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Abstract 

BACKGROUND: The success of biological control using predators is normally assumed to be 

achieved through direct predation. Yet, it is largely unknown how the predator- and killed prey-

induced stress to prey may contribute to biological control effectiveness. Here, we investigate 

variations in life history traits and offspring fitness of the spider mite Tetranychus ludeni in 

response to cues from the predatory mite Phytoseiulus persimilis and killed T. ludeni, providing 

knowledge for evaluation of the non-consumptive contribution to the biological control of T. 

ludeni and for future development of novel spider mite control measures using these cues. 

RESULTS: Cues from predators and killed prey shortened the longevity by 23–25% and 

oviposition period by 35–40% and reduced the fecundity by 31–37% in T. ludeni females. These 

cues significantly reduced intrinsic rate of increase (rm) and net population growth rate (R0), and 

extended time to double the population size (Dt). Predator cues significantly delayed lifetime 

production of daughters. Mothers exposed to predator cues laid significantly smaller eggs and 

their offspring developed significantly more slowly but these eggs had significantly higher hatch 

rate. 

CONCLUSION: Predator- and killed prey-induced fears significantly lower the fitness of T. 

ludeni, suggesting that these non-consumptive effects can contribute to the effectiveness of 

biological control to a great extent. Our study provides critical information for evaluation of 

biological control effectiveness using predators and paves the way for identification of chemical 

odors from the predator and killed prey and development of new materials and methods for the 

control of spider mite pests. 
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1 INTRODUCTION 

Predator-prey interactions affect life history traits and behavioral strategies of species involved,1-

4 resulting in demographic changes in these species.5 Plant feeding mites can detect predation 

risk through chemical cues from predators and killed conspecifics and respond accordingly.6-18 

Buchanan et al.19 suggested that the risk cues affect both behavioral and physiological traits in 

prey but have stronger impacts on behavioral traits. For example, spider mites tend to stay away 

from the areas with predator cues,20,21 aggregate more tightly in such areas,22 change locomotion 

activity,9 or shift their oviposition site from leaf surface to their webs.23,24  

Predation risk incurs trade-offs between risk avoidance and other life functions in prey,25, 

26 altering their life history traits13,16,23,27-32 and reducing their fitness and population size.19,33 

These non-consumptive impacts on prey by predation risk may be transgenerational,32,34,35  and 

can affect more individuals compared to the consumptive impacts36 and have influence at least as 

strong as direct predation on prey population dynamics.19,37-40 For example, predation risk lowers 

spider mites’ fecundity,34,41 shortens their adult lifespan34 and prolongs their offspring 

development.34,42  Furthermore, shift of oviposition from leaf surface to webs in response to 

predation risk results in higher egg mortality due to wind and rain.43  

Application of predatory mites for biological control is a well-established method against 

spider mite pests in the world, with Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) 

being the most used predator for the control of the serious invasive pest, Tetranychus urticae 

Koch (Acari: Tetranychidae).44-48 These reports mainly evaluated the effectiveness of biological 

control based on the relationship between the release of P. persimilis and population size 

changes of T. urticae, assuming that the spider mite population decline is caused by direct 

predation. However, non-consumptive effects of predators on prey fitness and forage may also 



 
 

contribute to pest biological control but have been rarely evaluated.49,50 Two recent reports shed 

some light on this matter using an insect51 and a mammal52 predator-prey systems, respectively. 

The former indicated that predator cues can significantly reduce pest fitness and suppress pest 

population and the latter shows that these cues can repel the pest. To date, little is known about 

whether the predator- and killed prey-induced fears could enhance the effectiveness of spider 

mite biological control and help develop novel pest control measures for this important group of 

plant pests.  

Tetranychus ludeni Zacher (Acari: Tetranychidae) is also an important invasive spider mite 

pest which is native to Europe and now occurs in all continents except Antarctica.53,54 It attacks 

over 300 hosts, including many economically important crops such as bean Phaseolus vulgaris L. 

