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ABSTRACT 

This thesis investigated capacitive sensing-based hand gesture recognition by developing and 

validating through custom built hardware. We attempted to discover if massed arrays of 

capacitance sensors can produce a robust system capable of simple hand gesture detection and 

recognition.  

The first stage of this research was to build the hardware that performed capacitance sensing. 

This hardware needs to be sensitive enough to capture minor variations in capacitance values, 

while also reducing stray capacitance to their minimum. The hardware designed in this stage 

formed the basis of all the data captured and utilised for subsequent training and testing of 

machine learning based classifiers. 

The second stage of this system used mass arrays of capacitance sensor pads to capture frames 

of hand gestures in the form of low-resolution 2D images. The raw data was then processed to 

account for random variations and noise present naturally in the surrounding environment. Five 

different gestures were captured from several test participants and used to train, validate and 

test the classifiers. 

Different methods were explored in the recognition and classification stage: initially, simple 

probabilistic classifiers were used; afterwards, neural networks were used. Two types of neural 

networks are explored, namely Multilayer Perceptron (MLP) and Convolutional Neural 

Network (CNN), which are capable of achieving upwards of 92.34 % classification accuracy.  
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CHAPTER 1:  INTRODUCTION 

 

1.1  Problem and Research Aim 

Hand gestures can be argued as a fundamental method of how humans interact with their 

surroundings. Hand gestures can be categorized into multiple different classes; controlling 

gestures, conversation gestures, communicative gestures, and many others. Among various 

hand gesture recognition methods for Human-Computer Interaction (HCI), camera-based ones 

are the most common. The motivation behind such research includes applications such as sign-

language recognition, robotic control, directional indication, immersive game technology, 

virtual controllers, affective computing, and remote controlling [1]. In all these applications, 

gesture recognition is a critical component and directly impacts on user-experience. However, 

despite the above mentioned potential, hand gestures recognition has not been as thoroughly 

researched as other types of HCI, such as voice recognition. 

Recent research in hand gestures has improved classification results through the use of novel 

methods of signal processing, detection, tracking, shape description, motion analysis, and 

pattern recognition. While there are enormous strides in software development, the 

fundamental way we attempt to process gestures through computational means has remained 

the same: computer learning through information captured from a piece of physical hardware 
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or sensor. Currently, most hand gesture data and training data sets are captured through the use 

of video cameras since the continued advancement in camera technology allows us to capture 

larger and larger resolution images. While the usage of the camera has proven successful, using 

a video camera to capture hand gesture data is sometimes "wasteful". Cameras capture images 

(data frames) in high-resolution RGB images, which also contains background imagery 

features that are unnecessary for gesture recognition. This background noise is ever-present 

and must be actively filtered to distinguish noise from features before gesture recognition can 

be performed. This large amount of incoming data affects the speed of processing, especially 

for high-resolution images. 

Many simple gesture recognition applications do not require such extensive resolution to 

perform and only require basic features to differentiate between gestures; high-resolution RGB 

imagery is not needed in such cases. In fact, for simple gesture recognition, such as static 

recognition, much of the data captured from video cameras is processed out as not to overtrain 

models. In such cases, many RGB images are routinely turned into greyscale images before 

being classified.  

This thesis explores an alternative method of hand gesture recognition by using capacitive 

sensors. Similar to camera-based sensing, capacitance sensing is contactless and therefore, 

hygienic and offers freedom of hand movement. Capacitive sensors naturally produce 2D 

"greyscale", low-resolution images and require very little power to capture data. It has low 

processing requirements and is ideal when processing power and power consumption are 

critical. The capacitive sensors also work in low-light conditions, where a camera system would 

struggle to capture useful data. This offers much higher privacy than camera-based systems, as 

capacitor sensors are physically incapable of capturing personal information such as faces and 

fingerprints. 
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While using capacitive sensors for gesture recognition is not an entirely new concept, most 

reported methods are restricted to straightforward designs with few capacitance sensors and 

operate in threshold detection mode. In such cases, capacitance sensors are used as on/off 

threshold detection to deduce if a physical body part is detected. Essentially, classification is 

performed with monotone images. This thesis attempts to advance this by using more capacitor 

sensors and not operating in threshold detection mode. The approach proposed is to create a 

low-resolution grayscale "image" composed of capacitance values and then use the images to 

train and test classifiers to conclude the viability of capacitive sensing as a form of free air 

gesture recognition. 

1.2  Recent Progress in Gesture Recognition Technology 

As this work is based on capacitance-based gesture recognition, we will first look at current 

hand gesture recognition technology and how capacitance sensing works. 

The first step for any data collection/analysis system is to collect the raw data necessary to 

accomplish the analysis. A range of different approaches has been employed in this raw data 

collection stage for hand gesture recognition. The most common of those being image-based 

approaches, such as depth sensors, single cameras, and non-image-based systems, such as 

gloves and bands [2; 3]. Different groups have also explored other more novel non-image 

technologies techniques such as RF signal-based sensors by Google [4] or capacitive sensing 

and ultrasound-based systems. All of these new techniques are usually classified as non-image-

based and non-wearable. From the different types of technology, we can roughly classify 

gesture recognition technology into image-based systems and non-image-based systems, as 

shown in Figure 1.1.  
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Figure 1.1: Different types of gesture recognition sensors [3] 

 

1.2.1  Image-based Systems:  

An image-based system is a natural extension of a human's ability to decipher gestures. It is 

assumed that the human eye can be replaced with cameras that can “see” a gesture [3]. 

Although this sounds simple in practice, there are many challenges to overcome by such an 

approach. Background scenery adds unwanted noise, lighting variation causes variations 

between samples, and hand size variations all contribute to this difficulty. Locating the hand 

and segmenting it from a busy background in an image sequence is non-trivial [5], adds 

computational cost and reduces the robustness of the system [6]. Additional support, such as 

markers, depth sensors, and other supporting instruments, are used so that the computer can 

better separate noise and increase the system's robustness [2].  

1.2.1.1  Single camera 

A single camera represents the simplest form of an image-based system, where the hardware 

consists of only a single camera. Single camera-based gesture recognition systems first 
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appeared in the early ’90s [7]. While they were simple and cost-effective, they had difficulty 

classifying gestures with “busy” backgrounds. Even today, single cameras still capture 2D 

images by nature, therefore separating background noise from gesture is computationally 

expensive. This effect is compounded when the gesture is non-static, and real-time recognition 

becomes challenging as vast amounts of data must be processed frame by frame [8]. 

1.2.1.2  Markers 

Makers represent the next logical approach in addressing the issue of the difficulty of 

separating gesture data from background noise. In such approaches, users need to wear obvious 

markers to identify features from the background. Since these markers are easily identifiable 

by the computer, it increases the system's robustness by “telling” a computer where to look for 

the gesture data [9]. The downside to this is that the user must wear obvious markers, or the 

system will cease to function. In recent times, with the rise of faster graphical processing speed 

and more advanced recognition systems, the use of markers has declined as it does not provide 

a significant enough gain in classification accuracy compared to non-marker approaches [3] to 

justify the added movement burden of the additional hardware. 

1.2.1.3  Stereo Camera 

A stereo camera has the ability to mimic human binocular vision and is therefore, able to 

capture three-dimensional (3D) images. Stereoscopic camera systems capture two 

simultaneous images from a pair of calibrated video cameras and use image registration 

methods to create a disparity map that approximates per-pixel depth [5]. Due to the 3D nature 

of the captured images, we can increase the robustness as background noise can be more easily 

separated from the gestures. This, however, comes at the cost of increased hardware expense 

and higher computational overhead to solve the image registration for each image pair [5]. 
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Many research works have explored 3D cameras with varying success [10]. Other forms of 3D 

cameras also exist that offer even higher accuracy and image fidelity, such as Time of Flight 

(ToF) cameras. TOF cameras directly provide the “depth” information in the form of a data 

stream whereas, for the stereo camera, the end-user must calculate the information themselves 

[10; 11]. However, normal stereo cameras work well in bright light and can be built with 

standard video cameras, whereas ToF requires specialized equipment and does not work well 

in bright light conditions [3; 11].  

1.2.1.4  Depth Sensor 

The depth sensor is a non-stereo, image-based depth sensing device. The depth sensor provides 

a 3D depth output. Depth sensors enjoy several advantages compared to the traditional stereo 

camera approach [3]. For example, the problems of setup, calibration, and illumination 

conditions can be prevented [5]. Multiple implementations of camera systems with depth 

sensors can be found, such as Microsoft’s Kinect, which features a QVGA (320x240) depth 

camera and a VGA (640x480) video camera, both of which produce image streams at 30 

Frames Per Second (FPS) [5]. 

1.2.2  Non-Image-based Systems 

In the past, image-based systems have primarily dominated the gesture recognition discipline 

due to their robustness [3]. While non-image-based systems, such as gloves and band-based 

systems, are available, their practical applications have remained limited [3]. It is only in recent 

times that alternative methods of non-intrusive hardware design, such as capacitive sensor, 

ultrasound sensor, and RF sensor, are being explored. This growth in non-image-based gesture 

recognition allows hardware designs specifically targeted at gesture recognition.  
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1.2.2.1  Gloves 

Glove design involves the end-user wearing a “glove” with sensors attached at critical locations, 

which can record their hand configuration/motion [12], as shown in Figure 1.2 these sensors 

are usually in the form of accelerometers and gyroscopes, which record user motion and speed. 

These devices also typically require a physical connection to the computer to enable data 

transfer [3]. While the glove-based system is not favourable in applications where the end-user 

is concerned due to the restricted nature of the glove system, it is a very popular choice for 

hand movement acquisition due to the precisions such systems can achieve [12]. A range of 

different gloves was proposed in the past. Few such devices enjoyed commercial success, 

showing that glove design has its niche use cases. Below are three examples of successful glove 

designs: 

 

 

 

 

 

 

Figure 1.2: Examples of Glove based designs; top left: Humanglove. Top right: strinGlove. 
Bottom left: Didjiglove 

 

1) Humanglove: Equipped with 20 Hall effect sensors that measure flexion/extension of 

the four fingers, Metacarpophalangeal joint (MCP), Proximal interphalangeal joint (PIP) 

and Distal interphalangeal joint (DIP) joints and flexion/extension of the thumb, thumb 

metacarpophalangeal joint (TMCP) and metacarpal phalangeal (MP), and 
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Interphalangeal (IP) joints, as well as fingers and thumb abduction/adduction; two 

additional sensors measure wrist flexion and abduction/adduction [13].  

 

2) StrinGlove: Uses 24 inductcoders (inductance based coders) [14] to obtain 22 degrees 

of freedom of human hand to record MCP, PIP, DIP angles of fingers and MP and IP 

angles of thumb, abduction/adduction angles of fingers and thumb, as well as wrist 

motion [15]. It is also equipped with nine contacts (magnetic) sensors, placed one in 

the thumb and two on each finger (tip and PIP phalanx). It requires calibration [12; 16].  

