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Abstract
K-means clustering is one of the most popular clustering algorithms and has been embedded in
other clustering algorithms, e.g. the last step of spectral clustering. In this paper, we propose
two techniques to improve previous k-means clustering algorithm by designing two different
adjacent matrices. Extensive experiments on public UCI datasets showed the clustering results
of our proposed algorithms significantly outperform three classical clustering algorithms in
terms of different evaluation metrics.
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1 Introduction

Clustering is designed to partition a set of data points into groups, where similar data points are
in the same groups and dissimilar data points are in different groups [49]. Different from
supervised learning, clustering is one of algorithms of unsupervised learning [20, 50] which
conducts data analysis without the help of labels. Hence, clustering has been attracting
extensive research interests and has been successfully applied in the areas of data mining
and machine learning [38]. For example, before constructing a classifier, the literature in [38]
first conducts k-means clustering to reduce the computation time of the classification task.

Among previous clustering algorithms, k-means clustering is a widely used algorithm due
to its linear time complexity and ease of implementation. However, k-means clustering is
limited to its applicability due to the issues, such as identification of the cluster number k,
initialisation of centroids, as well as the definition of similarity measurements for evaluating
the similarity between two data points [24]. In the past years much efforts have been devoted
for addressing these issues, such as rule of thumbmethod [22] and gap statistic method [36] for
selecting the optimal value of k, hierarchical centroid selection and simple cluster seeking [22]
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for centroid initialisation, self-paced learning technique [46] and multiple feature extraction
algorithm [1] for constructing the similarity matrix.

Another popular clustering algorithm is spectral clustering, which uses spectral represen-
tation (measuring the relationship among data points, as knowns as the high-order relationship
[48]) to replace the original representation (as known as low-order relationship) via a two-step
strategy, i.e., generation of spectral representation (i.e., similarity matrix learning) followed by
conducting k-means clustering on the resulting spectral representation. Spectral clustering has
also been shown to outperform k-means clustering in many kinds of applications, which
implies that representation learning is very important for k-means clustering [44, 50].

In this paper, based on the above observation, we focus on investigating an effective
similarity matrix for addressing the third limitation of k-means clustering, i.e., the definition
of similarity measurements [47]. With the help of the effective similarity matrix, our proposed
method improves the clustering effectiveness. Specifically, inspired from the spectral cluster-
ing algorithm, we first design two new representations of original features separately, i.e., an
adjacent matrix and a weighted adjacent matrix, to represent the original data points, and then
conduct k-means clustering on the new representations to output the clustering results.

The rest of this paper is organised as below. In section 2, we briefly introduce k-means
clustering and spectral clustering algorithms, followed by proposing our methods in Section 3.
We then conduct experimental analysis on real UCI datasets for comparing our proposed
methods with previous clustering algorithms in Section 4. Finally, in Section 5, we conclude
our work, followed by proposing future research work.

2 Related work

In the literature, previous clustering algorithms are partitioned into the following categories,
such as partition based clustering algorithms, hierarchy based clustering algorithms, density
based clustering algorithms, graph based clustering algorithms, grid based clustering algo-
rithms, and kernel based clustering algorithms.

2.1 Partition based clustering algorithms

The basic idea of partition based clustering algorithms is to identify the centroids of all data
points. Specifically, for a given similarity measurement, the similarity between two data points
and a centroid are first calculated, and then the similarity is compared with the predefined
threshold. Once meeting the criteria, this data point will be classified into the cluster of this
centroid. The typical algorithms of partition based clustering include k-means clustering and its
variants, e.g. k-medoids [2] and k-means++ [3]. Recently, both balanced k-means [27] and
recursive partition based k-means [6] dramatically reduce the computational complexity for
conducting clustering on massive datasets.

