
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Hand Gesture Recognition Through
Capacitive Sensing

A thesis presented in partial fulfilment of the

requirements for the degree of

Master of Engineering

in

Electronics & Computer Engineering

at

Massey University,

School of Food and Advanced Technology (SF&AT)

Auckland, New Zealand

Muqing Xu
February 2022

ACKNOWLEDGEMENTS

I would like to acknowledge and give my greatest gratitude to my supervisor Associate

Professor Fakhrul Alam and co-supervisor Dr Frazer Noble, who made this project a possibility

with their constant support and guidance.

Secondly, thank you to Kay Lal for his generous assistance and support in providing technical

assistance throughout the project.

Thank you to Massey University in providing the funding and financial assistance whenever

required, without which this research would not have been possible.

Finally, I would like to thank the technical and administrative staff at Massey University for

creating such an outstanding research environment that supported me throughout my studies.

 I

ABSTRACT

This thesis investigated capacitive sensing-based hand gesture recognition by developing and

validating through custom built hardware. We attempted to discover if massed arrays of

capacitance sensors can produce a robust system capable of simple hand gesture detection and

recognition.

The first stage of this research was to build the hardware that performed capacitance sensing.

This hardware needs to be sensitive enough to capture minor variations in capacitance values,

while also reducing stray capacitance to their minimum. The hardware designed in this stage

formed the basis of all the data captured and utilised for subsequent training and testing of

machine learning based classifiers.

The second stage of this system used mass arrays of capacitance sensor pads to capture frames

of hand gestures in the form of low-resolution 2D images. The raw data was then processed to

account for random variations and noise present naturally in the surrounding environment. Five

different gestures were captured from several test participants and used to train, validate and

test the classifiers.

Different methods were explored in the recognition and classification stage: initially, simple

probabilistic classifiers were used; afterwards, neural networks were used. Two types of neural

networks are explored, namely Multilayer Perceptron (MLP) and Convolutional Neural

Network (CNN), which are capable of achieving upwards of 92.34 % classification accuracy.

 II

Table of Contents

ABSTRACT .. I

TABLE OF CONTENTS ... II

LIST OF TABLES .. V

LIST OF FIGURES .. VI

CHAPTER 1: INTRODUCTION ... 1

1.1 Problem and Research Aim ... 1

1.2 Recent Progress in Gesture Recognition Technology .. 3

1.2.1 Image-based Systems: .. 4

1.2.1.1 Single camera .. 4

1.2.1.2 Markers .. 5

1.2.1.3 Stereo Camera ... 5

1.2.1.4 Depth Sensor ... 6

1.2.2 Non-Image-based Systems ... 6

1.2.2.1 Gloves .. 7

1.2.2.2 Band ... 8

CHAPTER 2: CAPACITIVE SENSING .. 10

2.1 Introduction ... 10

2.2 Capacitance Sensing Background ... 10

2.2.1 Capacitance Sensing Advantages ... 11

2.2.2 Capacitance Sensing Disadvantages .. 11

2.3 Capacitive Sensing Principles .. 12

 III

2.3.1 Capacitance Sensing Operation Modes .. 13

2.3.1.1 Loading Mode ... 15

2.3.1.2 Shunt Mode ... 15

2.3.1.3 Transmit Mode .. 16

2.4 Capacitance Sensing Operation Distance ... 17

CHAPTER 3: DESIGN AND PROPOSED SYSTEM .. 19

3.1 Introduction ... 19

3.2 Proposed System Overview .. 19

3.3 Motherboard Design and Component Choice .. 21

3.3.1 MCU and Capacitance Sensor ... 22

3.3.2 FDC1004 Design and Implementation... 24

3.3.2.1 FDC1004 Communication Protocol .. 24

3.3.2.2 FDC1004 to Connector Routing .. 27

3.3.3 Motherboard Power Delivery ... 29

3.3.3.1 Buck Regulator .. 33

3.3.3.2 Linear Dropout Regulator (LDO) .. 37

3.4 Sensor-pad Board Design ... 39

3.4.1 Noise, Sensitivity, and Shielding ... 40

3.4.2 Final Design of Sensor Pad .. 43

3.4.3 Sensor Board Connection to Motherboard ... 44

CHAPTER 4: SOFTWARE AND DATA COLLECTION ... 46

4.1 Introduction ... 46

4.2 Types of Data Collected .. 46

4.3 Software implementation overview ... 48

4.3.1 Data Normalization .. 48

4.3.2 Final Dataset: Dataset 3 ... 50

 IV

CHAPTER 5: CLASSIFICATION MODELLING, DESIGN, AND RESULTS 52

5.1 Introduction ... 52

5.2 Classifier background ... 52

5.2.1 Probabilistic Classifier ... 52

5.2.1.1 Naïve Bayes Classifiers ... 53

Decision Tree Classifier .. 53

5.2.2 Neural Networks .. 53

5.2.2.1 Multi-Layer Perceptron (MLP) .. 54

5.2.2.2 Convolutional Neural Network (CNN) .. 55

5.2.2.3 Singular Value Decomposition .. 57

5.3 Probabilistic Classifiers Results ... 58

5.3.1 Independent Training and Testing ... 60

5.3.1.1 Gaussian Naïve Bayes ... 61

5.3.1.2 Decision tree .. 63

5.4 Multilayer Perceptron Results ... 65

5.4.1 Performance for Train/Test Split Containing all Subjects ... 65

5.4.2 Independent Training and Testing Data ... 67

5.4.3 Impact of Dropouts .. 69

5.5 Convolutional Neural Network Results .. 72

5.6 Conclusion ... 76

CHAPTER 6: CONCLUSION AND FUTURE WORK .. 78

REFERENCES .. 80

 V

LIST OF TABLES

Table 1: Power supply rail voltage and current ... 30

Table 2: dataset three composition ... 50

Table 3: results of Gaussian Naïve Baye with different participants combination 63

Table 4: Results of decision tree with different participants combination 65

Table 5: Results of MLP with different participants combinations .. 69

Table 6: Results of MLP with dropouts with different participants combinations 72

Table 7: results of CNN with different participants combinations ... 76

Table 8: All model results summary .. 77

 VI

LIST OF FIGURES

Figure 1.1: Different types of gesture recognition sensors [3] ... 4

Figure 1.2: Examples of Glove based designs; top left: Humanglove. Top right: strinGlove.

Bottom left: Didjiglove .. 7

Figure 1.3: Tomo, tomography-based hand gesture recognition hardware [17] 9

Figure 2.1: Capacitance that exists naturally between different objects [19] 12

Figure 2.2: Lumped circuit model of capacitive sensing [24] .. 13

Figure 2.3: modes of operation proposed by J. Smith [20; 29] .. 14

Figure 2.4: Comparison of CapBoard sensitivity for different sensor sizes [39] 18

Figure 3.1: Complete mated hardware solution ... 20

Figure 3.2: High-level flow diagram of the proposed system ... 20

Figure 3.3: Top left: top-side of the sensor board, Top-Right: bottom-side of the sensor

board, Bottom Left: top-side of Motherboard, Bottom Right, bottom-side of

Motherboard ... 21

Figure 3.4: Major Board sections ... 22

Figure 3.5: Hardware communication flowchart ... 24

Figure 3.6: STM32F7 communication with STM32G03 ... 26

Figure 3.7: FDC1004 Capacitance sensor Pinout, Courtesy of Texas Instruments [21] 28

 VII

Figure 3.8: Interweaved routing of Cin and Shield on the top side of PCB, Yellow is the

Shield, and red is the CIN. Similar routing is performed on the bottom side of the

PCB (not shown in this figure) ... 29

Figure 3.9: Regulators on the Motherboard ... 30

Figure 3.10: Power flow diagram of Motherboard ... 31

Figure 3.11: Motherboard external power stage input design ... 32

Figure 3.12: LTC3603 Surrounding circuit .. 34

Figure 3.13: LTC3603 Load transient 2A load ... 35

Figure 3.14: LTC3603 load transient 300.0 mA load ... 36

Figure 3.15: LTC3603 Bode plot .. 37

Figure 3.16: Components powered by their respective LDOs .. 38

Figure 3.17: Proposed Sensor board design ... 40

Figure 3.18: Sensor shielding, Courtesy of Texas Instruments [49] 41

Figure 3.19: methods of shield routing: no shield, shield under but the same size as sensor

pad, shield larger than CIN and both Shield under along with a shield ring around

the sensor pad, Courtesy of Texas Instruments [49] .. 42

Figure 3.20: Sensitivity of sensor relative to shielding type, Courtesy of Texas Instruments

[49] ... 42

Figure 3.21: our shielded sensor board design ... 44

Figure 3.22: Samtec Connectors, male connectors (blue) and female connectors (red) 45

 VIII

Figure 4.1: All five hand gestures from top left clockwise: palm, fist, middle, ok, point. The

gestures combine a mixture of similar and non-similar types to thoroughly test the

classifier. For example, one would expect the classifier to have difficulty with the

point and middle finger gestures .. 47

Figure 4.2: 50 frame Software calibration flow chart .. 49

Figure 5.1: Simple MLP model with two hidden layers [54] .. 54

Figure 5.2: typical CNN model [56] ... 55

Figure 5.3: matrix of RGB image [56] .. 56

Figure 5.4: Example of a single data frames SVD scree plot ... 57

Figure 5.5: SVD vs non-SVD results with training/validation with participant 2,3,4,5 test

with participant 1 .. 58

Figure 5.6: Confusion matrix of Gaussian Naïve Bayes classifier model is the accuracy of

participants 1-5 mixed with 75% train and 25% test ... 59

Figure 5.7: Confusion matrix of Fine decision tree classifier, left is model accuracy of

participants 1-5 mixed together with 75% train/validation and 25% test, right is

participants 1-4 train/validate and participant 5 used for test. 60

Figure 5.8: All Gaussian Naïve Bayes combination results, top left: training/validation with

participant 2,3,4,5 test with participant 1. Top right: training/validation with

participants 1,3,4,5, test with participant 2. Middle left: training/validation with

participant 1,2,4,5, test with participant 3. Middle right : training/validation with

participant 1,2,3,5, test with participant 4. Bottom left: training/validation with

participants 1,2,3,4, test with participant 5 .. 62

 IX

Figure 5.9: All decision tree combination results, top left: training/validation with

participant 2,3,4,5 test with participant 1. Top right: training/validation with

participants 1,3,4,5, test with participant 2. Middle left: training/validation with

participant 1,2,4,5, test with participant 3. Middle right : training/validation with

participant 1,2,3,5, test with participant 4. Bottom left: training/validation with

participants 1,2,3,4, test with participant 5. ... 64

Figure 5.10: MLP model used in our design ... 66

Figure 5.11: MLP result of mixing dataset 3 participants 1-5 together 67

Figure 5.12: All MLP combination results, top left: training/validation with participant

2,3,4,5 test with participant 1. Top right: training/validation with participant

1,3,4,5, test with participant 2. Middle left: training/validation with participant

1,2,4,5, test with participant 3. Middle right: training/validation with participant

1,2,3,5, test with participant 4. Bottom left: training/validation with participant

1,2,3,4, test with participant 5 .. 68

Figure 5.13: MLP model setup with dropout .. 70

Figure 5.14: MLP with dropout combination results, top left: training/validation with

participant 2,3,4,5 test with participant 1. Top right: training/validation with

participant 1,3,4,5, test with participant 2. Middle left: training/validation with

participant 1,2,4,5, test with participant 3. Middle right : training/validation with

participant 1,2,3,5, test with participant 4. Bottom left: training/validation with

participant 1,2,3,4, test with participant 5 ... 71

Figure 5.15: CNN model setup .. 73

Figure 5.16: CNN results of the result of mixing dataset 3 participants 1-5 together 74

 X

Figure 5.17: CNN combination results, top left: training/validation with participant 2,3,4,5

test with participant 1. Top right: training/validation with participant 1,3,4,5, test

with participant 2. Middle left: training/validation with participant 1,2,4,5, test

with participant 3. Middle right: training/validation with participant 1,2,3,5, test

with participant 4. Bottom left: training/validation with participant 1,2,3,4, test

with participant 5 .. 75

 1

CHAPTER 1: INTRODUCTION

1.1 Problem and Research Aim

Hand gestures can be argued as a fundamental method of how humans interact with their

surroundings. Hand gestures can be categorized into multiple different classes; controlling

gestures, conversation gestures, communicative gestures, and many others. Among various

hand gesture recognition methods for Human-Computer Interaction (HCI), camera-based ones

are the most common. The motivation behind such research includes applications such as sign-

language recognition, robotic control, directional indication, immersive game technology,

virtual controllers, affective computing, and remote controlling [1]. In all these applications,

gesture recognition is a critical component and directly impacts on user-experience. However,

despite the above mentioned potential, hand gestures recognition has not been as thoroughly

researched as other types of HCI, such as voice recognition.

Recent research in hand gestures has improved classification results through the use of novel

methods of signal processing, detection, tracking, shape description, motion analysis, and

pattern recognition. While there are enormous strides in software development, the

fundamental way we attempt to process gestures through computational means has remained

the same: computer learning through information captured from a piece of physical hardware

 2

or sensor. Currently, most hand gesture data and training data sets are captured through the use

of video cameras since the continued advancement in camera technology allows us to capture

larger and larger resolution images. While the usage of the camera has proven successful, using

a video camera to capture hand gesture data is sometimes "wasteful". Cameras capture images

(data frames) in high-resolution RGB images, which also contains background imagery

features that are unnecessary for gesture recognition. This background noise is ever-present

and must be actively filtered to distinguish noise from features before gesture recognition can

be performed. This large amount of incoming data affects the speed of processing, especially

for high-resolution images.

