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Abstract 

The selection of desirable characteristics in livestock has resulted in the transmission 

of advantageous genetic variants for generations. The advent of artificial insemination 

has accelerated the propagation of these advantageous genetic variants and led to 

tremendous advances in animal productivity. However, this intensive selection has led 

to the rapid uptake of deleterious alleles as well. Recently, a recessive mutation in the 

GALNT2 gene was identified to dramatically impair growth and production traits in 

dairy cattle causing small calf syndrome. The research presented here seeks to further 

investigate the presence and impact of recessive mutations in dairy cattle. 

A primary aim of genetics is to identify causal variants and understand how they act to 

manipulate a phenotype. As datasets have expanded, larger analyses are now possible 

and statistical methods to discover causal mutations have become commonplace. One 

such method, the genome-wide association study (GWAS), presents considerable 

exploratory utility in identifying quantitative trait loci (QTL) and causal mutations. 

GWAS' have predominantly focused on identifying additive genetic effects assuming 

that each allele at a locus acts independently of the other, whereas non-additive effects 

including dominant, recessive, and epistatic effects have been neglected. Here, we 

developed a single-locus non-additive GWAS model intended for the detection of 

dominant and recessive genetic mechanisms.  

We applied our non-additive GWAS model to growth, developmental, and lactation 

phenotypes in dairy cattle. We identified several candidate causal mutations that are 

associated with moderate to large deleterious recessive disorders of animal welfare 

and production. These mutations included premature-stop (MUS81, ITGAL, LRCH4, 

RBM34), splice disrupting (FGD4, GALNT2), and missense (PLCD4, MTRF1, DPF2, 

DOCK8, SLC25A4, KIAA0556, IL4R) variants, and these occur at surprisingly high 
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frequencies in cattle. We further investigated these candidates for anatomical, 

molecular, and metabolic phenotypes to understand how these disorders might 

manifest. In some cases, these mutations were analogous to disorder-causing 

mutations in other species, these included: Coffin-Siris syndrome (DPF2); Charcot 

Marie Tooth disease (FGD4); a congenital disorder of glycosylation (GALNT2); hyper 

Immunoglobulin-E syndrome (DOCK8); Joubert syndrome (KIAA0556); and 

mitochondrial disease (SLC25A4). These discoveries demonstrate that deleterious 

recessive mutations exist in dairy cattle at remarkably high frequencies and we are 

able to detect these disorders through modern genotyping and phenotyping 

capabilities. These are important findings that can be used to improve the health and 

productivity of dairy cattle in New Zealand and internationally.  
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1.1 Introduction to Genetics 

1.1.1 Foundations 

For millennia, favourable genetic variants were unknowingly selected through 

selective breeding schemes in crops and livestock to improve productivity. It was only 

in the late 19th century that the genetic basis of simple traits began to be unlocked 

with Mendel's recognition that a trait may be determined by two “factors” (i.e., alleles 

at a gene), one inherited from each parent (Mendel 1865). The discovery that DNA 

encodes genetic information (Avery, Macleod, and McCarty 1944), and the subsequent 

discovery of the structure of DNA (Watson and Crick 1953) were two further seminal 

works that set the stage for modern genetics. Since then, genetic variants that 

influence phenotypes have been discovered, with this information used in medicine 

and selected for in agriculture and horticulture to accelerate selection response.  

The human genome project (Venter et al. 2001) saw a revolution in our ability to 

derive genetic information cheaply, allowing large scale use of genomic information 

for many applications.  The 1,000 Genomes project began in 2008 with the goal of 

creating a massive catalogue of global human genetic variation (The 1000 Genomes 

Project Consortium et al. 2015).  Through the success of the 1,000 Genomes project 

and further advances in sequencing technology, the study of genetic variation in 

humans, livestock and other species has increased exponentially (Metzker 2010). 

These advances included international efforts such as the 1,000 Bull Genomes Project 

(Daetwyler et al. 2014) which now includes thousands of cattle from over 100 breeds.  

1.1.2 Genetic variants and mechanisms 

Understanding the genetic variation in a population provides scope for all further 

genetic analyses like livestock selection and disease risk assessment.  Genetic variants 

that make up this variation can come in many sizes and through differing mutation 
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mechanisms, but by far the most common class of variant is a single nucleotide 

polymorphism (SNP) because they are the smallest inherited unit.  A SNP is a single 

base-pair location that differs in nucleotide (A, C, G, or T) within a population of 

interest.  The study of SNPs has been widespread, and many millions have been 

identified in cattle (Daetwyler et al. 2014). 

Genetic variants can act under many different genetic mechanisms and modes of 

inheritance. The most commonly studied mechanism is additivity which represents 

the independent contribution of each allele at a locus. Non-additive mechanisms also 

exist such as dominance, and epistasis. Dominance mechanisms represent the intra-

locus interaction between a pair of alleles, while epistasis, the most complex of these 

mechanisms, represents the inter-loci interaction between a set of genetic loci (Figure 

1.1). 

 

Theoretical examples of differing genetic effect mechanisms on phenotype. A1 and A2 refer to the 

alleles at locus A, B1 and B2 refer to the alleles at locus B whose genotype interacts with that of locus 

A. 

Figure 1.1 | Examples of genetic mechanisms. 
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Many different examples of genes and variants that operate through these different 

modes of inheritance have been demonstrated in cattle. The DGAT1 gene encodes a 

protein known as acylCoA:diacylglycerol acyltransferase which catalyses the final step 

in triglyceride synthesis (a major component of milk fat) and as such plays an 

important role in mammals. Studies in cattle have identified a mutation in this gene 

with additive effects across milk production traits such that each additional copy of 

this mutation increases milk-fat percentage by 0.17% and decreases milk yield by 

158kg (Grisart et al. 2002).  

The polled (hornless) phenotype in cattle manifests through a dominant genetic 

mechanism where a single mutated copy at the POLLED locus results in a hornless 

animal, regardless of the other allele at the locus (Georges et al. 1993).  The most 

striking example of biologically recessive variants are embryonic lethal mutations. In 

these cases, a single mutated copy has no effect on embryo viability but in the instance 

of two mutated copies, the embryo fails to develop normally, usually due to the knock-

out of an essential gene. Several embryonic lethal mutations have been detected in 

cattle populations (Charlier et al. 2016) and many more across humans and other 

livestock populations have been identified that are recorded in the OMIM and OMIA 

databases (Amberger et al. 2015; Lenffer et al. 2006).  

Epistasis is the most complex of these non-additive mechanisms and while its 

contribution to phenotypes has been studied (Cockerham 1954), it has been very 

difficult to discover causal gene interactions in humans and livestock. An exception to 

this is the discovery of an ERAP1-HLA interaction in humans. Cortes et al. (2015) 

investigated this interaction concluding that the status of multiple HLA alleles 

influence the effect of ERAP1 on an individual’s risk to multiple diseases like psoriasis 
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(Strange et al. 2010), ankylosing spondylitis (Evans et al. 2011), and Bechet’s 

syndrome (Kirino et al. 2013). 

An animal’s characteristics can be influenced by genetic loci acting under these 

mechanisms or combinations thereof.  A causal mutation or causal variant is a DNA 

variation that has a causative impact on a trait.  Such a mutation may alter the 

structure of a protein, interfere with the expression of a gene, or act through some 

other regulatory pathway to cause a change in an animal’s characteristic.  Often it can 

be difficult to identify the precise nucleotide change that is the causal mutation, 

however quantitative trait loci (QTL) or variants that are genetically linked with the 

causal mutation (tag variants) can be more easily identified. A QTL is a genomic 

position or region with a quantitative impact on a quantitative trait although the 

biological mechanism underpinning this impact is unknown (Lynch and Walsh 1998).  

The minor allele frequency (MAF) of a bi-allelic variant is the frequency of the less-

common allele in the population of interest and indicates the prevalence of the variant 

in the population.  Ancient variants occur at varying frequencies due to the effects of 

long-term natural and artificial selection and are often classed as common (MAF > 

5%), low frequency (1 – 5%), or rare (<1%), although the threshold of these classes 

vary from study to study (Yang et al. 2010; Qianqian Zhang et al. 2018). Common 

variants make up the majority of studies focussed on genetic variation due to the 

relative ease of detection and improved associative power of common variants 

(assuming the underlying causal mutation is also common). Despite genetic variation 

contributing to 80% of the variation of human height, only 60% of this can be 

explained by common or low frequency variants (Wood et al. 2014), suggesting the 

importance of rare causal mutations.  
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Rare and low frequency variants are harder to detect and characterise, however as 

sample sizes increase, variants with lower allele frequencies can be more readily 

investigated. Rare variants can have large effects on characteristics, where, for 

example, in an Icelandic human population rare variants were found to be highly 

associated with type II diabetes risk, height and body mass index (Steinthorsdottir et 

al. 2014). In a study of human height in 711,428 individuals, 83 rare or low frequency 

coding variants were identified, some with large effect (2 cm), demonstrating that 

with a large enough sample size these variants can be accurately associated with traits 

(Marouli et al. 2017).  An attempt to investigate the use of rare and low frequency 

variants in genomic prediction of fertility and welfare traits in cattle showed that 

while on simulated datasets rare variants could increase prediction reliabilities, on 

real data they did not result in the same improvement., Assuming this discrepancy 

derives from the difficulty in pinpointing rare variants that are actually causal, this 

finding may highlight the importance of that endeavour to utilising rare variant 

information (Qianqian Zhang et al. 2018). 

1.1.3 Genetic Architecture 

The genetic architecture of a trait represents the number, mechanism, frequency, and 

effect size of all the causal mutations that contribute to variation in a given trait 

(Mackay 2001). Simple Mendelian traits have a relatively simple genetic architecture 

where discrete characteristics are apparent from variation at a single genetic locus.  

Complex traits, however, are those that are influenced by many causal loci of varying 

effect sizes, mechanisms, and frequencies. Through discovery of a trait’s genetic 

architecture, we improve our understanding of the fundamental biology underlying 

these effects, how organismal characteristics come to be, and provide scope for more 

accurate selection of desirable attributes.   
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Simple Mendelian traits are often the result of dominant or recessive mechanisms and 

are mostly characterised by Mendelian diseases such as cystic fibrosis in humans or 

embryonic lethal mutations in any diploid species (Gasparini et al. 1990; Charlier et al. 

2016).  Mendelian diseases in humans have been of great interest in medical genetics 

(McKusick 2007), with over 6,000 mutations identified that mostly cause disease-

related phenotypes (Amberger et al. 2015).  In animals, Mendelian disease has 

attracted less attention but nevertheless over 150 causal mutations have been 

identified for various Mendelian traits (Lenffer et al. 2006).  Aside from inherited 

diseases, cattle present several striking phenotypic phenomenon which comprise 

simple Mendelian traits such as the red or black coat colour characteristic (MC1R gene, 

(Klungland et al. 1995)), the polled phenotype (Georges et al. 1993), the belted coat 

colour seen in Galloway cattle (TWIST2 gene; (Mishra et al. 2017)), double muscling 

seen in Belgian Blue cattle (MSTN gene (Grobet et al. 1997)), and the slick coat of 

Senepol cattle (PRLR gene (Littlejohn, Henty, et al. 2014)). However, many traits 

including those of interest to breeders such as growth rate, fertility, and milk 

production are complex and are influenced by many loci. 

Complex traits are those that are influenced by variation at multiple loci. These traits 

are often quantitative, like human height and milk productivity, and can be affected by 

many genetic mechanisms such as additivity, dominance, epistasis as well as 

exhibiting gene by environment interactions.  In humans, a prominent example is 

height where over 400 independent genetic loci have been identified to contribute to 

the variation of human height (Wood et al. 2014). Risks to complex psychiatric 

disorders such as schizophrenia are impacted by over 100 QTL across the human 

genome (Gratten et al. 2014). In cattle, 1,000’s of SNPs have been identified with 

significant effects on milk production traits (Jiang et al. 2019).  Discovering the causal 

variants at these genetic loci and understanding how they influence complex traits can 
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lead to better disease mitigation and selection opportunities, and is therefore of great 

interest to geneticists, breeders, and other biologists alike. 

 

1.2 Dairy Cattle – History & Technology 

Cattle, descendant from wild aurochs, have been an important socio-economic 

resource to humans for over 10,000 years (Larson and Fuller 2014), and have been 

used as a source of milk for at least 8,000 years (Evershed et al. 2008).  While 

geographical breed variation has been noted since Ancient Roman times (MacKinnon 

2010), it is only in the past few centuries that selective breeding to change and 

maintain animal characteristics has been effective and widespread (Felius et al. 2014). 

Through phenotype recording and artificial selection, some breeds have become more 

homogeneous in performance, and are easily distinguished by distinct coat colours 

and other breed-specific characteristics.   

Artificial insemination (AI) is a procedure by which semen is collected from bulls, 

diluted, and then artificially inseminated into cows without the bulls’ presence being 

required. The advent of AI has allowed superior bulls to be dispersed throughout an 

industry (Foote 2002). Through increased uptake and improved technology, some 

sires have generated millions of semen straws, and through dissemination across 

national herds, great advances in the genetic gain of selected traits in dairy cattle has 

been possible internationally.  

The extensive recording of pedigree by breeders and the desire to select the best sires 

for AI led to the development of formal approaches to selection. Genetic selection 

comprised new statistical methodologies such as selection indices (Hazel 1943) to 

combine information from different sources, and mixed model equations that can also 

simultaneously adjust for non-genetic effects (Henderson 1953).  Selection indices 
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such as Breeding Worth (BW; (Harris, Clark, and Jackson 1996)) have been developed 

to increase on-farm production and longevity, and recent additions such as fertility 

and somatic cell score allow for the selection of a well-balanced, healthy cow (DairyNZ 

2021). The mixed model equations developed by Henderson have been instrumental 

through the accurate ranking of sires based on the performance of their daughters. 

Through the use of these methods, milk production per Holstein cow doubled over 40 

years (1960 – 2000), more than half of which was attributable to improved genetics 

(Dekkers and Hospital 2002).   

Genomic selection is a new technology through which selection can be based on 

statistics derived from the genetic makeup of an animal (Meuwissen, Hayes, and 

Goddard 2001; Hayes et al. 2009). This technique aims to use DNA genotyping to 

capture the variation from causal mutations across the genome and predict 

phenotypic variation of quantitative traits to rank animals (Georges, Charlier, and 

Hayes 2018). Through this approach, the breeding values of unproven young sires can 

be more reliable than those estimated with pedigree without performance measures 

on offspring. Through the use of young sires, the generation interval is reduced, and in 

some cases genetic gain can be accelerated (Falconer 1960; Meuwissen, Hayes, and 

Goddard 2001). 

In New Zealand, our pasture-based dairy cattle population consists of 4.92 million 

cows across 11,179 herds (Livestock Improvement Corporation 2020). The national 

herd has a unique breed composition of Holstein-Friesian (HF; 32.7%), Jersey (J; 

8.4%), crossbred HFxJ (49.1%), and other breeds (9.8%). These animals, fed primarily 

ryegrass and clover, produced 21.1 billion litres of milk in the 2019/20 season 

(Livestock Improvement Corporation 2020).  The export focus of dairy in New Zealand 

means farmers are rewarded for milk solids (milkfat and milk-protein yields) and 
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penalised for milk volume. These economic rewards and penalties pose a case for 

using a selection index. Through the development of indices like breeding worth 

(Harris, Clark, and Jackson 1996) along with AI, farmers can balance their systems to 

improve profit. 

The artificial selection of cattle has led to a highly related population and can rapidly 

increase the frequencies of alleles carried by superior sires. Despite a population of 

over 4 million, the effective population size estimates of New Zealand HF and J are 

much smaller at approximately 100 (de Roos et al. 2008). This unique population 

structure  and the widespread availability of phenotypes position cattle as an 

interesting model to detect causal mutations and provides scope to elucidate the 

additive and non-additive genetic architecture of complex traits which may benefit 

selection.  

 

1.3 Tools – Phenotypic and genetic data generation 

1.3.1 Phenotypic datasets 

Data on lactating dairy cattle is routinely gathered via herd testing as a way for 

farmers to make more informed selection decisions. Herd visits typically gather 

lactation data, but may also record live weight, reproductive events, and traits other 

than production (TOP traits).  Some 73.5% of herds were herd tested in the 2019-

2020 season (Livestock Improvement Corporation 2020), this volume of tests results 

in a wealth of data that can be exploited for discovery and has been a cornerstone to 

the advancements in genetic gain and farm production for the past 50 years. 

Lactation traits including milk volume, milk fat percentage, milk protein percentage, 

and somatic cell score are routinely measured via herd testing. Milk fat yield and milk 

protein yield are generated as the product of milk volume and their respective 
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percentages. Owing to their economic importance and availability, the genetic 

architecture of lactation traits has been the focus of much study. Through these 

studies several causal genes have been identified to have a significant impact on 

lactation traits such as DGAT1 (Grisart et al. 2002), GHR (Blott et al. 2003), ABCG2 

(Cohen-Zinder et al. 2005), AGPAT6 (Littlejohn, Tiplady, et al. 2014), and MGST1 

(Littlejohn et al. 2016).  

Growth and developmental traits include liveweight, stature, and body condition score 

(BCS). Liveweight and BCS are included in the breeding worth index as these traits are 

important indicators of maintenance feed intake, carcass weight, reproductive success, 

survival and animal health. The genes PLAG1 (Karim et al. 2011; Fink et al. 2017) and 

CCND2 (Bouwman et al. 2018) are two candidates with impacts on liveweight and 

stature in cattle. With over 400 QTL identified to influence human height (Wood et al. 

2014) this would suggest a similar trait in cattle may be influenced by many more 

undiscovered genetic effects. 

Traits other than production are management and conformation characteristics which 

are important to farmers but do not have a direct link to production.  Management 

characteristics focus on how an animal behaves while being milked such as 

adaptability to milking, shed temperament, and overall farmer opinion.  Conformation 

characteristics, scored by a TOP inspector, include measures of the form of an animal 

such as chest capacity, and udder and teat conformation (Advisory Committee on 

Traits Other than Production 2020). Wu et al. (2013) identified QTL across 26 body 

conformation traits similar to TOP traits and highlighted several candidate genes 

underlying these effects.   

The economic importance of these phenotypes means many are incorporated in 

national genetic evaluations to produce breeding values (BVs), measures of genetic 
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worth for given traits.  These evaluations fit several non-genetic effects to account for 

confounding such as contemporary group, age, and stage of lactation. The weighted 

average of a cow’s records less these non-genetic effects can be calculated for 

downstream analyses and are called yield deviations (VanRaden and Wiggans 1991). 

1.3.2 Genotyping, Sequencing and Imputation 

SNP-chip genotyping is a popular and efficient way to generate genetic data across 

many individuals for many loci simultaneously. Through SNP-chip genotyping a 

predetermined set of SNPs, ranging in number from a few hundred markers upwards 

to over a million, can be investigated across samples. In 2005, the first commercially 

available bovine SNP-chip was designed (Bovine 10K; (Affymetrix Inc. 2005)) and 

subsequent commercial designs for medium (Bovine SNP50; Illumina Inc., San Diego, 

CA) and high (BovineHD; Illumina Inc., San Diego, CA) density panels were released. 

The BovineSNP50 platform was designed with the intention of spacing at least 50,000 

SNPs evenly throughout the genome and across the minor allele frequency spectrum 

such that at least 70% of markers were polymorphic in 21 cattle breeds (Matukumalli 

et al. 2009).  Using this platform and a variety of others, millions of cattle have been 

genotyped in recent years (Wiggans et al. 2017; Georges, Charlier, and Hayes 2018). 

Whole genome sequencing involves not just interrogating an individual’s genotype at a 

predetermined set of variant locations, but instead at every position across their 

whole genome, using fundamentally different technology. Large scale initiatives such 

as the 1,000 Genomes Project (The 1000 Genomes Project Consortium et al. 2015) and 

1,000 bull genomes project (Daetwyler et al. 2014) have sequenced thousands of 

individuals aiming to characterise the genetic variation in each species.  Through 

sequencing technology advances, reference genome assemblies have been improved 

for cattle in terms of chromosomal continuity, accuracy, and completeness (The 
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Bovine Genome Sequencing and Analysis Consortium et al. 2009; Rosen et al. 2020). 

The accumulation of these advances in the quality and quantity of data enables the 

efficient prediction of millions of genotypes across a population through a statistical 

approach known as imputation. 

Imputation is a method that uses haplotype phasing and linkage patterns to infer 

missing genotype status based on a reference panel and allele frequency distributions 

( Browning and Browning 2007; Howie et al. 2012). Various imputation methods can 

be used to project SNP chip genotypes to higher density panels, or to sequence 

resolution, and in doing so imputation can increase the opportunity to find QTL and 

causal variants. Jivanji et al. (2019) showed through statistical techniques that new 

QTL and candidate causal mutations could be discovered for a variety of coat colour 

characteristics in cattle based on over 18 million variants imputed from a variety of 

medium to high density SNP-chips to sequence resolution. 

 

1.4 Tools - Statistics 

1.4.1 Quantitative Genetics 

The study of complex traits is often through the lens of quantitative genetics. 

Quantitative genetics is a statistical framework for the study of characteristics that are 

affected by multiple genetic loci (Mackay 2001). Through quantitative genetics we can 

understand the genetic mechanisms that contribute to the genetic variation of traits. 

Genetic variance, that part of the phenotypic variance attributable to genetics, gives an 

indication of what genetic mechanisms may be assumed when assessing the trait. 

Heritability (Lush 1940) is the ratio of genetic variance to phenotypic variance which 

represents the opportunity for genetic change by natural and artificial selection (Hill, 

Goddard, and Visscher 2008). Narrow sense heritability (h2) is the proportion of 
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phenotypic variance attributable to additive genetic variance.  Broad sense heritability 

(H2) is the proportion of phenotypic variance explained by the total genetic variance, 

that is additive, dominance and epistatic genetic variance (Visscher, Hill, and Wray 

2008). Understanding the genetic variance and heritabilities of phenotypes can be 

used in selection decisions, however, it doesn’t clearly reveal the underlying biological 

mechanisms causing trait variation (Huang and Mackay 2016).   