2.2 Hierarchy based clustering algorithms

The basic idea of hierarchy based clustering algorithms is to produce a sequence of nested
partitions, in which a single cluster is created on the top of all other singleton clusters and all
the data points are included at the bottom. In the hierarchy based clustering algorithm, each
level in the middle can be deemed as a combination from the lower levels. By this means, the
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hierarchical clustering algorithm can be graphically demonstrated as a tree, which can be
produced in two ways, i.e., divisive and agglomerative. Divisive method is to start with one
all-inclusive cluster, and then splits the tree step by step until the similarity among data points
within a cluster meets the criteria. Agglomerative method starts with all data points as a single
cluster, and then merges the closest cluster pairs. Classic hierarchical clustering algorithms
include balanced iterative reducing and clustering using hierarchies (BRICH) [4], clustering
using representatives (CURE) [18] and robust clustering using links (ROCK) [19] . However,
most hierarchical clustering algorithms are sensitive to noise, indicating that the clustering
result may be affected by even few minor outliers [28]. Hence, some enhanced hierarchical
clustering algorithms, e.g., robust hierarchical k-center clustering [23], are developed to
address this issue.

2.3 Density based clustering algorithms

The most important idea of density based clustering algorithms is that there should be enough
neighbouring data points for each data point in a cluster under a designated similarity
measurement. In this case, the data point without meeting the threshold will be regarded as
noise, and will not belong to any cluster. Density based clustering algorithms can be used to
partition arbitrary shapes as long as the target clusters have different density. Density-based
spatial clustering of applications with noise (DBSCAN) [16] and ordering points to identify the
clustering structure (OPTICS) [10] are the conventional representatives of density based
clustering algorithms, while influence space DBSCAN [7] and DBSCAN based on influence
space and detecting of border points [26] are their revised versions. Most recently, RNN-
DBSCAN [5] uses the number of reverse nearest neighbours as an estimate of observation
density, while k-nearest neighbor DBSCAN [31] uses k-nearest neighbour representatives for
density based clustering without parameters pre-definition. In nutshell, the recent developed
density based clustering algorithms are more efficient and effective than conventional
DBSCAN and OPTICS algorithms.

2.4 Graph based clustering algorithms

The key idea of graph theory based clustering algorithms is to build a similarity matrix (i.e.,
graph) using all training data, and then uses this graph to generate a new representation of the
original data points to conduct clustering. Since the graph based clustering algorithm takes into
account the similarity relationship, i.e., replacing the original data points by high-order
relationship representation [45] [43]. Hence, the clustering process is indeed finding a solution
of optimal graph cutting, which is able to achieve higher efficiency than other clustering
algorithms. However, graph based clustering algorithms are usually with high computation
complexity (i.e., at least quadratic to the sample size) due to the construction of the high-order
relationship representation. Cluster identification via connectivity kernels (CLICK) [40] is a
classic representative of graph based clustering algorithms which aims to find out the
minimum weight division of the graph literately. Other graph based clustering algorithms
include structural clustering algorithm for networks (SCAN) [41], SCAN++ [32], pruned
SCAN (pSCAN) [8] and Scalable Density-Based Graph Clustering (ScaleSCAN) [33].

The most famous and popular graph based clustering algorithm is spectral clustering. Due
to excellent characteristics of resilience and high efficiency, a wide range of spectral clustering
variants have been developed, such as low-rank sparse subspace spectral clustering [49], fast
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large-scale spectral clustering via explicit feature mapping [20], and one-step multi-view
spectral clustering [50].

2.5 Grid based clustering algorithms

Grid based clustering algorithms focus on searching a space surrounding the data points and
excluding the data point itself only. To do this, a grid structure is constructed with a finite
number of cells, in which the data points will be mapped and partitioned. Specifically, the
centroid will be identified by computing the density of each cell and sorting the cells by
different densities. During the whole clustering process, all the calculations are operated on
grid cells and nothing is done with the data points themselves. For example, statistical
information gird (STING) [35] takes advantage of both grid clustering algorithm and parallel
computing. Recently, a novel grid based clustering algorithm for hybrid data stream (FGCH)
[9] is designed for dealing with hybrid data, while the improved grid-based clustering
algorithm with diagonal grid searching and merging (DSM) [25] is an improved version of
grid-based clustering algorithm with diagonal grid searching and merging.