Many simple gesture recognition applications do not require such extensive resolution to

perform and only require basic features to differentiate between gestures; high-resolution RGB

imagery is not needed in such cases. In fact, for simple gesture recognition, such as static

recognition, much of the data captured from video cameras is processed out as not to overtrain

models. In such cases, many RGB images are routinely turned into greyscale images before

being classified.

This thesis explores an alternative method of hand gesture recognition by using capacitive

sensors. Similar to camera-based sensing, capacitance sensing is contactless and therefore,

hygienic and offers freedom of hand movement. Capacitive sensors naturally produce 2D

"greyscale", low-resolution images and require very little power to capture data. It has low

processing requirements and is ideal when processing power and power consumption are

critical. The capacitive sensors also work in low-light conditions, where a camera system would

struggle to capture useful data. This offers much higher privacy than camera-based systems, as

capacitor sensors are physically incapable of capturing personal information such as faces and

fingerprints.

 3

While using capacitive sensors for gesture recognition is not an entirely new concept, most

reported methods are restricted to straightforward designs with few capacitance sensors and

operate in threshold detection mode. In such cases, capacitance sensors are used as on/off

threshold detection to deduce if a physical body part is detected. Essentially, classification is

performed with monotone images. This thesis attempts to advance this by using more capacitor

sensors and not operating in threshold detection mode. The approach proposed is to create a

low-resolution grayscale "image" composed of capacitance values and then use the images to

train and test classifiers to conclude the viability of capacitive sensing as a form of free air

gesture recognition.

1.2 Recent Progress in Gesture Recognition Technology

As this work is based on capacitance-based gesture recognition, we will first look at current

hand gesture recognition technology and how capacitance sensing works.

The first step for any data collection/analysis system is to collect the raw data necessary to

accomplish the analysis. A range of different approaches has been employed in this raw data

collection stage for hand gesture recognition. The most common of those being image-based

approaches, such as depth sensors, single cameras, and non-image-based systems, such as

gloves and bands [2; 3]. Different groups have also explored other more novel non-image

technologies techniques such as RF signal-based sensors by Google [4] or capacitive sensing

and ultrasound-based systems. All of these new techniques are usually classified as non-image-

based and non-wearable. From the different types of technology, we can roughly classify

gesture recognition technology into image-based systems and non-image-based systems, as

shown in Figure 1.1.

 4

Figure 1.1: Different types of gesture recognition sensors [3]

1.2.1 Image-based Systems:

An image-based system is a natural extension of a human's ability to decipher gestures. It is

assumed that the human eye can be replaced with cameras that can “see” a gesture [3].

Although this sounds simple in practice, there are many challenges to overcome by such an

approach. Background scenery adds unwanted noise, lighting variation causes variations

between samples, and hand size variations all contribute to this difficulty. Locating the hand

and segmenting it from a busy background in an image sequence is non-trivial [5], adds

computational cost and reduces the robustness of the system [6]. Additional support, such as

markers, depth sensors, and other supporting instruments, are used so that the computer can

better separate noise and increase the system's robustness [2].

1.2.1.1 Single camera

A single camera represents the simplest form of an image-based system, where the hardware

consists of only a single camera. Single camera-based gesture recognition systems first

 5

appeared in the early ’90s [7]. While they were simple and cost-effective, they had difficulty

classifying gestures with “busy” backgrounds. Even today, single cameras still capture 2D

images by nature, therefore separating background noise from gesture is computationally

expensive. This effect is compounded when the gesture is non-static, and real-time recognition

becomes challenging as vast amounts of data must be processed frame by frame [8].

1.2.1.2 Markers

Makers represent the next logical approach in addressing the issue of the difficulty of

separating gesture data from background noise. In such approaches, users need to wear obvious

markers to identify features from the background. Since these markers are easily identifiable

by the computer, it increases the system's robustness by “telling” a computer where to look for

the gesture data [9]. The downside to this is that the user must wear obvious markers, or the

system will cease to function. In recent times, with the rise of faster graphical processing speed

and more advanced recognition systems, the use of markers has declined as it does not provide

a significant enough gain in classification accuracy compared to non-marker approaches [3] to

justify the added movement burden of the additional hardware.

1.2.1.3 Stereo Camera

A stereo camera has the ability to mimic human binocular vision and is therefore, able to

capture three-dimensional (3D) images. Stereoscopic camera systems capture two

simultaneous images from a pair of calibrated video cameras and use image registration

methods to create a disparity map that approximates per-pixel depth [5]. Due to the 3D nature

of the captured images, we can increase the robustness as background noise can be more easily

separated from the gestures. This, however, comes at the cost of increased hardware expense

and higher computational overhead to solve the image registration for each image pair [5].

 6

Many research works have explored 3D cameras with varying success [10]. Other forms of 3D

cameras also exist that offer even higher accuracy and image fidelity, such as Time of Flight

(ToF) cameras. TOF cameras directly provide the “depth” information in the form of a data

stream whereas, for the stereo camera, the end-user must calculate the information themselves

[10; 11]. However, normal stereo cameras work well in bright light and can be built with

standard video cameras, whereas ToF requires specialized equipment and does not work well

in bright light conditions [3; 11].

1.2.1.4 Depth Sensor

The depth sensor is a non-stereo, image-based depth sensing device. The depth sensor provides

a 3D depth output. Depth sensors enjoy several advantages compared to the traditional stereo

camera approach [3]. For example, the problems of setup, calibration, and illumination

conditions can be prevented [5]. Multiple implementations of camera systems with depth

sensors can be found, such as Microsoft’s Kinect, which features a QVGA (320x240) depth

camera and a VGA (640x480) video camera, both of which produce image streams at 30

Frames Per Second (FPS) [5].

1.2.2 Non-Image-based Systems

In the past, image-based systems have primarily dominated the gesture recognition discipline

due to their robustness [3]. While non-image-based systems, such as gloves and band-based

systems, are available, their practical applications have remained limited [3]. It is only in recent

times that alternative methods of non-intrusive hardware design, such as capacitive sensor,

ultrasound sensor, and RF sensor, are being explored. This growth in non-image-based gesture

recognition allows hardware designs specifically targeted at gesture recognition.

 7

1.2.2.1 Gloves

Glove design involves the end-user wearing a “glove” with sensors attached at critical locations,

which can record their hand configuration/motion [12], as shown in Figure 1.2 these sensors

are usually in the form of accelerometers and gyroscopes, which record user motion and speed.

These devices also typically require a physical connection to the computer to enable data

transfer [3]. While the glove-based system is not favourable in applications where the end-user

is concerned due to the restricted nature of the glove system, it is a very popular choice for

hand movement acquisition due to the precisions such systems can achieve [12]. A range of

different gloves was proposed in the past. Few such devices enjoyed commercial success,

showing that glove design has its niche use cases. Below are three examples of successful glove

designs:

Figure 1.2: Examples of Glove based designs; top left: Humanglove. Top right: strinGlove.
Bottom left: Didjiglove

1) Humanglove: Equipped with 20 Hall effect sensors that measure flexion/extension of

the four fingers, Metacarpophalangeal joint (MCP), Proximal interphalangeal joint (PIP)

and Distal interphalangeal joint (DIP) joints and flexion/extension of the thumb, thumb

metacarpophalangeal joint (TMCP) and metacarpal phalangeal (MP), and

 8

Interphalangeal (IP) joints, as well as fingers and thumb abduction/adduction; two

additional sensors measure wrist flexion and abduction/adduction [13].

2) StrinGlove: Uses 24 inductcoders (inductance based coders) [14] to obtain 22 degrees

of freedom of human hand to record MCP, PIP, DIP angles of fingers and MP and IP

angles of thumb, abduction/adduction angles of fingers and thumb, as well as wrist

motion [15]. It is also equipped with nine contacts (magnetic) sensors, placed one in

the thumb and two on each finger (tip and PIP phalanx). It requires calibration [12; 16].

3) Didjiglove: uses ten capacitive bend sensors to record finger flexion (fingers MCP and

PIP, and thumb TCMP and MP). The sensor employs two layers of conductive material

separated by a dielectric. When a finger bends, it would change the overlapping

conductive layers and thus a change in capacitance value. Calibration before each use

is required for proper function. The device was initially designed as a form of capturing

human animation [12; 15; 16].

1.2.2.2 Band

Band sensing technology is similar to glove technology in that it requires the user to wear a

device. However, unlike gloves, the device is not as “intrusive”. The device allows total

movement of the hand without restriction. Figure 1.3 shows one such device called Tomo,

which was developed by Zhang, Y. & Harrison, C. [17].

 9

Figure 1.3: Tomo, tomography-based hand gesture recognition hardware [17]

Tomo is based on using electrical impedance tomography, which is able to capture the

impedance geometry of a user's arm. This impedance geometry mapping is achieved by

measuring the cross-sectional impedances between all pairs of eight electrodes resting on a

user's skin [17]. This device assumes that the impedance map between each gesture is different

and therefore classifiable when performing different gestures. This approach is one of the more

novel ideas. Other improvements on this idea have attached a camera to the band as a form of

secondary data capture, which allows for more precise and rapid gesture classifications [18].

 10

CHAPTER 2: CAPACITIVE SENSING

2.1 Introduction

This chapter explores why we chose to use capacitive sensing as a form of gesture recognition

and the advantages and disadvantages of using captive sensing. The background of capacitive

sensing and its operation principles will also be discussed.

2.2 Capacitance Sensing Background

The use of capacitive sensing is not new and is extremely widespread. Touchscreens, touchpads,

and capacitive "buttons" are all frequently used with capacitive sensing technology [19; 20].

Most of these devices rely on physical contact with a surface to register a "touch". Attempts to

use capacitive sensing on more sophisticated non-contact based sensing human-computer

interactions have also been explored, such as body parameter sensing and gesture recognition

but to a lesser degree compared to surface touch solutions. At the same time, attempts to replace

input modalities, such as the keyboard and mouse, with capacitive sensing are also explored.

However, most of such designs are still in a developing stage [1].

 11

While the use of touch-based capacitance sensing has been heavily explored, the research into

close-range, non-contact capacitance-based sensing remains fragmented by different

approaches, both in design and implementation. This effect is further compounded by the fact

that most non-contact sensing designs require extensive software and machine learning, which

further complicates the matter [19].

2.2.1 Capacitance Sensing Advantages

The main advantages that capacitive sensing has over other detection approaches are that it can

sense different kinds of materials (skin, plastic, metal, liquid), is contactless, and is wear-free

[21]. Privacy of capacitive systems is also naturally higher compared to camera based systems.

Capacitance sensing hardware is simple, cheap by nature, can be easily manufactured, and

often occupies less space than other forms of wireless sensing hardware [19]. They typically

have a minimum height profile and can be hidden under opaque, non-conductive materials, and

can be arranged in large, high-resolution scanned arrays. Capacitive sensing is purely electrical

and requires low power. No form of mechanical movement is required for capacitive sensing

[19].

2.2.2 Capacitance Sensing Disadvantages

The biggest disadvantages that capacitive sensing has to include sensing distance, measurement

drifts and interference. Compared to other sensors capacitive sensors drop in accuracy much

more quickly [20] and is very much sensitive to environmental changes such as temperature,

humidity, etc., which will affect the final performance and accuracy of the sensors. Capacitance

also is very sensitive to interference and noise due to the nature of the small capacitance (femto

 12

farads) values involved. All of the above can be mitigated to a certain degree through software

means and the absolute accuracy of capacitance sensors is not crucial in the use case of gesture

recognition.

2.3 Capacitive Sensing Principles

Capacitive sensing can be achieved due to inherent capacitances between the people, devices,

and objects in the physical environment around us [19]. As shown in Figure 2.1, a range of

natural capacitance exists between different objects; in particular, there is a capacitance

between the human body and all surrounding objects. These capacitances are not physical

capacitors but are instead caused by capacitive coupling between different objects. By

measuring or detecting these values, we are able to calculate and relay information, such as

positions and motions [22].

Figure 2.1: Capacitance that exists naturally between different objects [19]

It should be noted that the terms “capacitive sensing” and “electric field sensing”, in most cases,

refer to the same basic technique [19]. Throughout this thesis, we use the former term.

 13

Figure 2.2 shows a lumped circuit model of what a capacitive sensing circuit looks like and is

used to describe what is actually being measured by capacitance sensors. As shown, two

electrodes T and R are used in the circuit; from these two electrodes, different capacitances will

exist between T, R, and the hand H. Depending on the sensing mode of the circuits, one or more

of 𝐶 ,𝐶 , 𝑎𝑛𝑑 𝐶 , will be measured to produce and relay information relating to the location of

the hand [19]. The materials used for electrodes T and R vary widely, but are typically

conductive materials, such as copper, novel non-solid parts such as textiles foils, paints, and

printable conductive materials have also been used [23].

Figure 2.2: Lumped circuit model of capacitive sensing [24]

2.3.1 Capacitance Sensing Operation Modes

One of the first examples of gesture recognition through capacitive sensing is the “Theremin”

[25]. The device, a musical instrument, invented by Russian physicist Leon Theremin in 1920,

 14

was able to play music without physical contact with the instrument. The instrument had two

antennas that could detect the relative proximity of hands. The player can vary the pitch and

volume of the instrument by varying the distance of each hand to the antennas [26]. This device

showed that as early as 1920, touchless sensing was being actively explored.