 

3) Didjiglove: uses ten capacitive bend sensors to record finger flexion (fingers MCP and 

PIP, and thumb TCMP and MP). The sensor employs two layers of conductive material 

separated by a dielectric. When a finger bends, it would change the overlapping 

conductive layers and thus a change in capacitance value. Calibration before each use 

is required for proper function. The device was initially designed as a form of capturing 

human animation [12; 15; 16]. 

1.2.2.2  Band 

Band sensing technology is similar to glove technology in that it requires the user to wear a 

device. However, unlike gloves, the device is not as “intrusive”. The device allows total 

movement of the hand without restriction. Figure 1.3 shows one such device called Tomo, 

which was developed by Zhang, Y. & Harrison, C. [17]. 
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Figure 1.3: Tomo, tomography-based hand gesture recognition hardware [17] 

Tomo is based on using electrical impedance tomography, which is able to capture the 

impedance geometry of a user's arm. This impedance geometry mapping is achieved by 

measuring the cross-sectional impedances between all pairs of eight electrodes resting on a 

user's skin [17]. This device assumes that the impedance map between each gesture is different 

and therefore classifiable when performing different gestures. This approach is one of the more 

novel ideas. Other improvements on this idea have attached a camera to the band as a form of 

secondary data capture, which allows for more precise and rapid gesture classifications [18].  
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CHAPTER 2:  CAPACITIVE SENSING  

 

2.1  Introduction  

This chapter explores why we chose to use capacitive sensing as a form of gesture recognition 

and the advantages and disadvantages of using captive sensing. The background of capacitive 

sensing and its operation principles will also be discussed. 

2.2  Capacitance Sensing Background 

The use of capacitive sensing is not new and is extremely widespread. Touchscreens, touchpads, 

and capacitive "buttons" are all frequently used with capacitive sensing technology [19; 20]. 

Most of these devices rely on physical contact with a surface to register a "touch". Attempts to 

use capacitive sensing on more sophisticated non-contact based sensing human-computer 

interactions have also been explored, such as body parameter sensing and gesture recognition 

but to a lesser degree compared to surface touch solutions. At the same time, attempts to replace 

input modalities, such as the keyboard and mouse, with capacitive sensing are also explored. 

However, most of such designs are still in a developing stage [1]. 



 

 11

While the use of touch-based capacitance sensing has been heavily explored, the research into 

close-range, non-contact capacitance-based sensing remains fragmented by different 

approaches, both in design and implementation. This effect is further compounded by the fact 

that most non-contact sensing designs require extensive software and machine learning, which 

further complicates the matter [19].  

2.2.1  Capacitance Sensing Advantages  

The main advantages that capacitive sensing has over other detection approaches are that it can 

sense different kinds of materials (skin, plastic, metal, liquid), is contactless, and is wear-free 

[21]. Privacy of capacitive systems is also naturally higher compared to camera based systems. 

Capacitance sensing hardware is simple, cheap by nature, can be easily manufactured, and 

often occupies less space than other forms of wireless sensing hardware [19]. They typically 

have a minimum height profile and can be hidden under opaque, non-conductive materials, and 

can be arranged in large, high-resolution scanned arrays. Capacitive sensing is purely electrical 

and requires low power. No form of mechanical movement is required for capacitive sensing 

[19]. 

2.2.2  Capacitance Sensing Disadvantages 

The biggest disadvantages that capacitive sensing has to include sensing distance, measurement 

drifts and interference. Compared to other sensors capacitive sensors drop in accuracy much 

more quickly [20] and is very much sensitive to environmental changes such as temperature, 

humidity, etc., which will affect the final performance and accuracy of the sensors. Capacitance 

also is very sensitive to interference and noise due to the nature of the small capacitance (femto 



 

 12

farads) values involved. All of the above can be mitigated to a certain degree through software 

means and the absolute accuracy of capacitance sensors is not crucial in the use case of gesture 

recognition.  

2.3  Capacitive Sensing Principles 

Capacitive sensing can be achieved due to inherent capacitances between the people, devices, 

and objects in the physical environment around us [19]. As shown in Figure 2.1, a range of 

natural capacitance exists between different objects; in particular, there is a capacitance 

between the human body and all surrounding objects. These capacitances are not physical 

capacitors but are instead caused by capacitive coupling between different objects. By 

measuring or detecting these values, we are able to calculate and relay information, such as 

positions and motions [22]. 

  

Figure 2.1: Capacitance that exists naturally between different objects [19] 

 

It should be noted that the terms “capacitive sensing” and “electric field sensing”, in most cases, 

refer to the same basic technique [19]. Throughout this thesis, we use the former term.  
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Figure 2.2 shows a lumped circuit model of what a capacitive sensing circuit looks like and is 

used to describe what is actually being measured by capacitance sensors. As shown, two 

electrodes T and R are used in the circuit; from these two electrodes, different capacitances will 

exist between T, R, and the hand H. Depending on the sensing mode of the circuits, one or more 

of 𝐶 ,𝐶 , 𝑎𝑛𝑑 𝐶 , will be measured to produce and relay information relating to the location of 

the hand [19]. The materials used for electrodes T and R vary widely, but are typically 

conductive materials, such as copper, novel non-solid parts such as textiles foils, paints, and 

printable conductive materials have also been used [23]. 

 

 

Figure 2.2: Lumped circuit model of capacitive sensing [24] 

 

2.3.1  Capacitance Sensing Operation Modes 

One of the first examples of gesture recognition through capacitive sensing is the “Theremin” 

[25]. The device, a musical instrument, invented by Russian physicist Leon Theremin in 1920, 
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was able to play music without physical contact with the instrument. The instrument had two 

antennas that could detect the relative proximity of hands. The player can vary the pitch and 

volume of the instrument by varying the distance of each hand to the antennas [26]. This device 

showed that as early as 1920, touchless sensing was being actively explored.  

In 1995 Zimmerman et al. proposed different taxonomy to describe different types of operating 

modes used in capacitive sensing [27]. They first proposed the idea of active capacitive sensing: 

the human Shunt mode [27]. This work was later extended to introduce the concept of passive 

capacitor sensing [28]. While dynamic sensing systems must actively generate an electric field, 

passive sensing systems rely on external or ambient electric fields that are passively sensed. 

The advantage of passive sensing is that it is simpler and requires less space per sensor pad. 

The disadvantage of passive sensing is that it is less accurate and affected by environmental 

changes more than active modes [19; 28].  

In 1999, Smith consolidated both active and passive approaches and classified capacitance 

sensing into three distinct modes: loading mode, transmit mode and shunt mode [20; 29]. Of 

which, the loading mode is passive, and other modes are active. 

 

 

Figure 2.3: modes of operation proposed by J. Smith [20; 29] 
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2.3.1.1  Loading Mode 

Loading mode, is, arguably, the simplest mode as it only requires a single plate that acts both 

as transmit and receiver [20; 29]. Loading mode is passive by nature as it relies on measuring 

the displacement current caused by the presence of a grounded object in proximity of the single 

electrode. Referring to Figure 2.2, loading mode would mean only the electrode T would exist. 

Therefore, the only significantly useful capacitance would be 𝐶 , which exists between the 

hand and the electrode [29]. As loading mode has only a single electrode, for n number of 

capacitive sensors (electrodes), only n amount of measurements/data points can be made. The 

advantage of this mode is that it only needs a single electrode, can be placed arbitrarily and be 

more easily shielded from influences of existing electric potentials than other modes [20; 30]. 

It also has the ability to detect electric field changes in longer ranges than the other modes, 

although with less accuracy and repeatability [29; 31]. 

2.3.1.2  Shunt Mode 

In shunt mode, shown in Figure 2.3, a known voltage of a certain frequency is created between 

the two electrodes to cause displacement current to flow. This requirement of a displacement 

current means that one electrode will be required to transmit a predetermined signal in shunt 

mode [27]. When a hand is in close proximity, it will capacitively couple to both the 

transmitting and receiving electrodes and cause some of the displacement current to flow from 

the transmitting electrode through the hand to the ground. By measuring the decrease in 

displacement current that is being received by the receive electrode, one can determine the 

hand's distance in relation to the capacitive sensor.  

Shunt mode offers a higher spatial resolution than the loading method but does not necessarily 

provide larger detection distances [20]. Shunt mode will also offer more possible measurement 
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points with the same number of sensors as loading mode. Whereas loading mode can only 

produce 𝑛 amount of measurement points with 𝑛 amount of sensors, shunt mode is able to 

produce  
∗

  amount of measurement points [32]. However, unlike loading mode, where 

each of the electrodes can be placed arbitrarily, the positioning of electrodes in shunt mode 

plays a critical role in measurement accuracy and repeatability [33]. Different layouts of shunt 

mode have been explored in various works e.g., grid styles, hexagons SnakePit, and CellMatrix 

[34; 35]. This grid style design has also been extensively exploited to yield high-resolution 

sensing that is being widely used in today's commercial touchscreens [19; 35; 36]. 

2.3.1.3  Transmit Mode 

Transmit mode can be considered to be a special form of Shunt mode. In Transmit mode, the 

hand is treated as a tightly coupled object to the transmitter plate. This means that the coupling 

between the hand and the transmitter is much greater than the coupling between the hand and 

the receiver or between the transmitter and the receiver [19]. Therefore, the receiver plate 

would see more displacement current [29]. Referring back to Figure 2.2, as the hand approaches 

the receive electrode R, the value of C2 (and C0 - the two are not distinct in this mode) increases, 

and the displacement current received at R increases [29; 32]. The patterns used for transmit 

mode also tend to closely match the styles found on shunt modes [37]. 

While shunt mode offers a higher spatial resolution than loading mode, it comes at the price of 

increased surface area per sensor[20]. When a single sensor is employed to measure water 

levels, accuracy is paramount to offer accurate values and sensor size is not crucial. However, 

in the case of gesture sensing, we must take into consideration the pad size and the pad count. 

The number of sensors is paramount for sensing applications as it affects the resolution of the 

"picture" generated for use with machine learning. Therefore, for this research, loading mode 
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was used as it offered the benefit of the smallest required pad space, whereas shunt mode 

required two separate sensing pads, which increased the sensing pad surface area.  

2.4  Capacitance Sensing Operation Distance 

The goal of any capacitance sensor is to detect an object of interest, in our case the human hand, 

at the furthest distance and with the highest spatial resolution. Spatial resolution here means 

the size of the smallest object that the capacitance sensors can resolve. 