(Fabales: Fabaceae), eggplant Solanum melongena L. (Solanales: Solanaceae), cotton rose 

Hibiscus mutabilis L. (Malvales: Malvaceae), China rose H. rosa-sinensis L., apple Malus 

domestica Borkh (Rosales: Rosaceae), pumpkin Cucurbita pepo L. (Cucurbitales: Cucurbitaceae), 

and many other cucurbitaceous plants, causing significant economic losses.53,55 Gotoh et al. 56 

suggested that T. ludeni could replace T. urticae to become a major crop pest in the world. Yet, 

biological control of T. ludeni using predatory mites is still poorly understood and knowledge 

about the effect of predator- and killed prey-induced stress on its fitness is lacking. The limited 

studies on T. ludeni biological control so far mainly focus on the predators from the genus 

Neoseiulus (Acari: Phytotseiidae).57-59 However, Escudero and Ferragut60 and Zhang61 showed that 

P. persimilis performs similarly well on both T. ludeni and T. urticae, suggesting that this predatory 

mite can also control T. ludeni effectively.  

In the present study, we aimed to evaluate how cues from P. persimilis and killed T. 

ludeni affected the life history traits and offspring performance of T. ludeni females. We exposed 



 
 

mated adult females of T. ludeni to these cues throughout their life and recorded their longevity, 

and offspring production and fitness. We then analyzed the changes in their life history traits and 

calculated life table parameters. This study generated critical information about non-consumptive 

effects by predation risk on prey population regulations, offering the first knowledge for 

evaluation of non-consumptive contribution to the biological control of T. ludeni and for 

development of novel spider mite control measures using predator cues. 

 

2 MATERIALS AND METHODS 

2.1 Environmental conditions 

Mite colonies were maintained, and all experiments conducted at 25 ± 1°C and 50–70% RH with 

a photoperiod of 16L:8D hours. 

2.2 Tetranychus ludeni colony and experimental mites 

Tetranychus ludeni were reared on approximately 20 potted kidney bean plants (Phaseolus 

vulgaris L.) in an environmental room of the Massey University Entomology and IPM 

Laboratory in Palmerston North, New Zealand. Every fortnight we replaced 10 of the oldest 

plants with new ones. We cut the leaves of the old plants and placed them on the top of the new 

plants, allowing mites to move to the latter.  

To obtain 1-day-old mated adult females for experiment, we randomly took deutonymph 

females from the colony and introduced them onto a bean leaf disc (3 cm × 3 cm, 30 individuals 

per leaf disc) placed on a water saturated cotton pad in a Petri dish (5.5 cm diameter × 1.0 cm 

height) until they developed to adult stage. Immediately after adult emergence we transferred 20 



 
 

of those females and 5 males randomly taken from the colony onto a new leaf disc in a Petri dish 

and allowed them to stay together for 24 hours before used for experiment. 

2.3 Phytoseiulus persimilis colony and experimental mites 

We obtained the predatory mite P.  persimilis from Bioforce Ltd, New Zealand, and reared them 

on four potted kidney bean plants heavily infested with T. ludeni in the laboratory. We replaced 

two oldest plants with new ones every three days and allowed mites to migrate as above. The 

predatory mite colony was maintained in a metal framed cage (120 cm length × 60 cm height × 

60 cm width) with transparent mica plastic and fine woven wire mesh walls (0.25 × 0.25 mm 

aperture) in a separate environmental room.  

2.4 Effect of predatory and killed conspecific cues on life history traits of Tetranychus 

ludeni 

To assess how maternal stress induced by predators and injured conspecifics affected the life 

history traits of T. ludeni, we exposed 1-day-old mated adult females to three different types of 

cues: (1) bean leaf disc with trace of predators, (2) bean leaf disc with killed conspecifics, and 

(3) clean bean leaf disc (control with neither predator nor killed conspecific cues). Each 

treatment had 20 replicates. Predator trace consists of metabolic waste products, eggs and 

footprints left by the predators on the leaf surface.30 For each replicate in treatment (1), we 

randomly selected five adult female predators from the colony and transferred them onto a bean 

leaf disc (2 cm × 2 cm) placed on a water saturated cotton pad in a Petri dish (14 cm diameter × 

1.5 cm height). Twenty-four hours later,30 we removed the predator adults and redundant eggs, 

ensuring two predator eggs remained on the leaf disc. If the number of eggs on the disc was 

fewer than two, we transferred predator egg(s) onto the disc from a separate leaf disc (3 cm × 3 



 
 

cm). We maintained two eggs on each disc to keep predator cues consistent in all replicates. For 

treatment (2), we randomly collected four adult females of T. ludeni from the colony and 

transferred them to a leaf disc. We then killed them with an insect pin and left their bodies on the 

leaf disc. 9 We used an insect pin instead of a predator to obtain killed T. ludeni for two reasons: 

(1) we aimed to test predator cue and killed prey cue separately and examine relative impact of 

these two cues on the spider mite’s life history traits (see Results), and (2) T. ludeni killed by 

predators would bear cues from both predators and injured prey, making it impossible to evaluate 

the relative effect of each cue.   