In 1995 Zimmerman et al. proposed different taxonomy to describe different types of operating

modes used in capacitive sensing [27]. They first proposed the idea of active capacitive sensing:

the human Shunt mode [27]. This work was later extended to introduce the concept of passive

capacitor sensing [28]. While dynamic sensing systems must actively generate an electric field,

passive sensing systems rely on external or ambient electric fields that are passively sensed.

The advantage of passive sensing is that it is simpler and requires less space per sensor pad.

The disadvantage of passive sensing is that it is less accurate and affected by environmental

changes more than active modes [19; 28].

In 1999, Smith consolidated both active and passive approaches and classified capacitance

sensing into three distinct modes: loading mode, transmit mode and shunt mode [20; 29]. Of

which, the loading mode is passive, and other modes are active.

Figure 2.3: modes of operation proposed by J. Smith [20; 29]

 15

2.3.1.1 Loading Mode

Loading mode, is, arguably, the simplest mode as it only requires a single plate that acts both

as transmit and receiver [20; 29]. Loading mode is passive by nature as it relies on measuring

the displacement current caused by the presence of a grounded object in proximity of the single

electrode. Referring to Figure 2.2, loading mode would mean only the electrode T would exist.

Therefore, the only significantly useful capacitance would be 𝐶 , which exists between the

hand and the electrode [29]. As loading mode has only a single electrode, for n number of

capacitive sensors (electrodes), only n amount of measurements/data points can be made. The

advantage of this mode is that it only needs a single electrode, can be placed arbitrarily and be

more easily shielded from influences of existing electric potentials than other modes [20; 30].

It also has the ability to detect electric field changes in longer ranges than the other modes,

although with less accuracy and repeatability [29; 31].

2.3.1.2 Shunt Mode

In shunt mode, shown in Figure 2.3, a known voltage of a certain frequency is created between

the two electrodes to cause displacement current to flow. This requirement of a displacement

current means that one electrode will be required to transmit a predetermined signal in shunt

mode [27]. When a hand is in close proximity, it will capacitively couple to both the

transmitting and receiving electrodes and cause some of the displacement current to flow from

the transmitting electrode through the hand to the ground. By measuring the decrease in

displacement current that is being received by the receive electrode, one can determine the

hand's distance in relation to the capacitive sensor.

Shunt mode offers a higher spatial resolution than the loading method but does not necessarily

provide larger detection distances [20]. Shunt mode will also offer more possible measurement

 16

points with the same number of sensors as loading mode. Whereas loading mode can only

produce 𝑛 amount of measurement points with 𝑛 amount of sensors, shunt mode is able to

produce
∗

 amount of measurement points [32]. However, unlike loading mode, where

each of the electrodes can be placed arbitrarily, the positioning of electrodes in shunt mode

plays a critical role in measurement accuracy and repeatability [33]. Different layouts of shunt

mode have been explored in various works e.g., grid styles, hexagons SnakePit, and CellMatrix

[34; 35]. This grid style design has also been extensively exploited to yield high-resolution

sensing that is being widely used in today's commercial touchscreens [19; 35; 36].

2.3.1.3 Transmit Mode

Transmit mode can be considered to be a special form of Shunt mode. In Transmit mode, the

hand is treated as a tightly coupled object to the transmitter plate. This means that the coupling

between the hand and the transmitter is much greater than the coupling between the hand and

the receiver or between the transmitter and the receiver [19]. Therefore, the receiver plate

would see more displacement current [29]. Referring back to Figure 2.2, as the hand approaches

the receive electrode R, the value of C2 (and C0 - the two are not distinct in this mode) increases,

and the displacement current received at R increases [29; 32]. The patterns used for transmit

mode also tend to closely match the styles found on shunt modes [37].

While shunt mode offers a higher spatial resolution than loading mode, it comes at the price of

increased surface area per sensor[20]. When a single sensor is employed to measure water

levels, accuracy is paramount to offer accurate values and sensor size is not crucial. However,

in the case of gesture sensing, we must take into consideration the pad size and the pad count.

The number of sensors is paramount for sensing applications as it affects the resolution of the

"picture" generated for use with machine learning. Therefore, for this research, loading mode

 17

was used as it offered the benefit of the smallest required pad space, whereas shunt mode

required two separate sensing pads, which increased the sensing pad surface area.

2.4 Capacitance Sensing Operation Distance

The goal of any capacitance sensor is to detect an object of interest, in our case the human hand,

at the furthest distance and with the highest spatial resolution. Spatial resolution here means

the size of the smallest object that the capacitance sensors can resolve.

While it is known that the human body produces capacitance, the actual amount of capacitance

can vary widely from person-to-person with different body mass, shape, and different

measurement conditions [22]. The issue is compounded by the fact that individual capacitance

sensors also produce varying results depending on the material and size of the sensor [20].

Literature suggests that a real-world detectable human capacitance is on the order of low

hundreds of picofarads [19; 22; 38]. At this level of capacitance, noise starts to be a dominating

factor; if the design does not account for stray capacitance and component selection/routing

becomes an essential factor. Thankfully many commercially available Integrated Circuits (ICs)

exist to measure capacitances at such small level. For example, the FDC1004 [54] is a simple,

cost-effective capacitance-to-digital converter that can achieve a resolution of 0.5 fF and was

chosen to construct the capacitance sensors for this project.

One of the critical challenges of capacitance sensing is the quick decaying detectable

capacitance rate in relation to the detection range. The generic equation for the capacitance of

a capacitor is given as 𝐶 , where 𝐴 is the pad area, 𝐷 is the distance from the pad, and 𝐶

is the measured capacitance. Therefore, this would suggest that capacitance is inversely related

to distance. However, this is not the case for greater distances between the plates. The farther

 18

apart the two plates are, the smaller their overlapping area gets relatively to their surroundings;

thus, a more realistic model is 𝐶 , where 𝑥 is dependent on the environment [39]. From

this equation, it can be concluded that since capacitance decays exponentially, the detectable

range of capacitor sensors is closely related to the size of the sensor [20; 40].

Figure 2.4: Comparison of CapBoard sensitivity for different sensor sizes [39]

Figure 2.4 illustrates the exponential decay of different sized sensors which all have a relatively

linear region and then rapidly drop in resolution verse distance [39].

For our design, we have opted to use a rectangle pad design with a pad size of 27.2 mm by 5.1

mm. With this pad size we are able to have a total sensing area of 137.7 mm2, and a spatial

resolution of approximately 55.0 mm. At this range, our design is still capable of differentiating

between two fingers. From above 55.0 mm, the detection rapidly becomes exponential decay

and becomes undifferentiable to environmental noise.

 19

CHAPTER 3: DESIGN AND PROPOSED SYSTEM

3.1 Introduction

This chapter explores the hardware choices for our design and how we came to use such designs.

We first look at different sensor pad sizes that would affect the spatial resolution of our data

capture. Based upon the above results we will then propose and design our hardware system.

Component choices will be backed-up with our design philosophy and reasonings.

3.2 Proposed System Overview

Physical pictures of the proposed system are shown in Figure 3.1. The white board contains

the sensor pads that are connected to the Motherboard (the green PCB). When a hand

approaches the sensor pads, loading mode capacitance sensing is achieved which the FDC1004

will actively measure.

 20

Figure 3.1: Complete mated hardware solution

The high-level flow diagram of the system is shown in Figure 3.2. The Motherboard handles

the data collection, processing and delivery to the host PC, while the sensor pad board is the

physical medium on which data is collected.

Figure 3.2: High-level flow diagram of the proposed system

 21

The sensor pad board was designed to be replaceable to allow variations in pad size. By

separating the sensor pad board and the Motherboard, we made the sensor pad board

replaceable which allows us to test and validate different sensor pad sizes/arrangements. Data

is collected by the Motherboard and sent to the host PC through a USB serial. The detached

sensor pad board and the Motherboard are shown in Figure 3.3.

Figure 3.3: Top left: top-side of the sensor board, Top-Right: bottom-side of the sensor
board, Bottom Left: top-side of Motherboard, Bottom Right, bottom-side of Motherboard

3.3 Motherboard Design and Component Choice

The motherboard is a four-layer PCB design, with FR-4 as the PCB material. The design was

restricted to four layers due to costs reasons. For ease of design and documentation, the

 22

prototyping board can be split into four major sections: 1) power; 2) STM32F7; 3) sensor

section; and 4) connectors.

Figure 3.4: Major Board sections

From Figure 3.4, we can see all the major motherboard sections. Red represents the power

stage, which is responsible for all the power supply rails of the entirety of the Motherboard;

blue is the STM32F7 MCU, which is used for processing, calculations and communication

with the host PC; green is the FDC1004 capacitance to digital converter and STM32G03 MCUs

used for collecting capacitance data from the sensor pads and transferring said data to the

STM32F7; and yellow outlines the female Samtec connectors, which are used to connect to the

sensor board (explained in section 3.4.3).

3.3.1 MCU and Capacitance Sensor

A challenge in designing the Motherboard was to fit sufficient capacitance sensors (FDC1004)

to enable a high enough resolution design to support our use case. Off-the-shelf capacitance

 23

sensor FDC1004 [21] by Texas Instrument was chosen for its ease of deployment and industry

verified capabilities. Each FDC1004 has four sensors and thus is attached to four sensing pads.

A total of 52 FDC1004 was deployed onto the prototype board to allow for a combined sensor

of 208 individual capacitance sensors. The green box in Figure 3.4 outlines all the FDC1004

sensors.

Due to the high number of sensors needed and used, the volume of data generated from all the

sensors will naturally be very high. The ideal choice for handling these data would be the use

of an FPGA, but an FPGA is somewhat cumbersome to program and would take an extended

amount of time to debug. As the time to deployment is of most importance in the prototyping

and testing stage, efficient hardware usage is not a significant priority in our case. Therefore,

it was decided to use an STM-based ARM (STM32F7) based on its ease of debugging and

programming.

Communication to and from the FDC1004 is done using the I2C protocol. Due to every

FDC1004 having the same physical I2C address, 52 unique I2C channels would be required,

meaning a minimum of 104 digital IO pairs would be necessary. This high I2C count presents

a challenge to ARM MCUs as most of them do not have so many digital IO channels, especially

that many I2C modules. Therefore, the design choice was to offload the I2C communication to

smaller secondary MCUs (STM32G03). The smaller MCUs were responsible for

communicating with the FDC1004, while the larger main ARM MCU (STM32F7) was focused

on communication between the smaller MCU and the host PC. Figure 3.5 shows the

communication link between each hardware step.

 24

Figure 3.5: Hardware communication flowchart

3.3.2 FDC1004 Design and Implementation

The FDC1004 represents the most critical component in our entire system as it performs the

capacitance measurement. The FDC1004 is capable of performing capacitive sensing with

grounded capacitor sensors and is designed specifically for implementing capacitive sensing

solutions [21]. Each channel has a full-scale range of ±15 pF with a measurement resolution of

0.5 fF. Careful design and implementation are required to ensure the lowest possible noise and

to ensure the operation of the combined 52 FDC1004 sensors do not cause significant crosstalk.

3.3.2.1 FDC1004 Communication Protocol

The FDC1004 is controlled and transmits capacitance value data through the I2C protocol [21].

While I2C was designed to have a single master device communicate with multiple slave

devices on a single I2C channel, we cannot do this in our case as the FDC1004 only has a single

factory hardwired I2C address. Therefore, we must be able to provide a total of 52 unique I2C

channels dedicated solely for I2C communication for our usage case. Most MCUs available

 25

today can provide a small number of I2C communication channels, so we will need multiple

MCU to achieve the I2C count. Yet most MCU today often require a large number of peripheral

circuits to facilitate the MCU. For example, the MCU ATmega328 used on the Arduino Uno

requires at least a clock oscillator for high-frequency operation and multiple by-pass

capacitors[41]. This would increase the board space and component costs considerably.

Therefore, we must choose an MCU with I2C with minimal peripheral circuits requirements in

order to streamline the process of implementing the 52 FDC1004 I2C communication pairs.

The choice was made to use the STM32G03[42], which is available in an 8-pin package that

fulfils our use case in the smallest footprint. The STM32G03 is a self-contained package, with

its own onboard oscillator clocked at 16Mhz powered directly through Vcc and an internal PLL

circuit, which produces a final clock frequency of 32 Mhz. The only peripheral circuits needed

for the STM32G03 are three bypass capacitors for its 3.3V power supply. An additional two

resistors are also required as per defined by the I2C communication protocol. While each

STM32G03 contains two I2C communication channels, we chose to use only one channel as

other pins of the second I2C channel are occupied for other functions. Thus for 52 FDC1004,

there are 52 STM32G03, creating 52 pairs of STM32G03 and FDC1004; each pair has its

isolated channel of I2C communication.

While the above STM32G03 solution solves the I2C hardware address issue of the FDC1004,

it also introduces the problem of how to facilitate data transfer from STM32G03 to the host PC.

Due to the high number (52) of individual STM32G03, we cannot have them all communicate

with the host PC directly over the USB protocol as USB only accepts one connection at a time

unless a switch is used. Therefore, we must have some form of "middleman" to facilitate this

data transfer between the STM32G03 and the host PC. As seen in Figure 3.6, the chosen

method uses an STM32F7 Nucleo board. The STM32F7 Nucleo board will communicate and

collect the FDC1004 capacitance value data from the 52 STM32G03, and then transfer said

 26

data to the host PC through the UART protocol. The PC will only have to communicate with a

single MCU through this method.