1.4.2 Genome-wide association studies 

When investigating quantitative traits, we are primarily interested in what effect 

certain variation has on an animal’s characteristics, and identifying which variants are 

causal.  Linkage analysis was a traditional approach for mapping causal regions, where 

knowledge of family structures and recombination maps were combined to localise 

their physical location on the genome. Several well-known genes influencing milk 

production in cattle were mapped this way including DGAT1 (Grisart et al. 2002), GHR 

(Blott et al. 2003), and ABCG2 (Cohen-Zinder et al. 2005). 

As SNP genotyping has become more common, there has been a rise in the popularity 

of association studies owing to their increased power when investigating complex 

traits (Risch and Merikangas 1996). Association studies attempt to estimate the effect 

and significance of a variant on a phenotype of interest and often consider variants 

spanning the entire genome, these are termed Genome-Wide Association Studies 

(GWAS).  

A genome wide association study is a statistical analysis aimed at detecting an 

association between the allele distributions of a set of genetic markers (typically 

20,000 to 20,000,000+) and the phenotype(s) of interest.  The results of these analyses 

can be summarised into statistics indicating to the researcher the significance of 

variant association and whether the implicated genomic regions warrant further 



15 

 

investigation. GWAS can be used as an exploratory tool to improve our biological 

understanding of phenotypes by identifying novel genes and enabling localised 

examination of the underlying genetic mechanisms.  Subsequent investigation into 

genomic regions may include higher density genotyping, whole genome sequencing of 

individuals, or a multi-omics approach (Visscher et al. 2017). GWAS has led to a very 

large number of discoveries across species. It has fast tracked exploration of the 

genetic architecture of complex traits and promises opportunity in the prevention and 

treatment of disease as well as improvement of selection in livestock.  

Typical GWAS methods involve fitting a set of variants one-at-a-time in a linear mixed 

model to test for association between the variant and a phenotype (Yu et al. 2006; 

Zhou and Stephens 2012). Linear mixed models contain both fixed and random effects 

and can be used to test the effects of variants while accounting for possible 

confounding effects.  We can fit a GWAS model to estimate the effects of variants on a 

trait and improve our understanding of the genetic architecture of complex traits. This 

model equation is often written as; 

 𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆 (1) 

 

where y is a vector of phenotypes, X is a design matrix relating individuals to fixed 

effects, b is a vector of fixed effects, Z is a design matrix relating individuals to random 

effects, u is a vector of random effects, and e is a vector of random residual errors.  In 

the case of fitting variants one-at-a-time, the variant is typically fitted as a fixed effect 

(Yu et al. 2006; Zhou and Stephens 2012), however when fitting multiple variants at a 

time they are typically fitted as random effects (Meuwissen, Hayes, and Goddard 2001; 

Fernando and Garrick 2013).  
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In testing for association at a bi-allelic genomic locus, typically using a SNP, an additive 

genetic model is typically adopted. This model aims to detect the effect of substituting 

the reference allele out for the alternate allele at a locus of interest, in the next 

generation. To do so, a variable representing each locus is created with genotype 

classes (G11, G12, and G22) encoded (0, 1, and 2). 

A basic association analysis can be performed using a simple linear model testing the 

marker variable against the phenotype (omitting the Zu term in (1)), however such a 

model can result in spurious associations due to confounding effects. Confounding 

effects include factors that can impact the independent and dependent variables in a 

statistical model. Confounding effects might be attributes like age, contemporary 

group, and diet, but can also have a genetic basis through family structure and 

population stratification. It’s important to account for confounding effects where 

possible to avoid spurious associations which can mislead researchers and impact the 

interpretation of results (Yu et al. 2006).  

Population structure reflects the complex and entangled genetic relationships 

between individuals in a population. It is influenced by geography, group aggregations 

such as breed, family structure, or the effects of natural and artificial selection.  

Population structure can lead to spurious associations in GWAS by finding an 

association with a genetic locus due to a sub-group’s ancestry rather than a causal 

effect (Lander and Schork 1994).  The New Zealand dairy herd has a highly admixed, 

closely related population structure due to intense artificial selection and AI, as such 

accounting for this relatedness is important to avoid false discoveries. Methods for 

accounting for this confounding effect often include the use of relationship matrices to 

describe the covariation between phenotyped individuals.  
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Relationship matrices for n individuals are n x n symmetric matrices characterising the 

relationships between all pairs of individuals in a sample.  Expected relationships can 

be constructed using pedigree information or realised relationships can be 

constructed using genetic marker data (Vanraden 2008).  Animal geneticists have used 

pedigree-based relationship matrices (often denoted A) for a long time in best linear 

unbiased prediction (BLUP) methods (Henderson 1976) where the A matrix 

comprises one plus inbreeding coefficients on the diagonal and coefficients of 

relatedness between pairs of individuals on the off-diagonals. Increased uptake of SNP 

genotyping in human, model organism, and agricultural populations has led to an 

increase in the use of genomic relationship matrices (GRMs). GRMs offer the ability to 

account for unobserved pedigree and unexpected (cryptic) relatedness by defining 

relationships through genotypes that are identical by state (Vanraden 2008).  

Relationship matrices can be incorporated in linear models as fixed effects based on 

some principal components, or as an approach to define the variance-covariance of 

random genetic effects in a linear mixed model. 

Principal components analysis (PCA) is a technique for reducing the dimensionality of 

a matrix into its most variable components represented by eigenvectors (Hotelling 

1933).  This allows one to add a relatively small number of additional fixed effects to a 

linear model to account for most of the population structure without the complexity 

that a mixed effects model brings. PCA has been used in human studies and has been 

shown to be useful in detecting novel loci (Akiyama et al. 2017). Although PCA is 

sometimes a valid approach to account for cryptic relatedness, linear mixed models 

have been shown to be more effective at finding markers of interest and avoiding 

spurious associations (K. Wang, Hu, and Peng 2013).  
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Methodological developments have made linear mixed models which incorporate a 

relationship matrix feasible in many studies (K. Wang, Hu, and Peng 2013). These have 

been shown to reduce both type I and type II error rates when faced with family-based 

data, or structured population data (Yu et al. 2006), or even when no population 

structure is present (Yang et al. 2014).  Fitting a relationship matrix as a random effect 

in a linear mixed model is now a common procedure in GWAS analysis in many 

species.  

Pedigree-based relationship matrices can also be used when pedigree information is 

available. Lopdell et al. (2017) used pedigree to investigate milk lactose components 

in cattle, highlighting several candidate causal variants and expression-based 

regulatory QTL.  Pedigree has been used in a linear mixed models to detect parent-of-

origin effects on mouse body mass index (Hu, Rosa, and Gianola 2015), among other 

applications.  

When pedigree data is incomplete or unavailable, a better option might be to use 

genetic markers to generate a GRM. Examples include a study by Yu et al. (2006) who 

fitted a GRM in place of a pedigree relationship matrix in a linear mixed model 

detecting genetic effects in Maize. Yang et al. (2010) fitted a genetic relationship 

matrix as a random effect to detect QTL associated with human height. A drawback of 

GRMs is they can lead to double fitting, by including markers being tested for 

association in the GRM, a situation referred to as proximal contamination. Recently, 

approaches such as ‘Leave one chromosome out’ (LOCO), or ‘Leave one segment out’ 

(LOSO) have been adopted to avoid proximal contamination (Listgarten et al. 2012; 

Eu-ahsunthornwattana et al. 2014) where the marker being tested (or tag SNPs 

thereof) is not included in the GRM. 
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1.4.3 Frequentist Approaches 

In most approaches to GWAS the genetic architecture of a complex trait is assumed to 

be made up of a large number of small effect loci spread across the allele frequency 

spectrum, termed the infinitesimal model (Fisher 1930; Barton, Etheridge, and Véber 

2017).  A commonly-used frequentist approach to GWAS involves fitting all variants of 

interest, one at a time, to compute a p-value for that variant indicating the strength of 

association. 

Frequentist approaches to GWAS have undergone iterative development and 

competition to improve computational efficiency, while accounting for population 

structure more effectively.  These methods began with fixed effect models including 

principal components, and progressed onto efficient mixed model techniques such as 

TASSEL (Yu et al. 2006) and EMMA (Kang et al. 2008) which better account for 

population structure (Eu-ahsunthornwattana et al. 2014).  Through differing 

approximations of variance components, modified relationship matrices, 

approximated correction factors, and other improved algorithmic efficiencies, a host of 

different methods have been developed including EMMAX (Kang et al. 2010), FaST-

LMM (Lippert et al. 2011), GCTA (Yang et al. 2011),  GEMMA (Zhou and Stephens 

2012), and BOLT-LMM (Loh et al. 2015).  Eu-ahsunthornwattana et al. (2014) showed 

strong concordance between results from different mixed model methods (EMMAX, 

FaST-LMM, GCTA, and GEMMA) and suggested prioritising by ease of use and 

computational efficiency.  In 2015, BOLT-LMM was released and is orders of 

magnitude more efficient than these previous methods both in CPU time, and memory 

use (Loh et al. 2015), and has been successfully applied to large GWAS of cattle 

(Tiplady et al. 2021). 
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These GWAS approaches have seen success across species and models, providing 

means of detecting QTL in a vast number of studies (Visscher et al. 2017).  The GCTA 

software was used in a study of the genetic architecture of amyotrophic lateral 

sclerosis (ALS) in the human genome (van Rheenen et al. 2016). The authors 

conducted GWAS across over 35,000 individuals and over 8 million variants, 

identifying novel QTL associated with the disease.  In the study, LOCO methodology 

was used to remove proximal contamination, by creating 23 GRMs each omitting 

markers on the chromosome being tested.   

Pausch et al. (2016) used EMMAX in a GWAS study on Fleckvieh cattle to identify QTL 

associated with udder conformation traits. Seven morphology traits were investigated 

in 10,000 animals across 20 million imputed sequence variants revealing 12 QTL 

located in possible regulatory regions.  The authors estimated a GRM using a high 

density SNP chip (634,109 autosomal SNPs) to account for population structure, a 

common requirement of studies in livestock populations.  Another study used BOLT-

LMM-INF to detect height and BMI QTL in humans (Yengo et al. 2018). The study 

investigated over 700,000 individuals through meta-analysis and identified thousands 

of additive QTL (including hundreds of novel associations) across the human genome.  

That research reflects the numbers of individuals and variants often used in modern 

GWAS and emphasises the need for efficient and effective software. 

1.4.4 Bayesian Approaches 

Bayesian inference considers not just the data itself, but also prior beliefs about the 

data to assess a hypothesis and calculate a posterior probability.  In the animal 

breeding industry, a Bayesian regression approach is sometimes used in genomic 

prediction and similar methods can be applied to GWAS as well (Fan et al. 2011).  Most 

Bayesian analyses avoid the infinitesimal model assumption made by frequentist 
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models as well as the restrictions to inference that come with p-values and instead 

estimate posterior probability distributions (Stephens and Balding 2009).  

The Bayes Alphabet is a series of Bayesian models that can be applied to GWAS and 

genomic prediction models (Meuwissen, Hayes, and Goddard 2001; Fernando and 

Garrick 2013). These linear mixed models describe methods for fitting multiple 

markers at once and allow for differing assumptions of the underlying genetic 

architecture of traits. These differing assumptions are reflected in the priors used for 

marker effects, often through mixture models.  Rather than relationship matrices used 

to account for population structure, the Bayes Alphabet models fit marker effects as 

random covariates to make inference on each SNP while accounting for all others at 

the same time (Meuwissen, Hayes, and Goddard 2001; Habier et al. 2011; Erbe et al. 

2012). This technique has been shown to be robust in accounting for population 

structure (Toosi, Fernando, and Dekkers 2018).    

In many Bayesian approaches, closed forms for characterising the posterior 

probability are not available. To overcome this problem, Markov chain Monte Carlo 

(MCMC) techniques such as Gibbs samplers are commonly used.  Such MCMC 

techniques are methods to draw plausible samples from the target distribution, such 

that at a sufficient chain length, inferences made on the samples in the chain converges 

to the inferences that would be obtained from the posterior distribution (Metropolis et 

al. n.d.; Hastings 1970). While some MCMC techniques update all parameters of 

interest at once, under the single-site Gibbs Sampler technique these parameters are 

updated individually (Geman and Geman 1984).  Advancements in computing 

efficiency have seen single-site Gibbs sampling techniques implemented across 

disciplines. In genetic contexts, this includes software such as Gensel (Fernando and 
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Garrick 2013), BLGR (Pérez and de Los Campos 2014) and JWAS (Cheng, Garrick, and 

Fernando 2016).  

Similar to frequentist techniques, Bayesian approaches to GWAS have successfully led 

to the discovery of QTL across many species.  Fan et al. (2011) used Bayesian 

techniques to investigate commercially important pig phenotypes on a medium 

density SNP chip, where all markers were fitted at the same time.  BayesC, part of the 

Bayes Alphabet, was used to apply a mixture model to that data where 99.5% of 

markers were assumed to have zero effect at each iteration of the Markov chain. In 

doing so, the study identified a number of novel candidate genes affecting traits such 

as body size and loin muscle area.  

Moser et al. (2015) describes the use of Bayesian mixture models to model different 

genetic architectures between inherited diseases, and estimate risk of disease in a 

human population. This study showed how for some architectures, BayesR (which 

assumes variants can come from four non-zero effect distributions) can outperform 

disease prediction using frequentist and Bayesian infinitesimal models like those used 

in GCTA.  The work demonstrates how the differing genetic architectures between 

complex traits requires different model assumptions to best detect associated loci.   

In dairy cattle, Littlejohn et al (2016) investigated milk characteristics in 42,000 cattle 

using a BayesB model. The BayesB model fitted over 400,000 SNPs at once assuming 

0.2% had a non-zero effect in each iteration. This technique localised a 2Mbp region on 

Chromosome 5 further investigated at sequence resolution to identify variants near 

the MGST1 gene influencing milk fat percentage, likely through cis modulation of 

expression of that gene. This work demonstrates Bayesian approaches can be effective 

with large samples sizes and in highly structured populations.  

 



23 

 

1.5 Challenges – Factors influencing the power of GWAS  

While heritabilities and variance components can provide an overview to the genetic 

architecture of complex traits, detecting QTL or better yet causal variants can 

elucidate how and why a phenotype varies in the population. There are several factors 

that influence our ability to detect QTL in GWAS including the genetic architecture of 

the trait itself, experimental costs and constraints involved in the study, and the 

models applied. These are often intertwined and present the importance of 

understanding their interactions when designing an experiment. 

1.5.1 Genetic Architecture 

The genetic architecture of a trait reflects the characteristics of the underlying causal 

variants themselves, i.e., their minor allele frequencies, effect sizes, effect mechanisms, 

and the linkage disequilibrium of the genomic regions around them. The additive 

effect size (β) and minor allele frequency (MAF) of a causal variant influence our 

ability to detect association signal as the contribution an allelic variant can have on 

genetic variance is influenced by its allele frequency. Under an additive model, a causal 

variant with a larger β and/or larger MAF is easier to detect owing to the increased 

variance contributed by the locus (2*MAF*(1-MAF)*β2) (Falconer 1960). Studies may 

omit variants with MAF lower than 1 or 5% due to the lack of power to detect effects 

at those loci and their potential to produce spurious associations (Yang et al. 2010).  

The effect mechanism of a causal variant impacts the power to detect it.  Most GWAS 

methods search for additive effects and are successful at identifying additive QTL, 

however these models can struggle to detect other genetic mechanisms such as 

distinguishing dominance from additivity or finding epistasis.  Therefore, selecting a 

model best suited for detecting the mechanism of interest can increase power.   
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Through selection and genetic drift, allele frequencies in a population can fluctuate 

over time. Linkage disequilibrium (LD) represents the non-random fluctuation of 

these frequencies, where alleles physically closer to each other are more likely to be 

inherited together as they are less likely to have been subject to a recombination event 

between them. LD is often represented as the square of the correlation coefficient 

between pairs of loci, R2. It can be exploited in QTL studies, such that tagging a variant 

in linkage with a causal variant may be enough to detect the QTL. Using this approach, 

much of the additive genetic variance can be accounted for without mapping causal 

mutations (Wray 2005; Wood et al. 2014). 

1.5.2 Experimental constraints 

Experimental constraints will impact the power a study has to detect QTL. These 

include sample size, marker density, and imputation quality. Sample size is a major 

contributing factor to power when detecting causal variants, especially for low 

frequency and rare frequency variants. Over the last decade sample studies in human 

populations have grown rapidly through major consortia-based efforts such as the UK 

Biobank project (Sudlow et al. 2015; Bycroft et al. 2018).  Studies in cattle are also 

presenting ever larger sample sizes ranging in the 10,000s (Littlejohn et al. 2016), to 

100,000s (Jiang et al. 2019).  

Marker density indicates the concentration of variants across the genome or in a 

genomic region. SNP chips are often designed to be low (e.g., 10,000 SNPs), medium 

(e.g., 50,000 SNPs), or high (e.g., 700,000 SNPs) density, and whole genome 

sequencing yields variants at sequence resolution (e.g., 20,000,000+ variants). The 

higher the density of markers, the more likely the variant set is to include or be in high 

LD with the causal variants and therefore more likely to detect their effect.  It is thus 

difficult to use common variants in a single locus analysis to tag rare variants, since 
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their differing minor allele frequencies result in reduced LD (Wray 2005). When 

markers are fitted simultaneously, through their linear combinations, these markers 

may tag a causal variant better than when fitted alone. With that in mind, it is also 

useful to have a marker set with a diverse minor allele frequency distribution in order 

to tag more of the genome.   

Many studies use imputation to increase the average marker density of their sample, 

so high imputation quality is crucial to improve power especially for low frequency 

variants.  Often measured through allelic R2 or dosage R2, these indicators of 

imputation accuracy can help researchers decide which variants to test and which to 

avoid due to large inaccuracies (Browning and Browning 2007; Browning, Zhou, and 

Browning 2018). Through improvements in the accuracy and accessibility of genotype 

and sequence imputation, a researcher’s ability to detect causal loci increases.  

Through understanding the factors that influence the power to detect association, 

studies can be better designed to improve our knowledge of the genetic architecture of 

complex traits. A further consideration, alluded to above, is the mechanism by which 

causal variants may influence traits. Many studies investigate genetic variation 

through an additive model and ignore non-additive variation. This has likely been due 

to the assumption that the contribution of non-additive effects to quantitative traits is 

negligible (Hill, Goddard, and Visscher 2008), however further research has shown 

this is not always the case (Huang and Mackay 2016).  

 

1.6 Non-additive analysis 

1.6.1 Non-additive variance 

The majority of GWAS methods and studies to date describe additive GWAS and ignore 

potential non-additive effects, such that the extent to which non-additive variation 
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explains quantitative trait variation is still largely unknown. The main arguments for 

this omission include the apparent lack of non-additive variance which contributes to 

quantitative trait variation, the relative lack of software for the exhaustive 

computations required for mapping non-additive effects, and the unavailability of 

desired datasets (Varona et al. 2018). Hill et al. (Hill, Goddard, and Visscher 2008) 

showed that additive variance captures most if not all of the genetic variation in a 

population for most quantitative traits, even if there are interaction effects present in 

biological pathways and gene networks. This is despite reports that the inclusion of 

dominance effects can increase accuracy in breeding value prediction (Toro and 

Varona 2010). 

Additivity and non-additivity draw an interesting divide between estimating variance 

components using quantitative genetic techniques and understanding the biological 

mechanism of causal mutations. In variance component estimation, additive genetic 

variance represents transmissible variation which includes contributions from 

dominance and epistasis (Crow 2010; Huang and Mackay 2016), while dominance 

genetic variance represents additional dominance which hasn’t been attributable to 

additivity. While this method may not reflect the true biological nature of underlying 

genes, capturing the transmissible variation has been effective in selection (Crow 

2010; Hill, Goddard, and Visscher 2008).  Huang & Mackay (Huang and Mackay 2016) 

argue that the parameterisation of variance component estimation can be manipulated 

to prioritise whichever variation component is most interesting, and therefore while 

variance estimates are useful in some situations they should not be used alone to infer 

the genetic architecture of complex trait.  As such, despite much of the non-additive 

variation of quantitative traits being accounted for by additive variation, searching for 

dominance and epistatic QTL using specialised models may be more powerful for the 

detection of causal loci. 
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Another reason for the paucity of non-additive studies is that the ability to detect non-

additive variance is limited by the marker density of the datasets used to investigate it. 

While the additive variance attributed to an observed marker tagging a causal variant 

will reduce at the rate of LD (R2) (Wray 2005), the rate of decrease is R4 for dominance 

variance and additive x additive epistatic variance and exacerbated further for more 

complex multi-locus epistasis (Wei, Hemani, and Haley 2014).  This means that for the 

same number of markers and genotyped animals we have more power to detect 

additive effects than non-additive effects, particularly when LD is moderate. This 

concern presents the importance of genotyping causal or strong tag variants through 

sufficient marker density to accurately detect non-additive variation.  As datasets 

continue to increase in size, however, these studies become more tractable.  

1.6.2 Non-additive GWAS 

Non-additive models are typically extensions of the additive models described earlier. 

In the case of single locus models these are parameterised by two equivalent models, 

the ‘biological’ or the ‘statistical’ model (Vitezica, Varona, and Legarra 2013). The 

biological model fits a genotypic additive and genotypic dominance effect (encoded [0, 

1, 2], and [0, 1, 0], respectively), an important note is that this genotypic additive effect 

is not the same as the additive (substitution) effect fitted in the original additive-only 

GWAS models. The statistical model extends the additive-only models and fits a 

breeding value and a dominance deviation effect (encoded [0, 1, 2], and [0, 2p, 4p-2], 

respectively, where p is the minor allele frequency) (Vitezica, Varona, and Legarra 

2013). These are equivalent models such that either of the specifications can be fitted 

and their estimated effects transformed into the estimated effects that would be 

obtained by the other (Henderson 1985). To this end, model selection depends on 

desired interpretation - more details on this comparison are found in Chapter 2 – 

Supplementary Note.  
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In multi-marker GWAS there have been further attempts to extend Bayes Alphabet 

models to also represent the non-additive genetic architecture of complex traits.  