While it is known that the human body produces capacitance, the actual amount of capacitance 

can vary widely from person-to-person with different body mass, shape, and different 

measurement conditions [22]. The issue is compounded by the fact that individual capacitance 

sensors also produce varying results depending on the material and size of the sensor [20]. 

Literature suggests that a real-world detectable human capacitance is on the order of low 

hundreds of picofarads [19; 22; 38]. At this level of capacitance, noise starts to be a dominating 

factor; if the design does not account for stray capacitance and component selection/routing 

becomes an essential factor. Thankfully many commercially available Integrated Circuits (ICs) 

exist to measure capacitances at such small level. For example, the FDC1004 [54] is a simple, 

cost-effective capacitance-to-digital converter that can achieve a resolution of 0.5 fF and was 

chosen to construct the capacitance sensors for this project. 

One of the critical challenges of capacitance sensing is the quick decaying detectable 

capacitance rate in relation to the detection range. The generic equation for the capacitance of 

a capacitor is given as 𝐶  , where 𝐴 is the pad area, 𝐷 is the distance from the pad, and 𝐶 

is the measured capacitance. Therefore, this would suggest that capacitance is inversely related 

to distance. However, this is not the case for greater distances between the plates. The farther 
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apart the two plates are, the smaller their overlapping area gets relatively to their surroundings; 

thus, a more realistic model is 𝐶  , where 𝑥 is dependent on the environment [39]. From 

this equation, it can be concluded that since capacitance decays exponentially, the detectable 

range of capacitor sensors is closely related to the size of the sensor [20; 40]. 

  

Figure 2.4: Comparison of CapBoard sensitivity for different sensor sizes [39] 

  

Figure 2.4 illustrates the exponential decay of different sized sensors which all have a relatively 

linear region and then rapidly drop in resolution verse distance [39].  

For our design, we have opted to use a rectangle pad design with a pad size of 27.2 mm by 5.1 

mm. With this pad size we are able to have a total sensing area of 137.7 mm2, and a spatial 

resolution of approximately 55.0 mm. At this range, our design is still capable of differentiating 

between two fingers. From above 55.0 mm, the detection rapidly becomes exponential decay 

and becomes undifferentiable to environmental noise. 
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CHAPTER 3:  DESIGN AND PROPOSED SYSTEM 

 

3.1  Introduction 

This chapter explores the hardware choices for our design and how we came to use such designs. 

We first look at different sensor pad sizes that would affect the spatial resolution of our data 

capture. Based upon the above results we will then propose and design our hardware system. 

Component choices will be backed-up with our design philosophy and reasonings. 

3.2  Proposed System Overview 

Physical pictures of the proposed system are shown in Figure 3.1. The white board contains 

the sensor pads that are connected to the Motherboard (the green PCB). When a hand 

approaches the sensor pads, loading mode capacitance sensing is achieved which the FDC1004 

will actively measure.  
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Figure 3.1: Complete mated hardware solution 

 

The high-level flow diagram of the system is shown in Figure 3.2. The Motherboard handles 

the data collection, processing and delivery to the host PC, while the sensor pad board is the 

physical medium on which data is collected. 

 

 

Figure 3.2: High-level flow diagram of the proposed system 
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The sensor pad board was designed to be replaceable to allow variations in pad size. By 

separating the sensor pad board and the Motherboard, we made the sensor pad board 

replaceable which allows us to test and validate different sensor pad sizes/arrangements. Data 

is collected by the Motherboard and sent to the host PC through a USB serial. The detached 

sensor pad board and the Motherboard are shown in Figure 3.3.  

 

 

Figure 3.3: Top left: top-side of the sensor board, Top-Right: bottom-side of the sensor 
board, Bottom Left: top-side of Motherboard, Bottom Right, bottom-side of Motherboard 

 

3.3  Motherboard Design and Component Choice 

The motherboard is a four-layer PCB design, with FR-4 as the PCB material. The design was 

restricted to four layers due to costs reasons. For ease of design and documentation, the 
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prototyping board can be split into four major sections: 1) power; 2) STM32F7; 3) sensor 

section; and 4) connectors. 

 

Figure 3.4: Major Board sections 

 

From Figure 3.4, we can see all the major motherboard sections. Red represents the power 

stage, which is responsible for all the power supply rails of the entirety of the Motherboard; 

blue is the STM32F7 MCU, which is used for processing, calculations and communication 

with the host PC; green is the FDC1004 capacitance to digital converter and STM32G03 MCUs 

used for collecting capacitance data from the sensor pads and transferring said data to the 

STM32F7; and yellow outlines the female Samtec connectors, which are used to connect to the 

sensor board (explained in section 3.4.3  ). 

3.3.1  MCU and Capacitance Sensor 

A challenge in designing the Motherboard was to fit sufficient capacitance sensors (FDC1004) 

to enable a high enough resolution design to support our use case. Off-the-shelf capacitance 
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sensor FDC1004 [21] by Texas Instrument was chosen for its ease of deployment and industry 

verified capabilities. Each FDC1004 has four sensors and thus is attached to four sensing pads. 

A total of 52 FDC1004 was deployed onto the prototype board to allow for a combined sensor 

of 208 individual capacitance sensors. The green box in Figure 3.4 outlines all the FDC1004 

sensors. 

Due to the high number of sensors needed and used, the volume of data generated from all the 

sensors will naturally be very high. The ideal choice for handling these data would be the use 

of an FPGA, but an FPGA is somewhat cumbersome to program and would take an extended 

amount of time to debug. As the time to deployment is of most importance in the prototyping 

and testing stage, efficient hardware usage is not a significant priority in our case. Therefore, 

it was decided to use an STM-based ARM (STM32F7) based on its ease of debugging and 

programming. 

Communication to and from the FDC1004 is done using the I2C protocol. Due to every 

FDC1004 having the same physical I2C address, 52 unique I2C channels would be required, 

meaning a minimum of 104 digital IO pairs would be necessary. This high I2C count presents 

a challenge to ARM MCUs as most of them do not have so many digital IO channels, especially 

that many I2C modules. Therefore, the design choice was to offload the I2C communication to 

smaller secondary MCUs (STM32G03). The smaller MCUs were responsible for 

communicating with the FDC1004, while the larger main ARM MCU (STM32F7) was focused 

on communication between the smaller MCU and the host PC. Figure 3.5 shows the 

communication link between each hardware step. 
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Figure 3.5: Hardware communication flowchart 

 

3.3.2  FDC1004 Design and Implementation  

The FDC1004 represents the most critical component in our entire system as it performs the 

capacitance measurement. The FDC1004 is capable of performing capacitive sensing with 

grounded capacitor sensors and is designed specifically for implementing capacitive sensing 

solutions [21]. Each channel has a full-scale range of ±15 pF with a measurement resolution of 

0.5 fF. Careful design and implementation are required to ensure the lowest possible noise and 

to ensure the operation of the combined 52 FDC1004 sensors do not cause significant crosstalk. 

3.3.2.1  FDC1004 Communication Protocol 

The FDC1004 is controlled and transmits capacitance value data through the I2C protocol [21]. 

While I2C was designed to have a single master device communicate with multiple slave 

devices on a single I2C channel, we cannot do this in our case as the FDC1004 only has a single 

factory hardwired I2C address. Therefore, we must be able to provide a total of 52 unique I2C 

channels dedicated solely for I2C communication for our usage case. Most MCUs available 
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today can provide a small number of I2C communication channels, so we will need multiple 

MCU to achieve the I2C count. Yet most MCU today often require a large number of peripheral 

circuits to facilitate the MCU. For example, the MCU ATmega328 used on the Arduino Uno 

requires at least a clock oscillator for high-frequency operation and multiple by-pass 

capacitors[41]. This would increase the board space and component costs considerably. 

Therefore, we must choose an MCU with I2C with minimal peripheral circuits requirements in 

order to streamline the process of implementing the 52 FDC1004 I2C communication pairs.  

The choice was made to use the STM32G03[42], which is available in an 8-pin package that 

fulfils our use case in the smallest footprint. The STM32G03 is a self-contained package, with 

its own onboard oscillator clocked at 16Mhz powered directly through Vcc and an internal PLL 

circuit, which produces a final clock frequency of 32 Mhz. The only peripheral circuits needed 

for the STM32G03 are three bypass capacitors for its 3.3V power supply. An additional two 

resistors are also required as per defined by the I2C communication protocol. While each 

STM32G03 contains two I2C communication channels, we chose to use only one channel as 

other pins of the second I2C channel are occupied for other functions. Thus for 52 FDC1004, 

there are 52 STM32G03, creating 52 pairs of STM32G03 and FDC1004; each pair has its 

isolated channel of I2C communication.  

While the above STM32G03 solution solves the I2C hardware address issue of the FDC1004, 

it also introduces the problem of how to facilitate data transfer from STM32G03 to the host PC. 

Due to the high number (52) of individual STM32G03, we cannot have them all communicate 

with the host PC directly over the USB protocol as USB only accepts one connection at a time 

unless a switch is used. Therefore, we must have some form of "middleman" to facilitate this 

data transfer between the STM32G03 and the host PC. As seen in Figure 3.6, the chosen 

method uses an STM32F7 Nucleo board. The STM32F7 Nucleo board will communicate and 

collect the FDC1004 capacitance value data from the 52 STM32G03, and then transfer said 
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data to the host PC through the UART protocol. The PC will only have to communicate with a 

single MCU through this method. 

However, the data transfer method between all the STM32G03 and STM32F7 will also require 

a high number of digital IO. Even with only 2 IO used for each STM32G03, it will require a 

total of at least 104 digital IO dedicated purely for communication purposes between 

STM32G03 and STM32F7. The use of 104 digital IO is not feasible as we do not have so many 

available empty digital IO on the STM32F7. Therefore, the communication between 

STM32G03 and STM32F7 is a custom bitbang shown in Figure 3.6.  

 

Figure 3.6: STM32F7 communication with STM32G03 

 

Each STM32G03 will have one unique dedicated IO while also sharing one master IO with all 

other STM32G03. Data bits are controlled by STM32G03 and read by STM32F7. Master CLK 

is controlled by STM32F7 and read-only by STM32G03.  

The master CLK acts as the master communication clock for all STM32G03, and the STM32F7 

directly controls this CLK. At the start of the data transfer cycle, the STM32F7 will request the 

STM32G03 to send the first bit by turning master CLK low to high and back low again. This 
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transition signals to the STM32G03 to send the first data bit. Once the STM32F7 has finished 

reading all the STM32G03 data, it will turn master CLK low to high and back low again, which 

tells STM32G03 to send in the next data bit. STM32G03 will stretch and hold a bit indefinitely 

unless signalled by the Master CLK to transmit the next bit or if a timeout of 5ms has occurred. 

For example, if the current bit is 1, the STM32G03 will hold the Dataline IO high until it has 

received the signal on the master CLK for the next bit. 