However, the data transfer method between all the STM32G03 and STM32F7 will also require

a high number of digital IO. Even with only 2 IO used for each STM32G03, it will require a

total of at least 104 digital IO dedicated purely for communication purposes between

STM32G03 and STM32F7. The use of 104 digital IO is not feasible as we do not have so many

available empty digital IO on the STM32F7. Therefore, the communication between

STM32G03 and STM32F7 is a custom bitbang shown in Figure 3.6.

Figure 3.6: STM32F7 communication with STM32G03

Each STM32G03 will have one unique dedicated IO while also sharing one master IO with all

other STM32G03. Data bits are controlled by STM32G03 and read by STM32F7. Master CLK

is controlled by STM32F7 and read-only by STM32G03.

The master CLK acts as the master communication clock for all STM32G03, and the STM32F7

directly controls this CLK. At the start of the data transfer cycle, the STM32F7 will request the

STM32G03 to send the first bit by turning master CLK low to high and back low again. This

 27

transition signals to the STM32G03 to send the first data bit. Once the STM32F7 has finished

reading all the STM32G03 data, it will turn master CLK low to high and back low again, which

tells STM32G03 to send in the next data bit. STM32G03 will stretch and hold a bit indefinitely

unless signalled by the Master CLK to transmit the next bit or if a timeout of 5ms has occurred.

For example, if the current bit is 1, the STM32G03 will hold the Dataline IO high until it has

received the signal on the master CLK for the next bit.

Through this custom bitbang method, we can reduce the number of required digital IO from

the previous 104 to 53 consisting of 52 data IO and 1 Master CLK IO. Nevertheless, this

method of communication comes with its downside. No communication is verifiable, and any

corrupt bits are sent and interpreted as is. The timing of the bitbang is also extremely delicate

and requires tedious trial and error and fine-tuning as the clock speeds of the STM32G03 and

STM32F7 are different.

3.3.2.2 FDC1004 to Connector Routing

Once the software for the FDC1004 is sorted the final part is to physically route the FDC1004

sensors to the SAMTEC connector, which will then be connected to the sensor board. With

respect to Figure 3.4, this is presented as the connection between Green and Yellow. Each

FDC1004 has four capacitance sensors, CIN1 to CIN4, and each FDC1004 also has its own

unique shield trace generator; this is shown in Figure 3.7.

 28

Figure 3.7: FDC1004 Capacitance sensor Pinout, Courtesy of Texas Instruments [21]

Routing these CIN1-4 and the shield traces (SHLD1, SHLD2) is critical as all routed traces on

the PCB are analogue signals, and any noise picked up will directly impact the capacitance

value accuracy. Therefore, it is paramount to ensure that each capacitance sensor (referred to

as CIN) will receive the highest possible shielding from external interference.

To minimize interference from the surrounding environment on the CIN, a thin PCB trace (6

mils) along with interweaved routing was chosen. Thin PCB trace reduces both stray

capacitances picked up from the ground plane on the PCB and also EMI from the surrounding

environment. Interweaved routing, where a shield trace is routed between every CIN trace,

allows for the maximum isolation between different CIN, so coupling between two adjacent

CIN is reduced to the minimum. Figure 3.8 shows the routing method used; red denotes the

CIN traces, while yellow denotes the shield traces. In this design, no CIN trace is directly next

to another CIN trace.

 29

Figure 3.8: Interweaved routing of Cin and Shield on the top side of PCB, Yellow is the
Shield, and red is the CIN. Similar routing is performed on the bottom side of the PCB (not

shown in this figure)

The connector used to connect the Motherboard to the sensor board is the EdgeRate series

connector by SAMTEC[43], shown in Figure 3.8 in teal and comes in male and female variants.

The female version was used on the Motherboard, while the male was used on the sensor board.

There are 120 contacts per EdgeRate connector for 480 contacts total on the Motherboard. Each

CIN would occupy one contact on the connector, meaning 208 contacts are used for CIN; the

rest of the contacts were allocated to shield trace and ground. By having so many contacts

dedicated to shield traces, we effectively allowed each CIN trace to be wrapped by shield traces,

thereby following our previous design motto; no CIN trace is directly next to another CIN trace.

3.3.3 Motherboard Power Delivery

Once the basic designs of the critical components have been established, the next step is to

deliver power to the Motherboard and power all the components. A noisy power supply can

leak noise to IC and the FDC1004 and directly affect their performance. Therefore, it is

paramount that proper supply regulation is achieved, where noise is kept to a minimum.

 30

Table 1: Power supply rail voltage and current

Voltage Designed Current Max Current Number of rails

5.0 V 1.5 A 3.0 A 1

4.1 V 1.0 A 2.5 A 1

3.3 V 100.0 mA 2.0 A 4

Table 1 outlines all the power supply rails voltage and current rating used in the design, Figure

3.9 shows their respective locations on the Motherboard. In total, the power supply design

contains one buck regulator and five LDO (low voltage dropout regulator), The buck regulator

is used to drop input voltage to suitable voltages for the LDOs. The LDO serves multiple

purposes, primarily as voltage regulators to power components but also as a power supply filter

to filter the buck regulator's output noise.

Figure 3.9: Regulators on the Motherboard

Figure 3.10 shows the voltage input and voltage output flow diagram and devices that the

power respectively supplies. The 12 V input to the Motherboard through the 12 V barrel jack

 31

is connected directly to the 5 V LDO and the Buck regulator. The Buck regulator (outlined in

red in Figure 3.9) serves the purpose of lowering the voltage to 4.1V, which then powers the

3.3 V LDO. Since converting 12 V to 3.3 V through LDO is not only highly inefficient and

generates high amounts of heat waste but also degrades noise characteristic of the LDO due to

the high difference between input and output voltage. 4.1 V is an ideal compromise between

the safety margin of the 3.3 V LDO operation limits and heat generated.

Figure 3.10: Power flow diagram of Motherboard

A 5 V rail is required to power the MCU, as the buck regulator can be noisy and outputs only

4.1 V. We opted to use a 5 V LDO that is sourced by the 12 V barrel jack input. The use of a

heatsink was deemed necessary to maintain the LDO at cool-to-touch temperatures.

As stated, The MLB connects to external power through the 12 V barrel. The Buck regulator

can accept a maximum of 15 V input voltage and therefore measures must be taken to ensure

no overvoltage occurs. This is then followed by a fuse and a 14 V OVP Zener diode to ensure

the input voltage never exceeds 14 V.

 32

Figure 3.11: Motherboard external power stage input design

Figure 3.11 shows the simple protection circuit used in the case of overvoltage. Component X1

is the barrel jack and is tied to the T1 screw terminal for easy debugging, both are then

connected to a fuse (F1) and a 14 V Zener diode (D1). If an input voltage exceeds 14V then

the Zener diode will conduct, cause a short circuit and blow F1. The on/off switch is placed

after the F1 fuse and D1 Zener diode combo, the rationale behind this is that this allows the

circuit to detect an over-voltage presence regardless of the on/off state of SW1 and will allow

the fuse (F1) to blow before the incorrect voltage is applied to the Buck regulator input. LED

(H1) is used as an indicator to see if SW1 is closed.

 33

3.3.3.1 Buck Regulator

While a Buck regulator can effectively drop voltages without significant energy loss, it

naturally presents the problem of emitting switching noise that is radiated to the surroundings

and transmitted through the FR-4 dielectric of the PCB to nearby components. This noise is

undesirable as it can be picked up by the FDC1004 that translates to noise on our final

measurements. This noise is further compounded by our sensor boards exposed copper pads,

which can also pick up this emitted switching noise and other surrounding EMI. Therefore, it

is paramount to suppress the noise generated by the Buck regulator to the minimum.

The chosen buck regulator chip is the Analog Devices LTC3603 [44]. This device satisfies

most of our requirements, with built-in dual FET and synchronous operation and a peak output

of 2.5 A. Implementation of this Buck regulator is straightforward and provides a simple design

phrase. However, more importantly, simulation is available through the Analog Devices

LTpowerCAD software [45]. This ease of implementation ensures a fast and reliable Buck

design that is easily operational verified.

The LTC3603 can be operated in both burst or continuous operation, and the max operation

frequency is at 1 Mhz. For our design, we used Continuous mode with a 1 Mhz operation

frequency. 1 Mhz ensures quick transient response and continuous mode ensures the least

amount of interference to surrounding as the LTC3603 generates no start/stop phase noise. To

address any possible radio frequency noise from sharp rise/fall edges from the 1Mhz operation,

we use a ferrite bead at the Buck Regulator's output to reduce such effects.

Buck regulator being a feedback network, also requires simulation to ensure the system's

stability, this simulation is done with the previous mentioned LTpowerCAD software. Figure

3.12 shows all the component choices used for the LTC3603 in designing a stable Buck

regulator.

 34

Figure 3.12: LTC3603 Surrounding circuit

The capacitor and inductor choices are essential as they directly affect the feedback stability

and ripple size. Thus the choice of large inductor and output capacitors ensures a low ripple at

the output of the buck regulator. This low ripple would directly affect the 3.3 V LDO that

comes after the buck regulator as while the LDO has a high power supply rejection ratio (PSSR),

it is nevertheless not infinite. Therefore, the lower the output ripple of the Buck regulator, the

better the performance of the LDO would be. The Loop response of the Buck is also of

importance as unstable buck regulators can swing widely when transient loads are presented,

which will be the case when MCU is connected that constantly switches between high current

and low current draws. Therefore, it is crucial to ensure sufficient simulation is performed on

the loop stability.

 35

Figure 3.13: LTC3603 Load transient 2A load

Figure 3.13 shows the time-based transient load simulation performed by Analog Device’s

LTpowerCAD software. The purple line above is the simulated transient of the buck regulator

when a transient load of 2.0 A is drawn from the buck regulator, and the green line in the second

graph is the simulated current output. As the simulation shows, even in the extreme case of 2.0

A transient load, the output voltage does not dip below 10.0 mV or rise above 4.0 mV of the

target voltage of 4.15 V and the recovery time is approximately 100.0 μs. This severe case of

2.0 A load transient should not happen in our use case unless faults such as short-circuit occur.

If shorting faults do occur, ideally, the fuse should react in time to stop damages to the

LTC3603.

 36

Figure 3.14: LTC3603 load transient 300.0 mA load

Figure 3.14 shows a much more realistic load transient where the transient is 300.0 mA. In

such a case, the voltage should only dip a maximum of 5.0 mV below nominal 4.15 V, and the

recovery time is shortened to approximately 60.0 μs.

The Bode plot of the buck regulator shown in Figure 3.15 agrees with the graphs in Figure 3.13

and Figure 3.14 in that the Buck regulator is indeed stable. With the component selection shown

in Figure 3.12, we can achieve a phase margin of 130.0 degrees and a gain bandwidth of 31.0

kHz. The phase margin is much higher than the recommended 60.0 degrees. However, the

bandwidth ideally can be higher than 31.0 kHz, but it is nevertheless sufficient. From Figure

3.15, we can also see that after the 1.0 MHz frequency, the LTC3603 would rapidly become

unstable, which agrees with the maximum operating frequency of the LTC3603 from its

datasheet.

 37

Figure 3.15: LTC3603 Bode plot

3.3.3.2 Linear Dropout Regulator (LDO)

The purpose of using LDO instead of making the Buck regulator output 3.2 V and directly

using it to power the MCU and FDC1004 is that both FDC1004 and STM32 are susceptible to

noise on their respective input voltage. The noise from the buck regulator and any noise from

MCU’s internal clock could affect the FDC1004 if the MCU and FDC1004 are both directly

powered by the buck regulator. The FDC1004 has a published PSRR of 13.6 fF/V, which

means 1.0 volt of noise can cause 13.6 femto-farad of measurement error.

As the FDC1004 is affected by power supply ripple, all reasonable design choices must be

taken to accommodate this. Therefore, for powering the FDC1004 and their respective

STM32G03, the chosen LDO was the Analog Devices ADP7158 [46]. The ADP7158 has

extremely high PSRR at 60.0 dB at the 1.0 MHz input frequency range when the load is under

1.2 A [46] and an output noise level of 1.6 μV RMS at max current level [46]. Therefore, this

 38

chip is suitable for use cases where it can sufficiently suppress and filter the switching noise

from the Buck regulator and provide clean DC into the FDC1004.

Figure 3.16 gives a graphic overview of which separate devices are powered by which

individual LDO. The Yellow and green in Figure 3.16 are LDOs for the FDC1004, white and

red are for the STM32G03. At the same time, the blue/teal is the LDO for the STM32F7 Nucleo

board.

Figure 3.16: Components powered by their respective LDOs

The purpose of using different LDOs from the STM32G03 and the FDC1004 is that since as

shown in Figure 3.5, each FDC1004 has its unique STM32G03 that performs the I2C

communications, and since the STM32G03 is an MCU, naturally high frequencies are involved

as the STM32G03 has internal PLL and buck regulators [42]. To reasonably isolate these issues,

the decision was taken to split the LDO between the STM32G03 and the FDC1004. The

decision to further separate the STM32G03 and FDC1004 into two groups (white and red),

 39

(yellow and green) shown in Figure 3.16 is to allow for debugging and failsafe considerations

as if a catastrophic fault occurs, at least half the Motherboard would remain usable.