2.6 Kernel based algorithms

The key idea of kernel based algorithms is to create a high-dimensional feature space, in which
the data points with non-linear relationship are able to be linearly partitioned. Actually, in order
to firstly map non-linear data structure to linear space and then apply conventional clustering
algorithms, kernel based clustering algorithms are often used with other clustering algorithms
together. For example, kernel k-means clustering combines the kernel based algorithm with k-
means clustering algorithm, while kernel-based fuzzy c-means clustering [11] combines the
conventional fuzzy c-means clustering algorithm with kernel resolution to take advantage of
genetic algorithm. Recently, the kernel-based hard clustering algorithm in [15] and the robust
multiple kernel k-means clustering [13] have been shown to be able to improve clustering
performance significantly by using kernel theory.

3 Methods

3.1 Preliminary

To help understand our methods, we firstly introduce the fundamentals and implementation of
k-means clustering and spectral clustering.

3.1.1 k-means clustering

Generally speaking, k-means clustering is designed to group a set of data points into k clusters
where the data points in the same cluster have maximal similarity while the data points among
different clusters have maximal dissimilarity. In this paper, we first let X = {x1,…,xn}∈Rn × d be
the input data points, xi be the i-th row of X, and xi,j be the element of i-th row and j-th column
in matrix X, and then describe the brief implementation of k-means clustering in Table 1
below.
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Actually, the goal of k-means clustering is to achieve the minimum sum-squared-error
(SSE), which means the minimal total intra-cluster variance by a given k:

SSE ¼ ∑
k

j¼1
∑
i¼1

t j

xi−c j
�� ��2

2
ð1Þ

Where k denotes the number of clusters, tj denotes the number of data points in the j-th cluster,
and cj denotes the centroid of the j-th cluster. ‖xi − cj‖2 denotes the l2 norm of xi − cj. Usually,
due to the randomness of centroids selection, the clustering result with the minimal SSE may
achieve a local optimal result, so the initial centroids will put a significant influence on the
clustering result. Besides, both predicting the actual cluster number and defining the similarity
measurements are also major issues of k-means clustering. We will list these issues in details as
follows.

In real applications, the actual cluster number k is always unknown and there is no efficient
solution in theory to identify the value of k, so a number of literatures have focused on solving

Table 1 The pseudo code of k-means clustering

Input: data points X = {x1,…,xn}∈Rn × d; the cluster number k.
Output: the cluster indicators of all data points and centroids C.
1: Centroid initialisation by randomly selecting k data points;
2: do
3: Assign data points to the closest centroids to form k clusters;
4: Update each centroid by the mean value of data points within each cluster;
5: until
6: Algorithm converges and centroids have no changes.

Fig. 1 The graphical structures of our proposed methods (left and middle) and spectral clustering (SPCL). It is
noteworthy that green parts are common for all three methods
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this issue. For example, on-demand selection algorithm manually selects the value of k as the
actual cluster number. Elbow method determines the value of k based on the vision of the SSE-
k graph, and the gap statistic method can be regarded as a revised version of Elbow method.
Besides, the rule of thumb method designs the following equation to obtain the value of k:

k≈
ffiffiffi
n
2

r
ð2Þ

Another problem of k-means clustering is to identify the initial position of centroids. The
simplest way is to choose the initial centroids at random. However, the experiment results
indicate that the random initialisation puts a significant effect on the final clustering result, and
even causes bad or complete wrong partitions. Recently, some effective solutions were
developed to address this issue. For example, the hierarchical centroid selection [42] first runs
basic k-means clustering multiple times with random initialisation so that a group of centroids
will be produced, then this group of centroids will be regarded as input data points to carry out
final centriods. Simple cluster seeking (SCS) [30], which is the default algorithm for k-means
clustering in Matlab software suite, selects the first centroid at random and marks it as k1, and
then finds out the next data point with the maximal distance to k1 as the second centroid k2.
This process is repeated until k centroids are generated.

The third issue of k-means clustering is to define the similarity measurement between two data
points. In other words, a larger distance between two data points means smaller similarity. In real
applications, Euclidean distance and its variants are widely used by k-means clustering as similarity
measurement, and other similarity measurements including cosine similarity, Jaccard coefficient,
Pearson correlation coefficient and averaged Kullback-Leibler divergence are also widely used.