Through this custom bitbang method, we can reduce the number of required digital IO from 

the previous 104 to 53 consisting of 52 data IO and 1 Master CLK IO. Nevertheless, this 

method of communication comes with its downside. No communication is verifiable, and any 

corrupt bits are sent and interpreted as is. The timing of the bitbang is also extremely delicate 

and requires tedious trial and error and fine-tuning as the clock speeds of the STM32G03 and 

STM32F7 are different.  

3.3.2.2  FDC1004 to Connector Routing 

Once the software for the FDC1004 is sorted the final part is to physically route the FDC1004 

sensors to the SAMTEC connector, which will then be connected to the sensor board. With 

respect to Figure 3.4, this is presented as the connection between Green and Yellow. Each 

FDC1004 has four capacitance sensors, CIN1 to CIN4, and each FDC1004 also has its own 

unique shield trace generator; this is shown in Figure 3.7.  
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Figure 3.7: FDC1004 Capacitance sensor Pinout, Courtesy of Texas Instruments [21] 

 

Routing these CIN1-4 and the shield traces (SHLD1, SHLD2) is critical as all routed traces on 

the PCB are analogue signals, and any noise picked up will directly impact the capacitance 

value accuracy. Therefore, it is paramount to ensure that each capacitance sensor (referred to 

as CIN) will receive the highest possible shielding from external interference. 

To minimize interference from the surrounding environment on the CIN, a thin PCB trace (6 

mils) along with interweaved routing was chosen. Thin PCB trace reduces both stray 

capacitances picked up from the ground plane on the PCB and also EMI from the surrounding 

environment. Interweaved routing, where a shield trace is routed between every CIN trace, 

allows for the maximum isolation between different CIN, so coupling between two adjacent 

CIN is reduced to the minimum. Figure 3.8 shows the routing method used; red denotes the 

CIN traces, while yellow denotes the shield traces. In this design, no CIN trace is directly next 

to another CIN trace.  
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Figure 3.8: Interweaved routing of Cin and Shield on the top side of PCB, Yellow is the 
Shield, and red is the CIN. Similar routing is performed on the bottom side of the PCB (not 

shown in this figure) 

 

The connector used to connect the Motherboard to the sensor board is the EdgeRate series 

connector by SAMTEC[43], shown in Figure 3.8 in teal and comes in male and female variants. 

The female version was used on the Motherboard, while the male was used on the sensor board. 

There are 120 contacts per EdgeRate connector for 480 contacts total on the Motherboard. Each 

CIN would occupy one contact on the connector, meaning 208 contacts are used for CIN; the 

rest of the contacts were allocated to shield trace and ground. By having so many contacts 

dedicated to shield traces, we effectively allowed each CIN trace to be wrapped by shield traces, 

thereby following our previous design motto; no CIN trace is directly next to another CIN trace. 

3.3.3  Motherboard Power Delivery  

Once the basic designs of the critical components have been established, the next step is to 

deliver power to the Motherboard and power all the components. A noisy power supply can 

leak noise to IC and the FDC1004 and directly affect their performance. Therefore, it is 

paramount that proper supply regulation is achieved, where noise is kept to a minimum.  
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Table 1: Power supply rail voltage and current 

Voltage Designed Current Max Current Number of rails 

5.0 V 1.5 A 3.0 A 1 

4.1 V 1.0 A 2.5 A 1 

3.3 V 100.0 mA 2.0 A 4 

 

Table 1 outlines all the power supply rails voltage and current rating used in the design, Figure 

3.9 shows their respective locations on the Motherboard. In total, the power supply design 

contains one buck regulator and five LDO (low voltage dropout regulator), The buck regulator 

is used to drop input voltage to suitable voltages for the LDOs. The LDO serves multiple 

purposes, primarily as voltage regulators to power components but also as a power supply filter 

to filter the buck regulator's output noise.  

 

Figure 3.9: Regulators on the Motherboard 

 

Figure 3.10 shows the voltage input and voltage output flow diagram and devices that the 

power respectively supplies. The 12 V input to the Motherboard through the 12 V barrel jack 
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is connected directly to the 5 V LDO and the Buck regulator. The Buck regulator (outlined in 

red in Figure 3.9) serves the purpose of lowering the voltage to 4.1V, which then powers the 

3.3 V LDO. Since converting 12 V to 3.3 V through LDO is not only highly inefficient and 

generates high amounts of heat waste but also degrades noise characteristic of the LDO due to 

the high difference between input and output voltage. 4.1 V is an ideal compromise between 

the safety margin of the 3.3 V LDO operation limits and heat generated.  

 

 

Figure 3.10: Power flow diagram of Motherboard 

 

A 5 V rail is required to power the MCU, as the buck regulator can be noisy and outputs only 

4.1 V. We opted to use a 5 V LDO that is sourced by the 12 V barrel jack input. The use of a 

heatsink was deemed necessary to maintain the LDO at cool-to-touch temperatures.  

As stated, The MLB connects to external power through the 12 V barrel. The Buck regulator 

can accept a maximum of 15 V input voltage and therefore measures must be taken to ensure 

no overvoltage occurs. This is then followed by a fuse and a 14 V OVP Zener diode to ensure 

the input voltage never exceeds 14 V. 
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Figure 3.11: Motherboard external power stage input design 

 

Figure 3.11 shows the simple protection circuit used in the case of overvoltage. Component X1 

is the barrel jack and is tied to the T1 screw terminal for easy debugging, both are then 

connected to a fuse (F1) and a 14 V Zener diode (D1). If an input voltage exceeds 14V then 

the Zener diode will conduct, cause a short circuit and blow F1. The on/off switch is placed 

after the F1 fuse and D1 Zener diode combo, the rationale behind this is that this allows the 

circuit to detect an over-voltage presence regardless of the on/off state of SW1 and will allow 

the fuse (F1) to blow before the incorrect voltage is applied to the Buck regulator input. LED 

(H1) is used as an indicator to see if SW1 is closed. 
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3.3.3.1  Buck Regulator  

While a Buck regulator can effectively drop voltages without significant energy loss, it 

naturally presents the problem of emitting switching noise that is radiated to the surroundings 

and transmitted through the FR-4 dielectric of the PCB to nearby components. This noise is 

undesirable as it can be picked up by the FDC1004 that translates to noise on our final 

measurements. This noise is further compounded by our sensor boards exposed copper pads, 

which can also pick up this emitted switching noise and other surrounding EMI. Therefore, it 

is paramount to suppress the noise generated by the Buck regulator to the minimum. 

The chosen buck regulator chip is the Analog Devices LTC3603 [44]. This device satisfies 

most of our requirements, with built-in dual FET and synchronous operation and a peak output 

of 2.5 A. Implementation of this Buck regulator is straightforward and provides a simple design 

phrase. However, more importantly, simulation is available through the Analog Devices 

LTpowerCAD software [45]. This ease of implementation ensures a fast and reliable Buck 

design that is easily operational verified. 

The LTC3603 can be operated in both burst or continuous operation, and the max operation 

frequency is at 1 Mhz. For our design, we used Continuous mode with a 1 Mhz operation 

frequency. 1 Mhz ensures quick transient response and continuous mode ensures the least 

amount of interference to surrounding as the LTC3603 generates no start/stop phase noise. To 

address any possible radio frequency noise from sharp rise/fall edges from the 1Mhz operation, 

we use a ferrite bead at the Buck Regulator's output to reduce such effects. 

Buck regulator being a feedback network, also requires simulation to ensure the system's 

stability, this simulation is done with the previous mentioned LTpowerCAD software. Figure 

3.12 shows all the component choices used for the LTC3603 in designing a stable Buck 

regulator. 
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Figure 3.12: LTC3603 Surrounding circuit 

 

The capacitor and inductor choices are essential as they directly affect the feedback stability 

and ripple size. Thus the choice of large inductor and output capacitors ensures a low ripple at 

the output of the buck regulator. This low ripple would directly affect the 3.3 V LDO that 

comes after the buck regulator as while the LDO has a high power supply rejection ratio (PSSR), 

it is nevertheless not infinite. Therefore, the lower the output ripple of the Buck regulator, the 

better the performance of the LDO would be. The Loop response of the Buck is also of 

importance as unstable buck regulators can swing widely when transient loads are presented, 

which will be the case when MCU is connected that constantly switches between high current 

and low current draws. Therefore, it is crucial to ensure sufficient simulation is performed on 

the loop stability. 
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Figure 3.13: LTC3603 Load transient 2A load 

 

Figure 3.13 shows the time-based transient load simulation performed by Analog Device’s 

LTpowerCAD software. The purple line above is the simulated transient of the buck regulator 

when a transient load of 2.0 A is drawn from the buck regulator, and the green line in the second 

graph is the simulated current output. As the simulation shows, even in the extreme case of 2.0 

A transient load, the output voltage does not dip below 10.0 mV or rise above 4.0 mV of the 

target voltage of 4.15 V and the recovery time is approximately 100.0 μs. This severe case of 

2.0 A load transient should not happen in our use case unless faults such as short-circuit occur. 

If shorting faults do occur, ideally, the fuse should react in time to stop damages to the 

LTC3603.  
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Figure 3.14: LTC3603 load transient 300.0 mA load 

 

Figure 3.14 shows a much more realistic load transient where the transient is 300.0 mA. In 

such a case, the voltage should only dip a maximum of 5.0 mV below nominal 4.15 V, and the 

recovery time is shortened to approximately 60.0 μs.  

The Bode plot of the buck regulator shown in Figure 3.15 agrees with the graphs in Figure 3.13 

and Figure 3.14 in that the Buck regulator is indeed stable. With the component selection shown 

in Figure 3.12, we can achieve a phase margin of 130.0 degrees and a gain bandwidth of 31.0 

kHz. The phase margin is much higher than the recommended 60.0 degrees. However, the 

bandwidth ideally can be higher than 31.0 kHz, but it is nevertheless sufficient. From Figure 

3.15, we can also see that after the 1.0 MHz frequency, the LTC3603 would rapidly become 

unstable, which agrees with the maximum operating frequency of the LTC3603 from its 

datasheet. 
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Figure 3.15: LTC3603 Bode plot 

 

3.3.3.2  Linear Dropout Regulator (LDO) 

The purpose of using LDO instead of making the Buck regulator output 3.2 V and directly 

using it to power the MCU and FDC1004 is that both FDC1004 and STM32 are susceptible to 

noise on their respective input voltage. The noise from the buck regulator and any noise from 

MCU’s internal clock could affect the FDC1004 if the MCU and FDC1004 are both directly 

powered by the buck regulator. The FDC1004 has a published PSRR of 13.6 fF/V, which 

means 1.0 volt of noise can cause 13.6 femto-farad of measurement error.  