In each replicate, we released a 1-day-old mated adult female of T. ludeni to the middle 

of a leaf disc, bearing either predator cues, killed conspecifics, or none of these, placed on a 

water saturated cotton pad in a Petri dish, and allowed it to stay on the leaf disc for 24 hours. We 

then transferred the mite to a new leaf disc with the same cues daily until death. We recorded 

oviposition period (from the first to last eggs laid), daily fecundity (the number of eggs produced 

per day), lifetime fecundity (total number of eggs produced), and adult lifespan (from emergence 

to death). We randomly selected two eggs laid by each female daily and measured their diameter 

under a stereomicroscope (Leica MZ12, Germany) connected to a digital camera (Olympus 

SC30, Japan), using an imaging software (CellSens® GS-ST-V1.7, Olympus, Japan). We 

calculated the egg size as: volume = 4/3πr3, where r is radius (= diameter/2). We reared all eggs 

laid by T. ludeni each day on their original leaf disc [predator eggs in treatment (1) were 

removed]. We allowed eggs laid on each leaf disc to hatch and then transferred mites to a fresh 

and clean leaf disc without any predators’ cues and replaced the leaf disc once every five days 

until they developed to adults. We checked all leaf discs daily and recorded the number of eggs 

hatched, number and sex of emerged adults, and developmental time from egg to adult stage. We 



 
 

calculated the life table parameters62 for each treatment using the above data (see Statistical 

analysis below). 

 

2.5 Statistical analysis  

All data were analyzed using SAS 9.4 with a rejection level set at α ˂ 0.05. Data on adult 

survival were compared using a Wilcoxon test (LIFETEST procedure). Data on the ln(x)-

transformed oviposition period, fecundity and adult emergence rate were normally distributed 

(Shapiro-Wilk test, UNIVARIATE procedure) and thus analyzed using ANOVA (GLM 

procedure) followed by a Tukey test for multiple comparisons. A generalized linear model 

(GLIMMIX procedure) was applied to compare the difference in egg size, egg hatch rate and 

offspring developmental period, with a log function and Gamma distribution for egg size and egg 

hatch rate and Poison distribution for developmental time after the model. Multiple comparisons 

between treatments were performed using Tukey test.  

We modified an exponential functional model63 to fit the data on the cumulative 

proportion of daughters produced over female age (NLIN Procedure), i.e., cumulative proportion 

of daughters = a × exp(b × age), where a is a constant, and b is the increase rate of cumulation. 

The difference in b was compared between socio-environmental cues according to Julious64: if 

the 95% CLs overlap, then there is no significant difference.  

We calculated the intrinsic rate of increase (rm, daughters/female/day) by solving the 

Lotka-Euler equation, ∑𝑒𝑒−rm𝑥𝑥l𝑥𝑥m𝑥𝑥= 1, where x is the female pivotal age, l𝑥𝑥 is the proportion of 

females surviving to age x, and m𝑥𝑥 is the number of daughters produced per female at age x. We 

also calculated other life table parameters, including the net reproductive rate (R0 = ∑ l𝑥𝑥m𝑥𝑥, 



 
 

daughters/female/generation), mean generation time [T = log𝑒𝑒(R0)/rm, days], and doubling time 

[Dt = log𝑒𝑒(2)/rm, days]. We used the bootstrap method65,66 with 50,000 bootstrap samples to 

calculate the pseudo-values of a given parameter and employed the paired-bootstrap test67-69 for 

multiple comparisons between any two cues (TTEST Procedure). The significance was 

determined according to the 95% t-based confidence limits (95% CLs), i.e., if 0 is not within the 

95% CLs, the mean difference between the two cue treatments is significantly different. 

