.

Table 5. Moran’s I result for tree species diversity across the three exploratories. For z-score values
between ± 1.65 random distribution of samples can be assumed.

Spatial Autocorrelation ALB HAI SCH ALB, HAI, SCH

Moran’s I −0.0003 0.03 0.09 0.06
Z score 0.10 0.21 0.49 0.38

3.2. Structural Diversity
3.2.1. Predictors Importance

Predictor importance for different models of the standard deviation of DBH is shown
in Figure 8. For the model calibrated with Sentinel-2 multi-spectral band features, the
NIR and red bands showed slightly higher importance than the other bands, whereas
EVI and Rao’s Q were among the least important predictors contrary to the model of
species diversity.
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(a–d). The error bars indicate the variation in importance across the ten folds where training and
validation data have been randomized.

Among the Sentinel-1 backscatter features, descending orbital winter VV and VH were
significantly ranked higher than the other features in this group. Using dual-polarized
VV backscatter, slightly higher accuracies for modeling structural diversity compared to
VH were received. Among the Sentinel-2 texture features, the inverse difference moment
(IDM) was ranked as most important, while for the Sentinel-1 texture features, entropy was
ranked the highest.
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3.2.2. Model Accuracies

Accuracy metrics for the models of structural diversity are listed in Table 6. For the
standard deviation of the DBH, the lowest RMSE and highest r2 were returned when sixteen
Sentinel-1 features were used. Adding all 31 predictors did not provide significantly higher
accuracies in terms of RRMSE and r2.

Table 6. Model accuracy metrics (root mean squared error, relative root mean squared error, coefficient
of determination) of structural diversity models. The table with heatmap (red = low accuracy,
blue = high accuracy) shows the median and standard deviation values summarized over ten
model iterations.

Feature Group Predictors RMSE Std RRMSE Std r2 Std
S2 spectral bands, Rao’s Q, EVI 13 6.06 0.68 0.43 0.05 0.09 0.06
S1 backscatter features + NDI 10 4.90 0.62 0.35 0.07 0.45 0.09
S2 EVI texture 4 4.98 0.54 0.37 0.05 0.35 0.09
S1 texture winter-based NDI 4 5.57 0.67 0.42 0.04 0.16 0.06
All predictors 31 4.30 0.85 0.31 0.05 0.49 0.12
Only S1 features 16 4.41 0.47 0.33 0.05 0.51 0.13
Best predictors from each group 4 4.91 0.55 0.36 0.06 0.45 0.08

Figure 9 shows the relationship between predicted values of the standard deviation
of DBH and corresponding in situ values. Moran’s I and z-scores, documented in Table 7,
suggest no occurrence of spatial autocorrelation, despite z-values being higher for models
of Hainich-Dün and Schorfheide-Chorin, and the model including data from all study sites
compared to the model of tree species diversity.
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Table 7. Moran’s I results for structural diversity across the three exploratories. For z-score values
between ±1.65 random distribution of samples can be assumed.

Spatial Autocorrelation ALB HAI SCH ALB, HAI, SCH

Moran’s I −0.01 0.32 0.16 0.21
Z score 0.05 1.42 0.78 1.25

3.3. Model Accuracies for Other Structural Variables

We applied the model of structural diversity to test the performance of our approach
for other structural variables from the inventory: (i) standard deviation of tree height,
(ii) tree basal area per hectare, (iii) tree density.

These variables have been modeled in previous studies that address remote sensing
of forest structure and used ML models [8,30], whereas the basal area and tree density are
rather variables associated with timber resources, and the distribution of tree heights is an
important proxy of vertical layering and habitat heterogeneity [50]. Table 8 contains the
achieved accuracies for the model using all features. Accuracies of tree height standard
deviation were significantly lower compared to DBH standard deviation, whereas models
of basal area and stand density achieved moderate accuracies. Figure 10 presents the
comparisons of predictions versus in situ observations for the three structural attributes.

Table 8. Model accuracy metrics of additional structural attributes extracted from the forest inventory.
The structural diversity model comprising all 31 predictors has been used.

Structure Variable RMSE Std RRMSE Std r2 Std

Height standard deviation (m) 0.97 0.32 0.50 0.13 0.02 0.07
Tree basal area (m) 7.76 0.78 0.25 0.03 0.29 0.08
Stand density (count) 178 22.94 0.33 0.04 0.47 0.12

3.4. Spatial Patterns of Predicted Tree Diameter Variation

Tree diameter variation was mapped for forested areas of all study sites using the sim-
plest (i.e., least number of predictors) and best-performing model that included the Sentinel-
1 entropy, VV, and VH backscatter features. The maps presented in Figures 11 and 12 allow
for visually assessing spatial patterns of structural diversity.