3.1.2 Spectral clustering

Recently, spectral clustering [37] is becoming increasingly popular. Comparing to the tradi-
tional k-means clustering, spectral clustering pre-processes training data points by replacing
low-order relationship or original data points with high-order relationship representation [29,
39]. To achieve this, spectral clustering, firstly, constructs a similarity matrix W, which
contains the similarity relationship between every two data points. When the similarity
measurement is Euclidean distance, the similarity matrix is defined as:

wi; j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
d

t¼1
xi;t−x j;t
� �2s

i; j∈ 1; n½ �; t∈ 1; d½ �ð Þ ð3Þ

Where i and j, respectively, denote the i-th and j-th data point, and t denotes the t-th feature of
the data point.

Secondly, spectral clustering transfers the similarity matrix to a sparse matrix by using a
kernel function, and then produces the Laplacian matrix L. In this paper, we term this sparse
similarity matrix as adjacent matrix A, and then define the normalised Laplacian matrix L as:

L ¼ D−1
2 D−Að ÞD−1

2 ð4Þ
Where D is a diagonal matrix whose elements are the summation of each row of A (or column

as A is symmetric), i.e., di;i ¼ ∑
n

j¼1
ai; j.
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Finally, spectral clustering conducts dimension reduction by selecting k eigenvectors of L,
and then conducts k-means clustering on the reduced matrix to output the final clustering
result. We list the details of spectral clustering in Table 2.

3.2 Our methods

In this section, we develop two novel clustering methods and list the details as follows.
Specially, the first method called adjacent matrix based k-means clustering method
(AMKM) runs k-means clustering on the adjacent matrix directly, while the second method
called weighted adjacent matrix based k-means clustering method (WAMKM) takes into
account the weight of the features. We introduce their graphical structures as follows:

3.3 Adjacent matrix based k-means clustering method (AMKM)

The first step of the spectral clustering is to construct the similarity matrix by transferring the
data points into an undirected graph G = (V, E), where V = {v1,v2,…,vn} denotes the vertices,
and E = {e1,e2,…,em} (m = n× (n-1)/2) denotes the edges between vertices. The undirected

graph is abstracted and represented by the similarity matrix W ¼ wi; j
� �n

i; j¼1, where wi, j ≥ 0
means the similarity between xi and xj under a given distance metric. The adjacent matrix A is
constructed based on W by the following methods.

In the past decades, researchers have paid much effort on constructing the adjacent
matrix, including ε-neighbourhood graph, k-nearest neighbour graph, and fully con-
nected graph [39]. For example, the ε-neighbourhood graph connects two neighboured
vertices (i.e., em = 1) if the pairwise distance is less than a given threshold ε, otherwise,
em = 0. This makes all edges of a graph roughly have the same value (i.e., ε) and leads
to an unweighted graph. The k-nearest neighbour graph connects vi and vj if vj is one
of k nearest neighbours of vi, which results in a directed graph due to the asymmetry of
neighbourhood relationship, so that additional effort is required to make the graph
symmetric. The fully connected graph simply connects all the vertices with the simi-
larity scalar between each other. In this paper, we choose to construct a fully connected
graph, so that the most important step of constructing adjacent matrix is to represent the
distance between data points by an appropriate similarity function. The widely used
kernel functions include Polynomial kernel, Gaussian kernel [21] and Sigmoid kernel.
When a Gaussian kernel function is used, the adjacent matrix is defined as follows:

ai; j ¼ e
−

wi−w jk k22
2*σ2

� �
i; j∈ 1; n½ �ð Þ ð5Þ

Table 2 The pseudo code of spectral clustering

Input: data points X = {x1,…,xn}∈Rn × d; the cluster number k.
Output: the cluster indicators of all data points and centroids C.
1: Compute the similarity matrix W of X by Eq. (3);
2: Compute the Laplacian matrix L by Eq. (4);
3: Compute the first k eigenvectors of L, marked as E = {e1, …, ek};
4: Construct matrix U, where U = ET, U ∈Rn × k;
5: Run k-means clustering on U to output the cluster result C.
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After this, the next step of the spectral clustering is to compute the graph Laplacian,
and then outputs the first k eigenvectors, which are used as the input of k-means
clustering. However, when the dataset is relatively large, the computational complexity
is time consuming.