As the FDC1004 is affected by power supply ripple, all reasonable design choices must be 

taken to accommodate this. Therefore, for powering the FDC1004 and their respective 

STM32G03, the chosen LDO was the Analog Devices ADP7158 [46]. The ADP7158 has 

extremely high PSRR at 60.0 dB at the 1.0 MHz input frequency range when the load is under 

1.2 A [46] and an output noise level of 1.6 μV RMS at max current level [46]. Therefore, this 
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chip is suitable for use cases where it can sufficiently suppress and filter the switching noise 

from the Buck regulator and provide clean DC into the FDC1004.  

Figure 3.16 gives a graphic overview of which separate devices are powered by which 

individual LDO. The Yellow and green in Figure 3.16 are LDOs for the FDC1004, white and 

red are for the STM32G03. At the same time, the blue/teal is the LDO for the STM32F7 Nucleo 

board.  

 

Figure 3.16: Components powered by their respective LDOs 

 

The purpose of using different LDOs from the STM32G03 and the FDC1004 is that since as 

shown in Figure 3.5, each FDC1004 has its unique STM32G03 that performs the I2C 

communications, and since the STM32G03 is an MCU, naturally high frequencies are involved 

as the STM32G03 has internal PLL and buck regulators [42]. To reasonably isolate these issues, 

the decision was taken to split the LDO between the STM32G03 and the FDC1004. The 

decision to further separate the STM32G03 and FDC1004 into two groups (white and red), 
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(yellow and green) shown in Figure 3.16 is to allow for debugging and failsafe considerations 

as if a catastrophic fault occurs, at least half the Motherboard would remain usable.  

The LDO used to power the STM32F7 would require a significant size to accommodate the 

heat generated by the LDO due to the high current requirement of the STM32F7. The regular 

operation of the STM32F7 Nucleo board requires 500.0 mA of current at 5.0 V [47]. As the 

LDO converts 12.0 V to 5.0 V at 500.0 mA, this means the LDO must be able to dissipate 3.5 

watts of heat in the worst-case scenario. Following these requirements, the device NCP59150 

[48] by On Semiconductor was chosen. It comes in a D2PAK3 package and is capable of a 1.5 

A supply current but, more importantly, has a thermal rating of R_JA = 52oC/W when used as 

Junction-to-air, which is lower than most LDO that comes in smaller packages. When supplied 

with a small passive heatsink, the R_JA is further reduced to a much smaller value; the 

temperature observed in our use case is approximately 60°C and average current draw of 350.0 

mA, which gives approximately R_JA = 24oC/W. Noise and voltage regulation is not as 

necessary of a factor as the STM32F3 has onboard voltage detection and safety cut-offs [47]. 

Nevertheless, NCP59150 has a PSRR rating of 30dB at 200Hz and an output accuracy of 2.5 %. 

The noise of this LDO is not extremely important as the STM32F7 is a digital chip and has its 

own internal LDO, either way, no noise figure was supplied by ON Semiconductor for 

NCP59150. 

3.4  Sensor-pad Board Design  

The physical board is shown in Figure 3.17. The sensor pads are responsible for sensing the 

variation in capacitance. The design of this sensor board and sensor pad directly relates to what 

is captured by the FDC1004.  
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Figure 3.17: Proposed Sensor board design  

 

Therefore, close attention must be paid to its layout plan to ensure optimal performance. The 

larger the sensor "pads" (silver rectangles in left of Figure 3.17), the better the sensitivity and 

spatial resolution. But as a hand is only so big, the larger the sensor the smaller the overall 

resolution/pixel of the final capacitance “image”. Thus, we must find other means of increasing 

spatial resolution to the maximum for a given pad size. Ultimately a trade-off between size, 

sensitivity, noise immunity and coupling effects must be made [49]. 

3.4.1  Noise, Sensitivity, and Shielding 

As stated before, the biggest issue we faced in the design of the system is the noise picked up 

by the FDC1004. Therefore, we must attempt to keep this noise to its minimum for our sensor 

pad design. The most direct method is by increasing the separation of two pads; however, this 

would again reduce the overall pixel of the capacitance “image”, and thus we must employ 

other techniques to best increase the performance of the sensor pads.  
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Figure 3.18: Sensor shielding, Courtesy of Texas Instruments [49] 

 

As shown in Figure 3.18, one of the significant sources of interference and noise in capacitive 

sensing is parasitic capacitance to the ground along the signal path between the sensing device 

trace and the electrode sensor. This parasitic noise can cause unintended alteration in the final 

reading of capacitive sensors. Worst yet, this alteration can vary from sensor to sensor and trace 

to trace. The shield driver on the FDC1004 attempts to reduce this issue by using an active 

signal output that is driven at the same voltage potential as the sensor input. So ideally, there 

is no potential difference between 𝐶  (capacitance sensing pin) and its surroundings, and thus 

no current leakage can occur. Multiple different methods of routing this shield trace can be 

implemented, and each will have its trade-offs, Figure 3.19 shows the four common methods.  
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Figure 3.19: methods of shield routing: no shield, shield under but the same size as sensor 

pad, shield larger than CIN and both Shield under along with a shield ring around the sensor 
pad, Courtesy of Texas Instruments [49] 

 

Clockwise, each shielding type shown in Figure 3.19 offers increasing resistance to stray 

capacitance yet decreasing sensitivity and spatial resolution. Results published by Texas 

instruments on the expected decrease in sensitivity of a single sensor are given in Figure 3.20. 

The sensor pad size in Figure 3.20 is 20.0 mm by 20.0 mm; in comparison, the sensor we used 

was 5.0 mm by 27.0 mm, representing a 77 % reduction in surface area.  

 

 
Figure 3.20: Sensitivity of sensor relative to shielding type, Courtesy of Texas Instruments 

[49] 

 

From Figure 3.20, we can expect no shielding to have the best possible sensitivity. If we can 

account for the increase in noise through software means, no shield would be the best design. 
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Nevertheless, in reality, this noise is much too significant and random to be compensated with 

software means, and we must take steps to mitigate it through physical design means.  

The best shielding design is the lower left and right design in Figure 3.19, which consists of 

shield traces all around the 𝐶  trace. However, in our use case, we are not performing precision 

analogue measurements; the benefit of increased noise immunity does not outweigh the cost of 

decreased sensitivity. Figure 3.20 shows that one can expect a 500.0 fF drop in sensitivity when 

going from full shield to no shield when the sensor pad is 20.0 mm by 20.0 mm. The decrease 

of 500.0 fF in sensitivity is not viable for our use case. Therefore, we would use a reduced 

design compared to Texas Instruments; we would employ a shield trace around the sensor pad 

with no shield under it. Our design diagram is shown in Figure 3.21. 

3.4.2  Final Design of Sensor Pad 

We first established the baseline noise generated by sensor board designs. In the case of the no 

shield under the CIN (top left of Figure 3.19), the generated random noise is averaged to be 

3253 (FDC1004 reading) or approximately 0.0062 pF over a 1.0 s period; the highest noise is 

10445 or 0.0199pF. The results from the shields same size as the sensor pad (bottom left of 

Figure 3.19) gives the result of 3103 average noise or 0.0059pF, with the highest noise is 

observed at 5817 or 0.0111 pF. Finally, the design of the shield trace around the 𝐶  trace 

(Figure 3.21) gives the result of 3152 average noise or 0.0060 pF, and the highest noise is 

observed at 7000 or 0.0133 pF. These results show that while the average is not decreased 

between the different designs, the peak/spike is greatly reduced. This finding agrees with Texas 

Instruments' findings that a random high spike of noise is massively reduced with a shield trace 

[49]; however, the higher the immunity to random spike, the higher the reduction in sensitivity.  
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In our experiment between our design (Figure 3.21) and fully shielded (bottom left of Figure 

3.19), when we compared the detection range of the two designs, the fully shielded cases 

displayed a detection range of a mere 25.0 mm before no observable difference in reading could 

be made. For our design, a distance of up to 55.0 mm can be detected. However, it is worth 

noting that the data from the shielded sensor board has a much tighter spread of captured values, 

but the detected capacitance values drop off more quickly. In our design, while we can observe 

capacitance values up to 55mm, the capacitance reading varies more widely between values.  

 

 

Figure 3.21: our shielded sensor board design 

 

In our use case, we must base our decisions on range consideration as a range of 25.0 mm is 

simply not sufficient. Furthermore, software-based calibration may compensate for some of the 

increased variations in noise. Therefore, we opted to use the shielding design shown in Figure 

3.21 as our design where we "wrap" sensor pads with shield traces. 

3.4.3  Sensor Board Connection to Motherboard 

As mentioned in section 3.3.2.2  , to enable the connection between the Motherboard and the 

sensor pad board, we opted to use the EdgeRate connectors by Samtec [43]. The left side of 

Figure 3.22 shows the sensor pad board and the two male connectors (blue); The right side of 

Figure 3.22 shows the motherboard and the two female connectors (red). 
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Figure 3.22: Samtec Connectors, male connectors (blue) and female connectors (red) 
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CHAPTER 4:  SOFTWARE AND DATA COLLECTION 

 

4.1  Introduction  

The developed hardware outlined in chapter 3 was used to capture capacitance data from five 

test participants whom each performed five unique gestures multiple times. The experiments 

were conducted in a controlled environment where the most significant variable should be the 

difference in the participant's hand size and shape. The dataset was used to train, validate, and 

test several classifiers. We will first give an overview of the software and its operation 

parameters, followed by the data collection environment. Finally, we will examine the 

differences and variables between each dataset. 

 

4.2  Types of Data Collected 

Due to the iterative improvement of the hardware and software based on the findings of the 

experiments, a total of three sets of complete data were collected through the span of this study. 

Each dataset was collected after a major software revision. 
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The first two sets of data were collected under the assumption of evaluating the hardware and 

establishing the basis of all future data gathering. Dataset 1 served as a proof of concept that 

capacitive sensing-based gesture recognition was needed to justify further experiments into 

such a design. The second dataset was the intention of exposing software issues. Therefore, 

both the hardware and software aspects of the system were modified upon based on the results 

of Dataset 1 and Dataset 2. Dataset 3 utilised improved calibration and is used in all model 

evaluation and final accuracy comparisons. In its final form, five different hand gestures were 

captured and shown in Figure 4.1 for Dataset 3.  

 

Figure 4.1: All five hand gestures from top left clockwise: palm, fist, middle, ok, point. The 
gestures combine a mixture of similar and non-similar types to thoroughly test the classifier. 

For example, one would expect the classifier to have difficulty with the point and middle 
finger gestures 
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4.3  Software implementation overview 

The maximum measurable change in capacitance when a hand is 55.0 mm from the pad is the 

order of approximately 0.5 pF (please see 3.4.2  ). At this range, noise and environmental 

factors can dramatically affect readings. The FDC1004 IC chip requires generating an 

excitation signal that extends to the physical sensor pads when it actively measures capacitance. 