In Figure 11, extensive areas of homogeneous tree diameter distribution are visible
in the western part of the Schorfheide reserve. A closer look reveals that the spatial
distribution of forest cover types coincides with structural diversity patterns. For example,
coniferous areas show a low standard deviation of tree diameter, whereas broad-leaved
forests exhibit relatively low structural diversity. Figure 12 shows the National park Hainich
and its surroundings. In the center, large, connected areas of broad-leaved, mainly beech,
forests are visible that show higher variation in tree diameter.
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types. Predictions were masked according to the forested areas of CLC 2018 dataset. A VH-scene
from Sentinel-1 is shown in the background.
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4. Discussion

Our study showed the capability and challenges of predicting several forest key
parameters with DNNs. The leave-one-out analysis of the predictors (Figures 6 and 8)
and the accuracy analysis with different sets of predictors (Tables 4 and 6) gave insights
on the importance of each group of predictors. Variability of species diversity was best
explained by the combination of Sentinel-1 and -2 features, with the texture variables
from Sentinel-2 EVI data showing the highest importance. Models based on features
from Sentinel-1 alone showed the highest RMSE and poorly explained variability. Our
models of DBH standard deviation, and to a lesser extent the stand density models, showed
a homogeneous distribution of errors, indicating a good degree of applicability across
the full range of values. On the other side, the models of species diversity had high
errors at high and low values, which complicates their use for management and especially
biodiversity conservation.

Our results suggest that structural diversity can be better captured by Sentinel-1 pre-
dictors alone, rather than by the combination of both optical and radar data, in agreement
with other studies [26,51,52]. For instance, Fagua et al. [15], Bae et al. [26], and Brugisser
et al. [16] showed that Sentinel-1 textural and temporal metrics could match the capacities
of ALS systems to map forest structure parameters. Similarly, other studies showed compa-
rable results for predictions of mean DBH in maritime [8] and boreal [30] sites. On the other
hand, Sentinel-2 texture metrics have also been found useful. Farwell et al. [29] showed
correlations between DBH standard deviation and EVI texture variables for 20 × 20 m plots
across the US from Sentinel-2. The best predictors were entropy and homogeneity features
(r2 = 0.38 and 0.52 respectively), corresponding to the evaluation of predictor importance
in our study.

Regression and classification models can improve their performance with remote
sensing data that covers the whole season. Improvements have been found in models of
tree species diversity [13] and structural diversity [53]. For tree species diversity, we did
not observe significant differences in model accuracy when using Sentinel-2 composites
from different seasons (Table 4). However, by using Sentinel-1 backscatter data from the
winter season, we gained higher accuracies compared to when using data from the growing
and peak season (Table 6). This highlights the importance of capturing changes in forest
structure across the season with radar imagery, in line with other studies [26,54].

The spectral variation hypothesis has been used before to predict tree species diversity,
such as the spectral Shannon index or Rao’s Q diversity index [19]. However, in this
study, Rao’s Q index did not significantly influence the predictions and was outperformed
by other predictors, such as EVI texture. Only a few other authors have found Rao’s Q
useful for predicting diversity, and more research is needed in this direction. For instance,
Marzialetti et al. [55] found it useful for classifications of coastal dunes. Torresani et al. [13]
revealed that the performance of Rao’s Q was scale and season dependent, and most studies
are still limited to small sample sizes on homogeneous site conditions.

Our results show, on the one hand, the limitations of remote sensing to predict straight-
forward biodiversity variables such as Shannon’s index (Figure 7). Geller et al. [56] also
reported that the extent to which species composition can be directly modeled with remote
sensing is limited. On the other hand, we demonstrate the potential of remote sensing to
predict other forest structural variables that can be used as proxies for biodiversity, such as
structural heterogeneity (Figure 9). Variation in height and stand density is related to the
structural diversity of stands, but they are also related to the heterogeneity of habitats for
bird and insect species [22,37]. Thus, the better fits obtained with the structural variables
with respect to Shannon’s index indicate that structural features can be more reliable for
producing informative and spatially explicit models of biodiversity aspects. Moreover,
Neumann et al. [57] praised higher relevance to structural diversity in the case of Central
European forests where tree species diversity is relatively low. The focus on structural
diversity has recently been used by a study of Ehbrecht et al. [24], revealing spatial matches
of plant and structural diversity hotspots. However, there are other facets of structural
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diversity apart from size distribution that govern forest diversity and habitat complexity,
such as vertical heterogeneity, deadwood standing, or bark diversity that would be valuable
to detect from space across large areas [23,35] and should be further investigated.