These methods aim to model the joint distribution of biological additive and 

dominance effects of causal mutations (Bennewitz et al. 2017). The method tends to 

have increased power to map QTL, however due to doubling the number of random 

covariates fitted, the effect of a causal mutation may spread over several closely linked 

markers (Bennewitz et al. 2017).  The authors stress the need for large datasets to 

map small to medium effect mutations with this approach.  

Zhu et al. (2015) investigated 79 phenotypes in humans for dominance genetic 

variance and dominance effects in GWAS. While, on average, traits presented relatively 

low, insignificant dominance variance component estimates (0.03), eight traits related 

to obesity, bloody pressure and heart rate had significant estimates where dominance 

variation explained up to 16% of the phenotypic variation in systolic blood pressure.  

The study comprised GWAS on 79 traits across up to 13,000 individuals on 1.1 million 

SNP, but only identified a single locus (adjacent the ABO gene) with a significant 

dominance effect.  The researchers concluded that dominance variance is typically 

negligible compared to additive variance, consistent with Hill et al (Hill, Goddard, and 

Visscher 2008).  

Powell et al. (2013) investigated additive and non-additive contributions to gene 

expression in a human study. Through variance component analysis the RNA 

expression level of 14,753 probes were identified to have significant non-zero additive 

components and 960 had significant dominance components. 208 expression QTL 

(eQTL) had significant dominance effects (32 of which could be replicated in an 

independent population) including 7 over-dominance effects.  These findings suggest 



29 

 

while dominance variance contributes less than additive variance, significant 

dominance effects can still be identified. 

 

1.7 Applications in cattle 

1.7.1 Non-additive effects in cattle 

Cattle have also been investigated for non-additive variation. Jiang et al. (2017) 

investigated 42,000 cow records for additive, dominance, and imprinting effects. The 

authors estimated small, but not-negligible dominance variance components across 

milk production traits. The study identified a novel dominance QTL on milk yield near 

the RUNX2 gene through a GWAS using an imputed 50K SNP panel.  Two years later, 

the same research group published a follow up study in what appears to be the largest 

cattle GWAS to date, an analysis encompassing over 290,000 genotyped animals (Jiang 

et al. 2019). Through these analyses, the study identified significant dominance SNP 

effects across milk production traits including dominance components near previously 

identified additive QTL such as DGAT1 (Grisart et al. 2002), and GHR (Blott et al. 2003). 

These studies show there are dominance contributions to production traits in cattle 

and SNP effects underlying these contributions are detectable as sample sizes 

increase.  

The above studies have quantified dominance variance across a variety of phenotypes 

and detected QTL presenting dominance effects. Most dominance QTL identified, 

however, have been minor components of otherwise additive QTL, and few have 

presented complete dominance or recessive mechanisms.  Charlier et al. (2016) 

screened cattle populations for embryonic lethal (EL) mutations and detected 

complete recessive mechanisms resulting in the termination of a calf. The study 

validated 9 low frequency loss-of-function mutations across 3 cattle breeds (NZ Jersey, 
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NZ Holstein Friesian, and Belgian Blue cattle), where carrier x carrier crosses resulted 

in zero offspring homozygous for a loss of function allele.   

The EL study also estimated the expected number of lethal mutations and the 

frequency at which they likely segregate in populations with variable effective 

population sizes (Ne). This work reports that while human populations (Ne = 10000) 

have many more lethal mutations segregating than cattle populations (Ne = 100 (de 

Roos et al. 2008); 1,925 variants vs 11)), the average frequency of these mutations is 

much greater in cattle than humans (~2.41% vs 0.13%) (Charlier et al. 2016).  This 

suggests that while there might be fewer discrete mutations to discover in populations 

with small Ne, the power to discover ELs in these populations will be much greater, 

suggesting cattle as an interesting model that may afford greater opportunity to 

investigate non-additive genetic variation.  

While embryonic lethality is a relatively easy to detect ‘phenotypic’ outcome, semi-

lethal or reduced viability phenotypes may also have genetic origins, though have less 

obvious presentation. Jenko et al. (2019) investigated haplotype depletion in Irish beef 

breeds (Simmental, Aberdeen Angus, and Charolais) as a proxy for early termination 

(through lethality, or reduced viability). Through this approach, three haplotypes were 

identified that carried recessive lethal or semi-lethal alleles at common frequencies 

(8.8 – 15.2%). That study presents another example that major-effect non-additive 

effects exist and may segregate at alarming frequencies in highly selected populations 

(Jenko et al. 2019). 

1.7.2 Small calf syndrome 

Small calf syndrome (Cronshaw 2013) is a Mendelian recessive genetic disorder in 

Holstein-Friesian cattle resulting in animals which are much smaller than their 

contemporaries (Figure 1.2, (Reynolds et al. 2021)).  Though dairy farmers may have 
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known about the syndrome for 40 years prior, the discovery of the splice-site 

mutation in the GALNT2 gene presents opportunity for modern genetic tools to be 

used to identify causal mutations of non-additive effect in cattle (Charlier et al. 2016).  

Although dominance has received less attention than additivity, with increasing 

sample sizes and increasing marker resolution the power to detect causal dominance 

or recessive variants may represent a new opportunity to uncover novel, major effect 

genetic loci. 

 

Figure 1.2 | Photographs of GALNT2 mutant and control animals. 

Photograph of GALNT2 control and mutant individuals, contrasting a homozygous reference (wt.) 

animal and a homozygous mutant (mut.) animal for the GALNT2 c.1561-1G>A splice acceptor 

mutation. Animals represent individuals from research farm studies that were neither the smallest 

nor largest animals within each of their genotype classes. The photo has not been standardized and 

is provided for qualitative purposes (Reynolds et al. 2021). 
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1.8 Aims and Objectives 

Artificial insemination and genetic selection have shaped the population structure of 

the national herd and the genetic architecture of traits important to animal production 

and welfare. The nature of breeding schemes presents the opportunity for allele 

frequencies to fluctuate rapidly in successive generations through the use of superior 

bulls. For the most part, this has been positive for the industry with increases in the 

genetic gain of selected traits, but rare deleterious variants may also be transmitted at 

surprising frequencies.  

Non-additive variation and non-additive effects have seen relatively little study across 

species; however, these do exist and may be useful for selection and elucidating the 

genetic architecture of complex traits. Some of the difficulty in studying this 

architecture may be alleviated by the ever-expanding genomic datasets available for 

cattle, allowing variants at rarer frequencies to be investigated. The discovery and 

identification of the GALNT2 small calf syndrome mutation on farm as well as several 

embryonic lethal mutations suggests other large effect recessive QTL may exist in the 

population.  To this end, the main objectives of the work in this thesis were: 

- Develop and implement a non-additive GWAS model to detect additive and 

dominance effects. 

- Investigate non-additive effects and non-additive variation across quantitative 

traits. 

- Identify causal mutations for such effects, thereby enabling new selection 

opportunities and options for minimising the animal welfare and health 

consequence of genetic disorders 
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Through the discovery of candidate causal mutations with recessive mechanisms 

across growth and developmental traits, we aimed to further investigate their impacts 

across other traits. Follow up objectives included: 

- Validation of disease status of several candidate causal mutations in a farm 

trial. 

- Investigate pleiotropic impacts of candidate causal variants. 

- Further examine lactation traits for non-additive effects. 

1.9 Thesis structure 

Chapter 2. This chapter presents the article published in Nature Genetics detailing the 

discovery of several novel recessive mutations in growth and developmental traits. 

The Supplementary Note and Supplementary Methods have been included in the 

chapter as these sections provide substantial additional information.  Supplementary 

Tables have not been included in the thesis but can be readily obtained at 

https://doi.org/10.1038/s41588-021-00872-5. 

Chapter 3. This chapter presents un-published work to supplement the work 

presented in Chapter 2. It details the development and implementation of the GWAS 

model used to investigate non-additive effects for quantitative traits. 

Chapter 4. This chapter presents un-published work to supplement the work 

presented in Chapter 2. It details the estimation of recombination rate in cattle and 

aims to investigate whether a mutation in the MUS81 gene has an effect.  

Chapter 5. This chapter presents an article published in Genetics Selection Evolution. 

This article details the discovery of several recessive mutations in lactation traits.  

Additional File 1: Table S1 has not been included in the thesis but can be obtained at  

https://doi.org/10.1186/s12711-021-00694-3. 

https://doi.org/10.1038/s41588-021-00872-5
https://doi.org/10.1186/s12711-021-00694-3
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Chapter 6. This chapter concludes the work presented here, with discussion on the 

research contributions made, and possible future work. 

Appendix: The statement of contribution forms (DRC16) can be found here. 

1.10 Related publications, conference talks, and patents 
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2.1 Abstract 

Mammalian species carry ~100 loss-of-function variants per individual (Charlier et al. 

2016; Lek et al. 2016), where ~1–5 of these impact essential genes and cause 

embryonic lethality or severe disease when homozygous (Gao et al. 2015). The 

functions of the remainder are more difficult to resolve, although the assumption is 

that these variants impact fitness in less manifest ways. Here we report one of the 

largest sequence-resolution screens of cattle to date, targeting discovery and 

validation of non-additive effects in 130,725 animals. We highlight six novel recessive 

loci with impacts generally exceeding the largest-effect variants identified from 

additive genome-wide association studies, presenting analogues of human diseases 

and hitherto-unrecognized disorders. These loci present compelling missense (PLCD4, 

MTRF1 and DPF2), premature stop (MUS81) and splice-disrupting (GALNT2 and FGD4) 

mutations, together explaining substantial proportions of inbreeding depression. 

These results demonstrate that the frequency distribution of deleterious alleles 

segregating in selected species can afford sufficient power to directly map novel 

disorders, presenting selection opportunities to minimize the incidence of genetic 

disease.  

 

2.2 Main  

Artificial insemination enables intense selection of males, where in the case of dairy 

cattle, a single elite bull may be used to inseminate more than one million cows. While 

permitting dramatic productivity advances, this breeding strategy also promotes rare 

alleles, where deleterious variants can be driven to problematic frequencies in one or 

two generations (Daetwyler et al. 2014; Littlejohn, Henty, et al. 2014; Adams et al. 

2016). Diminished effective population sizes (Ne) also impact the frequency 
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distribution of deleterious alleles. We recently estimated the total number of recessive 

lethal mutations in Holstein-Friesian cattle (Ne ~ 100) as approximately 100-fold fewer 

than the number of equivalent sites segregating in humans (Ne ~ 10,000), although the 

frequency of any single variant was, on average, approximately 20-fold higher in cattle 

(0.13% compared with 2.49% minor allele frequency (MAF)) (Charlier et al. 2016). 

These divergent frequency characteristics should present contrasting power scenarios 

for the mapping of disease mutations, so we reasoned that recessive syndromes may 

be able to be mapped in the absence of formal disease classification in selected 

populations such as cattle – given appropriate surrogate phenotypes. Specifically, 

phenotypes such as body weight – routinely derived in animal breeding programs and 

demonstrated to represent a wide array of null alleles in mice (Reed, Lawler, and 

Tordoff 2008) – might serve as a proxy of such effects, and be detectable through non-

additive genome-wide association studies (GWAS). To explore how different model 

parameters might influence this approach, we tested the sensitivity of recessive, class 

effect and standard-additive models for detection of a hypothetical recessive mutation. 

Notably, for a 2.5% MAF mutation explaining 0.1% of the phenotypic variance of a 

trait with 0.25 heritability, ~50,000 individuals should afford 90% power to detect a 

recessive effect—as long as tests are conducted using recessive or genotype class 

definitions (Extended Data Figure 2.1).  

To look for non-additive effects in the New Zealand dairy cattle population, we 

developed a two-step genetic association model that addresses population 

stratification while estimating dominance and/or additive effects for variants at 

sequence resolution (Methods). We initially focused our analyses on body weight, 

stature and body condition score (a visual estimate of body fat content), as growth and 

developmental traits that might be assumed to capture a range of genetic disorders 

and impacts on animal fitness (Table 2.1 shows SNP-based heritabilities for these 
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traits). Using an imputed whole-genome sequence dataset comprising 16,129,957 

variants, dominance and additive association analyses were then performed using 

80,027 mixed-breed animals. Figure 2.1 contrasts genome-wide Manhattan plots from 

these models. Notably, these analyses highlighted eight non-additive quantitative trait 

loci (QTL) represented by 4,680 and 1,680 significant variants for body weight and 

stature, respectively (P < 5 × 10-8). Seven of these QTL were not represented by our 

standard-additive model (Extended Data Figure 2.2), the exception being a partial 

dominance effect for the well-described PLAG1 locus (Karim et al. 2011). A recessive 

QTL mapping adjacent to the ARSI gene similarly presented a locus previously 

implicated in bovine stature (Cai et al. 2019), although the remaining six QTL 

appeared to be novel—demonstrating recessive impacts for which five of the signals 

presented compelling candidate causative mutations (Table 2.1 and Figure. 2.2). In the 

case of the chr29:44Mb QTL, this locus presented two strong candidates locating to 

DPF2 and MUS81, with the remainder of loci represented by individual nonsense 

mutations (FGD4 and GALNT2) or conserved amino acid substitutions (PLCD4 and 

MTRF1). In all cases, these candidates were the top or near-top (R2 = 0.94–1.0) 

associated variants for each trait QTL (Figure 2.2 and Table 2.1). Assessing functional 

annotations of all statistically plausible causative variants for all eight non-additive 

body weight loci (R2 > 0.9 with the top associated variant; N = 356 variants), the 

highlighted coding mutations represented a 5-fold enrichment of nonsense and 

missense variant classes genome-wide (P = 0.001; permutation test; Supplementary 

Table 1). Significant (yet lower-fold) enrichment of protein-altering variant classes 

was also observed when considering the 3,926 QTL-linked variants identified through 

standard-additive GWAS (2-fold enrichment, empirical P = 0.0001; Supplementary 

Table 1). Not precluding the involvement of regulatory or unidentified structural 

variants at these loci, these findings suggested that the non-additive candidate 
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mutations were enriched for true positive causative variants. Notably, although no 

significant non-additive QTL were yielded for body condition score, the top associated 

genome-wide signal (P = 7.6 × 10−8) presented a novel 78-bp deletion–insertion 

frameshift of MYH1 (Extended Data Figure 2.3), a myofilament gene recently 

implicated in a muscular atrophy disorder in horses (Finno et al. 2018).  

Of all signals identified, we were particularly interested in the QTL at the PLCD4, FGD4, 

MTRF1, GALNT2, DPF2/MUS81 and MYH1 loci, since the functional candidacy of the 

mutations, and the sign, magnitude and recessive modes of effect highlighted these as 

potentially representing novel bovine syndromes. Supplementary Table 2 shows 

detailed molecular genetic descriptions of these candidates. Mutant alleles appeared 

to be breed specific, and when considered together, cumulative carrier frequencies of 

these variants were remarkably high, with >40% of purebred Holstein-Friesians and 

Jerseys carrying at least one mutant (non-ancestral) allele. Extrapolation of these 

frequencies together with mating records of genotyped sires suggested that ~1% of all 

New Zealand dairy animals born over the past 10 years would have been homozygous 

for one or more of the mutations, equating to ~9,700 of the ~940,100 females born 

annually (Supplementary Table 3 shows mutation-specific estimates).  
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Table 2.1 | Association statistics for candidate mutations at recessive loci. 

 

Non-significant QTL are in italics. N genome-wide significant variants: Bodyweight, 4,680; Stature, 1,860; Body condition score, 0. The top variant GWAS positions 

were considered to be within same QTL if within 5Mb window centred on candidate causal variant. Effects are shown only for recessive loci, with the PLAG1 locus 

(chr14:25Mbp) omitted due to displaying incomplete dominance of an otherwise well described locus. AAF, Alternate allele frequency; HF, Holstein-Friesian; J, 

Jersey. †SNP-based additive and dominance heritabilities calculated within breed (HF, N=12149; J, N=7502 cows), using a quality-filtered BovineSNP50k genotype 

dataset. h2, additive heritability; δ2, dominance heritability. #Variant nonsignificant in primary GWAS. ‡Truncated for brevity, full description is 

AC_000176.1:g.30114250_30114327delinsTGTTATGCTGTTATGTTATGT. §Note imputed genotypes based on left flank of the mutation (since full length indel 

interpreted by GATK as g.30114250_30114258 del). 

Recessive QTL Chr2:23Mbp Chr2:107Mbp Chr5:78Mbp Chr7:64Mbp Chr12:11Mbp Chr28:1Mbp Chr29:44Mbp Chr29:44Mbp Chr19:30Mbp
#

Candidate mutation -
AC_000159.1 

g.107313998G>A

AC_000162.1 

g.77632752C>T

AC_000164.1 

g.63649071C>T

AC_000169.1 

g.11463981G>A

AC_000185.1 

g.1312334G>A

AC_000186.1 

g.44213160A>G

AC_000186.1 

g.44645469G>T

AC_000176.1 

g.30114250_30114327 

delins‡

Candidate gene - PLCD4 FGD4 ARSI MTRF1 GALNT2 DPF2 MUS81 MYH1

Predicted consequence -

Amino-acid sub. 

NP_001039954.1 

p.Ala326Thr

Splice donor mut. 

XM_005206883.3 

c.1671+1G>A

Amino-acid sub. 

XP_002689338.1 

p.Gly301Ser

Amino-acid sub. 

NP_001030185.1 

p.Arg341Trp

Splice acceptor mut. 

NM_001193103.1 

c.1561-1G>A

Amino-acid sub. 

NP_001093826.1 

p.Lys216Arg

Premature stop 

XP_005227165.2 

p.Gly70*

Frameshift mut. 

NP_776542.1 

p.(Thr1698fs)

N animals physically genotyped 

for mutation (of total 80,027)
- 25059 25239 45 25235 32442 45 25231 40§

*AAF (HF, J, ALL) 0.124,0.002,0.074 0.039,0.001,0.024 0.039,0.001,0.024 0.124,0.002,0.072 0.002,0.114,0.045 0.055,0.001,0.033 0.066,0.001,0.039 0.066,0.001,0.04 0.006,0.109,0.042

Het Effect +- SE (Kg) -0.007 ± 0.60 -0.354 ± 0.879 0.834 ± 0.913 0.564 ± 0.705 1.078 ± 0.697 -0.837 ± 0.7 4.059 ± 0.788 4.126 ± 0.816 0.798 ± 0.702

Het P-value 0.990 0.687 0.361 0.424 0.122 0.232 2.63E-07 4.34E-07 0.256

Homo-Alt Effect +- SE (Kg) -11.8 ± 1.99 -108.965 ± 8.96 -48.079 ± 7.641 -11.981 ± 2.188 -19.464 ± 3.321 -112.008 ± 7.272 -53.092 ± 3.798 -51.911 ± 4.064 -4.643 ± 2.936

Homo-Alt P-value 4.0E-09 5.03E-34 3.13E-10 4.37E-08 4.59E-09 1.55E-53 2.13E-44 2.34E-37 0.114

Top variant GWAS 22836659 107313998 77632752 62891843 11463981 680910 44143856 44143856 27632220

Mutation R2 with Top Var - 1 1 0.883 1 0.944 0.996 0.976 0.002

Het  Effect +- SE (cm) 0.025 ± 0.045 -0.025 ± 0.069 0.058 ± 0.073 0.055 ± 0.052 0.025 ± 0.054 -0.134 ± 0.055 0.132 ± 0.06 0.136 ± 0.063 0.086 ± 0.054

Het P-value 0.570 0.714 0.429 0.286 0.645 0.015 0.029 0.030 0.112

Homo-Alt Effect +- SE (cm) -0.428 ± 0.157 -5.421 ± 0.668 -3.041 ± 0.609 -1.152 ± 0.168 -1.208 ± 0.263 -8.568 ± 0.621 -2.565 ± 0.322 -2.487 ± 0.318 0.285 ± 0.241

Homo-Alt P-value 6.3E-03 4.90E-16 6.00E-07 6.11E-12 4.52E-06 2.98E-43 1.82E-15 5.19E-15 0.237

Top variant GWAS 21853244 107313998 77632752 63315153 11415931 1345436 44143856 44143856 30350825

Mutation R2 with Top Var - 1 1 0.909 0.97 0.975 0.996 0.976 0.01

Het  Effect +- SE (score) 0.003 ± 0.004 0.005 ± 0.006 0.012 ± 0.006 -0.001 ± 0.005 0.009 ± 0.005 0.012 ± 0.005 0.02 ± 0.006 0.02 ± 0.005 -0.01 ± 0.005

Het P-value 0.480 0.458 0.059 0.762 0.050 0.017 5.02E-04 2.59E-04 0.076

Homo-Alt Effect +- SE (score) -0.044 ± 0.014 -0.284 ± 0.063 -0.238 ± 0.055 -0.028 ± 0.015 -0.093 ± 0.025 -0.079 ± 0.055 -0.05 ± 0.031 -0.054 ± 0.03 -0.133 ± 0.023

Homo-Alt P-value 2.1E-03 6.03E-06 1.51E-05 0.060 1.85E-04 0.156 0.115 0.073 1.22E-08

Top variant GWAS 24193486 107622778 77632752 65424545 11732788 368171 46665197 46665197 29819114

Mutation R2 with Top Var - 0.003 1 0.0003 0.892 0.015 0.546 0.55 0.906

Bodyweight

(0.390, 0.038)

(0.329,0.059)

Stature

(0.341,0.049)

(0.264,0.054)

Body cond. 