This excitation signal, unfortunately, is a potential noise source for any adjacent FDC1004 

sensor pads. Therefore, running all FDC1004 concurrently is not sensible. Instead, a “sweep” 

is performed, where each FDC1004 is turned on, collects data one at a time for the four sensors 

and then turned off. After the first FDC1004 completes this cycle, the next FDC1004 would 

perform the same cycle until all sensors have completed this cycle. The STM32G03 would then 

combine the data from all four sensors to form a complete frame worth of data and send it to 

the STM32F7, which would combine all data from STM32F03 and send it to the host PC. 

Each FDC1004 was set at 100 samples/s, and since each FDC1004 had four sensors connected 

internally through a multiplexer, it would take 40.0 ms to complete one entire cycle of sampling 

[21]. To account for start/stop commands, transfer time and sufficient gap between each 

FDC1004, each FDC1004 is allocated 50.0 ms for a complete sampling cycle of all four sensors 

and transferring data to the STM32F03.  

4.3.1  Data Normalization 

Due to the varying nature of the distance of each individual pad to the physical FDC1004 sensor, 

some form of data normalization must be implemented so that the different data collected from 

each pad are location-invariant and comparable to allow for easy debugging and neat 
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presentation. The chosen method of mitigating said issue was using hardware programmed 

offsets outlined in the FDC1004 datasheet [21]. Each sensor within the FDC1004 was 

calibrated until they reached one Pico Farad. The value of one Pico Farad was chosen to allow 

a sufficient safety net for noise and drifts so as not to allow the sensor reading to dip below 0 

Farad and into negative readings, which the software is incapable of reading. This calibration 

step is hardware-based, and each sensor must undergo calibration through a string of I2C 

commands. This calibration was a lengthy process that took approximately 5 seconds. 

However, while the hardware can compensate the distance of each individual pad to the 

FDC1004, capacitive sensors have a tendency to naturally drift due to an array of other different 

reasons such as temperature, humidity and local interferences. When we measure down to the 

pico- and femto-farad range, this drift becomes an issue and must be actively controlled. The 

FDC1004 cannot account for this by hardware alone due to the slow speed of hardware 

calibration, and thus Texas Instruments actively encourage to use software calibration solutions 

for each use case[21].  

 

 

Figure 4.2: 50 frame Software calibration flow chart 
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Figure 4.2 shows the software calibration process we used to perform offset and background 

subtraction was used to mitigate sensor drifting. The software calibration process is similar to 

hardware calibration, but due to not needing to write I2C cycles constantly, we can therefore 

increase the calibration speed. The operation starts the system by collecting capacitance values 

without a hand present. The values from this cycle are then stored into a matrix and named the 

calibration frame. Fifty consecutive calibration frames are collected and averaged to reduce the 

impact of environmental variables on the sensor pads. This averaged frame acts as the baseline 

empty pad values, and when we start collecting hand gestures, this baseline is subtracted from 

all data collected for the gestures. The use of the average of 50 frames of data was decided 

upon as a balance between speed and accuracy, as during test we found the use of only a single 

frame of data as the calibration frame did not yield satisfactory results. 

4.3.2  Final Dataset: Dataset 3 

Table 2 shows the composition of dataset 3 that was collected with the logic outlined in section 

4.3.1  . All participants' data were collected on different days to allow for independent data 

between participants. The gesture is captured in the same manner as shown in Figure 4.1. 

Table 2: dataset three composition 

 

 

 

Even with the extensive software calibration used for data set three, there are still observable 

variations between data frames from different participants. This variation suggests that we can 

only assume data to be loosely correlated for the fairness of evaluating of a classifier. Data 

Number of 
unique 
participants  

Number of 
gestures 

Frames per 
gesture 

Total frames 
per 
participant 

Total number of 
frames for dataset 
3 

5 5 200 1000 5000 
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collected from two different environments cannot be considered to be similar even if collected 

on the same person. Moreover, if such an assumption is made, we cannot rely on the 

"traditional" method of mixing all data together and doing a 70/15/15 split for training, 

validation, and testing. Instead, testing data must be unique and separated from training and 

validation data. For example, participants 1-4 are used for training and validation only, while 

participant 5's data is used solely for testing purposes. This isolation of training/validation and 

testing data attempts to verify the robustness of the classifier when presented with previous 

untrained data when presented new data from a different day with random moisture and 

temperature. Later chapters of this thesis will show that splitting training and testing data is a 

more precise indicator of a classifier's capability to identify gestures performed by different 

individuals than doing the traditional 70/15/15 split.  
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CHAPTER 5:  CLASSIFICATION MODELLING, DESIGN, AND 

RESULTS 

 

5.1  Introduction  

The collected hand gesture data from the five participants were split into training (and 

validation) set and test set to train and evaluate several multiclass classifiers. The classifiers 

include two probabilistic classifiers (Naïve Bayes and Decision Tree) and two neural networks 

namely multilayer perceptron (MLP) and convolutional neural network (CNN). For this thesis, 

TensorFlow 2.0 by Google is used on the python platform to implement the classifiers. 

5.2  Classifier background 

5.2.1   Probabilistic Classifier  

The purpose of using the two classifiers is to evaluate how these simple models perform 

compared to the more complex neural networks.  
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5.2.1.1   Naïve Bayes Classifiers 

The first of these networks to be tested will be Gaussian Naive Bayes, which remains one of 

the most effective and efficient classification algorithms [50]. Naïve Bayes Classifiers always 

assume that all features are independent of other features. This assumption makes it possible 

to achieve a high model accuracy with a relatively small training dataset. 

Decision Tree Classifier 

A decision tree usually consists of a root node, a number of interior nodes and finally, a number 

of terminal nodes [51]. The building block of a decision tree is recursive partitioning, which 

involves splitting the data into partitions or subsets. This process repeats itself until the 

partitions are sufficiently homogenous. In a simple sense, a decision tree asks simple yes or no 

questions until the model can determine which terminal node it wants to put the input data into. 

This process is extremely fast to perform and has a high accuracy for simple datasets when the 

data are sufficiently similar. 

5.2.2  Neural Networks 

The rise of neural networks began in the early 2000s when the increase of cheap graphical 

processing power and "deep" neural networks [52] made more complex neural networks 

possible. Before this, neural networks did not process the capability to surpass more traditional 

approaches due to the high processing power requirement, except for a select number of 

specialized cases. With today's processing power, the development of neural works rapidly 

flourished. This study mainly explores two Neural networks, Multi-Layer Perceptron (MLP) 

and Convolution Neural Network (CNN). While Both types of neural networks are tested, the 
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main focus will be on multi-layer perceptron as we did not find evidence that convolutional 

neural networks produced better results than multi-layer perceptron in our use case. 

5.2.2.1  Multi-Layer Perceptron (MLP)  

The Multi-Layer Perceptron (MLP) is one of the most widely used Neural Networks that has 

seen success in a wide range of problems [53]. Figure 27 shows an example of such a model.  

 

Figure 5.1: Simple MLP model with two hidden layers [54] 

 

The MLP neural network is a feedforward network and consists of multiple layers of nodes. A 

complete MLP system consists of at least three layers of nodes: an input layer, a hidden layer, 

and an output layer. There is no limit to the amount of hidden layer that a can employ; more 

hidden layer means more nodes are possible, and therefore more paths are possible, albeit at 

the cost of higher computing cost.  

Except for the input layer, where it receives its data through external means, all other layer 

receives their data from the previous layer. Once data is received, a node will use a nonlinear 

activation function to combine the input to the node with predetermined weights and then 

adding a bias to produce an output. A range of different activation functions exists.  
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The process of training an MLP model involves continuously adjusting the weights of the 

connection between nodes. This adjustment is based on the error in output (the difference 

between the expected result and the actual output). This continuous adjustment of the weights 

is a supervised learning process called “backpropagation” [55]. The backpropagation algorithm 

consists of two parts: the forward pass and the backward pass. In the forward pass, the expected 

output corresponding to the given inputs are evaluated. In the backwards pass, partial 

derivatives of the cost function with respect to the different parameters are propagated back 

through the network. The process continues until the error is at the lowest value [55]. 

5.2.2.2  Convolutional Neural Network (CNN)  

A Convolutional Neural Network (CNN) distinguishes itself from other neural networks with 

superior performance in regard to image and audio signal inputs. Figure 5.2 shows an example 

of a typical CNN network.  

 

Figure 5.2: typical CNN model [56] 

 

A typical CNN network consists of at least three basic layers: a convolutional layer, a pooling 

layer, and a fully connected layer.  
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The convolutional layer is the first layer of a convolutional network. The job of the 

convolutional layer is to reduce the images into forms easier to process without losing features. 

While convolutional layers can be followed by additional convolutional layers or pooling 

layers, the fully-connected layer must be the final layer. With each layer, the CNN increases in 

its complexity, identifying greater portions of the image [11] at the cost of more computational 

power.  

The convolutional layer is the core of a functional CNN. It requires a few components, which 

are input data, a filter, and a feature map [57]. A feature detector, also known as a kernel or a 

filter, will move across the receptive fields of the image in blocks, checking if a feature is 

present. Usually, multiple filters will be used as a single filter isn't capable of capturing all the 

information, this process is known as a convolution. This process is usually performed on one 

colour at a time. An RGB image which would consist of a matrix of RBG, as seen in Figure 

5.3, would require this process to be run three times.  

 

Figure 5.3: matrix of RGB image [56] 

 

The Pooling layers, also known as downsampling, conducts dimensionality reduction, reducing 

the number of parameters in the input. Similar to the convolutional layer, the pooling operation 

sweeps a filter across the entire input, but the difference is that this filter does not have any 

weights [57]. Finally, the fully-connected layer performs the job of actual classification. 
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5.2.2.3  Singular Value Decomposition  

Singular Value Decomposition (SVD) has many applications in image processing; one of 

which is noise filtering [58]. SVD is a mathematical procedure to decompose a matrix into 

three matrices, which can be rewritten as a sum of rank-one matrices [59]. SVD attempts to 

sort data into multiple ”modes”, where hopefully the lower SVD modes should remain 

relatively clean, which suggests the possibility of data filtering by retaining only the lower 

modes [60].  

 

Figure 5.4: Example of a single data frames SVD scree plot 

 

Figure 5.4 shows a typical scree plot of a single data frame from test participant one in the 

dataset. It can be seen that mode one contains around 50 % of the variance. We then assume 

mode zero contains most of the noise and reconstruct the matrix without mode zero. The fact 

that some valuable data may be removed in this process is of no concern if the final accuracy 

can be improved. 
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Figure 5.5: SVD vs non-SVD results with training/validation with participant 2,3,4,5 test 
with participant 1 

 

Figure 5.5 shows the results used for evaluating SVD, the test is performed with participant 2, 

3, 4, and 5 as training/validation and participant 1. Results of SVD shows a model accuracy of 

82.9 %, without SVD we can achieve an accuracy of 89.2 %. This drop in overall accuracy 

suggests that some data in mode zero were removed and that it affected the final accuracy. 