 

3 RESULTS 

3.1 Effect of predation risks on adult survival, fecundity and daughter production 

Females exposed to killed conspecific or predator cues died significantly earlier than the control 

(𝑥𝑥22= 11.06, P = 0.0040) (Fig. 1). Exposure to injured conspecific or predator cues significantly 

shortened the oviposition period (F2,55 = 5.60, P = 0.0061) (Fig. 2a) and marginally reduced 

lifetime fecundity (F2,55 = 3.03, P = 0.0566) (Fig. 2b). Predator cues resulted in significantly 

slower increase of cumulative daughter production compared to control (Non-overlapping 95% 

CLs) (Fig. 3, Table S1). Killed conspecific cues also caused slow-down of cumulative daughter 

production to some extent but such effect was not significantly different from that of control 

(Overlapping 95% CLs) (Fig. 3, Table S1).  

3.2 Effect of predation risks on offspring fitness 

Eggs laid by mothers exposed to predator cues were significantly smaller than those laid by 

mothers exposed to either killed conspecific or no cues (F2,451 = 3.68, P = 0.0260) (Fig. 4a). After 

mothers were exposed to predator cues, the hatch rate of their eggs was significantly higher than 

that of other treatments (F2,53 = 4.25, P = 0.0194) (Fig. 4b). Furthermore, the developmental time 



 
 

of immatures produced by mothers exposed to predator cues was significantly longer than that of 

other treatments (F2,280 = 3.08, P = 0.0475) (Fig. 4c).  

 

3.3 Effect of predation risks on life table parameters  

As shown in Table 1, females exposed to killed conspecific and predator cues had significantly 

lower intrinsic rate of increase (rm) and net population growth rate (R0) and required significantly 

longer time to double the population size (Dt). Females had significantly longer generation time 

(T) after exposed to predator cues and significantly shorter generation time after exposed to 

conspecific cues (Table 1). 

 

4 DISCUSSION 

In the present study, we demonstrate that cues from predatory mite P. persimilis and killed spider 

mite T. ludeni shortened the longevity of T. ludeni females by 25 and 23%, respectively (Fig. 1). 

These findings suggest that in addition to direct predation, the non-consumptive mortality caused 

by cues from both predators and killed prey can substantially reduce the spider mites’ feeding 

time and thus damage to crops. The earlier prey death induced by these cues could be attributed 

to various factors, such as the energic costs of natural enemy avoidance,26 decrease of foraging 

rate or food intake12,35,70 and increase of oxidative damage.71 Furthermore, predator cues may 

affect prey through physiological pathways by inducing stress hormones to divert its resource 

allocation to other physiological process that may translate into lower survivorship.72,73  



 
 

Clinchy et al.74 suggested that the presence of predators could induce sustained stress in 

prey and compromise their reproductive fitness. We show that fears induced by cues from 

predators and killed conspecifics lowered reproductive outputs and population growth in T. 

ludeni. For example, these cues shortened oviposition period by 35–40% (Fig. 2a) and reduced 

fecundity by 31–37% (Fig. 2b). As shown in Fig. 3, cues from predators but not killed T. ludeni 

slowed down lifetime daughter production. Furthermore, predation risk reduced intrinsic rate of 

increase (rm) and net population growth rate (R0), and extended time to double the population 

size (Dt) (Table 1). These results suggest that predator- and killed conspecifics-induced stress 

can help suppress pest population growth by reducing their reproductive outputs and delaying 

production of daughters. Our results support notions that the non-consumptive impacts on prey 

may be as strong as direct consumption.37 Similarly, in response to predator cues, both 

oviposition period34,75 and fecundity75-78 significantly decline in T. urticae and several other prey 

species. 

The present study partially supports previous reports that non-consumptive impacts of 

predation risk on prey are transgenerational.32,34,35 We found that T. ludeni mothers exposed to 

predator cues laid significantly smaller eggs (Fig. 4a) and their offspring had significantly longer 

developmental period (Fig. 4c) as compared to other treatments. Smaller eggs may result in 

smaller adults which may have lower reproductive fitness79,80 but prolonged developmental time 

may help gain more body mass.81,82 Moreover, eggs laid by mothers exposed to predator cues 

had significantly higher hatch rate than those in other treatments (Fig. 4b). These results suggest 

that T. ludeni juveniles can somewhat compensate egg mass loss caused by their mothers’ 

experience in predation risk. The present study did not find any evidence that mothers’ 

experience of killed prey cues could influence their offspring fitness (Fig. 4). Taken together, the 



 
 

impact of predation risk on offspring fitness appears to be weaker than on their mothers’ and its 

contribution to pest population suppression could be less significant. However, in the presence of 

predation risk, T. kanzawai females shift their oviposition from leaf surface to webs, resulting in 

higher egg mortality due to wind and rain.43 This could increase offspring mortality further in T. 

ludeni, which is worth testing in the future.  