Score

(0.249,0.018)

(0.226,0.016)

Phenotype

HF - (h
2
, δ

2
)†

J - (h
2
, δ

2
)† 
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Figure 2.1 | Dominance and standard additive Manhattan plots for body weight, stature and 

body condition score. 

a–c, Significance of dominance (blue and light blue) and standard-additive (gray and light gray) 

estimates for ~16 million imputed sequence variants for body weight (a), stature (b) and body 

condition score (c) traits; alternating colors are used to demarcate chromosomes. Strength of 

association is calculated using a Z test with values shown on the y axis; a threshold indicating regions 

that surpass the multiple testing correction threshold of P = 5 × 10−8 is also indicated (horizontal gray 

line). Dominance effects were estimated from models that also included additive components, although 

the additive estimates shown were derived from a separate, standard-additive model (as per the 

section entitled GWAS in the Methods). For body weight and stature additive estimates, the y axes were 

truncated for display purposes (indicated by three dots; smallest body weight P = 3.59 × 10−127 and P 

= 4.97 × 10−442 for chr5 and chr14 respectively, and smallest stature P = 3.23 × 10−97 and 2.0 × 

10−306, respectively). 
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Figure 2.2 | Regional Manhattan plots for the six novel recessive body weight QTL. 

a–f, 1.5-Mb Manhattan plots showing body weight QTL representing the chr2:107Mb (a), chr5:78Mb 

(b), chr12:11Mb (c), chr28:1Mb (d), chr29:44Mb (e) and chr2:22Mb (f) loci. P values are shown on the 

y axis (calculated using a Z test), with the genome-wide significance threshold indicated by the 

horizontal gray line in each plot. mut, mutant; wt, wild type. Variants are colored by linkage 

disequilibrium R2 values with the top tag variant per locus; protein-coding variants are shown as 

triangles. For missense candidates (a,c,e), multispecies protein sequence alignments are shown 

(residues colored by polarity). For nonsense candidates, mammary RNA sequence alignments show 

loss of splicing efficiency (b,d), or predicted truncation due to premature termination (*first deleted 

residue; e). 
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To explore the diversity of other phenotypes that might be affected, we tested the impacts 

of the candidate mutations on 16 additional animal performance traits using pedigree-

based mixed linear models (Methods). These analyses revealed a variety of other major 

effects (Supplementary Table 4), with lactation and anatomical impacts generally 

exceeding those of two of the largest, most well-recognized additive QTL in the cattle 

literature (DGAT1 (Grisart et al. 2002) and PLAG1 (Karim et al. 2011); Figure 2.3 and 

Extended Data Figure 2.2). While the location of the FGD4 mutation adjacent to a major 

milk composition locus (Lopdell et al. 2019) suggested linkage disequilibrium as a 

possible explanation for some of these associations, representative genotypes of these loci 

were in weak linkage disequilibrium (maximum R2 = 0.018), and none of the other signals 

mapped near major known additive loci in our population. Acknowledging genetic 

correlation between many of these traits, these findings suggested broad pleiotropy for 

most of the variants, with the size and sign of effects further supporting their status as 

having pathogenic impacts. 

Given their recessive modes of effect, we wondered whether the highlighted loci might 

underpin inbreeding depression effects on body weight, estimated as −0.77 kg per 1% of 

inbreeding in the GWAS population. Here, mixed models that included inbreeding 

coefficients and either did or did not include genotype classes of the eight non-additive 

QTL were compared (Methods). These collective loci were found to account for 23.5% of 

the variance otherwise attributable to inbreeding depression, where by contrast, the 

variants explained 0.7% when fitted as standard-additive effects. Further, most of this 

effect did not appear to be due to tagging of homozygosity per se, since random, permuted 

samples of MAF-matched variants assessed as non-additive effects explained an average 

of 1.5% of inbreeding-attributable variance (range 0–3.4% from 20 samples).  
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Figure 2.3 | Heat map showing a diversity of effects for recessive mutations of interest. 

Phenotypic effects of the six novel recessive candidate mutations are shown, represented alongside 

effects for the well-documented, major-effect DGAT1 and PLAG1 additive mutations for contrast (right-

most columns). For a given gene, columns showing heterozygote and alternative allele homozygote 

effects are indicated, where circle color denotes effect sign, color intensity denotes effect magnitude, 

and circle size indicates strength of association (P values are derived from two-sided t-tests; circles 

containing solid black dots indicate significant association where P < 5 × 10-8). *Note that the 

chr29:44Mb QTL that presented two tightly linked candidate mutations in DPF2 and MUS81 is 

represented by the DPF2 mutation alone.  
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Within-breed representation of the recessive variant genotype classes suggested that 

homozygote mutant individuals were underrepresented as mature animals for a subset of 

loci, observations supported by analysis of transmission ratios within carrier crosses 

(Supplementary Table 5). Since most animals are genotyped in young adulthood, these 

findings suggested a survival disadvantage for some of the mutations either in utero, or at 

some other stage of rearing before genotype ascertainment (for example, farmer-directed 

culling). Two additional populations were then used to validate the effects of the variants. 

First, a retrospective analysis of milk traits from 31,580 animals was performed using the 

same single-locus association models applied above. While the utility of this dataset was 

limited by the number of phenotypes interrogated (that is, the body weight, stature and 

body condition score traits used for GWAS were not measured in these animals), all loci 

demonstrated lactation effects of the same sign and similar magnitude to those 

highlighted in the discovery population (Supplementary Table 6). We next conducted a 

prospective analysis of juvenile animals—performed to address potential effect size 

underestimation due to loss of affected animals in early life. Here, pedigree data were 

used to identify animals <1 year old whose sires and maternal grandsires were both 

carriers for one or more of the PLCD4, DPF2/MUS81 and FGD4 mutations (prioritized due 

to effect sizes and frequency). Association testing in this cohort of 568 calves identified 

significant effects (P < 0.05) for the PLCD4 and FGD4 variants, with the DPF2/MUS81 effect 

nonsignificant in juvenile animals (Supplementary Table 7). 

To understand the largest-effect syndromes in detail, we conducted more detailed 

molecular and physiological analyses of the PLCD4, FGD4, GALNT2 and DPF2/MUS81 

mutations. First, we assessed the expression consequences of the nonsense variants using 

a large, pre-existing (Littlejohn et al. 2016) mammary RNA-sequencing (RNA-seq) dataset. 



48 

 

Transcripts bearing the GALNT2, FGD4 and MUS81 mutations did not appear to be subject 

to nonsense-mediated RNA decay, where expression QTL (eQTL) analysis suggested 

increased expression of FGD4 and MUS81 in carrier animals (Extended Data Figure 2.4). 

Splicing-based eQTL analysis confirmed loss of splice fidelity for the GALNT2 and FGD4 

variants, however, with mutant transcripts showing intron retention and activation of 

cryptic splice sites (Extended Data Figures 2.4 and 2.5). More detailed analyses were then 

performed on animals homozygous for these mutations, conducted on a research farm 

utilizing control animals broadly matched for age, sire and breed. Supplementary Tables 8 

and 9 detail anatomical and blood metabolic associations between mutants and controls. 

In humans, analogous mutations in DPF2, FGD4 and GALNT2 cause Coffin–Siris syndrome 

(Vasileiou et al. 2018), Charcot Marie Tooth syndrome (Delague et al. 2007; Stendel et al. 

2007) and a congenital disorder of glycosylation (GALNT2-CDG), respectively. 

Peculiarities in hoof conformation were potentially suggestive of Coffin–Siris syndrome in 

some DPF2 homozygotes (Extended Data Figure 2.6), although quantitative analysis did 

not show significant differences (Supplementary Table 8). In FGD4 homozygotes, 

apparent loss of coordination, and histology showing lesions of axonal degeneration, 

Schwann cell hyperplasia and demyelination consistent with Charcot Marie Tooth 

syndrome in peripheral nerves (Extended Data Figure 2.7), confirmed a bovine form of 

that disorder. Likewise, significant reductions in circulating triglycerides, and the 

markedly reduced body weight and stature of GALNT2 homozygotes (Extended Data 

Figure 2.8), are features common to most patients with GALNT2-CDG—as well as mouse 

and rat Galnt2-knockout models (Khetarpal et al. 2016; Zilmer et al. 2020). Liver 

transcriptomic analysis similarly suggested perturbed lipid metabolism in GALNT2-

homozygous calves, showing a >10-fold increase in expression of transcripts encoding the 



 

 

49 

 

gluco- and lipo-regulatory hormone FGF21 (Ge et al. 2012) (P = 3.9 × 10-7; Supplementary 

Table 10). Further discussion and presentation of results pertaining to the DPF2/MUS81, 

FGD4 and GALNT2 QTL in these human disease contexts is given in the Supplementary 

Note.  

Although no clear pathogenic effects have been ascribed to mutations in the PLCD4 gene 

in humans, it is noteworthy that PLCD4 homozygotes displayed the most striking 

anatomical impacts, showing ~100-kg reductions in body weight, and abnormal body 

conformation (Extended Data Figure 2.8 and Supplementary Tables 4 and 8). Associations 

for stature and body composition traits have been highlighted near human (Buniello et al. 

2019) and ovine (Bolormaa et al. 2016) PLCD4, although mice homozygous for Plcd4-null 

mutations appear anatomically normal (Fukami et al. 2001)— suggesting that additional 

work will be required to definitively establish the causality of the p.Ala326Thr alteration 

at this locus. Although we did not investigate MTRF1-mutant calves, we note that this gene 

similarly has no human disease implication—nor knockout mouse model. These findings 

suggest that p.Arg341Trp represents one of the first deleterious MTRF1 mutations 

reported for mammalian species, acknowledging the comparatively modest effects 

attributed to this mutation. 

We note that several recent non-additive GWAS published in humans (Zhu et al. 2015) and 

cattle (Bolormaa et al. 2015; Jiang et al. 2017; 2019) have presented significant loci, 

although contrary to the findings reported here, major recessive effects were not 

highlighted in these studies. In a human context, this contrast can be reconciled by a 

comparatively high Ne and consequent low average allele frequency of deleterious 

mutation (Charlier et al. 2016; Lek et al. 2014), where compared to cattle, fewer rare 
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allele homozygotes will be presented for most mutations. While the largest previous non-

additive cattle GWAS used a population size far exceeding that reported here (N = 294,000 

cows (Jiang et al. 2019)), this analysis was conducted using medium-density SNP-chip 

genotypes (~57,000 variants filtered at MAF > 5%). This suggests low-MAF recessive 

mutations may have been incompletely captured in this study, and indeed, when 

visualizing our body weight GWAS results at BovineSNP50k resolution (~46,000 

variants), only one of the major-effect recessive loci remains represented (DPF2/MUS81 

locus; Extended Data Figure 2.9). These observations demonstrate the importance of MAF 

to sensitivity of discovery, so to investigate these influences more broadly, we further 

simulated a population of 80,000 animals harbouring recessive mutations of variable 

effect size, segregating at 1–5% MAF (Methods). Association analysis of these data shows 

even the largest-effect mutations are no longer discernible at ~1% MAF (Extended Data 

Figure 2.9), highlighting the lower bound of detection for population sizes similar to that 

investigated here. These findings also represent the best-case scenario, since no account 

of genotype or imputation error is made. We (and others (Pausch et al. 2017)) observe 

that imputation accuracy declines markedly at frequencies approaching 1% in cattle 

(Extended Data Figure 2.10), and although the mutations highlighted here segregate at 2–

5% MAF and appear to have been accurately imputed (imputation allelic R2 (AR2) metrics 

of >0.95), even higher MAF causal variants that do not phase or impute well are likely to 

be obscured from detection. Expanded imputation reference datasets and physical 

genotyping of functionally prioritized candidates are thus likely to play key roles in future 

discovery, in addition to the increased sample sizes required to represent homozygotes 

for these alleles.  
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In summary, we highlight the existence of non-additive deleterious alleles segregating at 

marked frequencies in cattle, where we detail six novel putative causative mutations with 

effects ranging from mild (3.5% reduction in body weight) to severe (>25% reduction in 

body weight and increased early-life mortality). These discoveries demonstrate the use of 

proxy phenotypes to directly map deleterious effects in the absence of prior disease 

identification, an approach that holds promise for the identification of similar effects in 

other selected species. Importantly, these results create new opportunities to improve the 

health and welfare of animals, where genetic screening and a broader awareness of 

syndromes will allow breeding and management strategies to minimize genetic disease. 
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2.3 Methods 

2.3.1 Animal populations. 

Supplementary Table 11 summarizes the different animal populations, their demographic 

details and respective analyses performed in this study. The ‘Animal populations’ 

description here outlines five of these populations in particular, for which the most 

detailed studies were performed (N = 130,725 animals total, though excluding the RNA 

sequence population that is described further in that section). Animals within these five 

key datasets mostly consisted of commercially farmed, outbred cows that had been 

genotyped and phenotyped as part of commercial livestock improvement activities. These 

five datasets were as follows: (1) the ‘discovery population’ used for initial GWAS, (2) a 

‘validation population’ used for point-wise association tests of putative causative 

mutations, (3) a ‘homozygous depletion’ population used for analysis of genotype 

representation statistics and carrier cross outcomes, (4) a group of ‘prospectively 

genotyped calves’ and (5) a group largely overlapping with (4) that was subjected to 

detailed phenotypic analysis at a research farm (the ‘research farm study’). 

The discovery population comprised a total of 80,027 cows, representing the union of 

samples for which body weight (N = 79,945), stature (N = 75,041) or body condition score 

(N = 75,617) phenotypes and imputed sequence genotypes were available. The validation 

population comprised 31,580 animals that had also been genotyped and imputed to 

genome-sequence-resolution data, and for which milk fat, protein and volume yield data 

were available. The homozygous depletion population comprised a total of 15,379 bulls 

and 35,790 cows. Two analyses were performed to investigate the relative representation 

of candidate causative mutation classes in these animals, with homozygous depletion 
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statistics calculated using 49,115 purebreds (defined as 16/16ths breed proportion based 

on pedigree), and carrier cross trio analysis conducted using an overlapping set of 4,276 

animals. These animals overlapped with the discovery and validation populations, with 

the main difference being that this population also included males, and some SNP-chip-

genotyped animals for which phenotypic records were not available. 

The prospectively genotyped calves study represented 568 calves that were identified as 

candidate homozygous affected animals for one of the PLCD4, FGD4 or DPF2/MUS81 

recessive effects. These candidates were selected through analysis of pedigree records to 

identify animals less than 1 year old whose sires and maternal grandsires were both 

carriers for one of the recessive alleles. Assuming a 20% error in recorded parentage 

assignment, these calves were expected to present a 1 in ~15 probability of being 

homozygous for one of the alleles of interest. The research farm study comprised a subset 

of 34 of these prospectively genotyped calves, and an additional 12 young animals 

assessed as part of a 2013/2014 investigation of the GALNT2 mutation. These 46 animals 

were subjected to detailed molecular and physiological analyses (see the section below 

entitled Phenotypic analysis, and the Supplementary Note). For simplicity of 

communication of results and methods, these two deeply phenotyped groups of animals 

are considered and presented together in the manuscript. 

2.3.2 Phenotypic analysis. 

The phenotypes used for the GWAS in the discovery population consisted of measured 

body weight (also referred to as live weight), measured stature or subjectively assessed 

body condition score. Lactation traits, and a range of other, additional phenotypes, were 

also investigated in the discovery population using single-locus models. Definitions of 
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these phenotypes are provided in the Supplementary Methods, and further in the 

‘Evaluation system for traits other than production’ booklet (Advisory Committee on 

Traits Other than Production 2020). Mixed linear models were used to fit class variables 

and covariates for all phenotypes before genetic analysis. These models were applied to 

the entire cattle population for national genetic evaluation, and differed slightly by trait, 

based on the context and properties of each phenotype. Broadly, they included fixed 

effects for cohort or contemporary group, age (in days) at calving and pairwise heterosis 

between breed designations (Holstein, Friesian, Jersey, Ayrshire and other). Further trait-

specific model parameters are detailed in the Supplementary Methods. 

The research farm studies were investigated as part of two, more detailed, prospective 

phenotypic analyses. The group of 34 calves consisted of 9 control animals, and affected 

(homozygous) animals representing either the PLCD4 (N = 8), FGD4 (N = 9) or 

DPF2/MUS81 (N = 8) mutation classes. Control animals were part of the same study and 

common to all three of the mutation classes, being broadly matched for age, sire and 

breed. The 12 animals separately assessed as part of the GALNT2 study consisted of 6 

affected individuals and 6 controls. Both of these studies were performed on an 

AgResearch Ruakura research farm in Hamilton, New Zealand, with control and affected 

animals grazed and managed together. Supplementary Tables 5 and 6 detail the range of 

phenotypes collectively measured on these animals, and a description of the more 

involved analyses (including blood biochemistry, anatomical measures and histological 

procedures) is provided in the Supplementary Note. 



 

 

55 

 

2.3.3 Sequencing, mapping and sequence informatics. 

Whole-genome sequencing of the 565 animals that formed the reference population for 

sequence imputation was performed as previously described (Littlejohn, Henty, et al. 

2014; Littlejohn et al. 2016). Briefly, animals of HF, J or HF × J breeds were sequenced on 

an Illumina HiSeq 2000 instrument targeting 100-bp paired-end reads. Genome sequence 

data were aligned to the UMD3.1 genome assembly using BWA MEM 0.7.8 (Li 2013), 

yielding mean and median mapped read depths of 15× and 8×, respectively. Variant 

calling was conducted using the GATK HaplotypeCaller (version 3.2) (DePristo et al. 2011) 

with base quality score recalibration applied.  

To quantitatively assess the splicing and gene expression consequences of the FGD4, 

GALNT2 and MUS81 nonsense variants, analyses were performed using a large, pre-

existing RNA-seq dataset based on mammary biopsy of 389 lactating cows. Details 

regarding the animals and sequencing methods underpinning this dataset have been 

described previously(Littlejohn et al. 2016). Additional data processing relevant to the 

current manuscript is described in the Supplementary Note. It should be noted that unlike 

all DNA-based analyses that referenced the UMD3.1 genome, RNA-seq-based data were 

mapped to the ARS-UCD1.2 assembly. Further clarification on how these two assemblies 

were utilized is given in the Supplementary Note. 

To generate gene expression phenotypes for eQTL analysis, reads mapping to each gene 

were counted using the featureCounts module of Subread (version 1.5.3) (Liao, Smyth, 

and Shi 2014), and then normalized and transformed using the variance-stabilizing 

transformation function implemented in DESeq2 (Love, Huber, and Anders 2014). Splice 

efficiency phenotype generation was similar to that recently described (Fink et al. 2020), 
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calculated as the number of reads that spliced or did not splice at a given intron–exon 

boundary, expressed as a proportion and transformed using the logit function. These 

criteria yielded per-junction estimates of splicing efficiency, with RefSeq annotation 

release 106 reference annotations XM_024992557.1 and NM_001193103.2 used to define 

gene structures for FGD4 and GALNT2, respectively. Gene expression and splice 

phenotypes were then used to perform association analysis, as further described below, 

in the section entitled Single-locus models. For RNA sequencing of liver tissue, biopsy was 

performed using an established protocol (Lucy et al. 2009) targeting the 12 young 

animals investigated as part of analysis of the GALNT2 mutation (6 affected, 6 controls). 

Further details regarding biopsy, RNA extraction and subsequent sequencing, read 

mapping and expression phenotype derivation are provided in the Supplementary Note. 

2.3.4 DNA extraction, genotyping and imputation. 

The majority of the study animals (N = 130,145) were genotyped using SNP chips, with 

DNA extraction performed using either ear-punch tissue samples or blood. Samples were 

processed by GeneMark using Qiagen BioSprint kits or by GeneSeek using a MagMAX 

system (Life Technologies). Genotyping was performed using one or more of a variety of 

platforms, including the Geneseek GGPv1, GGPv2, GGPv3, GGP50k, Illumina 

BovineSNP50k or BovineHD 777k SNP chips. For the 32,455 samples typed on the GGPv3 

platform, 3,779 protein-altering variants were directly interrogated in these animals, 

where sequence-derived missense and nonsense variants had been included as custom 

content on that platform as part of a previous study (Charlier et al. 2016). A subset of the 

same custom content (N = 349 variants) was also typed on the GGP50k platform (N = 

10,224 of 130,145 samples). Table 2.1 outlines the number of animals from the discovery 

population that were physically genotyped for the loci of primary interest, based on 



 

 

57 

 

genotyping with these two panels. A description of assays used to target single mutations 

of interest is given in the Supplementary Note. 

Imputation of genome sequence data in the study animals was performed using Beagle v4 

(Browning and Browning 2009) and has recently been described in detail (Jivanji et al. 

2019), although we also included steps specific to the current study. Specifically, in 

addition to the 19,320,540 sequence variants imputed using standard parameters, we 

reintroduced the physically genotyped, protein-altering GGPv3 variant sites (see above) 

that were otherwise lost due to an AR2 > 0.95 phasing quality threshold applied to the 

genome sequence reference. Before GWAS, an additional frequency filter was also applied 

to remove variants that did not have at least five individuals per genotype class (roughly 

equivalent to MAF < 0.01). Together, application of these steps yielded the final dataset of 

16,129,957 variants used for association analysis. Extended Data Figure 2.10 shows AR2 

distributions by MAF class for all variants used for GWAS, as well as the relationship 

between AR2 and other statistical parameters post-GWAS. The Supplementary Note 

elaborates on the baseline sequence imputation strategy and methods used to impute and 

filter the BovineSNP50k panel dataset that was used for population stratification 

adjustment. 

2.3.5 Association analysis. 

GWAS. 

We applied a GWAS method to test the effects of all imputed sequence variants, one at a 

time, while simultaneously adjusting for genomic effects that lay outside the given 

genomic segment of interest. For heritability estimations performed before GWAS, see 

Supplementary Note. 
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Overview. 

Conceptually this method involved fitting the model: 

 𝐲 =  T𝐛 +  M_𝛂_  +  𝐞 (1) 

where y is a vector of phenotypic deviations for one trait, b is a vector of genotype class 

effects for the sequence variant of interest, T is a design matrix relating records to 

genotype class for the sequence variant, α_ is a vector of random SNP-chip additive 

marker effects spanning the whole genome except the segment of interest such that α_ ~ 

N(0, Iσα
2), where I is an identity matrix of order equal to the number of marker effects and 

σα
2

 represents the marker effect variance, M_ is a matrix obtained from M (a matrix 

relating records to SNP markers (encoded [0, 1, 2])), by deleting the columns 

corresponding to the region flanking the sequence variant, and e is an error vector with e 

~ N(0, D), where for traits with single observations, D = Iσe
2, I is an identity matrix of 

order equal to the number of phenotypic records and σe
2 represents the residual error 

variance. For traits represented by the mean of a variable number of repeated 

observations, the diagonal elements of D varied according to the number of observations 

in the mean. 