The LDO used to power the STM32F7 would require a significant size to accommodate the

heat generated by the LDO due to the high current requirement of the STM32F7. The regular

operation of the STM32F7 Nucleo board requires 500.0 mA of current at 5.0 V [47]. As the

LDO converts 12.0 V to 5.0 V at 500.0 mA, this means the LDO must be able to dissipate 3.5

watts of heat in the worst-case scenario. Following these requirements, the device NCP59150

[48] by On Semiconductor was chosen. It comes in a D2PAK3 package and is capable of a 1.5

A supply current but, more importantly, has a thermal rating of R_JA = 52oC/W when used as

Junction-to-air, which is lower than most LDO that comes in smaller packages. When supplied

with a small passive heatsink, the R_JA is further reduced to a much smaller value; the

temperature observed in our use case is approximately 60°C and average current draw of 350.0

mA, which gives approximately R_JA = 24oC/W. Noise and voltage regulation is not as

necessary of a factor as the STM32F3 has onboard voltage detection and safety cut-offs [47].

Nevertheless, NCP59150 has a PSRR rating of 30dB at 200Hz and an output accuracy of 2.5 %.

The noise of this LDO is not extremely important as the STM32F7 is a digital chip and has its

own internal LDO, either way, no noise figure was supplied by ON Semiconductor for

NCP59150.

3.4 Sensor-pad Board Design

The physical board is shown in Figure 3.17. The sensor pads are responsible for sensing the

variation in capacitance. The design of this sensor board and sensor pad directly relates to what

is captured by the FDC1004.

 40

Figure 3.17: Proposed Sensor board design

Therefore, close attention must be paid to its layout plan to ensure optimal performance. The

larger the sensor "pads" (silver rectangles in left of Figure 3.17), the better the sensitivity and

spatial resolution. But as a hand is only so big, the larger the sensor the smaller the overall

resolution/pixel of the final capacitance “image”. Thus, we must find other means of increasing

spatial resolution to the maximum for a given pad size. Ultimately a trade-off between size,

sensitivity, noise immunity and coupling effects must be made [49].

3.4.1 Noise, Sensitivity, and Shielding

As stated before, the biggest issue we faced in the design of the system is the noise picked up

by the FDC1004. Therefore, we must attempt to keep this noise to its minimum for our sensor

pad design. The most direct method is by increasing the separation of two pads; however, this

would again reduce the overall pixel of the capacitance “image”, and thus we must employ

other techniques to best increase the performance of the sensor pads.

 41

Figure 3.18: Sensor shielding, Courtesy of Texas Instruments [49]

As shown in Figure 3.18, one of the significant sources of interference and noise in capacitive

sensing is parasitic capacitance to the ground along the signal path between the sensing device

trace and the electrode sensor. This parasitic noise can cause unintended alteration in the final

reading of capacitive sensors. Worst yet, this alteration can vary from sensor to sensor and trace

to trace. The shield driver on the FDC1004 attempts to reduce this issue by using an active

signal output that is driven at the same voltage potential as the sensor input. So ideally, there

is no potential difference between 𝐶 (capacitance sensing pin) and its surroundings, and thus

no current leakage can occur. Multiple different methods of routing this shield trace can be

implemented, and each will have its trade-offs, Figure 3.19 shows the four common methods.

 42

Figure 3.19: methods of shield routing: no shield, shield under but the same size as sensor

pad, shield larger than CIN and both Shield under along with a shield ring around the sensor
pad, Courtesy of Texas Instruments [49]

Clockwise, each shielding type shown in Figure 3.19 offers increasing resistance to stray

capacitance yet decreasing sensitivity and spatial resolution. Results published by Texas

instruments on the expected decrease in sensitivity of a single sensor are given in Figure 3.20.

The sensor pad size in Figure 3.20 is 20.0 mm by 20.0 mm; in comparison, the sensor we used

was 5.0 mm by 27.0 mm, representing a 77 % reduction in surface area.

Figure 3.20: Sensitivity of sensor relative to shielding type, Courtesy of Texas Instruments

[49]

From Figure 3.20, we can expect no shielding to have the best possible sensitivity. If we can

account for the increase in noise through software means, no shield would be the best design.

 43

Nevertheless, in reality, this noise is much too significant and random to be compensated with

software means, and we must take steps to mitigate it through physical design means.

The best shielding design is the lower left and right design in Figure 3.19, which consists of

shield traces all around the 𝐶 trace. However, in our use case, we are not performing precision

analogue measurements; the benefit of increased noise immunity does not outweigh the cost of

decreased sensitivity. Figure 3.20 shows that one can expect a 500.0 fF drop in sensitivity when

going from full shield to no shield when the sensor pad is 20.0 mm by 20.0 mm. The decrease

of 500.0 fF in sensitivity is not viable for our use case. Therefore, we would use a reduced

design compared to Texas Instruments; we would employ a shield trace around the sensor pad

with no shield under it. Our design diagram is shown in Figure 3.21.

3.4.2 Final Design of Sensor Pad

We first established the baseline noise generated by sensor board designs. In the case of the no

shield under the CIN (top left of Figure 3.19), the generated random noise is averaged to be

3253 (FDC1004 reading) or approximately 0.0062 pF over a 1.0 s period; the highest noise is

10445 or 0.0199pF. The results from the shields same size as the sensor pad (bottom left of

Figure 3.19) gives the result of 3103 average noise or 0.0059pF, with the highest noise is

observed at 5817 or 0.0111 pF. Finally, the design of the shield trace around the 𝐶 trace

(Figure 3.21) gives the result of 3152 average noise or 0.0060 pF, and the highest noise is

observed at 7000 or 0.0133 pF. These results show that while the average is not decreased

between the different designs, the peak/spike is greatly reduced. This finding agrees with Texas

Instruments' findings that a random high spike of noise is massively reduced with a shield trace

[49]; however, the higher the immunity to random spike, the higher the reduction in sensitivity.

 44

In our experiment between our design (Figure 3.21) and fully shielded (bottom left of Figure

3.19), when we compared the detection range of the two designs, the fully shielded cases

displayed a detection range of a mere 25.0 mm before no observable difference in reading could

be made. For our design, a distance of up to 55.0 mm can be detected. However, it is worth

noting that the data from the shielded sensor board has a much tighter spread of captured values,

but the detected capacitance values drop off more quickly. In our design, while we can observe

capacitance values up to 55mm, the capacitance reading varies more widely between values.

Figure 3.21: our shielded sensor board design

In our use case, we must base our decisions on range consideration as a range of 25.0 mm is

simply not sufficient. Furthermore, software-based calibration may compensate for some of the

increased variations in noise. Therefore, we opted to use the shielding design shown in Figure

3.21 as our design where we "wrap" sensor pads with shield traces.

3.4.3 Sensor Board Connection to Motherboard

As mentioned in section 3.3.2.2 , to enable the connection between the Motherboard and the

sensor pad board, we opted to use the EdgeRate connectors by Samtec [43]. The left side of

Figure 3.22 shows the sensor pad board and the two male connectors (blue); The right side of

Figure 3.22 shows the motherboard and the two female connectors (red).

 45

Figure 3.22: Samtec Connectors, male connectors (blue) and female connectors (red)

 46

CHAPTER 4: SOFTWARE AND DATA COLLECTION

4.1 Introduction

The developed hardware outlined in chapter 3 was used to capture capacitance data from five

test participants whom each performed five unique gestures multiple times. The experiments

were conducted in a controlled environment where the most significant variable should be the

difference in the participant's hand size and shape. The dataset was used to train, validate, and

test several classifiers. We will first give an overview of the software and its operation

parameters, followed by the data collection environment. Finally, we will examine the

differences and variables between each dataset.

4.2 Types of Data Collected

Due to the iterative improvement of the hardware and software based on the findings of the

experiments, a total of three sets of complete data were collected through the span of this study.

Each dataset was collected after a major software revision.

 47

The first two sets of data were collected under the assumption of evaluating the hardware and

establishing the basis of all future data gathering. Dataset 1 served as a proof of concept that

capacitive sensing-based gesture recognition was needed to justify further experiments into

such a design. The second dataset was the intention of exposing software issues. Therefore,

both the hardware and software aspects of the system were modified upon based on the results

of Dataset 1 and Dataset 2. Dataset 3 utilised improved calibration and is used in all model

evaluation and final accuracy comparisons. In its final form, five different hand gestures were

captured and shown in Figure 4.1 for Dataset 3.

Figure 4.1: All five hand gestures from top left clockwise: palm, fist, middle, ok, point. The
gestures combine a mixture of similar and non-similar types to thoroughly test the classifier.

For example, one would expect the classifier to have difficulty with the point and middle
finger gestures

 48

4.3 Software implementation overview

The maximum measurable change in capacitance when a hand is 55.0 mm from the pad is the

order of approximately 0.5 pF (please see 3.4.2). At this range, noise and environmental

factors can dramatically affect readings. The FDC1004 IC chip requires generating an

excitation signal that extends to the physical sensor pads when it actively measures capacitance.

This excitation signal, unfortunately, is a potential noise source for any adjacent FDC1004

sensor pads. Therefore, running all FDC1004 concurrently is not sensible. Instead, a “sweep”

is performed, where each FDC1004 is turned on, collects data one at a time for the four sensors

and then turned off. After the first FDC1004 completes this cycle, the next FDC1004 would

perform the same cycle until all sensors have completed this cycle. The STM32G03 would then

combine the data from all four sensors to form a complete frame worth of data and send it to

the STM32F7, which would combine all data from STM32F03 and send it to the host PC.

Each FDC1004 was set at 100 samples/s, and since each FDC1004 had four sensors connected

internally through a multiplexer, it would take 40.0 ms to complete one entire cycle of sampling

[21]. To account for start/stop commands, transfer time and sufficient gap between each

FDC1004, each FDC1004 is allocated 50.0 ms for a complete sampling cycle of all four sensors

and transferring data to the STM32F03.

4.3.1 Data Normalization

Due to the varying nature of the distance of each individual pad to the physical FDC1004 sensor,

some form of data normalization must be implemented so that the different data collected from

each pad are location-invariant and comparable to allow for easy debugging and neat

 49

presentation. The chosen method of mitigating said issue was using hardware programmed

offsets outlined in the FDC1004 datasheet [21]. Each sensor within the FDC1004 was

calibrated until they reached one Pico Farad. The value of one Pico Farad was chosen to allow

a sufficient safety net for noise and drifts so as not to allow the sensor reading to dip below 0

Farad and into negative readings, which the software is incapable of reading. This calibration

step is hardware-based, and each sensor must undergo calibration through a string of I2C

commands. This calibration was a lengthy process that took approximately 5 seconds.

However, while the hardware can compensate the distance of each individual pad to the

FDC1004, capacitive sensors have a tendency to naturally drift due to an array of other different

reasons such as temperature, humidity and local interferences. When we measure down to the

pico- and femto-farad range, this drift becomes an issue and must be actively controlled. The

FDC1004 cannot account for this by hardware alone due to the slow speed of hardware

calibration, and thus Texas Instruments actively encourage to use software calibration solutions

for each use case[21].

Figure 4.2: 50 frame Software calibration flow chart

 50

Figure 4.2 shows the software calibration process we used to perform offset and background

subtraction was used to mitigate sensor drifting. The software calibration process is similar to

hardware calibration, but due to not needing to write I2C cycles constantly, we can therefore

increase the calibration speed. The operation starts the system by collecting capacitance values

without a hand present. The values from this cycle are then stored into a matrix and named the

calibration frame. Fifty consecutive calibration frames are collected and averaged to reduce the

impact of environmental variables on the sensor pads. This averaged frame acts as the baseline

empty pad values, and when we start collecting hand gestures, this baseline is subtracted from

all data collected for the gestures. The use of the average of 50 frames of data was decided

upon as a balance between speed and accuracy, as during test we found the use of only a single

frame of data as the calibration frame did not yield satisfactory results.

4.3.2 Final Dataset: Dataset 3

Table 2 shows the composition of dataset 3 that was collected with the logic outlined in section

4.3.1 . All participants' data were collected on different days to allow for independent data

between participants. The gesture is captured in the same manner as shown in Figure 4.1.

Table 2: dataset three composition

Even with the extensive software calibration used for data set three, there are still observable

variations between data frames from different participants. This variation suggests that we can

only assume data to be loosely correlated for the fairness of evaluating of a classifier. Data

Number of
unique
participants

Number of
gestures

Frames per
gesture

Total frames
per
participant

Total number of
frames for dataset
3

5 5 200 1000 5000

 51

collected from two different environments cannot be considered to be similar even if collected

on the same person. Moreover, if such an assumption is made, we cannot rely on the

"traditional" method of mixing all data together and doing a 70/15/15 split for training,

validation, and testing. Instead, testing data must be unique and separated from training and

validation data. For example, participants 1-4 are used for training and validation only, while

participant 5's data is used solely for testing purposes. This isolation of training/validation and

testing data attempts to verify the robustness of the classifier when presented with previous

untrained data when presented new data from a different day with random moisture and

temperature. Later chapters of this thesis will show that splitting training and testing data is a

more precise indicator of a classifier's capability to identify gestures performed by different

individuals than doing the traditional 70/15/15 split.

 52

CHAPTER 5: CLASSIFICATION MODELLING, DESIGN, AND

RESULTS

5.1 Introduction

The collected hand gesture data from the five participants were split into training (and

validation) set and test set to train and evaluate several multiclass classifiers. The classifiers

include two probabilistic classifiers (Naïve Bayes and Decision Tree) and two neural networks

namely multilayer perceptron (MLP) and convolutional neural network (CNN). For this thesis,

TensorFlow 2.0 by Google is used on the python platform to implement the classifiers.