We suggest that the non-consumptive effects reported in this study may play a critical role 

in biological control using predators and should be considered for the evaluation of total T. 

ludeni population suppression by P. persimilis. After the release of predators in the field, cues 

from both predators and killed prey should co-exist. However, it is not yet known whether they 

have synergistic or additive impacts on prey mortality and reproductive fitness because these two 

cues were tested separately in the present study. Further investigations into their combined 

effects on prey are thus warranted. In addition, recent reports show that chemical cues from 

predators can be used for insect51 and rodent52 pest management. These studies have laid new 

foundations for future research on novel pest control materials and methods for spider mite and 

other plant pests. For example, future studies can involve extraction of odors released by P. 

persimilis and killed prey, identification of key compounds in these odors, and tests of the effects 

of individual and combined compounds on prey behavior and fitness and plant damage. 

 

5 CONCLUSION 

Tetranychus ludeni females exposed to cues from predatory mite P. persimilis and killed T. 

ludeni have significantly higher mortality, lower reproductive fitness, and slower population 

growth. In addition to predation, these non-consumptive effects on the spider mite can have 



 
 

major contribution to the effectiveness of its biological control using predators. The 

transgenerational impact of the predation risk appears to be weaker and its contribution to pest 

population suppression could be less significant. Identification and tests of chemical odors from 

the predator and killed prey may have high potential for the development of novel materials and 

methods for the control of spider mite and other plant pests. 
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Table 1. Mean (± SE) intrinsic rate of increase (rm), net reproductive rate (R0), generation time 

(T) and doubling time (Dt) of Tetranychus ludeni in response to no cues, killed conspecific cues 

and predator cues. 

Cue rm R0 T Dt 

No cues (No) 0.1002 ± 0.0004 a 5.04 ± 0.04 a 16.15 ± 0.07 b 6.92 ± 0.03 b 

Killed conspecific (Kil.) 0.0828 ± 0.0014 b 3.35 ± 0.06 c 14.58 ± 0.14 c 8.42 ± 0.15 a 

Predator (Pred.) 0.0852 ± 0.0010 b 4.20 ± 0.06 b 16.84 ± 0.14 a 8.16 ± 0.10 a 

95% CLs (No vs Kil.) 0.0144 ~ 0.0204 1.56 ~ 1.83 1.25 ~ 1.89 -1.81 ~ -1.19 

95% CLs (No vs Pred.) 0.0128 ~ 0.0172 0.13 ~ 0.25 -0.10 ~ -0.39 -1.44 ~ -1.04 

95% CLs (Kil. vs Pred.) -0.0059 ~ 0.0011 0.19 ~ 0.37 -2.65 ~ -1.87 -0.09 ~ 0.62 

Estimated values in columns followed by different letters are significantly different. For each 

parameter, 95% CLs > 0 or < 0 indicates a significant difference between treatments. 

 

 

 

 

 

 

 

 



 
 

Figure Legends 

 

Figure 1. Survival probability of Tetranychus ludeni in response to no cues, killed conspecific 

cues and predator cues. Lines with the same letters are not significantly different (P > 0.05). 

Figure 2. Mean (± SE) oviposition period (a) and lifetime fecundity (b) of Tetranychus ludeni 

females in response to no cues, killed conspecific cues and predator cues. Columns with the 

same letters are not significantly different (P > 0.05). 

Figure 3. Cumulative proportion of daughters produced by Tetranychus ludeni females in 

response to no cues, killed conspecific cues and predator cues. Lines with the same letters are not 

significantly different (Overlapping 95% CLs).  

Figure 4. Effect of mothers’ exposure to no cues, killed conspecific cues and predator cues on 

mean (± SE) egg size (a), egg hatch rate (b), and offspring developmental period (c) in 

Tetranychus ludeni. Columns with the same letters are not significantly different (P > 0.05). 
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Graphical Abstract Text 

Findings on impact of predator- and killed prey-induced fears on an important invasive pest, 

Tetranychus ludeni, help develop new materials and methods for controlling spider mite 

pests. Cues from predators and killed prey shorten female longevity by a quarter and 

reproductive fitness by a third, significantly reducing its population growth.   
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