This model was applied in a two-step method. First, we adjusted phenotypic deviations 

for population structure using marker effects (M_α_) (1), sampled using a BayesC0 

algorithm based on the Markov chain Monte Carlo method (Fernando and Garrick 2013). 

We applied a leave-one-segment-out (LOSO) approach by adjusting phenotypic deviations 

for M_ and α_ instead of M and α, respectively. Second, each sequence variant was 

separately tested for association with its respective LOSO-adjusted phenotypic deviations 
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using two association models, a standard-additive model and a dominance model. Further 

details on how these methods were applied are provided in the Supplementary Note.  

Standard-additive model. 

In the standard-additive model, b is a vector of an intercept and an additive effect (β), and 

T is a design matrix relating records to genotype for the sequence variant. We obtained a 

vector of plausible intercept and standard-additive genotype effects for the adjusted 

phenotypic deviations, and made inference on the standard-additive effect of each 

sequence variant. 

Dominance model. 

In the dominance model, we fit genotypic additive (a, covariate encoded [0, 1, 2]) and 

dominance (d, covariate encoded [0, 1, 0]) effects. We chose a model formulation to ease 

the interpretability of results and enable recessive, over-dominant and partial dominance 

effects to be readily differentiated, an approach that differs from other parameterizations 

(Zhu et al. 2015; Jiang et al. 2019) (see Supplementary Note for further considerations on 

model contrasts with prior studies). For each sequence variant, a vector of plausible 

samples of the additive (�̃�) and dominance (�̃�) effects was computed from the samples of 

genotype class effects (�̃�) via the second and third elements of the vector 𝑇−1�̃�, where  

𝑇 =  [
1 0 0
1 1 1
1 2 0

]. 

Summarizing results. 

The respective plausible distributions of genotype effects for each imputed sequence 

variant, x, were then summarized by their posterior means, βx, posterior standard 
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deviations, σx, and z statistics, zx, following a standard normal distribution as in Bernal 

Rubio et al. (2015).  

 
𝑧𝑥 =  

𝛽𝑥

𝜎𝑥

, 𝑤ℎ𝑒𝑟𝑒 𝑧𝑥  ~ 𝑁(0, 1) 
(2) 

For each variant, the statistical significance of additive and dominance genetic effects was 

evaluated using a Z test. For GWAS analyses, we considered variants to be statistically 

significant using a multiple testing threshold of significance at P = 5 × 10-8. To identify 

individual QTL from our standard-additive model and permit effect size comparison with 

variants highlighted from dominance GWAS, we used GCTA-COJO (Yang et al. 2012), 

similarly selecting variants at P < 5 × 10-8.  

2.3.6 Single-locus models. 

We used a pedigree-based mixed linear model for estimation of single-locus effects on 

additional traits including phenotypic deviations, gene expression levels and body 

weights from prospectively genotyped calves and animals in the research farm study. This 

model incorporated repeated measures, where applicable, and consisted of the following 

equation: 

 𝐲 =  X𝐛 +  Z𝐮 +  W𝐩 +  𝐞 (3) 

where y is a vector of phenotypic deviations, gene expression levels or body weights, b is 

a vector of fixed effects for the variant of interest, X is a design matrix relating records to 

respective fixed effects, u is a vector of random breeding value effects such that u ~ N(0, 

Aσu
2), where σu

2 represents the additive genetic variance and A is the additive relationship 

matrix conditional on the pedigree, Z is a design matrix relating records to breeding 

values, p is a vector of random permanent environment effects such that p ~ N(0, Iσp
2), 
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where σp
2 represents the permanent environment variance and I is an identity matrix of 

order equal to the number of phenotypic records, W is a design matrix relating records to 

permanent environment effects and e is a random error term, where e ~ N(0, Iσe
2), where 

σe
2 represents the residual error variance. The random variables u, p and e are assumed 

to be uncorrelated. For further details regarding specific model characteristics and 

implementations for each phenotype, see Supplementary Note. 

2.3.7 Enrichment of functional categories. 

We aimed to test for the enrichment of annotation categories for sets of statistically 

plausible causative variants. For non-additive QTL, a set of 356 variants was tested based 

on a linkage disequilibrium threshold that selected all variants with R2 > 0.9 with the top 

associated variant at each body weight locus. SnpEff 4.3 (Cingolani et al. 2012) was used 

to determine the predicted functional effect of the sequence variants based on Bos taurus 

annotations from Ensembl release 86 for the UMD 3.1 assembly. We then randomly 

selected 10,000 samples of MAF-matched variants to perform a permutation test and 

estimate whether the observed proportion of plausible causative variants with a 

predicted nonsense or missense annotation was greater than expected by chance. This 

same process was repeated for analysis of 3,926 additive QTL tag variants; additional 

details regarding variant selection, permutation and other annotation-related analyses 

conducted in the paper are given in the Supplementary Note. 

2.3.8 Analysis of homozygote frequencies and depletion. 

To estimate the number of historical animals that would have been affected by one or 

more of the key recessive mutations of interest, we used pedigree records in conjunction 

with sire genotypes to calculate per-individual homozygote probabilities. These estimates 
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leveraged genotype information from 5,550 sires to highlight 2,799,022 historical animals 

for analysis, with probabilities calculated using the equation presented in the 

Supplementary Note. Homozygous depletion was assessed for each candidate causative 

mutation within the purebred population of its respective breed of origin, applying a 

standard likelihood ratio test as previously reported (Charlier et al. 2016) and further 

described in the Supplementary Note. Carrier cross genotype proportions were also 

assessed for each candidate causative mutation, using a goodness-of-fit test that aimed to 

detect loss of individuals from the homozygous alternative genotype class 

(Supplementary Table 5). 

2.3.9 Inbreeding analysis. 

To assess whether the non-additive QTL might explain some of the variance in inbreeding 

depression of body weight, we first calculated inbreeding coefficients using all animals in 

the GWAS discovery population (Supplementary Note). Following removal of animals 

with inbreeding coefficients of zero (to avoid inclusion of animals with inadequate 

pedigree information— N = 68,578 cows remaining), we then formulated and compared 

the following two models: 

 𝐲 =  1𝜇 +  𝐅𝑏1
𝑅

+  M𝛂 +  𝐞 (4) 

 𝐲 =  1𝜇 +  𝐅𝑏1
𝐹

+  X𝒃𝟐  +  M𝛂 +  𝐞 (5) 

Terms are as described in the GWAS section above (1) with the following additions: y is a 

vector of phenotypic deviations for body weight (pre-adjusted for effects described in the 

section entitled Phenotypic analysis including pairwise heterosis), μ is the fixed effect 

representing the overall mean, 𝑏1
𝑅

 and 𝑏1
𝐹 are the regression coefficients of body weight on 

inbreeding representing the reduced and full models respectively, F is a vector of 
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pedigree-derived inbreeding coefficients, b2 is a vector of genotype class effects for the 

recessive QTL and X is a design matrix relating records to additive and dominance effects 

of non-additive QTL. 𝐅𝑏1
𝑅

 and 𝐅𝑏1
𝐹

 are the respective vectors of the inbreeding depression 

of body weight for each individual. 𝐅𝑏1
𝑅 , 𝐅𝑏1

𝐹and b2 are fixed effects, where α are random. 

These models were fitted using a BayesC0 algorithm as implemented in GenSel using 

standard priors and convergence was assessed using the Geweke diagnostic. To assess the 

impact of the recessive QTL on the effect of inbreeding, we compared 𝑏1
𝑅 and 𝑏1

𝐹
 ; further 

details regarding comparison of these models, and complementary analyses performed to 

estimate the contribution of random selections of variants to inbreeding depression, are 

given in the Supplementary Note. 

2.3.10 Simulation. 

We performed simulation analyses to investigate factors influencing sensitivity of 

detection and confirm that our model could differentiate recessive QTL from standard-

additive effects more broadly. Here, QMSim (Sargolzaei and Schenkel 2009) software was 

used to simulate a population with 800,000 SNP markers and 750 standard-additive QTL 

distributed across the 29 B. taurus autosomes, using parameters broadly aligned with 

those described in Brito et al. (2011). The exact parameters and protocol are described in 

the Supplementary Note. To generate non-additive QTL in these data, we randomly 

selected 30 markers from our simulated dataset with allele frequencies ranging from 0.01 

to 0.05 to designate as recessive mutations. A complete recessive effect equivalent to one-

half or one full standard deviation of the phenotype was then assigned to these markers 

(comparable to the magnitude of significant QTL described in this study). Our GWAS 

methods were then applied to this dataset to determine the sensitivity of QTL detection. 
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2.4 Extended Data Figures 

 

Extended Data Figure 2.1 | Power calculations for different association models and sample sizes. 

Plot contrasting the power of detection for different phenotype sources (i.e. cows, sires), different 

sample sizes, and different models (additive, recessive, class effect, and additive – without affected 

sires) given a locus explaining 0.1% of the phenotypic variance with a minor allele frequency of 2.5%, 

and heritability of 0.25. For sire models, each genotyped sire is assumed to have 100 un-genotyped 

daughters. Note that although sire models generally present higher power than cow models for a given 

number of genotyped animals, these models are not directly comparable since analyses based on 

breeding values typically leverage far fewer sires than studies using cows directly. Also note power for 

these sire models is provided for context only, since breeding values were not leveraged in analyses 

reported in this manuscript. 
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Extended Data Figure 2.2 | Dominance and additive QTL contrasts of allele frequencies, effect 

sizes, genotype group means, and p-values. 

a, Plot contrasting minor allele frequency (MAF) and absolute effect size (Effect size, kg) of QTL 

identified in the standard-additive model (blue), and the dominance model (red) for body weight. Note 

that for equitable effect size comparison both additive and dominance estimates are represented as 

allele substitutions (i.e. effect of the heterozygote compared to the reference homozygote), so 

dominance effects only represent half the effect observed in homozygous individuals. b, Chromosome-

wide scatterplots contrasting P-values of the eight recessive QTL for the standard-additive model 

(p_standard_additive) and dominance model (p_additive/p_dominance). P-values were computed using 
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Z-tests, the genome-wide significance thresholds of p = 5 × 10-8 are drawn in red, an x = y line is drawn 

in black. Note that only seven chromosomes are presented since two effects were identified on 

chromosome 2 (and thus are not readily differentiated). c, Box plots showing adjusted-bodyweight 

genotype means for the 8 non-additive loci in the discovery population (N=79,945 cows). Genotypes 

used for display represent putative causative mutations or lead associated variants where no obvious 

candidate was identified. Note the largely additive effect presented by the PLAG1 locus, highlighted in 

GWAS due to a partial dominance effect. Box plots show median (centre line), interquartile range (box 

limits), and upper and lower whiskers (maxima and minima data points).  
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Extended Data Figure 2.3 | Manhattan plot of Chr19 recessive QTL showing MYH1 frameshifting 

indel. 

1.5Mbp sequence interval showing the top genome-wide non-additive association signal from analysis 

of body condition score in 75,617 cows; P-values were calculated using Z-tests. The genome-wide 

significance threshold of P < 5 × 10-8 is indicated by the horizontal grey line, note no variants at this 

locus surpassed this threshold (smallest P=7.6 × 10-8). Lead variants of the signal tag a 78 bp compound 

insertion deletion variant evident from inspection of whole genome sequence alignments. Genome 

sequence alignment of homozygous animal shown, resulting in predicted knockout of MYH1 due to 

simultaneous loss of 19 amino acids and introduction of a premature stop codon at exon 34.   
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Extended Data Figure 2.4 | Per-junction and per-gene Manhattan plots for splicing efficiency and 

gene expression QTL. 

Manhattan plots showing splicing efficiency and whole-transcript expression QTL effects (P-values 

calculated using 2-sided t-tests). Splicing efficiency analysis was performed for the FGD4 (a) and 

GALNT2 (b) genes, with associations highlighting junctions for which splicing appears to be genetically 

modulated in cis. The proportion of spliced to un-spliced reads at each junction has been treated as an 

individual phenotype, with association analysis performed using intervals of imputed sequence data 

spanning the annotated gene structures, and ± 100kbp 5’ and 3’ of the gene boundaries. The splicing 

junction predicted to be impacted by the splice donor (FGD4) and acceptor (GALNT2) mutations is 

indicated by the blue highlighted panels, with the candidate causative mutation indicated in red. Whole 

transcript eQTL analysis was performed to assess possible gene expression impacts as a consequence 

of nonsense mediated RNA decay (NMD) for the FGD4 (c), GALNT2 (d), and MUS81 (e) genes that 

harbour nonsense mutations. Note that for the two genes that show significant eQTL (FGD4 and 

MUS81), the mutant allele is overexpressed and thus no NMD is apparent. In the case of the MUS81 and 

GALNT2 genes, lack of apparent NMD can be anticipated given the position of the GALNT2 c.1561-1G>A 

mutation in the final exon, and the presence of an in-frame start codon (p.Met76) following the p.Gly70 

mutation for MUS81.  
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Extended Data Figure 2.5 | Splicing consequences of FGD4 and GALNT2 essential splice 

mutations. 

Mammary RNA-seq alignments for the FGD4 (a) and GALNT2 (b) genes, showing wildtype and carrier 

animals for the FGD4 c.1671+1G>A and GALNT2 c.1561-1G>A splice mutations (two animals 

representing each genotype class per gene). Intron and exon numbers reference the 

ENSBTAT00000007175.5 and ENSBTAT00000006404.5 transcript annotations for the FGD4 and 

GALNT2 genes respectively. Right-most panels show intron-exon boundaries of the mutation-

implicated splice junction, left-most panels show kilobase-level views of the whole intron and adjoining 
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exon junction. Coverage tracks demonstrate clear intron retention for FGD4 heterozygous mutants, 

without obvious cryptic splicing. Animals heterozygous for GALNT2 mutant transcripts show less 

uniform intron retention, though at least three recurrent cryptic splice sites indicated by the purple 

arrows (green arrows show annotated junctions). c Putative translations for these alternatively spliced 

transcripts are indicated (light blue=reference splice, red=mis-splice), where the first base of the new 

acceptor exon boundaries are: cryptic 1 chr28 g.1309085; cryptic 2 chr28 g.1312087; cryptic 3 chr28 

g.1312203. Note that all intron retention and cryptic splices are predicted to cause premature 

termination, with the exception of the ‘GALNT2 cryptic 3’ isoform that encodes a 44aa 5’ frame-

extension of exon 16. 
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Extended Data Figure 2.6 | Hoof anatomical observations for DPF2 mutant and control 

individuals. 

Figure showing hoof characteristics of DPF2 mutant and control cattle. Photographs (a), show the right 

rear hooves of representative mutants and controls, with the hooves of some mutants showing 

subjective differences including overlapping claw-tips and longer claws overall compared to controls 

(see centre two animals in mutant group). However, quantitative comparisons based on hoof 

measurements (b) did not reveal significant differences between groups (N=8 mutant and 9 control 

animals respectively: Supplementary Table 8). Box plots show median (centre line), interquartile range 

(box limits), and upper and lower whiskers (maxima and minima data points).  
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Extended Data Figure 2.7 | Nerve histology of FGD4 mutant and control individuals. 

Common digital nerve of forelimb from two different FGD4 homozygotes (a and b) showing 

hypercellularity, Schwann cell hyperplasia, axonal swelling and degeneration (black arrow) (2000X, 

HE). c, Common digital nerve of forelimb from control animal (2000X, HE). d, Saphenous nerve from an 

FGD4 homozygote showing lack of myelin staining consistent with demyelination (2000X, Luxol fast 

blue). e, Saphenous nerve from a control animal (2000X, Luxol fast blue). Micrographs are 

representative of the lesions found in 7 different nerves examined from 2 FGD4 homozygotes and 2 

control animals. Each nerve was examined in 3 locations, with both transverse and longitudinal 

sections. Bar = 50 μm. 
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Extended Data Figure 2.8 | Photographs of GALNT2 mutant and control individuals; PLCD4 

mutant and control individuals. 

Photographs contrasting homozygous mutant and homozygous reference animals for the GALNT2 

c.1561-1G>A splice acceptor mutation (a), and PLCD4 p.Ala326Thr mutation (b). For the PLCD4 variant, 

front and rear images contrast the same two animals. Animals represent individuals from the research 

farm studies that were neither the smallest nor largest animals within each of their genotype classes. 

Photos are unstandardised and provided for qualitative purposes.  
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Extended Data Figure 2.9 | GWAS Manhattan plots exploring sensitivity of QTL detection for 

reduced resolution genotype data, and simulated loci varying in effect size and frequency. 

Manhattan plot showing impact of marker density on discovery of non-additive bodyweight GWAS 

signals (a; P-values computed using Z-tests, horizontal grey line indicates the genome-wide significance 

threshold of P < 5 × 10−8). Here, dominance estimates from sequence-based bodyweight GWAS (grey 

dots) are plotted alongside a subsetted version of these same data filtered to represent the content of 

BovineSNP50k SNP-chip platform (green dots). While two of the modest effect, comparatively higher 

MAF QTL retain significance (i.e. Chr2:22Mbp and PLAG1 locus), only the DPF2/MUS81 QTL is 

represented among the major-effect, recessive signals. (b) Manhattan plot showing the influence of 

MAF and effect size on sensitivity of detection in a simulated dataset. Dominance estimates (blue dots) 

are contrasted with standard-additive estimates (grey dots), showing sensitivity of detection for 30 

recessive causative mutations (red dots). Recessive effects were generated by randomly selecting 

variants from 1-5% MAF bins from the pool of simulated genotypes (frequencies indicated at bottom), 

with effect sizes assigned as 0.5 standard deviations (SD; light orange) or 1.0 SD (dark orange) per 

mutation. Mutations were selected to represent all chromosomes (two on chromosome 1). 
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Extended Data Figure 2.10 | Visualisation of sequence imputation allelic R-squared statistics by 

minor allele frequency, dominance effect sizes, and dominance p-values in the GWAS dataset. 

Plots showing imputation allelic R2 (AR2) values of genotypes from the discovery population, where 

AR2 is taken to reflect accuracy of imputation, representing the squared correlation between the allele 

dosage with the highest posterior probability and the true allele dosage (Browning and Browning 

2009). a, Box plots showing distributions of AR2 within different MAF classes for the 16,128,757 

sequence variants used for GWAS. Box plots show median (centre line), interquartile range (box limits), 

and upper and lower whiskers (maxima and minima data points). b, Plot showing absolute dominance 

effect size (Effect size, kg) for genome-wide significant variants (P < 5 × 10−8) from the bodyweight 

GWAS, visualised by AR2. Also indicated are the candidate causative mutations of interest; effects are 

expressed as allele substitutions and thus represent half the effect observed in homozygous mutant 

individuals c, Scatter/density plot showing relationship between P-value and AR2 for the sequence 

variants tested in the bodyweight GWAS (dominance model), with mutations of interest also indicated.  
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2.5 Supplementary Note 

Three of the loci highlighted in this study implicate genes for which analogous variants 

have been demonstrated to cause human syndromes. Given the potential interest of these 

findings, we provide here an elaborated description of observations and experiments 

conducted to investigate these mutations. This document also contains elaborated 

discussion and considerations on non-additive model formulation, highlighting 

differences (and similarities) with previously implemented non-additive GWAS models. 

2.5.1 Cattle mutations with human disease analogues 

FGD4 – a gene implicated in human Charcot Marie Tooth Disease 

Using non-additive association analysis, we detected a significant locus for bodyweight on 

bovine chromosome 5 at 77.6 Mbp. This signal was represented by a single, significant 

variant at the locus, representing a nonsense mutation in the FYVE, RhoGEF and PH 

domain containing 4 gene (FGD4; Figure 2.2), a gene for which nonsense variants in 

humans have been proposed to underlie Charcot Marie Tooth disease (CMT). This disease 

is the most common inherited neurological disorder in humans (affecting ~1 in 2500 

people)(Szigeti and Lupski 2009), so it is noteworthy that ~1 in 590 cows are expected to 

be affected by the FGD4 mutation in the NZ dairy population (see Supplementary Table 3 

and main manuscript for frequency calculations). 

Charcot Marie Tooth disease describes a group of peripheral neuropathies characterised 

by nerve degeneration and muscular atrophy, primarily affecting the feet, hands, and legs 

(Bird 1993). These changes may lead to disability including hand weakness and loss of 

sensation, difficulties standing and walking, and increased risk of injuries due to a 

propensity to trip and fall. The disease displays variable penetrance and shows autosomal 
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dominant, recessive, and X-linked forms of inheritance (Szigeti and Lupski 2009). CMT is 

categorised on these modes of inheritance and the electrophysiological and 

histopathological parameters of the disease. Mutations in human FGD4 are classified as 

CMT4H, a subgroup of the CMT4 autosomal recessive demyelinating forms of disease 

(Delague et al. 2007). Frabin, the protein encoded by FGD4, is an actin-filament binding 

protein that has GDP/GTP exchange activity specific for Cdc42, and is involved in the 

regulation of the actin cytoskeleton and cell morphology (Ono et al. 2000). The precise 

role of Frabin in CMT is not well described, though appears to relate to its interaction with 

Cdc42, given that knockout of either Fgd4 or Cdc42 in mice results in both impaired nerve 

development, and loss of myelin in adult nerve fibres (Horn et al. 2012). 

In the context of the current study, we note that the recessive mode of inheritance of 

FGD4 mutants in CMT4H is consistent with the recessive presentation of the FGD4 

c.1671+1G>A splice donor mutation in cattle reported here. We are unaware of other 

cattle or large animal models of CMT, so the relative severity of the cattle mutation is 

unknown, though it is noteworthy that recessive, human CMT4 forms of the disease tend 

to comprise earlier onset, more severe cases that lead to pronounced disability (de 

Sandre-Giovannoli et al. 2005). Upon identification of the FGD4 c.1671+1G>A mutation as 

a candidate for the bodyweight QTL, we identified local farms with homozygous animals 

highlighted from our GWAS. Upon visiting one of these farms and identifying the animal in 

question, the farmer remarked that this cow had “nerve issues”. This was an unsolicited 

observation, where no prior mention of the purpose of inspection had been made to the 

farmer. Further anecdotal accounts of this animal, and another (recently culled) animal of 

the same family lines suggested both were prone to stumble, where in the case of the 

culled animal, it had on one occasion fallen and not been able to get back up unassisted. 
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During the inspection, the animal identified from GWAS was subsequently walked around 

a concrete yarded area where it was seen to demonstrate a stumbling phenotype. Here, 

while walking a straight line, its rear leg momentarily collapsed after which it 

immediately recovered and continued walking as normal again. 