To address this issue, in our first method AMKM, we directly run k-means clustering
on the adjacent matrix instead of the Laplacian eigenvector matrix. By this means, we
can avoid both the computation cost of the Laplacian matrix and the optimization cost
of eigenvalue decomposition. As a result, the computing complexity in AMKM is
reduced. This makes it possible to run on large datasets. The details of AMKM is
briefly described in Table 3.

3.4 Weighted AMKM (WAMKM)

In the last section, we introduced our improved k-means clustering method. However, in the
real world, it is well known that a data point consists of multiple features with different
priorities, and it is obvious that different features always put different influence on the
clustering result. Generally speaking, an important feature always affects even more on the
clustering result than the unimportant features. This means features have different importance
or weight [17]. From this perspective, we should give more priority on the feature that has
more weight when constructing the adjacent matrix. In this section, we introduce our second
clustering method – weighted adjacent matrix based k-means clustering method (WAMKM),
which takes the weight of features into account.

For each data point representation in the adjacent matrix A, every feature is described
by a numeric scalar, so in our paper we calculate the weight by the percentage of each
feature among all features. Specifically, we first calculate the summation of all data
points for each feature to produce the weight vector d (d = {d1,…,dn}), where dj is the
summation of all elements in the j-th column of A, and then we normalise the weight
vector by:

h ¼ d j

∑
n

j¼1
d j

j∈ 1; n½ �ð Þ ð6Þ

Eq. (6) makes the sum of all elements in h be 1, where every element hj in the j-th element
represents the probability or the contribution of the j-th feature to all data points. In this way,
we consider the feature importance. Furthermore, we produce the weighted adjacent matrix Z
by applying the weight vector h on each data point in adjacent matrix A:

zi; j ¼ ai; j � h j i; j∈ 1; n½ �ð Þ ð7Þ

Table 3 The pseudo code of our proposed AMKM method

Input: data points X = {x1,…,xn}∈Rn × d; the cluster number k.
Output: the cluster indicators of all data points and centroids C.
1: Calculate the similarity matrix W of X by Eq. (3);
2: Calculate adjacent matrix A by Eq. (5);
3: Run k-means clustering on A to output C.

Multimedia Tools and Applications (2019) 78:33415–3343433422



Finally, after the weighted adjacent matrix Z is produced, we apply k-means clustering on it in
order to output the clustering result, which is also the clustering result of the original dataset.
The steps of WAMKM is briefly described in Table 4.

4 Experiments and analysis

In this paper, we selected twelve datasets to evaluate our two clustering methods, compared
with three clustering algorithms, in terms of three clustering evaluation metrics.

4.1 Datasets

The selected twelve datasets are from both UCI Machine Learning Repository and data mining
centre website. These datasets belong to different categories and have wide range varieties of
characteristics, which are able to fully evaluate the reliability and effectiveness of our proposed
methods. We summarise the datasets used with their details in Table 5.

4.2 Comparison algorithms

In this paper, we use the following clustering algorithms as comparison algorithms.

& k-means clustering is the most popular and widely used clustering algorithm, which aims to
group the data points into k clusters where the data points in the same cluster are as similar as
possible and data points in the different clusters are as dissimilar as possible. In our imple-
mentation, we use theMatlab build-in function, with the “distance” parameter set to “Euclidean
distance” and the “initial centroid position selection algorithm” parameter set to “cluster”.

& k-means++ clustering is a variant of k-means clustering which uses a heuristic strategy to
find centroids. In some cases, k-means++ clustering converges faster and achieves a lower
sum of SSE, compared to standard k-means clustering algorithm.

& Normalised spectral clustering (SPCL) [39] is a widely used variant of the spectral
clustering algorithms. Specifically, it conducts k-means clustering on the normalised
eigenvector matrix by normalizing the row sum to have the norm of 1.