5.2 Classifier background

5.2.1 Probabilistic Classifier

The purpose of using the two classifiers is to evaluate how these simple models perform

compared to the more complex neural networks.

 53

5.2.1.1 Naïve Bayes Classifiers

The first of these networks to be tested will be Gaussian Naive Bayes, which remains one of

the most effective and efficient classification algorithms [50]. Naïve Bayes Classifiers always

assume that all features are independent of other features. This assumption makes it possible

to achieve a high model accuracy with a relatively small training dataset.

Decision Tree Classifier

A decision tree usually consists of a root node, a number of interior nodes and finally, a number

of terminal nodes [51]. The building block of a decision tree is recursive partitioning, which

involves splitting the data into partitions or subsets. This process repeats itself until the

partitions are sufficiently homogenous. In a simple sense, a decision tree asks simple yes or no

questions until the model can determine which terminal node it wants to put the input data into.

This process is extremely fast to perform and has a high accuracy for simple datasets when the

data are sufficiently similar.

5.2.2 Neural Networks

The rise of neural networks began in the early 2000s when the increase of cheap graphical

processing power and "deep" neural networks [52] made more complex neural networks

possible. Before this, neural networks did not process the capability to surpass more traditional

approaches due to the high processing power requirement, except for a select number of

specialized cases. With today's processing power, the development of neural works rapidly

flourished. This study mainly explores two Neural networks, Multi-Layer Perceptron (MLP)

and Convolution Neural Network (CNN). While Both types of neural networks are tested, the

 54

main focus will be on multi-layer perceptron as we did not find evidence that convolutional

neural networks produced better results than multi-layer perceptron in our use case.

5.2.2.1 Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) is one of the most widely used Neural Networks that has

seen success in a wide range of problems [53]. Figure 27 shows an example of such a model.

Figure 5.1: Simple MLP model with two hidden layers [54]

The MLP neural network is a feedforward network and consists of multiple layers of nodes. A

complete MLP system consists of at least three layers of nodes: an input layer, a hidden layer,

and an output layer. There is no limit to the amount of hidden layer that a can employ; more

hidden layer means more nodes are possible, and therefore more paths are possible, albeit at

the cost of higher computing cost.

Except for the input layer, where it receives its data through external means, all other layer

receives their data from the previous layer. Once data is received, a node will use a nonlinear

activation function to combine the input to the node with predetermined weights and then

adding a bias to produce an output. A range of different activation functions exists.

 55

The process of training an MLP model involves continuously adjusting the weights of the

connection between nodes. This adjustment is based on the error in output (the difference

between the expected result and the actual output). This continuous adjustment of the weights

is a supervised learning process called “backpropagation” [55]. The backpropagation algorithm

consists of two parts: the forward pass and the backward pass. In the forward pass, the expected

output corresponding to the given inputs are evaluated. In the backwards pass, partial

derivatives of the cost function with respect to the different parameters are propagated back

through the network. The process continues until the error is at the lowest value [55].

5.2.2.2 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) distinguishes itself from other neural networks with

superior performance in regard to image and audio signal inputs. Figure 5.2 shows an example

of a typical CNN network.

Figure 5.2: typical CNN model [56]

A typical CNN network consists of at least three basic layers: a convolutional layer, a pooling

layer, and a fully connected layer.

 56

The convolutional layer is the first layer of a convolutional network. The job of the

convolutional layer is to reduce the images into forms easier to process without losing features.

While convolutional layers can be followed by additional convolutional layers or pooling

layers, the fully-connected layer must be the final layer. With each layer, the CNN increases in

its complexity, identifying greater portions of the image [11] at the cost of more computational

power.

The convolutional layer is the core of a functional CNN. It requires a few components, which

are input data, a filter, and a feature map [57]. A feature detector, also known as a kernel or a

filter, will move across the receptive fields of the image in blocks, checking if a feature is

present. Usually, multiple filters will be used as a single filter isn't capable of capturing all the

information, this process is known as a convolution. This process is usually performed on one

colour at a time. An RGB image which would consist of a matrix of RBG, as seen in Figure

5.3, would require this process to be run three times.

Figure 5.3: matrix of RGB image [56]

The Pooling layers, also known as downsampling, conducts dimensionality reduction, reducing

the number of parameters in the input. Similar to the convolutional layer, the pooling operation

sweeps a filter across the entire input, but the difference is that this filter does not have any

weights [57]. Finally, the fully-connected layer performs the job of actual classification.

 57

5.2.2.3 Singular Value Decomposition

Singular Value Decomposition (SVD) has many applications in image processing; one of

which is noise filtering [58]. SVD is a mathematical procedure to decompose a matrix into

three matrices, which can be rewritten as a sum of rank-one matrices [59]. SVD attempts to

sort data into multiple ”modes”, where hopefully the lower SVD modes should remain

relatively clean, which suggests the possibility of data filtering by retaining only the lower

modes [60].

Figure 5.4: Example of a single data frames SVD scree plot

Figure 5.4 shows a typical scree plot of a single data frame from test participant one in the

dataset. It can be seen that mode one contains around 50 % of the variance. We then assume

mode zero contains most of the noise and reconstruct the matrix without mode zero. The fact

that some valuable data may be removed in this process is of no concern if the final accuracy

can be improved.

 58

Figure 5.5: SVD vs non-SVD results with training/validation with participant 2,3,4,5 test
with participant 1

Figure 5.5 shows the results used for evaluating SVD, the test is performed with participant 2,

3, 4, and 5 as training/validation and participant 1. Results of SVD shows a model accuracy of

82.9 %, without SVD we can achieve an accuracy of 89.2 %. This drop in overall accuracy

suggests that some data in mode zero were removed and that it affected the final accuracy.

The conclusion from this is that while SVD can be used as a form of noise removal in some

cases, we did not find it to offer a significant accuracy increase compared to results that did not

perform SVD. Therefore, we opted not to perform SVD in our use case as it did not provide

tangible benefits.

5.3 Probabilistic Classifiers Results

The first models to be tested are the probabilistic classifiers. The first test is with data from test

participants 1-5 and mixing them together, then randomly splitting 75% for training/validation

and 25% for testing.

 59

Figure 5.6: Confusion matrix of Gaussian Naïve Bayes classifier model is the accuracy of
participants 1-5 mixed with 75% train and 25% test

Figure 5.6 shows the confusion matrix for Gaussian Naïve Bayes Classifier. The model has an

average recognition rate of 81.6 %. We also performed the same test with the Decision tree

classifier. As seen in Figure 5.7, the decision tree classifier results are improved compared to

Gaussian Naïve Bayes Classifier. In fact, when compared to multiple different types of

probabilistic classifiers such as SVM (~76 %), KNN (~67 %), and Naïve Bayes Classifiers

(~81.6 %), the decision represents one of the best results with an average recognition rate of

91.1 %

 60

Figure 5.7: Confusion matrix of Fine decision tree classifier, left is model accuracy of
participants 1-5 mixed together with 75% train/validation and 25% test, right is participants

1-4 train/validate and participant 5 used for test.

This high accuracy suggests that a simple Decision tree classifier can have high classification

accuracy if the model uses data captured in the same setting for both training and testing.

However, while the decision tree model shows a significant gain compared to Gaussian Naïve

Bayes Classifier, the classification accuracy cannot compare to even simple neural networks,

as will be seen later.

5.3.1 Independent Training and Testing

The next step was to test the probabilistic classifiers model with independent train/validation

and test data. We will use the data captured from four subjects for training/validation and the

data captured with the fifth participant to test. This is a more robust evaluation compared to the

previous method where the data from all 5 participants were split into train and test sets.

 61

5.3.1.1 Gaussian Naïve Bayes

Figure 5.8 shows the classification accuracy results of Gaussian Naïve Bayes with such a setup.

The results of all the models are summarized in Table 3. It can be seen from Figure 5.8 that

model accuracy has significant variations depending on which data is used for

training/validation and what is used for testing. The lowest accuracy was only 63.3% with

Train/validation participants 1, 2, 3, 4, and Test data participant 5. The highest model accuracy

of 82.5 % was observed with participants 1, 3, 4, and 5 as Train/validation and testing with

participant 2. This significant variation between models with different participants

combinations shows the varying nature of capacitance sensors and the limited capability of

Gaussian Naïve Bayes with an average accuracy of only 70.86 %.

 62

Figure 5.8: All Gaussian Naïve Bayes combination results, top left: training/validation with
participant 2,3,4,5 test with participant 1. Top right: training/validation with participants
1,3,4,5, test with participant 2. Middle left: training/validation with participant 1,2,4,5, test
with participant 3. Middle right : training/validation with participant 1,2,3,5, test with
participant 4. Bottom left: training/validation with participants 1,2,3,4, test with participant
5

 63

Table 3: results of Gaussian Naïve Baye with different participants combination

5.3.1.2 Decision tree

Figure 5.9 shows the classification accuracy and results of the decision tree classifier. All

results are summarized in Table 4. From Table 4 and Figure 5.9, it can be seen that the models

have more minor variations than Gaussian Naïve Bayes models but still has some variations.

This time the highest accuracy was observed with Train/validation participants 1, 2, 4, 5, and

Test data participant 3 at 85.6 %. the average of the decision tree classifier is 77.86 % which

shows a marked increase in 7.0 % accuracy compared to Gaussian Naïve Bayes models 70.86 %

and thus is better suited to be used for our dataset. Yet as we will see, neural networks will

decidedly improve upon these results.

Result relative to
Figure 5.8

Train/validation
participants

Test data participant Classification accuracy

Top left 2, 3, 4, 5 1 69.3 %

Top Right 1, 3, 4, 5 2 82.5 %

Middle Left 1, 2, 4, 5 3 73.2 %

Middle Right 1, 2, 3, 5 4 66.0 %

Bottom Left 1, 2, 3, 4 5 63.3 %

Average 70.86 %

 64

Figure 5.9: All decision tree combination results, top left: training/validation with
participant 2,3,4,5 test with participant 1. Top right: training/validation with participants
1,3,4,5, test with participant 2. Middle left: training/validation with participant 1,2,4,5, test
with participant 3. Middle right : training/validation with participant 1,2,3,5, test with
participant 4. Bottom left: training/validation with participants 1,2,3,4, test with participant
5.

 65

Table 4: Results of decision tree with different participants combination

5.4 Multilayer Perceptron Results

5.4.1 Performance for Train/Test Split Containing all Subjects

The design of our MLP is shown in Figure 5.10. The design is a sequential two-layer MLP with

two hidden layers using Rectified Linear Units (ReLU) [61]. It should be noted that we did not

see a significant impact when using other activation functions such as tanh. Two hidden layers

are chosen to allow sufficient depth to the network. 3 and 4 layers MLP designs were tested

but did not show improvement compared to the 2 hidden layers MLP design while training

time was significantly increased. The node setup is with 100 nodes for the first hidden layer

and 50 for the second layer, the choice of 100 nodes for the first layer is set through an estimate

of the input layer plus output layer and then fine-tuning. With around 60 nodes for the first

hidden layer, underfitting of the model can be observed, and while going as high as 300 nodes

do not seem to induce overfitting, it significantly increases the training time and does not

increase model accuracy. For the second layer, 50 nodes are chosen as we did not see

Result relative to
Figure 5.9

Train/validation
participants

Test data participant Classification accuracy

Top left 2, 3, 4, 5 1 71.3 %

Top Right 1, 3, 4, 5 2 76.0 %

Middle Left 1, 2, 4, 5 3 85.6 %

Middle Right 1, 2, 3, 5 4 80.6 %

Bottom Left 1, 2, 3, 4 5 75.8 %

Average 77.86 %

 66

underfitting until 20 nodes, and no overfitting was observed at 100 nodes. Therefore 50 was

selected as a safety margin between safety and training time.

Figure 5.10: MLP model used in our design

No dropout or variable training rate is used for this first MLP design. The loss equation used

is sparse Categorical Cross-entropy, and the optimizer used is SGD Gradient descent with

momentum optimizer (SGD). Epoch is selected at 100 to detect overtraining, and batch size is

chosen at 16.

To test this MLP design, we combined the data of all 5 participants' data frames and then

randomly performed a 70/15/15 split—70 % for training, 15 % for validation and 15 % for

testing. The purpose of this classification is to establish a baseline result compared to

probabilistic classifiers to see if neural networks produce better results than probabilistic

classifiers.

 67

Figure 5.11: MLP result of mixing dataset 3 participants 1-5 together

Figure 5.11 shows the results when all the participants 1-5 from dataset three are mixed, and

then a 70/15/15 split is performed. This result shows a 100 % classification rate with no

overfitting or overtraining; the model loss also converges perfectly.

5.4.2 Independent Training and Testing Data

Naturally, the next logical step would be to use four sets of test participants' data as

training/validation and 1 set of test participants' data as testing as it was done for simple

probabilistic classifiers. Models containing multiple combinations are tested to show the

highest and lowest accuracy.

 68

Figure 5.12: All MLP combination results, top left: training/validation with participant
2,3,4,5 test with participant 1. Top right: training/validation with participant 1,3,4,5, test

with participant 2. Middle left: training/validation with participant 1,2,4,5, test with
participant 3. Middle right: training/validation with participant 1,2,3,5, test with participant

4. Bottom left: training/validation with participant 1,2,3,4, test with participant 5

Figure 5.12 shows all possible combinations where 4 participants are used for

training/validation and 1 for testing. The accuracy of all the models is summarized in Table 5.