Following these observations, we conducted a genotypic screen of 568 animals to identify 

calves homozygous for the FGD4 (and other) mutations. This analysis identified 22 FGD4 

homozygotes, which at ~9 months of age were ~9.8kg lighter than controls (P=0.018; 

Supplemental Table 7). Nine of these homozygous mutant animals were then recruited for 

the farm trial described in greater detail in our accompanying manuscript. These animals 

were grazed together with age-matched control animals (and animals representing 

homozygotes of the other mutations of key interest). Growth rates of FGD4 homozygotes 

were significantly reduced (P=2.65x10-24; Supplemental Table 8), with the bodyweight 

difference between these animals and controls widening to 49.7kg by 24 months of age 

(P=9x10-3; Supplemental Table 8). At the end of the farm trial (~27 months of age), FGD4 

mutant animals subjectively demonstrated behavioural differences and instances of loss 

of motor control. In these cases, routine animal handling procedures such as confinement 

in a cattle crush and head bail appeared to lead to increased restlessness and agitation in 

FGD4 mutant animals, with some animals collapsing to a ‘kneeling’ position – a behaviour 

not observed in controls or mutant animals representing the other genotype classes. 

These observations were made in the months prior to post mortem dissection and 

histological examinations that demonstrated neuronal abnormalities in FGD4 mutant 

animals (Figure 2.10). 
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Given that muscle atrophy is a hallmark of human CMT, we assume that the significant 

bodyweight association for the FGD4 mutation is due to wastage of muscle (Table 2.1). 

The finding of lower serum creatinine (P<0.05) in FGD4 mutants also supports a muscle 

wastage hypothesis (Schutte et al. 1981), and is of further note given the importance of 

creatine metabolism to the nervous system generally (Andres et al. 2008). Other 

significant associations in the discovery population included negative impacts on lactation 

traits, namely reduced milk protein, fat, and volume yield (Table 2.1). Although we are 

unaware of lactation impacts attributed to CMT in human studies, we speculate these 

effects reflect compound stresses from disease and the additional metabolic demands of 

lactation, and we note that worsening of symptoms may be experienced in pregnant 

individuals with CMT1 (Rudnik-Schöneborn et al. 1993). 

DPF2 – a gene implicated in human Coffin-Siris Syndrome 

As part of the same genome scan of bodyweight referenced above and reported in detail 

in the accompanying manuscript, we detected a significant locus for bodyweight on 

bovine chromosome 29, with peak association at 44.1 Mbp. This locus presented two 

highly associated candidate causative mutations (both R2>0.98 with the lead variant; 

Figure 2), comprising a p.Lys216Arg amino acid substitution in DPF2, and a p.Gly70* 

premature stop mutation in MUS81. Details of these candidates are discussed below, with 

an emphasis on the DPF2 missense variant given the gene’s implication in human Coffin-

Siris Syndrome. 

Coffin-Siris Syndrome (CSS) is a rare genetic disorder caused by mutations in BRG1-

associated factor (BAF) chromatin-remodelling complex-subunit genes that include 

double PHD fingers 2 (DPF2) (Knapp et al. 2019; Zarate et al. 2016). This syndrome is 
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characterised by intellectual disability and developmental delay, coarse facial features, 

fingernail and/or toenail abnormalities, and a variety of other clinical features (Kosho, 

Miyake, and Carey 2014). The functions of the genes so far implicated in CSS suggest the 

syndrome results from alterations in chromatin remodelling, manifesting through 

dominant modes of inheritance via dominant-negative, gain of function, or loss of function 

mechanisms (Vasileiou et al. 2018). 

Two papers have recently described de novo mutations in DPF2 as responsible for CSS, 

highlighting missense and nonsense variants with variable clinical presentation (Knapp et 

al. 2019; Vasileiou et al. 2018). All six missense variants highlighted in these studies 

impact the PHD domains of DPF2, whereas the cattle p.Lys216Arg substitution reported 

here maps to the C2H2-type zinc finger domain. The recessive presentation of effects for 

the chr29 QTL similarly contrasts with the dominant negative effects observed for human 

DPF2 mutations. Although the p.Lys216Arg substitution represents a conservative 

change, it is noteworthy that this residue (and C2H2 domain overall) is highly 

evolutionarily conserved (W. Zhang et al. 2011) (Figure 2), and given the bodyweight and 

stature effects that are also a feature of human DPF2 mutations (Vasileiou et al. 2018), we 

thus considered p.Lys216Arg a plausible candidate mutation for the QTL. 

To examine this possibility further, we investigated hoof conformation as a potential 

bovine-equivalent to the fingernail and toenail abnormalities seen in human CSS. Here, we 

pursued both quantitative and qualitative measurements of hooves in DPF2 mutants and 

controls as part of the same farm trial investigating FGD4 mutant phenotypes. 

Supplementary Table 8 and Figure 2.9 shows claw length and toe angle measurements of 

these animals, with photographs of hooves from animals of different genotype also 
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represented. Although no significant differences were observed for hoof dimension data, 

the mutant group appeared to present more variable hooves (Figure 2.9). Hooves were 

also assessed by a veterinarian specialising in lameness, and a professional hoof 

trimmer/inspector – considered as part of a blinded inspection to characterise the 

animals either as ‘positive’ or ‘normal’ for affection status. Three mutants and one control 

animal were characterised as ‘positive’ in this analysis (the latter qualified as being 

‘mild’), though neither the mutant nor control animals were judged to be overtly 

abnormal in these inspections. Although these analyses did not demonstrate resolute 

differences in the hooves of DPF2 homozygotes, these findings do not necessarily 

preclude the causality of the p.Lys216Arg variant, given the highly variable (and in some 

cases mild) phenotypic presentation of nail abnormalities in human CSS (Knapp et al. 

2019; Vasileiou et al. 2018). 

As mentioned above, the chr29 44Mbp bodyweight and stature locus presented two 

candidate coding variants as potentially responsible for these effects. Given that hoof data 

did not conclusively implicate the involvement of the DPF2 p.Lys216Arg variant, it is 

therefore of interest to consider the potential role of the MUS81 p.Gly70* premature stop 

mutation in these QTL. The MUS81 gene encodes the catalytic subunit of an endonuclease 

responsible for cleavage of branched DNA substrates in eukaryotic chromosomes, 

proposed to help maintain chromosomal stability through processing of stalled DNA 

replication forks (Hanada et al. 2007). Mice bearing homozygous Mus81 null mutations 

are born and develop normally, though have decreased survival following DNA damage 

when exposed to DNA crosslinking agents (Dendouga et al. 2005). Cells from these mice 

are similarly more sensitive to DNA damage, show increased chromosomal aberrations, 

and show abnormalities in cell cycle progression (Dendouga et al. 2005); human MUS81 
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null cell lines have also been shown to replicate DNA more slowly (Fu et al. 2015). These 

observations suggest potential DNA replication and/or chromosomal abnormalities as an 

alternative explanation for the phenotypic changes seen in MUS81/DPF2 homozygotes. 

Given the two competing candidate mutations, it is also interesting to consider whether 

they could be differentiated through large-scale population-based genotyping, and at 

what scale of data that this could be achieved. As part of animal breeding activities and 

with a view to implementing the discoveries reported in this manuscript, we have 

recently included the DPF2, MUS81, and other highlighted recessive variants as custom 

content on a newly-developed low-density Illumina SNP chip platform. At time of writing, 

we had physically genotyped the two candidate SNP in the first 98,002 animals typed on 

this platform, where the R2 between SNP was 0.985 in this largely mixed breed population 

of calves. We identified a total of 106 animals with recombinant haplotypes in this 

dataset, however as expected, most animals presented heterozygote, major allele 

homozygote diplotypes. However five animals were homozygous for one of the mutations 

of interest, and manual inspection of SNP-chip signal intensity and genotype clusters 

confirmed the likely validity of these recombinants. Although these individuals did not 

have phenotypes and thus are unable to be analysed in the immediate term, these findings 

suggest differentiation of the mutations should be possible as largescale population data 

continues to accumulate. 

GALNT2 – a gene underlying a human O-linked glycosylation disorder 

The most significant bodyweight and stature effects identified from GWAS highlighted loci 

on chromosome 28 at 0.7Mbp and 1.3Mbp respectively. The top-associated SNP in these 

analyses presented a highly correlated (R2>0.9) c.1561-1G>A splice acceptor mutation in 
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GALNT2 as potentially responsible for these effects (Figure 2). Of the seven recessive 

mutations of key focus in our accompanying manuscript, this GALNT2 loss-of-function 

variant was the only such mutation for which some prior phenotypic implication had been 

made, where we had provisionally mapped the variant as a candidate stature mutation 

(unpublished), and subsequently as a variant for which homozygotes were depleted in 

our population (Charlier et al. 2016). We further discuss this candidate within the context 

of recent papers highlighting GALNT2 loss-of-function variants as underpinning lipid 

metabolic phenotypes and a novel human glycosylation disorder, below. 

The GALNT2 gene encodes the polypeptide N-acetylgalactosaminyltransferase 2 enzyme 

responsible for mucin-type O glycosylation of proteins. Although this enzyme can be 

assumed to have many substrates, its most prominent role is as a modulator of circulating 

high density lipoprotein cholesterol (HDL) and triglyceride levels – as first demonstrated 

in human GWAS of blood lipid concentrations (Willer et al. 2008; Kathiresan et al. 2008). 

The role of the gene in lipid metabolism was 84urtherr elaborated following a study 

implicating non-coding, missense, and nonsense mutations causing similar phenotypes, 

namely reduced HDL and triglycerides (Khetarpal et al. 2016). This study also highlighted 

candidate proteins as the likely mediators of these effects, showing differential 

glycosylation of human and/or rodent ANGPTL3, ApoC-III, and PLTP (Khetarpal et al. 

2016). Although this study did not highlight a pathogenic consequence to the nonsense 

variant, a subsequent analysis based on patients homozygous for this variant, and 

additional nonsense and missense variants recently implicated GALNT2 loss-of-function 

mutations as underlying a new congenital disorder of glycosylation – termed GALNT2-

CDG (Zilmer et al. 2020). 
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The description of GALNT2-CDG is based on a single, recent paper, reporting the same 

lowered triglyceride and HDL levels highlighted in other analyses of human GALNT2 

polymorphisms, in addition to many other intellectual, behavioural and anatomical 

clinical features (Zilmer et al. 2020). These phenotypes include developmental delay and 

autistic behaviours, epilepsy, white matter lesions as evidenced by brain MRI, dysmorphic 

facial features, short stature, lower bodyweight, and microcephaly (two of seven patients 

investigated only). This paper also investigated two rodent models of Galnt2 knockout in 

detail. Male mice, and both male and female rats homozygous for Galnt2 null mutations 

were significantly smaller than heterozygous or homozygous wild-type animals. Startle 

testing, social responses, and other mouse behavioural assessments also showed 

differences between homozygous knockouts and controls (Zilmer et al. 2020). 

Experiments to investigate the cattle GALNT2 mutation pre-date description of GALNT2-

CDG, though it is interesting to compare our analyses with those findings. Foremost, the 

reduced growth parameters of homozygous individuals appears to be shared for human, 

mouse, rat, and cattle mutations (Table 2.1). We also observed a significant reduction in 

circulating triglycerides, though HDL was not significantly different in cattle 

(Supplementary Table 9). Creatinine was significantly lower in mutant cattle 

(Supplementary Table 9), consistent with the reductions observed in all patients with 

GALNT2-CDG. The substantial embryonic lethality observed in the rodent knockout 

models is also consistent with our findings. In heterozygous crosses, 14% of mice, and 

12% of rats were homozygous for the null mutations (c.f. 25% expected) (Zilmer et al. 

2020), where we identified 16% GALNT2 c.1561-1G>A homozygotes from heterozygous 

matings in our cattle population (Supplementary Table 5). Neurological and behavioural 

traits were not assessed in the current study, though given the range of such features 
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presented in patients with GALNT2-CDG, and in knockout rodent models, similar 

complementarity might also be anticipated for the cattle mutation described here. 

Given the key role of the liver in lipid metabolism, we obtained liver biopsy samples 

representing GALNT2 c.1561-1G>A homozygotes and controls, with the aim of conducting 

RNA-seq to investigate transcriptional differences between genotypes. Differential 

expression analysis (see Supplementary Methods below) revealed a total of 14 genes 

significantly over-expressed, and 15 genes significantly under-expressed in GALNT2 

c.1561-1G>A mutants (adjusted P-value<0.05; Supplementary Table 10). Given 

observations of altered lipid metabolism demonstrated for GALNT2 null mutations across 

species, perhaps the most striking change was a ~14-fold increase in expression of FGF21 

in the liver of GALNT2 mutants - a hormone responsible for modulating a range of glucose 

and lipid metabolic functions (Ge et al. 2012). Pharmacologic administration of FGF21 

hormone has been shown to lower circulating triglycerides in humans and mice (Schlein 

et al. 2016), though a causal role for FGF21 here is at odds with the differential 

glycosylation analyses that have proposed ANGPTL3, ApoC-III, and/or PLTP as 

responsible for these effects in GALNT2 null individuals (Khetarpal et al. 2016). 

Alternatively, increases in FGF21 expression might mediate or be a consequence of the 

marked body weight differences observed between genotypes, given that overexpression 

causes weight loss in multiple species (Véniant et al. 2012), and that expression of the 

hormone may be induced as a consequence of fasting (Markan et al. 2014). If reduced 

caloric intake is indeed the cause of differential FGF21 expression in GALNT2 c.1561-1G>A 

mutants, this observation might fit with the observation of significantly lower serum 

albumin in homozygotes (Supplementary Table 9). Several collagen and extracellular 

matrix proteins (COL12A1, COL4A5, ECM1, ECM2, SERPINF1) were also differentially 
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expressed between mutants and controls (Supplementary Table 10). Although the 

relevance of these findings is unknown, the broad roles of these genes in tissue 

morphogenesis and more specific implication of COL12A1 and SERPINF1 in bone and 

muscle development (Becker et al. 2011; Zou et al. 2014), may have relevance to the 

reduced stature and bodyweight phenotypes seen in GALNT2 mutants. Work to 

investigate these potential relationships – particularly studies able to highlight the 

differential glycosylation targets of wildtype and GALNT2 mutant cattle, would be of key 

future interest. 

2.5.2 Additive and dominance model considerations 

We implemented an association model aimed foremost at detecting deleterious recessive 

alleles. The formulation of this model differs from that applied in other recent 

publications aiming to detect nonadditive effects in human (Zhu et al. 2015), and cattle 

(Jiang et al. 2019) GWAS, therefore, we outline these contrasts and similarities below. 

Further considerations regarding these model parameterisations and effect estimations 

are discussed in Falconer (1960), and more recent summaries and comparisons of 

variance components can be found in Vitezica et al. (2013) and Sun et al. (2014). 

In the context of most ‘traditional’ GWAS, an additive-only model is implemented, seeking 

to detect what we term in this article as a ‘standard-additive’ effect (β). The three 

genotype classes [G11, G12, G22] are encoded as a covariate representing the number of 

alternate alleles [0, 1, 2]. An extension to this approach may fit an additional covariate to 

represent a dominance deviation effect (δ) (Falconer 1960). The dominance covariate 

encodes genotype classes as [0, 2p, 4p-2], where p represents the frequency of the 

alternate allele and the standard-additive estimate β is preserved in the two-effect model 
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(β, δ). The non-additive GWAS studies by Zhu et al. (2015) and Jiang et al. (2019) apply 

models incorporating that approach, represented by a design matrix, X1 (1). 

An alternative model designation to identify non-additive effects may fit an additive effect 

(a, covariate encoded [0, 1, 2]) and a dominance effect (d, covariate encoded [0, 1, 0]), as 

applied in the current study. This approach can be represented by a slightly different 

design matrix, X2 (2). A third model may fit the three genotypes as class effects (G11, G12, G22 

encoded [1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively) and can be represented by the design 

matrix, X3 (3). 

These three formulations all have rank 3 and are equivalent such that any one of the 

formulations can be fitted and the estimated effects transformed to generate the 

estimated effects that would have been obtained from any of the other models 

(Henderson 1985). Considering (3) as the ‘base model’ because of its simplicity, we can 

use knowledge of equivalence (4) to derive effect estimates from formulations (1) and (2) 

via (5). 

Where T represents a design matrix such as X1, or X2, b is a vector of effect estimates for 

the relevant model formulation, X3 is as defined in (3), and g is the vector of genotype 

class means in the 3rd model. T-1 is a matrix of contrasts used to transform effect estimates 

from the genotype class effects model (3) to either alternate model. The matrices of 

contrasts used to calculate the effect estimates from the first two models are: 

𝑋1
−1 =  [

1 0 0
1 − 𝑝 1 − 2𝑝 𝑝
−0.5 1 −0.5

] 𝑋2
−1 =  [

1 0 0
−0.5 0 0.5
−0.5 1 −0.5

] 

Here, we observe the dominance contrast (d) and the dominance-deviation contrast (δ) 

are identical [-0.5, 1, -0.5], indicating the dominance effects estimated between the 
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models implemented in other human(Zhu et al. 2015) and cattle (Jiang et al. 2019)non-

additive GWAS are the same as that implemented here. However, the standard-additive 

(β) and additive (a) effects are different between the two models, where β is the same as 

that derived from an additive-only model, while a represents the difference between the 

homozygote genotype classes ([1-p, 1-2p, p] vs [-0.5, 0, 0.5], respectively). It can be 

observed that β fluctuates with allele frequency, while a does not, and the effects are 

related as 𝛽 = 𝑎 + (1 − 2𝑝)𝑑. 

Vitezica et al. (2013) termed these two alternative implementations as either the 

‘classical’ parameterisation (1), or the ‘genotypic’ model (2), noting that the former is 

more relatable to pedigree based concepts and allows direct estimates of breeding values, 

while the latter has more intrinsic biological meaning (i.e. more readily represents the 

biological effects of mutations). One obvious advantage to the classical model is the 

preservation of β, meaning that both standard-additive and dominance estimates are 

generated from the same model. The ‘genotypic’ model on the other hand allows 

straightforward calculation of a dominance coefficient K, which informs on the likely 

biological mechanism of the presented mutation (where K = d / |a|). If K ≈ 1, a completely 

dominant or recessive mechanism is suggested, and if 0 < |K| << 1, partial dominance is 

suggested (as observed for the PLAG1 locus effect presented in this paper). Model 

selection should therefore incorporate experimental aims and interpretation 

considerations, though both models are likely fit for purpose if dominance estimates are 

of primary interest. 
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2.6 Supplementary Methods 

Content presented here details expanded descriptions of methods and approaches 

described in the main manuscript. 

2.6.1 Power calculations 

We compared additive, recessive, and genotype class effect models at different sample 

sizes for cows and sires for a hypothetical recessive mutation. Here, we stipulated the 

heritability of the trait, the number of un-genotyped daughters within each sire family 

(for sire models), minor allele frequency of the causative mutation, and the proportion of 

phenotypic variance attributable to the mutation. The power of detection was then 

contrasted by assessing the variance explained by each model, based on a non-central F-

distribution using a critical value equivalent to a p-value of 5x10-8. 

2.6.2 Additional animal populations 

In addition to the five major-use populations described in the main manuscript (See 

Methods and Supplementary Table 11), two additional populations were used to perform 

other, more limited analyses. These included a dataset of 98,002 animals genotyped on an 

Illumina XT low-density parentage testing SNP-chip (683 variants), used to investigate LD 

between the DPF2 and MUS81 mutations physically genotyped on that chip. These animals 

are referenced only in the Supplementary Note (above) and were relatively poorly 

characterised - comprising mostly 2020-born calves without phenotypes. Estimation of 

the total number of animals homozygous for the key mutations of interest was conducted 

using a population of 2,799,022 animals that similarly sits outside the five major 

populations described in the main manuscript. The majority of these animals lacked 

genotypic information, though were represented by sufficient pedigree and sire genotype 
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information to support those analyses. Further demographic information on these two 

populations is given in Supplementary Table 11. 

2.6.3 Phenotypic analysis 

In addition to phenotypes used for GWAS, a variety of other traits were assessed in the 

discovery and validation populations. These included first lactation traits such as milk 

(L/lactation; a lactation refers to a standardised 268 day lactation), fat (kg/lactation), 

protein (kg/lactation), as well as 13 traits other than production. These non-production 

traits included adaptability to milking (how quickly an animal settled into the milking 

routine), shed temperament (measure of placidity), overall opinion (farmer’s subjective 

opinion of an animal), capacity (strength and depth of chest), rump angle, rump width, 

legs (leg straightness), udder support (strength of suspensory ligament), front udder 

(strength of attachment to the body), front and rear teat placement (position of front and 

rear teats on the udder), udder overall (an amalgamation of all udder traits), and dairy 

conformation (overall conformation). More detail on non-production traits can be found 

in the ‘Evaluation system for traits other than production’ booklet (Advisory Committee 

on Traits Other than Production 2020). Beyond the phenotypic model considerations 

detailed in the main manuscript, other trait-specific adjustments were made to data prior 

to genetic analysis. For lactation data, these included effects for stage of lactation, record 

type (lactation traits may be recorded at am milkings, pm milkings or both), and effect of 

induced calving. Body weight data were standardised using a multiplicative factor to 

adjust body weights to a mature equivalent which allowed for our admixed breed 

population. Since individuals had multiple body weight records across lactations, that 

information was utilised as previously described (Garrick, Taylor, and Fernando 2009), 

namely by calculating the mean of an individual’s yield deviations and weighting this 
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record through the manner in which the diagonals of the inverse residual variance-

covariance matrix were constructed. Phenotypic deviations for traits without multiple 

records were obtained by adjusting measured phenotypes for estimates of the fixed 

effects derived in the national genetic evaluation models above. Body weight 

measurements for the 568 pedigree-identified, prospectively genotyped calves were 

obtained using electronic scales under contract by AsureQuality (Auckland, New Zealand). 