4.3 Parameters settings

In our experiment, we used 10-fold cross-validation method to evaluate all the algorithms. Our
proposed methods need to tune the parameter σ which plays a vital influence on the kernel

Table 4 The pseudo code of our proposed WAMKM method

Input: data points X = {x1,…,xn}∈Rn × d; the cluster number k.
Output: the cluster indicators of all data points and centroids C.
1: Produce the similarity matrix W of X by Eq. (3);
2: Calculate the adjacent matrix A by Eq. (5);
3: Calculate the weight vector h by Eq. (6);
4: Calculate the weighted adjacent matrix Z by Eq. (7);
5: Run k-means clustering on Z to output C.
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function performance and the clustering result [34]. Specifically, in our experiment, we tested
the parameter σ in the range of σ∈ [10−5,…1014] on all datasets, and finally we selected the
mean value of the similarity matrix W as σ for evaluation:

σ ¼ mean Wð Þ ð8Þ
Where W is the similarity matrix calculated by Eq. (3).

4.4 Evaluation measurements

To fully capture different aspects of the clustering result, we employed the following evalu-
ation metrics, such as accuracy (ACC), normalised mutual information (NMI) and purity
(PUR) [14]. We report the definitions of the involved evaluation metrics as below.

Accuracy (ACC) is defined as:

ACC ¼ Ncor

N
ð9Þ

Where Ncor denotes the number of data points falling in the correct groups.
NMI takes into account the tradeoff between quality and clusters number [12]. It is defined

as:

NMI ¼ 2
M X i;X j
� �

E X ið Þ þ E ;X j
� � ð10Þ

Where M (Xi,Xj) is mutual information between two variables, and E(·) denotes the entropy of
the variable.

PUR is used to summarise the percentage of truly classified data points in each cluster
comparing to the ground truth. It is defined as:

PUR ¼ ∑
k

i¼1

Si
n
Pi ð11Þ

Where k is clusters number and Si is the number of data points of the i-th class. Pi denotes the
distribution of correctly partitioned data points in all clusters [14].

Table 5 Summary of the datasets used in this paper

Datasets Samples Features Classes

20news 3970 8014 4
Binalpha 1404 320 9
Australian Credit Approval 690 14 2
Website Phishing 1353 9 3
Dexter 300 20000 2
Diabetes 768 8 2
Coil20Data 1440 1024 20
Cardiotocography 2126 41 3
Spambase 4601 57 2
Parkinson Speech 1040 28 2
Solar Flare 1066 12 6
German Credit Data 1000 23 2
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4.5 Result analysis

Figure 2a and Fig. 2b show the trends of ACC of our proposed WAMKM method with
different values of parameter σ on each dataset. Figures 3, 4 and 5 show the results of ACC,
NMI and PUR in each iteration on all 12 datasets, and Fig. 6 summarises the results of Figs. 3,
4 and 5. Based on our experimental results, we have the following observations.

(a) 20news (b) Binalpha

(c) Australian Credit Approval (d) Website Phishing

(e) Dexter (f) Diabetes

Fig. 2 a. ACC trends of our WAMKM emthod with different σ values b. ACC trends of our WAMKM emthod
with different σ values
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First, our proposed methods are sensitive to the setting parameter σ, which controls
the similarity between two data points. For example, the ACC results first keep stable
while varying the value of σ from 10−5 to 100, and then begin increasing gradually until
arriving their peaks, i.e., 1010 for the value of σ on some datasets, such as 20news,
Binalpha, Australian Credit Approval, Coil20Data, Parkinson Speech and Solar Flare.