From the table, it can be seen that accuracy can range from 87.9 % to 98.9 % success rate with

an average of 91.7 %. The epoch at which these accuracies is achieved is also quite spread,

 69

ranging from 21 to 62. From the confusion matrix, it can also be noted that the difference in

combination of training/validation and testing participants produces different wrong

classifications; all five models have no misclassification of the fist and palm gesture and seem

to have a significant issue in classifying the Ok gesture and Index gesture. The top right and

left middle models have particular problems with this ok gesture where large amounts are

incorrectly classified as the index gesture. This difference in accuracy, epoch, and classification

errors observed in different models gives us confidence that there are still variations in the data

due to hand size variation or environmental variables.

Table 5: Results of MLP with different participants combinations

5.4.3 Impact of Dropouts

Dropout works by probabilistically removing, or “dropping out,” inputs to a layer, which may

be input variables in the data sample or activations from a previous layer. It has the effect of

simulating a large number of different input scenarios and makes nodes in the network

generally more robust to the inputs.

Result
relative to
Figure 5.12

Train/validation
participants

Test data
participant

Successful
classification
percentage

F-score

Top left 2, 3, 4, 5 1 89.6 % 89.0 %

Top Right 1, 3, 4, 5 2 90.9 % 90.0 %

Middle Left 1, 2, 4, 5 3 87.9 % 87.0 %

Middle Right 1, 2, 3, 5 4 98.9 % 99.0 %

Bottom Left 1, 2, 3, 4 5 91.4 % 91.0 %

Average 91.7 % 91.2 %

 70

Figure 5.13: MLP model setup with dropout

To test if dropout will create more linear models and higher classification accuracy, we will

test it with a similar data structure to section 5.4.2 with four sets of test participants' data as

training/validation and 1 set of test participants' data as testing. Figure 5.13 the MLP set up

with dropout added. The dropout occurs after the two hidden layers, where 20% are dropped

at each point. This dropout is very aggressive in the hopes to identify any points of interest or

that if dropout has a significant effect on the model outcome.

 71

Figure 5.14: MLP with dropout combination results, top left: training/validation with
participant 2,3,4,5 test with participant 1. Top right: training/validation with participant
1,3,4,5, test with participant 2. Middle left: training/validation with participant 1,2,4,5, test
with participant 3. Middle right : training/validation with participant 1,2,3,5, test with
participant 4. Bottom left: training/validation with participant 1,2,3,4, test with participant 5

Figure 5.14 shows data results of MLP data with dropout. All models show a modest gain in

accuracy over non-dropout models in most cases. Results of all the models with dropout are

summarized in Table 6. The highest increase over non-drop out was observed with

Train/validation participants 1, 2, 4, 5, and Test data participant 3, with an increase at 3.3 %.

 72

The overall accuracy is 92.34 %, Which represents an 0.6 % average increase over non-

dropout MLP (91.74 %).

Table 6: Results of MLP with dropouts with different participants combinations

The middle right model with Train/validation participants 1, 2, 3, 5, and participant 1 as test

data gives us the most accurate classification for MLP. We also tested dropouts added to

unprocessed data (before dense_input in Figure 5.13), where 20.0 % of incoming data is

readily removed before even the first layer. This removal, as expected, provides model

accuracies that are worse than even MLP without any dropout.

5.5 Convolutional Neural Network Results

The convolutional neural network was also tested to see if it yielded improved results than

MLP. As CNN usually shows improvements over MLP when it comes to image-based

classifying, one would expect improved results in our case as we treat our data frames as low-

resolution grayscale images. To test how CNN would perform, we would first have to

reorganize the data back to the correct position as per it was on the sensor pads. We need to do

Result relative
to Figure 5.14

Train/validation
participants

Test data
participant

Successful MLP
classification
percentage

F-Score

Top left 2, 3, 4, 5 1 89.4 % 88.0 %

Top Right 1, 3, 4, 5 2 90.7 % 90.0 %

Middle Left 1, 2, 4, 5 3 91.2 % 91.0 %

Middle Right 1, 2, 3, 5 4 99.6 % 98.0 %

Bottom Left 1, 2, 3, 4 5 90.8 % 93.0 %

Average 92.34% 92.0 %

 73

this to simplify data processing for MLP; the data that comes from the STM32F7 is the form

of a single row for a single data frame. CNN requires the 2D array of the original image to be

effective and therefore, we must reorganize the data back to its 2D format. Therefore, the first

step is to turn the single row into 2D array data where each cell represents a single capacitor

sensor on the sensor board.

Figure 5.15: CNN model setup

Figure 5.15 shows the setup used for the CNN model. As our model does not have data from

different channels such as that of an RGB image, thus a single 6 by 18 by 1 matrix is sufficient

to describe our data frame, 6 by 18 represents our 6 by 18 sensor board (2 blank pads), and 1

represents our grayscale nature. One hidden layer of 100 is chosen for simplicity.

 74

Figure 5.16: CNN results of the result of mixing dataset 3 participants 1-5 together

Figure 5.16 shows the results of the CNN model used, as it shows that when the model is

trained, validated, and tested with 70/15/15 split with mixed data from the participants 1-5, no

overfitting or overtraining is observed, and the model accuracy is 100.0 %. This result shows

that CNN can be a capable form of neural network design in our use case. But whether CNN

is an improvement or degrades over MLP models remains to be seen as MLP models also

achieved a 100.0 % classification accuracy when mixing data from participants 1-5.

 75

Figure 5.17: CNN combination results, top left: training/validation with participant 2,3,4,5
test with participant 1. Top right: training/validation with participant 1,3,4,5, test with
participant 2. Middle left: training/validation with participant 1,2,4,5, test with participant 3.
Middle right: training/validation with participant 1,2,3,5, test with participant 4. Bottom left:
training/validation with participant 1,2,3,4, test with participant 5

Figure 5.17 shows all possible combinations of CNN where 4 participants are used for

training/validation and 1 for testing. The accuracy of all the models is summarized in Table 7.

From the table, it can be seen that accuracy can range from 86.3 % to 94.8 % success rate, the

average being 90.40 %. This result shows that this result is comparable but overall worse than

MLP results. The average for MLP is 91.74 % without dropout and 92.34 % with dropout,

 76

which represents a 1.34 % and 1.94 % increase respectively. Reasons for this can be due to the

grayscale nature of our data, and therefore not sufficient data is present for CNN to perform

better than MLP in our models or that CNN's advantages of spatially invariant were not utilized;

however, the research to prove this theory was not in the scope of this thesis. From this data, it

was decided that MLP is sufficient for our use case, and therefore much of further experiments

will be based on MLP instead of dividing resources between MLP and CNN.

Table 7: results of CNN with different participants combinations

5.6 Conclusion

All results of all test models are summarized in Table 8. From the overview, it can be seen

that probabilistic classifiers perform worse than neural networks as a whole. The simple

decision tree classifier can achieve 91.12 % classification accuracy when presented with

completely mixed data, while Naïve Bayes can only achieve 81.6 %. However, when neural

networks are presented with similar data, all models are capable of achieving 100.0 %

accuracy.

Result relative to Figure
5.14

Train/validation
participants

Test data
participant

Successful CNN
classification
percentage

F-Score

Top left 2, 3, 4, 5 1 86.3 % 86.0 %

Top Right 1, 3, 4, 5 2 90.4 % 91.0 %

Middle Left 1, 2, 4, 5 3 90.1 % 90.0 %

Middle Right 1, 2, 3, 5 4 94.8 % 95.0 %

Bottom Left 1, 2, 3, 4 5 87.2 % 87.0 %

Average 90.40 % 89.8%

 77

Table 8: All model results summary

When comparing between MLP and CNN, it can be seen that CNN has overall less accuracy

than MLP with a drop of 1.34 % as an average. This loss in accuracy can be maybe attributed

to the single-dimensional nature of the capacitance data, where CNN's key advantages of

spatially invariant and its attempt to reduce dimensions of images may not be valuable for

processing our dataset. When adding dropout to MLP, there are mostly accuracy improvements

to models over the non-dropout MLP models. This increase is not universal as in the case of

Train/validation participants 1, 2, 3, 4 and Test participant 5, we see a drop in accuracy.

However, this accuracy difference can simply be due to variations due to the random weight

assignment in the first iteration. Overall, Dropout has benefits compared to non-dropout-based

models with an average increase of 0.6 % in overall accuracy.

Train/validation
participants

Test participant Naïve
Baye

Simple
decision
tree

MLP without
dropout
(F-score)

MLP with
dropout
(F-score)

 CNN
(F-score)

75 % data from
all 5 users

15 % data from
all 5 users

81.6 % 91.1 % 100.0 %
(100.0 %)

100.0 %
(100.0 %)

100.0 %
(100.0 %
)

2, 3, 4, 5 1 69.3 % 71.3 % 89.6 %
(89 %)

89.4 %
(88.0 %)

86.3 %
(86.0 %)

1, 3, 4, 5 2 82.5 % 76.0 % 90.9 %
(90 %)

90.7 %
(90.0 %)

90.4 %
(91.0 %)

1, 2, 4, 5 3 73.2 % 85.6 % 87.9 %
(87 %)

91.2 %
(91.0 %)

90.1 %
(90.0 %)

1, 2, 3, 5 4 66.0 % 80.6 % 98.9 %
(99 %)

99.6 %
(98.0 %)

94.8 %
(95.0 %)

1, 2, 3, 4 5 63.3 % 75.8 % 91.4 %
(91 %)

90.8 %
(93.0 %)

87.2 %
(87.0 %)

Average (training/validation with
any 4 subjects and test on the
remaining subject)

70.9 % 77.86 % 91.74 %
(91.2 %)

92.34 %
(92 %)

90.40 %
(89.8 %)

 78

CHAPTER 6: CONCLUSION AND FUTURE WORK

The purpose of this study was to evaluate the feasibility of capacitance sensors as a form of

gesture recognition. The developed capacitive sensor system with a trained MLP classifier is

capable of achieving an accuracy of 92.34 %. While the accuracy of the system outlined in this

work does not match the levels of video cameras, the hardware involved in capacitance sensing

is also much less complex than video based solutions. Further advantages of capacitance-based

sensing are also evident with the low computational requirement, and inherent high privacy.

The limiting factors of the hardware system proposed in this work are the limited number of

sensors and the large sensor pads, which limited resolution. With a smaller and more sensitive

sensor design, we can hope to capture even higher resolution gesture data images. Isolation of

the FDC1004 routing can be further improved upon with a higher layer count PCB and better

dielectric. In theory, an isolated power supply for each FDC1004 can also significantly

decrease the coupling between different FDC1004 as each excitation signal generated will not

have a common ground. However, the cost of such a design will also increase. More Complex

custom capacitance sensing methods can also be implemented, such as a charge balancer circuit

or frequency measurement-based circuit. These custom designs allow much more extensive

customization and freedom of design compared to off-the-shelf IC chips employed in this

experiment.

 79

Another limiting factor in the hardware is the way sensor measurements are captured. Due to

the noise crosstalk of FDC1004, we can only trigger sensors one at a time. With further

improvement, it may be possible to trigger all sensors at once. This simultaneous triggering of

sensors would massively increase the speed at which hand gestures are captured. Furthermore,

if the capture or sampling rate is fast enough, non-static gesture detection would also be

possible.

An FPGA based design would significantly increase the entire system's processing speed, data

bandwidth and reduce the design cost from a component count perspective. The current

hardware uses a custom communication protocol to accommodate for the massive number of

MCU used. By using an FPGA in place of all the MCUs we can hope to replace communication

protocol with industry standard methods and thus increase the system's integrity significantly.

Other modes of capacitor modes can also be explored. As this work only explored loading

mode, a deeper look into shunt mode can also be interesting as shunt mode offers inherently

more coupling immunity than loading mode at the cost of increased sensor pad footprint.

Readily available IC chips from the likes of Analog Devices can allow rapid prototyping of

shunt mode designs.

From the software side, improvements can be made in how data is processed. Currently, raw

values captured by the sensors are passed straight to classifiers for classification. One can apply

feature detection or bounding box-based approaches before data is fed to the classifier. By

using a region of interest, we can further reduce the effects of the background noise that

capacitance sensors capture, furthermore incoming data can also be applied with a non-linear

filter to accentuate features while reducing the effects of noise.

 80

REFERENCES

1. Dix, A. (2010). Human–computer interaction: A stable discipline, a nascent science, and the
growth of the long tail. Interacting with Computers, 22(1), 13‐27.
https://doi.org/10.1016/j.intcom.2009.11.007

2. Ibraheem, N. A., & Khan, R. Z. (2012). Survey on various gesture recognition technologies

and techniques. International journal of computer applications, 50(7).

3. Liu, H., & Wang, L. (2018). Gesture recognition for human‐robot collaboration: A review.

International Journal of Industrial Ergonomics, 68, 355‐367.
https://doi.org/10.1016/j.ergon.2017.02.004

4. Google Project Soli. Retrieved 11/07 from https://atap.google.com/soli/

5. Suarez, J., & Murphy, R. R. (2012). Hand gesture recognition with depth images: A review

https://dx.doi.org/10.1109/roman.2012.6343787

6. Garg, P., Aggarwal, N., & Sofat, S. (2009). Vision based hand gesture recognition. World

academy of science, engineering and technology, 49(1), 972‐977. ; Murthy, G., & Jadon, R.
(2009). A review of vision based hand gestures recognition. International Journal of
Information Technology and Knowledge Management, 2(2), 405‐410.