For phenotyping conducted as a part of the research farm studies, a number of other, 

more detailed measures were made. Growth rate data were derived from measurements 

made using electronic cattle scales, with weighing performed on a monthly basis for three 

months for the GALNT2 study, and on a fortnightly basis for 12 months for the PLCD4, 

FGD4, DPF2/MUS81 study. Additional anatomical phenotypes were gathered on the latter 

group, including spine length (distance from the intervertebral gap between T1 and T2, to 

the intervertebral gap between the hips), tibia length (superior tip of the tibia to tip of the 

tuber calcaneus), stature (height measured just anterior of hip bones), and chest 

circumference (measured immediately posterior to the front legs). Since a candidate 

mutation for the chr29:44Mbp QTL included a missense variant in DPF2, a gene 

presenting finger and toenail phenotypes when mutated in humans (Vasileiou et al. 

2018), measurements of hoof anatomical characteristics were also conducted for the 

relevant subset of animals. These measurements included the length of the claw (distance 

from the hairline to toe-tip for the outer claw), and the lateral toe angle (dorsal slope of 

the toe). A qualitative assessment of hoof confirmation in DPF2 homozygotes and control 

animals was also performed by a veterinarian specialising in lameness, and a qualified 

hoof trimmer/inspector. For investigation of nerve pathology anticipated as a 

consequence of the FGD4 splice site mutation, peripheral nerves (sciatic, femoral, 
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saphenous, ulna, median and common digital nerve of the fore and hind limb) from two 

FGD4 homozygotes, and two wildtype animals were dissected immediately post mortem 

and placed in 10% neutral buffered formalin until processed for histology. The nerves 

were further dissected and sections placed in a tissue cassette, after which they were 

dehydrated in graded alcohol and embedded in paraffin wax. Sections (3 μm) were cut 

and stained with hematoxylin and eosin (HE) and luxol fast blue (LFB). 

Blood biochemical and metabolite measurements were derived on all research farm 

calves. To help assess the reproducibility of these measures, tests were conducted at 

multiple points in time, with blood samples for these analyses taken on three separate 

occasions for the GALNT2 study (Dec 13th and 16th 2013, Feb 25th 2014), and two 

separate occasions for the PLCD4, DPF2/MUS81, FGD4 study (18th Feb and 24th June 

2019). Most tests were performed by Gribbles Veterinary (Hamilton, New Zealand), 

comprising commercial veterinary diagnostic assays to measure serum albumin, beta 

hydroxybutyrate, total calcium, creatinine, phosphate, urea, total T4 (thyroxine), 

triglycerides, nonesterified fatty acid concentrations, plasma glucose concentrations, and 

serum gamma glutamyl transferase, glutamate dehydrogenase activities. Further testing 

was also conducted under contract by the Liggins Institute (The University of Auckland, 

New Zealand) to measure the concentration of insulin-like growth factor 1 (human IGF-1 

kit assessed on a Cobas e411 Immunology Analyser), insulin (Mercodia Bovine Insulin 

ELISA), and high and low density lipoprotein assays (using Roche Diagnostics 

homogeneous enzymatic colorimetric assays analysed on a Cobas c311 analyser). 
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2.6.4 RNA sequencing, sequence informatics and genome assembly considerations 

Genome sequence data processing is described briefly in the main manuscript, and more 

comprehensively, in prior publications (Littlejohn et al. 2016; Littlejohn, Henty, et al. 

2014). For analysis of RNA sequence data, reads were first processed using Trimmomatic 

(version 0.39)(Bolger, Lohse, and Usadel 2014) to remove leading and trailing low-quality 

bases, and then mapped to the ARS-UCD1.2 reference genome (GCF_002263795.1). To 

minimise mapping biases for downstream gene expression analyses, 14.54 million sites in 

this reference had been masked to replace known variant bases with nucleotides that 

matched neither the reference nor alternative allele. Masked bases represented sites from 

whole genome sequence data imputed in a subset of 99 of the 389 RNA-sequenced 

animals (representing cows investigated as part of a separate, as yet unpublished, study), 

filtered to remove sites with MAF<1%, and a DR2 <0.9. Mapping was performed using 

STAR (version 2.7.0)(Dobin et al. 2013), and conducted in two stages. First, reads were 

mapped using the RefSeq annotations to identify novel splice junctions, and subsequently, 

a second round of mapping was performed to incorporate these novel junctions along 

with those defined in the reference annotations. 

To obtain liver samples for differential gene expression analysis as part of investigation of 

the GALNT2 mutation, biopsies were obtained using an established protocol (Lucy et al. 

2009), comprising incision and needle penetration of an area of the right rib cage at the 

11th intercostal space, having first sterilised the skin surface and applied local 

anaesthetic. The resultant ~200 mg samples were snap frozen in liquid nitrogen with 

total RNA subsequently extracted using a Qiagen RNeasy kit (Qiagen). Libraries were 

sequenced on an Illumina Hiseq 2000 instrument using 100bp paired end reads to an 

average yield of 40.7M read pairs per sample. Reads were also mapped using STAR, based 
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on the same masked version of the ARS-UCD1.2 reference genome referenced above. To 

generate transcript read counts for differential expression analysis, a custom script was 

used to count reads splicing over junctions from gene structures captured in RefSeq 

annotation release 106. These data were then used to perform case/control analysis using 

DESeq2 (Love, Huber, and Anders 2014), with genes considered significant at α=0.05 after 

accounting for multiple hypothesis testing using the multiple testing procedure 

implemented in that software. 

2.6.5 Utilisation of multiple genome assemblies 

Most analyses presented in the main manuscript reference the UMD3.1 bovine genome 

assembly, though several components of data, results, and positional information are also 

presented based on the newer ARS-UCD1.2 assembly. Presentation of information 

representing both references reflects the availability of data resources at the time the 

analyses were performed, and the desire to use the latest assembly where possible. For 

the avoidance of ambiguity, however, we clarify the usage of these reference assemblies 

as following: Except where specified, genome positions reference the UMD3.1 assembly. 

Genome sequence alignments, and population-wide genotypes that were imputed from 

these data were also based on the UMD3.1 assembly. Candidate mutation identification 

and enrichment analyses performed using these genotypes were based on the 

corresponding UMD3.1 transcript annotations. ARS-UCD1.2 positions were located for 

these ~16m UMD3.1-derived variants, using the NCBI Genome Remapping Service 

(https://www.ncbi.nlm.nih.gov/genome/tools/remap; ~99% successfully repositioned 

and reported as supplementary data). Alongside UMD3.1 transcript annotations, ARS-

UCD1.2 annotations are also reported for the seven candidates of primary interest 

(Supplementary Table 2). RNA-seq alignments were performed by mapping against the 

https://www.ncbi.nlm.nih.gov/genome/tools/remap
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ARS-UCD1.2 assembly (see previous section for detail). Here, splicing and gene expression 

phenotypes were derived based on ARS-UCD1.2 annotations, though association analyses 

were performed using UMD3.1 imputed genotypes in line with all other association 

analyses presented in the paper.  

2.6.6 Genotypes and imputation 

Most genetic analyses in the manuscript utilised animals genotyped using SNP-chips, 

though for prospectively genotyped calves and the cohorts used for detailed phenotypic 

analysis, specific mutations of interest were targeted using single variant assays. This 

strategy included genotyping of the PLCD4 g.107313998G>A and FGD4 g.77632752C>T 

mutations using AgriSeq assays (ThermoFisher), a method that uses sequencing of 

multiplexed amplicons on the Ion Torrent platform (Thermofisher). Custom Taqman 

assays (Thermofisher) were used to interrogate the PLCD4 g.107313998G>A, FGD4 

g.77632752C>T, DPF2 g.44213160A>G, MUS81 g.44645469G>T, and GALNT2 

g.1312334G>A variants in the research farm studies, with DNA extraction and genotyping 

performed by GeneMark. 

Imputation of sequence-resolution data in SNP-chip genotyped animals has recently been 

described in detail (Jivanji et al. 2019). Briefly, imputation consisted of a stepwise 

procedure to first unify genotype content across SNP chip platforms, yielding an ‘all 

animals imputed to the content of all panels’ dataset. Prior to genome sequence 

imputation, the sequence reference was phased using Beagle 4 software (Browning and 

Browning 2009). In this step, the allelic R2 (AR2) metric was used to identify and remove 

variants with substandard phasing metrics from the reference (<0.95 AR2), where AR2 

indicates the squared correlation between the predicted allele dosage and the true allele 
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dosage (Browning and Browning 2009). This filter yielded 19,320,540 whole genome 

sequence variants, with this reference then used to impute the target animals using 

Beagle 4 (Jivanji et al. 2019; Browning and Browning 2009). A step that recovered 

physically genotyped, custom content representing protein-altering variants of key 

interest was also applied as an exception to the AR2>0.95 filter. This step, and additional 

study-specific genotype filtering criteria are detailed in the main manuscript. 

A subset of 34,738 markers from the Illumina BovineSNP50k panel were used to perform 

population stratification adjustment in the GWAS discovery cohort (see ‘Accounting for 

population stratification’ section, below). These variants represented an ‘all animals 

imputed to the BovineSNP50k panel’ dataset, comprising both imputed samples and 

individuals physically-typed on the BovineSNP50k platform (Jivanji et al. 2019). These 

data represented content that had been quality-filtered according to Mendelian 

concordance criteria, a minimum MAF of 0.02, deviation from Hardy-Weinberg 

equilibrium (excluding variants with p < 0.15, calculated within breed), and LD pruning 

criteria (variants with R2 > 0.9 removed)(Jivanji et al. 2019). 

2.6.7 SNP-based heritability estimation 

We estimated the additive and dominance heritabilities for animals within the discovery 

population for bodyweight, stature, and body condition score. To avoid complications in 

estimation across breeds, heritabilities were calculated for Holstein-Friesian and Jersey 

purebred animals separately (N=12,149 and 7,502 animals respectively). Genetic 

relationship matrices (GRM) were constructed using the same quality-filtered 34,738 SNP 

from the BovineSNP50k dataset referenced above, with heritabilities subsequently 
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estimated using the restricted maximum likelihood (REML) approach implemented in 

GCTA (Yang et al. 2011). 

2.6.8 Association analysis 

GWAS 

In addition to the GWAS methods described in the main manuscript (Methods), further 

details describing the practical considerations, population stratification adjustment 

procedures, and leave one segment out approach are expanded upon here. 

Practical Considerations 

We applied Markov chain Monte Carlo (MCMC) based Gibbs sampling methods to draw 

plausible samples for genotype and marker effects described in (1, Methods). In this way, 

a Gibbs sampler would generate a sample b (i.e. �̃�) given a sample for α (i.e. α̃_) based on 

the model equation: 

[𝑦 − 𝑀_α̃_] = 𝑇𝑏 + 𝑒 

where α̃_ is a Gibbs sample from the model equation: 

[𝑦 − 𝑇�̃� ] = 𝑀_𝛼_ + 𝑒 

However, the computational effort required to make inference from the MCMC samples 

obtained from Gibbs sampling of each of these 16 million models is substantial. To reduce 

that effort, Gibbs samples of the genotype class effects were obtained conditional on 

samples of the marker effects from the rest of the genome, but the samples of the marker 

effects from the rest of the genome were obtained conditional on a joint sample of all the 

marker effects from the segment of interest rather than on the sequence variant from the 

segment of interest. 
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Accounting for population stratification 

Samples for the marker effects from the whole genome were Gibbs samples based on the 

BayesC0 algorithm implemented in GenSel using standard priors (Fernando and Garrick 

2013). The sampler generates a Markov chain of plausible SNP-chip marker effects and 

variance components conditional on all else. This step can be represented as: 

𝑦 = 1μ + 𝑀𝛼 + 𝑒 

where equation terms are as previously described in (1, Methods), and μ is the fixed effect 

representing the overall mean, and 1 is a vector of ones. The set of 34,738 SNP-chip 

markers were used to sample marker effects that represent the genomic relationships 

between individuals in the sample and can be used to adjust for population stratification 

(Kang et al. 2008). For each growth and developmental trait, GenSel was run with a chain 

length of 30,000, a burn in of 5,000, and thinning of 50. Thus 500 sets of MCMC samples 

were used for testing the conditional effect of the sequence variant class given the marker 

effects from the rest of the genome. Convergence of the Markov chain was established 

using the Geweke diagnostic such that when >95% of variables appeared stationary, the 

multi-variate chain was considered converged (Geweke 1991). 

Leave one segment out (LOSO) 

To avoid fitting SNP-chip markers in high linkage disequilibrium concurrently with the 

sequence variant being tested, we adopted a LOSO method (Yang et al. 2014). Our LOSO 

method involved dividing each chromosome into a series of overlapping segments 

beginning every 5Mbp and spanning 10Mbp for a total of 503 segments genome-wide. 

The 10Mbp left-out segment was selected as that best centred around the sequence 

variant being tested, and the columns of M (1, Methods) corresponding to BovineSNP50k 



100 

 

SNP-chip markers in this segment were correspondingly deleted to obtain M_. The 

overlapping segments allowed for a minimum distance of 2.5Mbp between any SNP-chip 

marker used in the BayesC0 step and any sequence variant being tested. 

2.6.9 Single locus models 

Linear mixed models (see 3, Methods) were used to analyse several datasets including 

phenotypic deviations, gene expression levels, and bodyweights from prospectively 

genotyped calves and animals in the research farm study. In this approach, we used a 

single site Gibbs sampler to apply a Markov chain Monte Carlo method for covariate 

effects, breeding value effects, and permanent environment effects as implemented in the 

Julia package, JWAS (Cheng, Fernando, and Garrick 2018). For each marker-phenotype 

combination, we used similar criteria for convergence to that applied for GWAS. 

Here, we elaborate on specific model characteristics for each dataset. For phenotypic 

deviations, we fit genotype class effects as fixed effects and tested differences between 

genotype classes by directly calculating differences from the samples in their respective 

Markov chains. For analysis of splicing efficiency substitution effects pertaining to 

mutations predicted to disrupt splicing, we made inference for each marker on the 

expression of each intron for the FGD4 and GALNT2 transcripts. For the bodyweight 

analyses, we tested a case-control class effect of the homozygote alternate genotype. For 

the prospectively genotyped calves’ bodyweights, we included contemporary group, age 

at weighing, and breed as covariates. For the research farm study bodyweights, we 

included date of weighing as a class effect, age x date and age x variant as interaction 

terms, and omitted the Zu random term from the model (3, Methods). 
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2.6.10 Functional enrichment and annotation-based analyses 

Following identification of 356 statistically plausible causative variants for all non-

additive QTL (R2 >0.9 with the top-associated variant per body-weight locus), we aimed to 

test whether these variants were enriched for protein-altering mutations. To this end, 

permutation analysis was performed by randomly sampling 356 variants from all 

markers tested during GWAS, stratifying the selection of variants within 5% MAF bins 

representing the 356 -linked variants (0-1%, 1-5%, 5-10%, 10-15% etc.). We permuted 

this process 10,000 times to obtain a null distribution of the number of nonsense and 

missense variants, and then calculated an empirical p-value (North, Curtis, and Sham 

2002) for our observed nonsense and missense variant count. This same process was also 

repeated for the 139 COJO-selected variants from the standard-additive GWAS, 

highlighting 3,926 linked variants for permutation analysis (Supplementary Table 1). 

Other bioinformatic and annotation-related analyses were also performed to predict 

functional consequences for mutations of interest. These included alignment of protein 

sequences representing other vertebrate species to visualise evolutionary conservation, 

identification of mutation-implicated protein domains, and retrieval of SIFT (Ng and 

Henikoff 2003) and Functional-And-Evolutionary Trait Heritability (FAETH) (Xiang et al. 

2019) scores (variously represented in Figure 2 and Supplementary Table 2). 

2.6.11 LD calculations at the FGD4 locus 

Since the recessive QTL represented by the FGD4 splice mutation mapped moderately 

close to a major known milk composition locus in our population (Lopdell et al. 2019), we 

determined the extent of LD between variants representing these signals in the discovery 

population. Here, pairwise LD was calculated between the FGD4 candidate mutation (chr5 
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g.77632752C>T), and two variants respectively representing the previously reported 

milk yield (chr5 g.75685770A>C; rs208473130), and milk protein percentage (chr5 

g.75651326G>A; rs208375076) QTL (Lopdell et al. 2019) (both yielding values of 

R2=0.018). 

2.6.12 Population-based estimates of homozygote frequencies 

We used pedigree records in conjunction with genotype information from 5,550 sires to 

estimate the historical number of animals born each year that would have been 

homozygous for the recessive mutations of key interest (i.e. PLCD4, FGD4, MTRF1, 

GALNT2, DPF2/MUS81, or MYH1 variants). These estimates were based on data from 

2010-2019, where pedigree information was first used to identify all individuals eligible 

for analysis, filtering to exclude animals whose sire and maternal grandsire did not have 

imputed genotypes, and/or whose dam and maternal grand-dam did not have recorded 

breed details (N=2,799,022 animals for all years retained). Using the allele frequencies 

reported in the discovery population (Table 2.1), we then calculated the probability of 

being homozygous for the recessive mutations of key interest for all eligible animals per 

year. This probability 𝑃𝑖 was calculated using the equation below, where 𝑎𝑆,𝑖 is the sire 

genotype (coded 0, 1, 2 for the number of mutant alleles), 𝑎𝑀𝐺𝑆,𝑖is the maternal grand-sire 

genotype, and 𝑝𝐷,𝑖  and 𝑝𝑀𝐺𝐷,𝑖 are the breed-specific population allele frequencies of the 

dam and maternal grand-dam, respectively. 

𝑃𝑖 =  
𝑎𝑆,𝑖

2
 × 

𝑎𝑀𝐺𝑆,𝑖 + 𝑝𝐷,𝑖(1 + 𝑝𝑀𝐺𝐷,𝑖)

4
 

𝑁 =  ∑ 𝑃𝑖
𝑖
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These probabilities were then summed to calculate the expected number of homozygous 

individuals (𝑁) among all eligible animals. We then used breed composition information 

of the national herd to extrapolate these estimates, thereby estimating the number of 

affected animals born per year in the entire New Zealand dairy population. These 

estimates were averaged across the ten years and are reported in Supplementary Table 3. 

2.6.13 Analysis of homozygous depletion 

Homozygous depletion was assessed for each candidate causative mutation within the 

purebred population of its respective breed of origin, as in Charlier et al. (2016). We used 

29,771 purebred Holstein-Friesian, or 19,344 purebred Jersey cattle for this analysis, 

using a standard likelihood ratio test: 

𝐿𝑅𝑇 = 2 ln (
𝐿|𝐻1

𝐿|𝐻0

) 

Where 

𝐿|𝐻1 = (
𝑛𝑚𝑚

𝑛𝑚𝑚 + 𝑛𝑚𝑤 + 𝑛𝑤𝑤

)
𝑛𝑚𝑚

 ×  (
𝑛𝑚𝑤 + 𝑛𝑤𝑤

𝑛𝑚𝑚 + 𝑛𝑚𝑤 + 𝑛𝑤𝑤

)
𝑛𝑚𝑤+𝑛𝑤𝑤

 

and 

𝐿|𝐻0 =  (
2𝑛𝑚𝑚 + 𝑛𝑚𝑤

2(𝑛𝑚𝑚 + 𝑛𝑚𝑤 + 𝑛𝑤𝑤)
)

2𝑛𝑚𝑚

× (1 − (
2𝑛𝑚𝑚 + 𝑛𝑚𝑤

2(𝑛𝑚𝑚 + 𝑛𝑚𝑤 + 𝑛𝑤𝑤)
)

2

)

𝑛𝑚𝑤+𝑛𝑤𝑤

  

and nxx is the number of individuals within each genotype class (m: mutant allele, w: wild-

type allele). LRT was assumed to have a χ2 distribution with one degree of freedom. 

2.6.14 Inbreeding analysis 

Inbreeding depression describes the negative impact of inbreeding on an animal’s 

phenotype, and can be derived through the use of an animals’ inbreeding coefficient. 
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These coefficients are computed through analysis of pedigree information to characterise 

the probability that the alleles at any random genomic locus are identical by descent. To 

estimate the potential contribution of the non-additive QTL to inbreeding depression of 

bodyweight, we calculated inbreeding coefficients and formulated mixed models that did 

or did not include genotype classes of the eight non-additive QTL, as represented by 

equation 4 & 5 in the main manuscript. For ease of reference these models and terms are 

repeated here: 

𝐲 =  1𝜇 +  𝐅𝑏1
𝑅

+  M𝛂 +  𝐞 

𝐲 =  1𝜇 +  𝐅𝑏1
𝐹

+  X𝒃𝟐  +  M𝛂 +  𝐞 

Terms are as described in the GWAS section (1) with the following additions; y is a vector 

of phenotypic deviations for body weight (pre-adjusted for effects described in 

‘Phenotypic Analysis’ including pairwise heterosis), 𝑏1
𝑅 and 𝑏1

𝐹 are the regression 

coefficients of bodyweight on inbreeding representing the reduced and full models 

respectively, F is a vector of pedigree-derived inbreeding coefficients omitting animals 

where F = 0, b2 is a vector of genotype class effects for the recessive QTL, X is a design 

matrix relating records to additive and dominance effects of non-additive QTL. 𝐅𝑏1
𝑅 and 

𝐅𝑏1
𝐹 are the respective vectors of the inbreeding depression of body weight for each 

individual. 𝑏1
𝑅 , 𝑏1

𝐹 , and b2 are fixed effects, where α are random. To assess the impact of 

the recessive QTL on the effect of inbreeding, we compared 𝑏1
𝑅 and 𝑏1

𝐹 , where the 

proportion of variance explained was calculated as:  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 =  
𝑣𝑎𝑟(𝐹𝑏1

𝑅) − 𝑣𝑎𝑟(𝐹𝑏1
𝐹)

𝑣𝑎𝑟(𝐹𝑏1
𝑅)
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Where 𝑏1
𝑅 and 𝑏1

𝐹 represent the posterior means of each parameter, and 𝑣𝑎𝑟(𝐹𝑏1
𝑅) and 

𝑣𝑎𝑟(𝐹𝑏1
𝐹) are the variance of the vector computed from 𝐹𝑏1

𝑅 and 𝐹𝑏1
𝐹 , respectively. 