The conclusion from this is that while SVD can be used as a form of noise removal in some 

cases, we did not find it to offer a significant accuracy increase compared to results that did not 

perform SVD. Therefore, we opted not to perform SVD in our use case as it did not provide 

tangible benefits. 

5.3  Probabilistic Classifiers Results 

The first models to be tested are the probabilistic classifiers. The first test is with data from test 

participants 1-5 and mixing them together, then randomly splitting 75% for training/validation 

and 25% for testing.  
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Figure 5.6: Confusion matrix of Gaussian Naïve Bayes classifier model is the accuracy of 
participants 1-5 mixed with 75% train and 25% test 

 

Figure 5.6 shows the confusion matrix for Gaussian Naïve Bayes Classifier. The model has an 

average recognition rate of 81.6 %. We also performed the same test with the Decision tree 

classifier. As seen in Figure 5.7, the decision tree classifier results are improved compared to 

Gaussian Naïve Bayes Classifier. In fact, when compared to multiple different types of 

probabilistic classifiers such as SVM (~76 %), KNN (~67 %), and Naïve Bayes Classifiers 

(~81.6 %), the decision represents one of the best results with an average recognition rate of 

91.1 % 
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Figure 5.7: Confusion matrix of Fine decision tree classifier, left is model accuracy of 
participants 1-5 mixed together with 75% train/validation and 25% test, right is participants 

1-4 train/validate and participant 5 used for test. 

 

This high accuracy suggests that a simple Decision tree classifier can have high classification 

accuracy if the model uses data captured in the same setting for both training and testing. 

However, while the decision tree model shows a significant gain compared to Gaussian Naïve 

Bayes Classifier, the classification accuracy cannot compare to even simple neural networks, 

as will be seen later. 

5.3.1  Independent Training and Testing 

The next step was to test the probabilistic classifiers model with independent train/validation 

and test data. We will use the data captured from four subjects for training/validation and the 

data captured with the fifth participant to test. This is a more robust evaluation compared to the 

previous method where the data from all 5 participants were split into train and test sets. 
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5.3.1.1  Gaussian Naïve Bayes 

Figure 5.8 shows the classification accuracy results of Gaussian Naïve Bayes with such a setup. 

The results of all the models are summarized in Table 3. It can be seen from Figure 5.8 that 

model accuracy has significant variations depending on which data is used for 

training/validation and what is used for testing. The lowest accuracy was only 63.3% with 

Train/validation participants 1, 2, 3, 4, and Test data participant 5. The highest model accuracy 

of 82.5 % was observed with participants 1, 3, 4, and 5 as Train/validation and testing with 

participant 2. This significant variation between models with different participants 

combinations shows the varying nature of capacitance sensors and the limited capability of 

Gaussian Naïve Bayes with an average accuracy of only 70.86 %. 
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Figure 5.8: All Gaussian Naïve Bayes combination results, top left: training/validation with 
participant 2,3,4,5 test with participant 1. Top right: training/validation with participants 
1,3,4,5, test with participant 2. Middle left: training/validation with participant 1,2,4,5, test 
with participant 3. Middle right : training/validation with participant 1,2,3,5, test with 
participant 4. Bottom left: training/validation with participants 1,2,3,4, test with participant 
5 
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Table 3: results of Gaussian Naïve Baye with different participants combination 

 

5.3.1.2  Decision tree 

Figure 5.9 shows the classification accuracy and results of the decision tree classifier. All 

results are summarized in Table 4. From Table 4 and Figure 5.9, it can be seen that the models 

have more minor variations than Gaussian Naïve Bayes models but still has some variations. 

This time the highest accuracy was observed with Train/validation participants 1, 2, 4, 5, and 

Test data participant 3 at 85.6 %. the average of the decision tree classifier is 77.86 % which 

shows a marked increase in 7.0 % accuracy compared to Gaussian Naïve Bayes models 70.86 % 

and thus is better suited to be used for our dataset. Yet as we will see, neural networks will 

decidedly improve upon these results.  

Result relative to  
Figure 5.8 

Train/validation 
participants 

Test data participant Classification accuracy 

Top left 2, 3, 4, 5 1 69.3 % 

Top Right 1, 3, 4, 5 2 82.5 % 

Middle Left 1, 2, 4, 5 3 73.2 % 

Middle Right 1, 2, 3, 5 4 66.0 % 

Bottom Left 1, 2, 3, 4  5 63.3 % 

Average 70.86 % 
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Figure 5.9: All decision tree combination results, top left: training/validation with 
participant 2,3,4,5 test with participant 1. Top right: training/validation with participants 
1,3,4,5, test with participant 2. Middle left: training/validation with participant 1,2,4,5, test 
with participant 3. Middle right : training/validation with participant 1,2,3,5, test with 
participant 4. Bottom left: training/validation with participants 1,2,3,4, test with participant 
5. 
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Table 4: Results of decision tree with different participants combination 

5.4  Multilayer Perceptron Results 

5.4.1  Performance for Train/Test Split Containing all Subjects 

The design of our MLP is shown in Figure 5.10. The design is a sequential two-layer MLP with 

two hidden layers using Rectified Linear Units (ReLU) [61]. It should be noted that we did not 

see a significant impact when using other activation functions such as tanh. Two hidden layers 

are chosen to allow sufficient depth to the network. 3 and 4 layers MLP designs were tested 

but did not show improvement compared to the 2 hidden layers MLP design while training 

time was significantly increased. The node setup is with 100 nodes for the first hidden layer 

and 50 for the second layer, the choice of 100 nodes for the first layer is set through an estimate 

of the input layer plus output layer and then fine-tuning. With around 60 nodes for the first 

hidden layer, underfitting of the model can be observed, and while going as high as 300 nodes 

do not seem to induce overfitting, it significantly increases the training time and does not 

increase model accuracy. For the second layer, 50 nodes are chosen as we did not see 

Result relative to  
Figure 5.9 

Train/validation 
participants 

Test data participant Classification accuracy 

Top left 2, 3, 4, 5 1 71.3 % 

Top Right 1, 3, 4, 5 2 76.0 % 

Middle Left 1, 2, 4, 5 3 85.6 % 

Middle Right 1, 2, 3, 5 4 80.6 % 

Bottom Left 1, 2, 3, 4 5 75.8 % 

Average 77.86 % 
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underfitting until 20 nodes, and no overfitting was observed at 100 nodes. Therefore 50 was 

selected as a safety margin between safety and training time. 

 

Figure 5.10: MLP model used in our design 

No dropout or variable training rate is used for this first MLP design. The loss equation used 

is sparse Categorical Cross-entropy, and the optimizer used is SGD Gradient descent with 

momentum optimizer (SGD). Epoch is selected at 100 to detect overtraining, and batch size is 

chosen at 16.  

To test this MLP design, we combined the data of all 5 participants' data frames and then 

randomly performed a 70/15/15 split—70 % for training, 15 % for validation and 15 % for 

testing. The purpose of this classification is to establish a baseline result compared to 

probabilistic classifiers to see if neural networks produce better results than probabilistic 

classifiers.  
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Figure 5.11: MLP result of mixing dataset 3 participants 1-5 together 

 

Figure 5.11 shows the results when all the participants 1-5 from dataset three are mixed, and 

then a 70/15/15 split is performed. This result shows a 100 % classification rate with no 

overfitting or overtraining; the model loss also converges perfectly. 

5.4.2  Independent Training and Testing Data 

Naturally, the next logical step would be to use four sets of test participants' data as 

training/validation and 1 set of test participants' data as testing as it was done for simple 

probabilistic classifiers. Models containing multiple combinations are tested to show the 

highest and lowest accuracy. 
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Figure 5.12: All MLP combination results, top left: training/validation with participant 
2,3,4,5 test with participant 1. Top right: training/validation with participant 1,3,4,5, test 

with participant 2. Middle left: training/validation with participant 1,2,4,5, test with 
participant 3. Middle right: training/validation with participant 1,2,3,5, test with participant 

4. Bottom left: training/validation with participant 1,2,3,4, test with participant 5 

 

Figure 5.12 shows all possible combinations where 4 participants are used for 

training/validation and 1 for testing. The accuracy of all the models is summarized in Table 5. 

From the table, it can be seen that accuracy can range from 87.9 % to 98.9 % success rate with 

an average of 91.7 %. The epoch at which these accuracies is achieved is also quite spread, 
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ranging from 21 to 62. From the confusion matrix, it can also be noted that the difference in 

combination of training/validation and testing participants produces different wrong 

classifications; all five models have no misclassification of the fist and palm gesture and seem 

to have a significant issue in classifying the Ok gesture and Index gesture. The top right and 

left middle models have particular problems with this ok gesture where large amounts are 

incorrectly classified as the index gesture. This difference in accuracy, epoch, and classification 

errors observed in different models gives us confidence that there are still variations in the data 

due to hand size variation or environmental variables.  

Table 5: Results of MLP with different participants combinations 

 

5.4.3  Impact of Dropouts 

Dropout works by probabilistically removing, or “dropping out,” inputs to a layer, which may 

be input variables in the data sample or activations from a previous layer. It has the effect of 

simulating a large number of different input scenarios and makes nodes in the network 

generally more robust to the inputs. 

 

Result 
relative to 
Figure 5.12 

Train/validation 
participants 

Test data 
participant 

Successful 
classification 
percentage 

F-score 

Top left 2, 3, 4, 5 1 89.6 % 89.0 % 

Top Right 1, 3, 4, 5 2 90.9 % 90.0 % 

Middle Left 1, 2, 4, 5 3 87.9 % 87.0 % 

Middle Right 1, 2, 3, 5 4 98.9 % 99.0 % 

Bottom Left 1, 2, 3, 4 5 91.4 % 91.0 % 

Average 91.7 % 91.2 % 
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Figure 5.13: MLP model setup with dropout 

 

To test if dropout will create more linear models and higher classification accuracy, we will 

test it with a similar data structure to section 5.4.2  with four sets of test participants' data as 

training/validation and 1 set of test participants' data as testing. Figure 5.13 the MLP set up 

with dropout added. The dropout occurs after the two hidden layers, where 20% are dropped 

at each point. This dropout is very aggressive in the hopes to identify any points of interest or 

that if dropout has a significant effect on the model outcome.  
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Figure 5.14: MLP with dropout combination results, top left: training/validation with 
participant 2,3,4,5 test with participant 1. Top right: training/validation with participant 
1,3,4,5, test with participant 2. Middle left: training/validation with participant 1,2,4,5, test 
with participant 3. Middle right : training/validation with participant 1,2,3,5, test with 
participant 4. Bottom left: training/validation with participant 1,2,3,4, test with participant 5 

 

Figure 5.14 shows data results of MLP data with dropout. All models show a modest gain in 

accuracy over non-dropout models in most cases. Results of all the models with dropout are 

summarized in Table 6. The highest increase over non-drop out was observed with 

Train/validation participants 1, 2, 4, 5, and Test data participant 3, with an increase at 3.3 %. 
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The overall accuracy is 92.34 %, Which represents an 0.6 % average increase over non-

dropout MLP (91.74 %). 