(g) Coil20Data (h) Cardiotocography

(i) Spambase (j) Parkinson Speech

(k) Solar Flare (l) German Credit Data

Fig. 2 (continued)
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(a) 20news (b). Binalpha (c) Australian Credit Approval

(d) Website Phishing (e) Dexter (f) Diabetes

(g) Coil20Data (h) Cardiotocography (i) Spambase

(j) Parkinson Speech (k) Solar Flare (l) German Credit Data

Fig. 3 ACC variations of all methods in each iteration of every dataset
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(a) 20news (b) Binalpha (c) Australian Credit Approval

(d) Website Phishing (e) Dexter (f) Diabetes

(g) Coil20Data

(j) Parkinson Speech (k) Solar Flare (l) German Credit Data

(h) Cardiotocography (i) Spambase

Fig. 4 NMI variations of all methods in each iteration of every dataset
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(a) 20news (b) Binalpha (c) Australian Credit Approval

(d) Website Phishing (e) Dexter (f) Diabetes

(g) Coil20Data (h) Cardiotocography (i) Spambase

(j) Parkinson Speech (k) Solar Flare (l) German Credit Data

Fig. 5 PUR variations of all methods in each iteration of every dataset
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The ACC results of show the fluctuation trends when σ is between 100 and 1010, and
then keep stable while the value of σ is out of such a range, on other datasets, such as
Website Phishing, Diabetes and Spambase. It is noteworthy that the corresponding results
of our proposed AMKM have the similar trends as in Fig. 2a and b. Moreover, our

(a) 20news (b) Binalpha (c) Australian Credit Approval

(d) Website Phishing (e) Dexter (f) Diabetes

(g) Coil20Data (h) Cardiotocography (i) Spambase

(j) Parkinson Speech (k) Solar Flare (l) German Credit Data

Fig. 6 The summarize results of all methods on every dataset
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proposed WAMKM is more sensitive to the setting of the parameter σ, compared our
proposed method AMKM. We did not report these results due to the space limitation of
this paper. In nutshell, the ACC results on our selected datasets vary while the value of
parameter σ is in the range between 10−1 and 1010. The possible reason could be that the
elements of the adjacent matrix will be all nearly zero when the value of parameter σ is
too small or too large. Hence, it is essential to tune the value of parameter σ carefully
and accurately. Moreover, to archive the best clustering performance, different datasets
should use different ranges of σ.

Second, our proposed methods outperformed the comparison methods on all datasets,
in terms of three clustering evaluation metrics. For example, our proposed methods
improved on average by 5.51%, 25.99%, and 3.85% respectively, compare to k-means,
k-means++ and spectral clustering algorithms, in terms of ACC, NMI and PUR, on all
datasets. In particular, our method achieved the most improvement by 17.4% in terms of
ACC on dataset Coil20Data, 197.2% in terms of NMI on dataset Australian Credit
Approval, and 17.9% in terms of PUR on dataset 20news. Furthermore, our proposed
methods outperformed the comparison methods in terms of ACC, NMI, and Purity,
respectively, on ten datasets, eight datasets, and nine datasets of total twelve datasets.
The reason is that our proposed methods generated better representations, compared to
the use of spectral representation of SPCL and the use of original features in both k-
means and k-means ++. It implies that representation learning is very important for
clustering analysis, which was demonstrated in the literature [43, 44].

Last but not least, our proposed WAMKM method has no significant improvements,
compared to our proposed AMKM method, in terms of all three evaluation metrics. The
possible reason is that the feature weight is seriously related to the quality of the similarity
matrix, which is sensitive to the setting of the parameter σ. However, our proposed WAMKM
method is more sensitive than our proposed method AMKM, in terms of the variations of the
parameter σ.

5 Conclusions

In this paper, we have proposed two clustering methods to address the issues of previous
k-means clustering and spectral clustering algorithms. To do this, we first devised an
adjacent matrix and a weighted adjacent matrix, and then ran k-means clustering on those
two adjacent matrices, respectively, to output the clustering results. Finally, we evaluated
the clustering results against three comparison clustering algorithms, i.e., k-means, k-
means++, and normalised spectral clustering algorithms, in terms of three evaluation
metrics ACC, NMI and PUR. As a result, our proposed methods outperform the
comparison algorithms in our experiments.

However, we found that the experiment results of our proposed methods are sensitive
to parameter σ, which is used to construct the adjacent matrix. This means that our
proposed clustering methods are data-driven and their performance varies on different
types of datasets. In our future work, we will extend our research to dynamically select
suitable parameters.
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