Results of similar studies across the literature match our conclusions only to a certain
extent. Farwell et al. [29] also obtained moderate correlations between texture metrics
and structural parameters (r2 = 0.3–0.5) similar to our results (r2 = 0.51). Ma et al. [58]
used Sentinel-2 over a broad set of European forests achieving low accuracies for tree
structural traits (r2 = 0.19) but much higher when tree and leaf traits were combined
(r2 = 0.55). Mallinis et al. [10] obtained a slightly higher coefficient of determination than us
when predicting tree species diversity in northern Greece (r2 = 0.29 vs. 0.20), but without
offering information on the error distribution or on the absence of spatial autocorrelation.
A different approach was presented by Chaves et al. [59], where remote sensing was used
to map relative species compositions (r2 = 0.4–0.6) across Amazonian forests, rather than
absolute measurements of diversity or by doing hard classifications. Bae et al. [26] used
generalized additive models to explain a broad range of biodiversity facets across temperate
forests using Sentinel-1 metrics and LIDAR data. In their study, they show how accuracies
increase considerably when a region is added as a predictor. This provides evidence on the
importance of evaluating models outside the area where they were trained or using a very
varied set of spatially uncorrelated data for model testing and validation. For example,
Chrysafis et al. [11], Kampouri et al. [60], and Mallinis et al. [10] modeled forest parameters
in small and homogeneous areas in northern Greece, where spatial autocorrelation is likely
to obscure the true relationship between field and satellite data [61].

Support vector machines or random forests are also often used in biodiversity models.
However, DL has recently been suggested to be a superior option for remote sensing studies,
especially regarding its ability to automatically extract meaningful features from complex
datasets [53,54]. Nevertheless, the degree to which a model can generalize well is still
linked to the availability of representative field data when applied to diverse settings [47].
This was well covered by our study by using spatially independent observations from
14 different forest types whose structure and species composition depends mostly on
management rather than on environmental factors [62,63].

The approach presented in this study not only gave valuable contributions to biodi-
versity monitoring with satellite remote sensing but also addressed an essential challenge
forest inventories are facing in the course of rapidly changing forest ecosystems [64]. Due
to high dynamics in the forest’s characteristics and introduced climate change mitigation,
there is currently a strong need to develop multi-purpose decision-support tools for forest
management as well as management practices that would rely not only on traditional forest
inventories but also incorporate remote sensing datasets [64]. Thus, to meet the increasing
demand for information on forest resources and their condition, the forest inventories
have to become also multi-source [65]. However, operative forest inventories are time
and resource-consuming. Using DL models based on multi-source datasets, the in situ
collected forest data can be upscaled not only to a landscape scale but also could be used
to reassess forest characteristics back in time. This, in turn, would allow to map forest
conditions at large spatial scales and assess the response of habitat heterogeneity to guide
forest management activities [66]. Visual assessments of the tree diameter variation maps
(Figures 11 and 12) allowed us to observe spatial patterns of structural heterogeneity that
align with the distribution of coniferous and broad-leaved forests. Such spatially explicit
maps could be used by forest managers as a guide for more detailed field sampling, to
identify areas for interventions, or for planning forest management activities.

5. Conclusions

Forest inventories and biodiversity research can benefit from spatially explicit models
of compositional and structural variables, especially in terms of increased areal and tempo-
ral coverage, coping with current climate change and land-use dynamics. The predictive
capability of such models is, however, tied to the degree of variability of site conditions
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reflected in the calibration data, making it a common limiting factor of large-scale studies.
To address this research gap, we applied a novel approach using deep neural networks
to model tree species diversity and structural diversity based on satellite and in situ data
from three forest regions covering 14 different forest types across Germany. We tested our
models with a different set of predictors and recorded their particular importance. The
best model was used to produce geospatial maps of structural diversity, which revealed
distinctive patterns depending on the forest type.

We concluded that deep learning models based on multi-temporal Sentinel-1 imagery
are capable of capturing spatial variations in forest structure across different forest types.
Our study also showed the challenges that species diversity models face even when com-
bining multi-spectral and SAR multi-temporal data. The developed approach could be
applicable to model nation-wide forest biodiversity characteristics, as well as it could be
used to support bottom-up investigations in biodiversity monitoring. The follow-up studies
should further test the performance of this approach in other environmental settings, forest
types, and address other biodiversity facets.
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