Table 6: Results of MLP with dropouts with different participants combinations 

 

The middle right model with Train/validation participants 1, 2, 3, 5, and participant 1 as test 

data gives us the most accurate classification for MLP. We also tested dropouts added to 

unprocessed data (before dense_input in Figure 5.13), where 20.0 % of incoming data is 

readily removed before even the first layer. This removal, as expected, provides model 

accuracies that are worse than even MLP without any dropout. 

5.5  Convolutional Neural Network Results  

The convolutional neural network was also tested to see if it yielded improved results than 

MLP. As CNN usually shows improvements over MLP when it comes to image-based 

classifying, one would expect improved results in our case as we treat our data frames as low-

resolution grayscale images. To test how CNN would perform, we would first have to 

reorganize the data back to the correct position as per it was on the sensor pads. We need to do 

Result relative 
to Figure 5.14 

Train/validation 
participants 

Test data 
participant 

Successful MLP 
classification 
percentage 

F-Score 

Top left 2, 3, 4, 5 1 89.4 % 88.0 % 

Top Right 1, 3, 4, 5 2 90.7 % 90.0 % 

Middle Left 1, 2, 4, 5 3 91.2 % 91.0 % 

Middle Right 1, 2, 3, 5 4 99.6 % 98.0 % 

Bottom Left 1, 2, 3, 4 5 90.8 %  93.0 % 

Average 92.34% 92.0 % 
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this to simplify data processing for MLP; the data that comes from the STM32F7 is the form 

of a single row for a single data frame. CNN requires the 2D array of the original image to be 

effective and therefore, we must reorganize the data back to its 2D format. Therefore, the first 

step is to turn the single row into 2D array data where each cell represents a single capacitor 

sensor on the sensor board.  

 

  

Figure 5.15: CNN model setup 

 

Figure 5.15 shows the setup used for the CNN model. As our model does not have data from 

different channels such as that of an RGB image, thus a single 6 by 18 by 1 matrix is sufficient 

to describe our data frame, 6 by 18 represents our 6 by 18 sensor board (2 blank pads), and 1 

represents our grayscale nature. One hidden layer of 100 is chosen for simplicity. 
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Figure 5.16: CNN results of the result of mixing dataset 3 participants 1-5 together 

 

Figure 5.16 shows the results of the CNN model used, as it shows that when the model is 

trained, validated, and tested with 70/15/15 split with mixed data from the participants 1-5, no 

overfitting or overtraining is observed, and the model accuracy is 100.0 %. This result shows 

that CNN can be a capable form of neural network design in our use case. But whether CNN 

is an improvement or degrades over MLP models remains to be seen as MLP models also 

achieved a 100.0 % classification accuracy when mixing data from participants 1-5. 
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Figure 5.17: CNN combination results, top left: training/validation with participant 2,3,4,5 
test with participant 1. Top right: training/validation with participant 1,3,4,5, test with 
participant 2. Middle left: training/validation with participant 1,2,4,5, test with participant 3. 
Middle right: training/validation with participant 1,2,3,5, test with participant 4. Bottom left: 
training/validation with participant 1,2,3,4, test with participant 5 

 

Figure 5.17 shows all possible combinations of CNN where 4 participants are used for 

training/validation and 1 for testing. The accuracy of all the models is summarized in Table 7. 

From the table, it can be seen that accuracy can range from 86.3 % to 94.8 % success rate, the 

average being 90.40 %. This result shows that this result is comparable but overall worse than 

MLP results. The average for MLP is 91.74 % without dropout and 92.34 % with dropout, 
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which represents a 1.34 % and 1.94 % increase respectively. Reasons for this can be due to the 

grayscale nature of our data, and therefore not sufficient data is present for CNN to perform 

better than MLP in our models or that CNN's advantages of spatially invariant were not utilized; 

however, the research to prove this theory was not in the scope of this thesis. From this data, it 

was decided that MLP is sufficient for our use case, and therefore much of further experiments 

will be based on MLP instead of dividing resources between MLP and CNN. 

Table 7: results of CNN with different participants combinations 

 

5.6  Conclusion  

All results of all test models are summarized in Table 8. From the overview, it can be seen 

that probabilistic classifiers perform worse than neural networks as a whole. The simple 

decision tree classifier can achieve 91.12 % classification accuracy when presented with 

completely mixed data, while Naïve Bayes can only achieve 81.6 %. However, when neural 

networks are presented with similar data, all models are capable of achieving 100.0 % 

accuracy. 

Result relative to Figure 
5.14 

Train/validation 
participants 

Test data 
participant 

Successful CNN 
classification 
percentage 

F-Score 

Top left 2, 3, 4, 5 1 86.3 % 86.0 % 

Top Right 1, 3, 4, 5 2 90.4 % 91.0 % 

Middle Left 1, 2, 4, 5 3 90.1 % 90.0 % 

Middle Right 1, 2, 3, 5 4 94.8 % 95.0 % 

Bottom Left 1, 2, 3, 4 5 87.2 % 87.0 % 

Average 90.40 % 89.8% 
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Table 8: All model results summary 

 

When comparing between MLP and CNN, it can be seen that CNN has overall less accuracy 

than MLP with a drop of 1.34 % as an average. This loss in accuracy can be maybe attributed 

to the single-dimensional nature of the capacitance data, where CNN's key advantages of 

spatially invariant and its attempt to reduce dimensions of images may not be valuable for 

processing our dataset. When adding dropout to MLP, there are mostly accuracy improvements 

to models over the non-dropout MLP models. This increase is not universal as in the case of 

Train/validation participants 1, 2, 3, 4 and Test participant 5, we see a drop in accuracy. 

However, this accuracy difference can simply be due to variations due to the random weight 

assignment in the first iteration. Overall, Dropout has benefits compared to non-dropout-based 

models with an average increase of 0.6 % in overall accuracy. 

 

 

 

Train/validation 
participants 

Test participant Naïve 
Baye 

Simple 
decision 
tree 

MLP without 
dropout 
( F-score) 

MLP with 
dropout 
( F-score) 

 CNN 
( F-score) 

75 % data from 
all 5 users 
 

15 % data from 
all 5 users 
 

81.6 % 91.1 % 100.0 % 
(100.0 %) 

100.0 % 
(100.0 %) 

100.0 % 
(100.0 %
) 

2, 3, 4, 5 1 69.3 % 71.3 % 89.6 % 
(89 %) 

89.4 % 
(88.0 %) 

86.3 % 
(86.0 %) 

1, 3, 4, 5 2 82.5 % 76.0 % 90.9 % 
(90 %) 

90.7 % 
(90.0 %) 

90.4 % 
(91.0 %) 

1, 2, 4, 5 3 73.2 % 85.6 % 87.9 % 
(87 %) 

91.2 % 
(91.0 %) 

90.1 % 
(90.0 %) 

1, 2, 3, 5 4 66.0 % 80.6 % 98.9 % 
(99 %) 

99.6 % 
(98.0 %) 

94.8 % 
(95.0 %) 

1, 2, 3, 4 5 63.3 % 75.8 % 91.4 % 
(91 %) 

90.8 % 
(93.0 %) 

87.2 % 
(87.0 %) 

Average (training/validation with 
any 4 subjects and test on the 
remaining subject) 

70.9 % 77.86 % 91.74 % 
(91.2 %) 

92.34 % 
(92 %) 

90.40 % 
(89.8 %) 
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CHAPTER 6:  CONCLUSION AND FUTURE WORK 

 

The purpose of this study was to evaluate the feasibility of capacitance sensors as a form of 

gesture recognition. The developed capacitive sensor system with a trained MLP classifier is 

capable of achieving an accuracy of 92.34 %. While the accuracy of the system outlined in this 

work does not match the levels of video cameras, the hardware involved in capacitance sensing 

is also much less complex than video based solutions. Further advantages of capacitance-based 

sensing are also evident with the low computational requirement, and inherent high privacy. 

The limiting factors of the hardware system proposed in this work are the limited number of 

sensors and the large sensor pads, which limited resolution. With a smaller and more sensitive 

sensor design, we can hope to capture even higher resolution gesture data images. Isolation of 

the FDC1004 routing can be further improved upon with a higher layer count PCB and better 

dielectric. In theory, an isolated power supply for each FDC1004 can also significantly 

decrease the coupling between different FDC1004 as each excitation signal generated will not 

have a common ground. However, the cost of such a design will also increase. More Complex 

custom capacitance sensing methods can also be implemented, such as a charge balancer circuit 

or frequency measurement-based circuit. These custom designs allow much more extensive 

customization and freedom of design compared to off-the-shelf IC chips employed in this 

experiment.  
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Another limiting factor in the hardware is the way sensor measurements are captured. Due to 

the noise crosstalk of FDC1004, we can only trigger sensors one at a time. With further 

improvement, it may be possible to trigger all sensors at once. This simultaneous triggering of 

sensors would massively increase the speed at which hand gestures are captured. Furthermore, 

if the capture or sampling rate is fast enough, non-static gesture detection would also be 

possible.  

An FPGA based design would significantly increase the entire system's processing speed, data 

bandwidth and reduce the design cost from a component count perspective. The current 

hardware uses a custom communication protocol to accommodate for the massive number of 

MCU used. By using an FPGA in place of all the MCUs we can hope to replace communication 

protocol with industry standard methods and thus increase the system's integrity significantly. 

Other modes of capacitor modes can also be explored. As this work only explored loading 

mode, a deeper look into shunt mode can also be interesting as shunt mode offers inherently 

more coupling immunity than loading mode at the cost of increased sensor pad footprint. 

Readily available IC chips from the likes of Analog Devices can allow rapid prototyping of 

shunt mode designs.  

From the software side, improvements can be made in how data is processed. Currently, raw 

values captured by the sensors are passed straight to classifiers for classification. One can apply 

feature detection or bounding box-based approaches before data is fed to the classifier. By 

using a region of interest, we can further reduce the effects of the background noise that 

capacitance sensors capture, furthermore incoming data can also be applied with a non-linear 

filter to accentuate features while reducing the effects of noise.  
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