7. Starner, T. E. (1995). Visual Recognition of American Sign Language Using Hidden Markov

Models. ; Starner, T., Weaver, J., & Pentland, A. (1998). Real‐time American sign language
recognition using desk and wearable computer based video. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(12), 1371‐1375. https://doi.org/10.1109/34.735811

8. Howe, N., Leventon, M. E., & Freeman, W. T. (2000). Bayesian reconstruction of 3d human

motion from single‐camera video. Advances in neural information processing systems, 12,
820.

9. Mitra, S., & Acharya, T. (2007). Gesture Recognition: A Survey. IEEE Transactions on Systems,

Man and Cybernetics, Part C (Applications and Reviews), 37(3), 311‐324.
https://doi.org/10.1109/tsmcc.2007.893280

10. Xianghua, L., Jun‐Ho, A., Jin‐Hong, M., & Kwang‐Seok, H. (2011). Hand gesture recognition by

stereo camera using the thinning method https://dx.doi.org/10.1109/icmt.2011.6001670

 81

11. Soutschek, S., Penne, J., Hornegger, J., & Kornhuber, J. (2008). 3‐D gesture‐based scene
navigation in medical imaging applications using Time‐of‐Flight cameras
https://dx.doi.org/10.1109/cvprw.2008.4563162

12. Dipietro, L., Sabatini, A. M., & Dario, P. (2008). A Survey of Glove‐Based Systems and Their

Applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(4), 461‐482. https://doi.org/10.1109/tsmcc.2008.923862

13. Condell, J., Curran, K., Quigley, T., Gardiner, P., McNeill, M., Winder, J., Xie, E., & Qi, Z.

(2010). Measuring Finger Movement in Arthritic Patients Using Wearable Glove Technology.
In Wearable and Autonomous Biomedical Devices and Systems for Smart Environment (pp.
391‐406). Springer.

14. Oshiumi, K. (2004). INDUCTCODER Principle and Applications. Journal of The Japan Institute

of Marine Engineering, 39(11), 752‐758. https://doi.org/10.5988/jime.39.752

15. Kuroda, T., Tabata, Y., Goto, A., Ikuta, H., & Murakami, M. (2004). Consumer price data‐glove

for sign language recognition Proc. ICDVRAT,

16. Caeiro‐Rodríguez, M., Otero‐González, I., Mikic‐Fonte, F. A., & Llamas‐Nistal, M. (2021). A

Systematic Review of Commercial Smart Gloves: Current Status and Applications. Sensors,
21(8), 2667. https://doi.org/10.3390/s21082667

17. Zhang, Y., & Harrison, C. (2015). Tomo: Wearable, Low‐Cost Electrical Impedance

Tomography for Hand Gesture Recognition Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology, Charlotte, NC, USA.
https://doi.org/10.1145/2807442.2807480

18. Way, D., & Paradiso, J. (2014). A usability user study concerning free‐hand microgesture and

wrist‐worn sensors 2014 11th International Conference on Wearable and Implantable Body
Sensor Networks,

19. Grosse‐Puppendahl, T., Holz, C., Cohn, G., Wimmer, R., Bechtold, O., Hodges, S., Reynolds,

M. S., & Smith, J. R. (2017). Finding Common Ground: A Survey of Capacitive Sensing in
Human‐Computer Interaction https://dx.doi.org/10.1145/3025453.3025808

20. Grosse‐Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., & Kuijper, A. (2013).

OpenCapSense: A rapid prototyping toolkit for pervasive interaction using capacitive sensing
https://dx.doi.org/10.1109/PerCom.2013.6526726

21. Texas Instruements (2014). FDC1004 4‐Channel Capacitance‐to‐Digital Converter. Retrieved

May 2020 from https://www.ti.com/product/FDC1004

 82

22. Buller, W., & Wilson, B. (2006). Measurement and Modeling Mutual Capacitance of Electrical
Wiring and Humans. IEEE Transactions on Instrumentation and Measurement, 55(5), 1519‐
1522. https://doi.org/10.1109/tim.2006.880293

23. Kim, S., Kawahara, Y., Georgiadis, A., Collado, A., & Tentzeris, M. M. (2013). Low‐cost inkjet‐

printed fully passive RFID tags using metamaterial‐inspired antennas for capacitive sensing
applications https://dx.doi.org/10.1109/MWSYM.2013.6697644; Li, H., Brockmeyer, E.,
Carter, E. J., Fromm, J., Hudson, S. E., Patel, S. N., & Sample, A. (2016). PaperID: A Technique
for Drawing Functional Battery‐Free Wireless Interfaces on Paper
https://dx.doi.org/10.1145/2858036.2858249; Singh, G., Nelson, A., Robucci, R., Patel, C., &
Banerjee, N. (2015). Inviz: Low‐power personalized gesture recognition using wearable
textile capacitive sensor arrays https://dx.doi.org/10.1109/percom.2015.7146529

24. Smith, J. R. (1996). Field mice: Extracting hand geometry from electric field measurements.

IBM Systems Journal, 35(3.4), 587‐608. https://doi.org/10.1147/sj.353.0587

25. Glinsky, A. (2000). Theremin : ether music and espionage. University of Illinois Press.

http://books.google.de/books?id=6DHlQJcMpBQC

26. Mizumoto, T., Tsujino, H., Takahashi, T., Ogata, T., & Okuno, H. G. (2009). Thereminist robot:

Development of a robot theremin player with feedforward and feedback arm control based
on a Theremin's pitch model https://dx.doi.org/10.1109/IROS.2009.5354473

27. Zimmerman, T. G., Smith, J. R., Paradiso, J. A., Allport, D., & Gershenfeld, N. (1995). Applying

electric field sensing to human‐computer interfaces
https://dx.doi.org/10.1145/223904.223940

28. Tang, X., & Mandal, S. (2019). Indoor Occupancy Awareness and Localization Using Passive

Electric Field Sensing. IEEE Transactions on Instrumentation and Measurement, 68(11), 4535‐
4549. https://doi.org/10.1109/tim.2018.2890319

29. Smith, J. R. (1999). Electric field imaging Massachusetts Institute of Technology].

https://dspace.mit.edu/handle/1721.1/29144

30. Reverter, F., Li, X., & Meijer, G. C. M. (2006, 2006/09/28). Stability and accuracy of active

shielding for grounded capacitive sensors. Measurement Science and Technology, 17(11),
2884‐2890. https://doi.org/10.1088/0957‐0233/17/11/004

31. Grosse‐Puppendahl, T., Beck, S., Wilbers, D., Zeiß, S., Von Wilmsdorff, J., & Kuijper, A. (2014).

Ambient Gesture‐Recognizing Surfaces with Visual Feedback. In (pp. 97‐108). Springer
International Publishing. https://doi.org/10.1007/978‐3‐319‐07788‐8_10

32. Smith, J. R. (1995). Toward electric field tomography Massachusetts Institute of Technology].

https://dspace.mit.edu/bitstream/handle/1721.1/62334/34312119‐MIT.pdf?sequence=2

 83

33. Valtonen, M., Maentausta, J., & Vanhala, J. (2009). TileTrack: Capacitive human tracking
using floor tiles https://dx.doi.org/10.1109/PERCOM.2009.4912749

34. Rekimoto, J. (2002). SmartSkin https://dx.doi.org/10.1145/503376.503397

35. Habib, I., Berggren, N., Rehn, E., Josefsson, G., Kunz, A., & Fjeld, M. (2009). DGTS: Integrated

Typing and Pointing. In (pp. 232‐235). Springer Berlin Heidelberg.
https://doi.org/10.1007/978‐3‐642‐03658‐3_30

36. Akhtar, H., & Kakarala, R. (2014). A Methodology for Evaluating Accuracy of Capacitive Touch

Sensing Grid Patterns. Journal of Display Technology, 10(8), 672‐682.
https://doi.org/10.1109/jdt.2014.2312975

37. Dietz, P., & Leigh, D. (2001). DiamondTouch https://dx.doi.org/10.1145/502348.502389

38. Mayton, B., Legrand, L., & Smith, J. R. (2010). An Electric Field Pretouch system for grasping

and co‐manipulation https://dx.doi.org/10.1109/ROBOT.2010.5509658; Jonassen, N.
(1998). Human body capacitance: static or dynamic concept? [ESD]
https://dx.doi.org/10.1109/EOSESD.1998.737028

39. Wimmer, R., Kranz, M., Boring, S., & Schmidt, A. (2007). A Capacitive Sensing Toolkit for

Pervasive Activity Detection and Recognition https://dx.doi.org/10.1109/PERCOM.2007.1

40. Valtonen, M., & Vanhala, J. (2009). Human tracking using electric fields

https://dx.doi.org/10.1109/PERCOM.2009.4912795

41. Microchip (2020). ATmega48A/PA/88A/PA/168A/PA/328/P. Retrieved June 2021 from

https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A‐PA‐88A‐PA‐168A‐PA‐
328‐P‐DS‐DS40002061B.pdf

42. STMicroelectronics (2020). STM32G031x4/x6/x8. Retrieved July 2020 from

https://www.st.com/resource/en/datasheet/stm32g031j6.pdf

43. Samtec (2021). ERF8‐060‐05.0‐L‐DV‐K‐TR. Retrieved 2021 from

https://www.samtec.com/products/erf8‐060‐05.0‐l‐dv‐k‐tr

44. Analog Devices (2020). LTC3603 2.5A, 15V Monolithic Synchronous Step‐Down Regulator.

Retrieved September 2020 from https://www.analog.com/media/en/technical‐
documentation/data‐sheets/3603fc.pdf

45. Devices, A. (2022). LTpowerCAD and LTpowerPlanner. Retrieved 2/4/22 from

https://www.analog.com/en/design‐center/ltpowercad.html

 84

46. Analog Devices (2019). ADP7158, 2A Ultralow Noise, High PSRR, RF Linear Regulator.
Retrieved June 2021 from https://www.analog.com/media/en/technical‐
documentation/data‐sheets/ADP7158.pdf

47. STMicroelectronics (2021). STM32H7 Nucleo‐144 boards (MB1363). Retrieved July 2021

from https://www.st.com/resource/en/user_manual/dm00499171‐stm32h7‐nucleo144‐
boards‐mb1363‐stmicroelectronics.pdf

48. On Semiconductor (2013). NCP59150, NCV59150 Series. Retrieved June 2021 from

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwidrZ
u2yq_xAhUVVpQKHUipDq8QFjAAegQIBBAD&url=https%3A%2F%2Fwww.onsemi.com%2Fpd
f%2Fdatasheet%2Fncp59150‐d.pdf&usg=AOvVaw1B‐fPh9Ht71my2HpsoXkZe

49. Texas Instruements (2015). CapacitiveSensing:Ins and Outsof ActiveShielding. Retrieved June

2021 from https://www.ti.com/lit/pdf/snoa926

50. Tzanos, G., Kachris, C., & Soudris, D. Hardware Acceleration on Gaussian Naive Bayes

Machine Learning Algorithm https://dx.doi.org/10.1109/mocast.2019.8741875

51. Swain, P. H., & Hauska, H. (1977). The decision tree classifier: Design and potential. IEEE

Transactions on Geoscience Electronics, 15(3), 142‐147.
https://doi.org/10.1109/tge.1977.6498972

52. Suk, H.‐I. (2017). An Introduction to Neural Networks and Deep Learning. In (pp. 3‐24).

Elsevier. https://doi.org/10.1016/b978‐0‐12‐810408‐8.00002‐x

53. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Let a biogeography‐based optimizer train your

Multi‐Layer Perceptron. Information Sciences, 269, 188‐209.
https://doi.org/10.1016/j.ins.2014.01.038

54. Mathur, P. (2016). A Simple Multilayer Perceptron with TensorFlow. Retrieved 5/11 from

https://medium.com/pankajmathur/a‐simple‐multilayer‐perceptron‐with‐tensorflow‐
3effe7bf3466

55. Basics of Multilayer Perceptron – A Simple Explanation of Multilayer Perceptron. (2018).

https://kindsonthegenius.com/blog/basics‐of‐multilayer‐perceptron‐a‐simple‐explanation‐
of‐multilayer‐perceptron/

56. Saha, S. (2018). A Comprehensive Guide to Convolutional Neural Networks Retrieved 5/11

from https://towardsdatascience.com/a‐comprehensive‐guide‐to‐convolutional‐neural‐
networks‐the‐eli5‐way‐3bd2b1164a53

57. Education, I. C. (2020). Convolutional Neural Networks. Retrieved 5/11 from

https://www.ibm.com/cloud/learn/convolutional‐neural‐networks

 85

58. Workalemahu, T. (2008). Singular value decomposition in image noise filtering and

reconstruction.

59. Schanze, T. (2017). Removing noise in biomedical signal recordings by singular value

decomposition. https://www.degruyter.com/document/doi/10.1515/cdbme‐2017‐0052/pdf

60. Epps, B. P., & Krivitzky, E. M. (2019). Singular value decomposition of noisy data: noise

filtering. Experiments in Fluids, 60(8). https://doi.org/10.1007/s00348‐019‐2768‐4

61. Zhao, G., Zhang, Z., Guan, H., Tang, P., & Wang, J. Rethinking ReLU to Train Better CNNs

https://dx.doi.org/10.1109/icpr.2018.8545612