To assess the impact of the dominance term in these models, we repeated this analysis 

fitting the same 8 QTL tag variants solely as additive effects. We also sought to determine 

how the variance explained by the 8 non-additive QTL differed from that of a randomly 

selected set of variants. Here, we randomly sampled sets of 8 variants from the GWAS 

dataset, stratifying selections within MAF bins in an approach similar to the method 

described in the ‘Functional enrichment and annotation-based analyses’ section, above. 

The variance attributable to these selections was then assessed applying the equations 

above, with the analysis permuted 20 times. 

2.6.15 Simulation 

Simulation analyses were performed to investigate the impact of MAF and effect size on 

sensitivity of QTL detection, and judge the utility of our association model more broadly. 

To these ends, we simulated a population using QMSim software (Sargolzaei and Schenkel 

2009), specifying a total of 800k SNP and 750 standard-additive QTL distributed across 

all 29 autosomes. The various population parameters and simulation protocol was guided 

by that described in Brito et al. (2011), with the exact procedure described hereafter: 

First, a historical population of 1000 animals was simulated for 500 generations, and 

subsequently reduced to 200 individuals over a further 100 generations to simulate a 

bottleneck. This population was then increased to 20,000 over 60 generations to simulate 

breed expansion. In the next simulation step, 20 recent generations were simulated by 

selecting 200 males and 10,000 females from the historical population. Selection was 

performed using BLUP EBVs on a single simulated trait with a heritability of 0.3 and 



106 

 

phenotypic variance of 1.0. Sires and dams were randomly mated, with each dam 

producing one progeny per year, with a replacement rate of 20% for dams and 60% for 

sires. To approximate the genetic composition of the bovine genome, we simulated 29 

chromosomes totalling 2333 cM. A total of 800,000 SNP markers were generated to be 

evenly distributed across the chromosomes, while 750 QTL were randomly distributed 

with effects drawn from a gamma distribution with shape parameter equal to 0.4. A 

mutation rate of 10-5 was used for markers and QTL. The parameter and seed files used 

for simulation are available as supplementary data. 

We then used this population to extract genotypes and phenotypes for individuals born in 

the final 8 generations totalling 80,000 animals and 800,000 markers. We randomly 

selected 30 markers from this dataset (MAF=0.01-0.05), assigning a complete recessive 

effect to each - thereby defining as recessive causative mutations. These markers were 

assigned either a 0.5 or 1.0 standard deviation effect on phenotype, where we 

subsequently applied our GWAS methods to attempt to detect these (and other additive) 

simulated QTL. Note that the marker density used was sparse compared to that derived 

on our real population (i.e. 800k variants versus 16m). While this might be anticipated to 

influence detection of additive loci, LD effects were not of concern for detection of 

recessive mutations since these were selected directly from the pool of 800k genotypes 

(i.e. the causative mutations were captured directly). 
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 Chapter 3 GWAS model development and application 

Foreword to Chapter 3 

This Chapter is a supplement to the text presented in Chapter 2.  It describes and explains 

additional work involved in the development and implementation of the GWAS model 

prior to its applications in Chapters 2 and 5.  The text begins by exploration of which 

model would be best for detecting non-additive effects, especially completely recessive 

effects, and we discuss the implementation of this model using the Julia programming 

language.  

 

  



108 

 

3.1 Abstract 

Genetic analyses such as genome wide association studies have predominantly focussed 

on explaining the additive genetic architecture of complex traits.  While this approach has 

been instrumental in improving our understanding of complex disease and providing for 

selection on economically important quantitative traits, these approaches have ignored 

the impacts of non-additive genetic mechanisms. One reason for the absence of non-

additive investigation is a lack of algorithms and software designed to detect these effects. 

Here, we design and implement an intra-locus non-additive GWAS algorithm that can be 

applied across millions of sequence resolution variants in over 100,000 individuals. This 

tool has been used to detect non-additive QTL and identify causal mutations elucidating 

the genetic architecture of complex traits, as described in other chapters in this thesis.  

 

3.2 Introduction 

A cornerstone of genomic research is understanding how genetic variants influence 

phenotypes. A single biallelic causal locus may act via additive or dominance mechanisms 

to influence a phenotype. Additive mechanisms occur when each allele at a locus acts 

independently such that the substitution of a wild type allele for an alternate allele has 

some constant effect on the phenotype. Additivity is a commonly modelled mechanism as 

it represents the transmissible effect inherited from one generation to the next. Therefore, 

the contribution of additive loci to heritable genetic variance has been the prize of 

livestock breeders and genetic evaluators throughout the 20th century (Lush 1940; 

Falconer 1960; Lynch and Walsh 1998). Economically important additive genetic loci 

have been described, for example, a mutation in the DGAT1 gene causes large additive 
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effects on milk production traits in cattle (Grisart et al. 2002).  Other studies have 

discovered several hundred independent additive genetic loci contributing to human 

height (Wood et al. 2014; Marouli et al. 2017).  

Dominance mechanisms occur when there is an interaction between alleles at a locus such 

that the heterozygote differs from the mean of the homozygotes. There is a spectrum of 

possible mechanisms which can be defined into three types of dominance: partial 

dominance, complete dominance, or overdominance. Partial dominance occurs when the 

heterozygote differs from the mean but does not equal or exceed either homozygote class. 

Commonly described additive loci often present partial dominance effects, for example, a 

mutation in the ABCG2 gene presents a partial dominance mechanism on milk-fat 

percentage and milk protein percentage in cattle (Cohen-Zinder et al. 2005). Complete 

dominance and complete recessive mechanisms occur when the heterozygote effect 

equals either of the homozygote genotype classes. These are often represented by 

qualitative phenotypes such as the polled (hornless) phenotype in cattle where a single 

mutant allele results in a polled animal (Georges et al. 1993), and embryonic lethal 

mutants where the presence of two mutant alleles at a locus results in the embryo failing 

to develop normally (Charlier et al. 2016).  Overdominance occurs when the heterozygote 

performance exceeds that of either homozygote genotypes. Single locus examples of 

overdominance in mammals are rare, a relatively famous exception is the mutation that 

causes the callipyge muscle hypertrophy phenotype in sheep (Cockett et al. 1996; Freking 

et al. 2002). The muscle hypertrophy phenotype only occurs when an animal is 

heterozygous for the mutant allele due to the animal having inherited its mutant allele 

from its sire, this is termed polar overdominance (Cockett et al. 1996). Together, the 
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accumulation of these additive and dominance mechanisms as well as inter-locus 

interactions comprise the genetic architecture of a trait.  

Heritability, the ratio of genetic variance to phenotypic variance, is a standard metric used 

to describe genetic architecture. Heritability is typically described in terms of narrow or 

broad sense heritabilities, defined as the proportion of phenotypic variance attributable 

to additive genetic variance or total genetic variance, respectively. However, the 

numerator of broad sense heritability (total genetic variance) can also be broken down 

into its additive, dominant, epistatic, and gene by environment genetic components, 

leading to respective heritability ratios (Lush 1940; Visscher, Hill, and Wray 2008). 

Investigating additive heritability (h2) and dominance heritability (δ2) provides insight to 

how quantitative trait loci (QTL) might manifest in the trait of interest. 

When we wish to model the biological effect of a biallelic variant, we can consider the 

three genotype classes at a single locus [A1A1, A1A2, A2A2] and assign each a genotypic 

value [-a, d, a] (Figure 3.1, (Falconer 1960)).  

Number line illustrating the assignment of genotypic values [-a, d, a] to genotype classes. This example 

shows a partial dominance effect (Falconer 1960). 

To characterise the different intra-locus effect mechanisms, Falconer (1960) defined a 

dominance coefficient, k where k = d / |a|, that indicates the degree of dominance. If k = 0 

the locus effect is solely additive, if k < 1 the locus presents a partial dominance 

Figure 3.1 | Assignment of genotypic values. 
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mechanism, if k = 1 the locus presents a completely recessive or completely dominant 

mechanism, and if k > 1 the locus presents overdominance (Figure 3.2; (Falconer 1960)).  

 

Figure 3.2 | Diagrams of dominance genetic mechanisms. 

Diagrams comparing mean phenotypes across genotype classes (A1A1, A1A2, and A2A2) given differing 

genetic mechanisms. The parameter k indicates the dominance coefficient of each mechanism.  
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Heterosis and inbreeding depression are complementary biological phenomenon that 

explain how offspring can be superior or inferior, compared to the average of their 

parents, respectively. Non-additive mechanisms including the dominance and recessive 

mechanisms described here have been implicated as forming the basis of both these 

phenomena (Falconer 1960).  The majority of the admixed dairy cattle population of New 

Zealand comprises Holstein-Friesian, and Holstein-Friesian-Jersey crossbreds (Livestock 

Improvement Corporation 2020). Both inbreeding depression and pairwise-heterosis 

parameters (estimated via pedigree records) are fitted in national genetic evaluation 

models, however the genetic basis of these parameters may present new opportunities for 

selection. 

Genome wide association studies (GWAS) are based on a statistical approach that can be 

used to investigate the genetic architecture of complex traits (Risch and Merikangas 

1996). GWAS can be used to model additive and dominance effects across millions of 

genetic variants and provide insights on the genetic mechanisms through which these 

variants might act. GWAS has led to a number of discoveries across species and promises 

to aid in the prevention and treatment of disease in humans (Visscher et al. 2017) and the 

improvement of selection in livestock (Georges, Charlier, and Hayes 2018). 

A key aspect of robust GWAS studies is to account for potential confounding effects like 

population structure. Population structure encompasses the known and unknown genetic 

relationships between individuals in a sample and can lead to spurious associations which 

reflect ancestry rather than one or more causal variants (Lander and Schork 1994). 

Genetic relationship matrices (GRMs) fitted in a linear mixed model have been a common 

way to account for population structure. Such models have been implemented in software 

like GCTA (Yang et al. 2011), and GEMMA (Zhou and Stephens 2012) and those 
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techniques have been shown to remove spurious associations (Eu-ahsunthornwattana et 

al. 2014). Other methods such as fitting random marker effects can also be used to 

account for population structure (Toosi, Fernando, and Dekkers 2018) and avoid the 

computational complexity deriving from relationship matrix construction and inversion.  

Despite recognition of the existence of dominance mechanisms and their influence on 

quantitative traits, their contributions have often been considered to be negligible relative 

to additivity, and thus ignored (Hill, Goddard, and Visscher 2008; Crow 2010). It is harder 

to exploit dominance effects in selection schemes and genetic prediction models, so 

dominance effects have not been investigated to the same extent as additive effects even 

when non-negligible dominance genetic variance exists. Recently, there have been 

attempts to detect dominance QTL in human and cattle populations (Zhu et al. 2015; Jiang 

et al. 2019). Zhu et al. (2015) tested for the presence of dominance effects across 79 

quantitative traits in humans and identified only a single partially dominant QTL at the 

ABO locus for two blood related phenotypes. In what may be the largest GWAS to 

investigate dominance to date, Jiang et al. (2019) tested for dominance effects based on a 

dataset of over 290,000 dairy cattle, and identified several dominance QTL for five milk 

yield and milk composition traits. While significant variants were identified, researchers 

were not able to identify causal mutations underlying these QTL.   

There are many biological and experimental factors which contribute to our power to 

detect causal mutations via GWAS. As presented in Chapter 1, experimental factors that 

may increase power include increased sample size, higher marker density, and improved 

imputation quality. The manner in which the GWAS model is parameterised is a fourth 

experimental factor to consider when attempting to improve a models’ power. Designing 
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a fit-for-purpose model to best capture the genetic variation contributed by differing 

mechanisms may thus provide the power required to better elucidate the genetic 

architecture of complex traits.  

Here, we present the development of a non-additive GWAS model designed to detect 

either dominant or recessive QTL. We investigate the power of differing model 

parameterisations at detecting a range of dominance mechanisms. An algorithm to fit this 

model was implemented in the Julia programming language and used in Chapters 2 and 5 

to successfully detect dominance QTL affecting economically important traits in dairy 

cattle.  We further investigated how to account for population structure between 

genotyping panels and between reference genomes and explored the effect of dominance 

population structure on spurious associations. 

3.3 Methods 

3.3.1 Animal populations 

Our study consisted of two interrelated datasets used to represent the same New Zealand 

dairy cattle population, referred to here as the ‘Heritability Dataset’, and the ‘Application 

Dataset’. The Heritability Dataset was used for estimation of genetic variance and 

heritability, and the Application Dataset was used for reference assembly and dominance 

population structure comparisons. 

The Heritability Dataset consisted of 12,149 cows that were reportedly 16/16ths Holstein 

Friesian (HF) and another 7,502 cows that were 16/16ths Jersey (J). These purebred 

animals were a subset of those in the admixed ‘discovery population’ previously 

described (Reynolds et al. 2021).  The Application Dataset consisted of 124,356 dairy 

cows from a mixed breed population described in Chapter 5 (Reynolds et al. 2022), where 
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20,888 are HF, 13,182 are J, 67,519 are crosses of varying proportions of those two 

breeds (HFXJ), and 22,767 are HF or J crossbreeds with minor proportions of other 

breeds.  An individual’s breed composition has historically been coded in 16ths, in which 

case a 16/16ths animal implies it is purebred; however, this does not preclude the 

possibility that a distant ancestor may be crossbred. 

3.3.2 Phenotypes 

The Heritability Dataset investigated growth and developmental traits in purebred female 

cows, namely, live weight (kg; HF = 12,149, J = 7,502), stature (cm; HF = 10,753, J = 

7,088), and body condition score (score; HF = 10,858, J = 7,148). The Application Dataset 

investigated the first-lactation milk-fat yield phenotype (kg/Lactation; N = 124,356). Prior 

to analysis, each phenotype was adjusted for nuisance effects derived from the national 

genetic evaluation of the entire cattle population (~30 million animals). That evaluation 

fitted a linear mixed model with fixed effects such as contemporary group, age at calving, 

and stage of lactation, pairwise heterosis, and breed group. Growth and developmental 

traits were adjusted for contemporary group, age at calving, and pairwise heterosis, while 

the milk-fat phenotype was adjusted for contemporary group, age at calving, and stage of 

lactation as well as other lactation specific covariates. Animals with multiple records had 

these aggregated to their mean and a weighting was applied reflecting the amount of 

information in the aggregated phenotypic deviation (Garrick, Taylor, and Fernando 2009). 

3.3.3 Genotypes 

Study animals in the Heritability dataset were genotyped on a variety of medium and/or 

high-density SNP-chip platforms. All missing loci were imputed first to the BovineSNP50 

panel and subsequently to the BovineHD panel. For further details see Chapter 2 – 
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Methods (Reynolds et al. 2021). Imputed genotypes from both the Bovine SNP50k and 

Bovine HD panels were filtered using similar quality controls.  We removed individual 

variants if they presented a high missing genotype rate (>0.01), a low minor allele 

frequency (<0.02), a high deviation from expected Hardy-Weinberg equilibrium (>0.15, 

calculated within breed), or a low imputation quality based on allelic R2 (AR2 < 0.95). 

Final filtering consisted of LD pruning to remove variants in high linkage disequilibrium 

with another on the panel (R2 > 0.9).  These filters resulted in a set of 34,738 markers on 

the Bovine SNP50k panel, and 280,570 markers on the Bovine HD panel.  

Animals in the Application dataset had sequence-imputed genotypes generated as 

described in Chapter 5 (Reynolds et al. 2022).  That dataset consisted of 16,640,294 

variants for GWAS.  

3.3.4 GWAS Model 

Genome wide association studies are frequently used to find which genotypes influence 

phenotypes (Visscher et al. 2017). Most implementations only investigate additive effects 

and ignore non-additive effects like dominance. We aimed to design a linear mixed model 

to detect intra-locus non-additive (dominance and recessive) effects in complex 

quantitative traits in cattle.  We intended to investigate over 16 million imputed variants, 

described in Chapter 2 and Chapter 5, and chose a single locus approach to test each 

variant one-at-a-time. While doing so we also aimed to account for the complex 

relationship structures of dairy cattle in the genotyped dataset to avoid spurious 

associations. This linear mixed model can be represented by this equation. 

 𝑦 = 𝑇𝑏 + Mα + e (1) 
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Where y represents a vector of adjusted phenotypes, b is a vector of fixed effects 

representing the genotype of interest, and T is the design matrix relating records to the 

genotype of interest.  The vector α comprises random effects representing population 

structure and the design matrix M relates records to these random effects. The vector e 

represents random residuals for each record. Throughout this Chapter we specify further 

details of these model terms.  

3.3.5 Model Specification 

While recessive causal variants were of particular interest in developing this model, we 

also wanted to capture other intra-locus effects such as partial dominance and over-

dominance. We designed simulations to select the best encoding of T (1) to detect these 

causal mechanisms. We compared the computational aspects and tested the power of 

different encoding specifications of single locus models to this end, comparing additive, 

recessive, and genotype class effect specifications to select an appropriate model for 

detecting non-additive variation. We considered four types of mechanisms: additive, 

partial dominance, complete recessive, and over-dominance shown in Figure 3.2. We 

simulated either sire phenotypes or cow phenotypes across different sample sizes for 

these different mechanisms caused by a mutation. We assessed the power of each model 

in each simulation by calculating the variance explained using analysis of variance 

(ANOVA) techniques.  

Three different model specifications were used to calculate the variation explained by the 

locus of interest. First, the additive model which fits an intercept and a covariate 

indicating the number of alternate alleles in the genotype (2). Second, the recessive model 

fits an intercept and a covariate indicating whether the genotype is homozygous-alternate 
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or not (3). Third, the genotype class means model fits three genotype class effects 

indicating the individual’s genotype at the locus (4).  

 [
1 0
1 1
1 2

] (2) 

 [
1 0
1 0
1 1

] (3) 

 [
1 0 0
0 1 0
0 0 1

] (4) 

 

3.3.6 Simulated datasets 

We simulated mutations with the 4 different effect mechanisms presented in Figure 3.2, 

these are additive (k = 0), partial dominance (k = 0.5), complete recessive (k = 1), and 

overdominance (k = 1.5). For each mechanism, we simulated a low frequency causal 

variant with a minor allele frequency of 0.025. Minor allele frequency is a key parameter 

given that lower frequency variants are harder to detect; we chose this frequency as it is 

similar to that reported for a previously described GALNT2 mutation (Charlier et al. 2016; 

Reynolds et al. 2021). That causal mutation explained 0.1% of the phenotypic variation.  

Many economically important phenotypes are routinely measured on cows via herd-tests. 

A key aspect of artificial selection in New Zealand dairy cattle is the use of a small number 

of sires across the national herd of several million cows (Tacon 2002; Georges, Charlier, 

and Hayes 2018). This means understanding the phenotypes of bulls is crucial to genetic 

gain, however one cannot measure important cow-specific traits like milk production on 

bulls. To overcome this challenge, the phenotypes of a sire’s daughters can be aggregated 

and assigned as the phenotype of the sire, and this value can then be used in selection and 

association models.  Here, we have modelled one such cow-specific phenotype where each 
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cow has their own phenotype record, and each sire phenotype was calculated as the 

aggregate of 100 of their non-genotyped daughters. The simulation investigated sample 

sizes ranging from 5,000 to 100,000 cattle (or 500,000 to 10,000,000 non-genotyped 

daughters to simulate sire phenotypes) to attempt to determine how many animals are 

required to have sufficient power in detecting mutations under each mechanistic 

presentation. This phenotype had an additive heritability of 0.25 which is broadly similar 

to previously reported heritabilities for liveweight and milk volume phenotypes of 0.39 

and 0.28, respectively (Sun et al. 2014; Reynolds et al. 2021).  

3.3.7 Estimating the power of the model 

The power of a statistical test is the probability of rejecting the null hypothesis when it is 

false.  We assessed the power of each model specification using analysis of variance 

(ANOVA). We tested the hypothesis that treatment group means are all equal by 

comparing between treatment group variation and within treatment group variation. The 

quotient of these variance terms generates an F-statistic which we used to calculate the 

power of the test using a non-central F-distribution and a critical value equivalent to a p-

value of 5x10-8. We chose this significance threshold as it is a standard multiple testing 

threshold used in GWAS studies (Visscher et al. 2017). This analysis was implemented in 

R [https://github.com/egmreynolds/PowerCalculations.git] using the pwr library 

(Champely et al. 2020).  

3.3.8 Fitting marker effects 

Accounting for population structure is an important aspect of a GWAS model (Yu et al. 

2006). This can be done using a pedigree relationship matrix, a genomic relationship 

matrix (GRM) or marker effects as outlined in Chapter 1 (Henderson 1976; Vanraden 
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2008; Toosi, Fernando, and Dekkers 2018). Relationship matrices for n individuals are n x 

n symmetric matrices describing the genetic relationships between each of pair of 

individuals. As sample size increases so does the computational complexity of inverting 

that relationship matrix. The effort can be alleviated by fitting marker effects for n 

individuals and m markers. Marker effects are represented by a n x m matrix describing 

allele distributions present in the sample, and the variance -covariance matrix of those 

effects is diagonal making its inversion trivial.  That was the method implemented for 

model design.   

3.3.9 Heritability estimation 

We first compared the genetic variance explained by two different SNP-chip platforms 

with different marker densities, aiming to select which marker set to fit as marker effects.  

Genetic variance components and heritabilities were estimated in a similar way to that 

described in Chapter 2.  We constructed additive and dominance GRMs using 34,738 and 

280,570 markers from the Bovine SNP50k and Bovine HD panels, respectively, for each 

breed.  We used GCTA to estimate additive and dominance variance components and their 

respective heritabilities using the restricted maximum likelihood (REML) approach (Yang 

et al. 2011), where additive heritability (h2) is the ratio of additive genetic variance to 

phenotypic variance, and dominance heritability (δ2) is the ratio of dominance genetic 

variance to phenotypic variance. To compare possible differences in dominance 

heritability estimation, we also used GCTA to estimate dominance genetic variance while 

omitting the additive GRM from the model.  
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3.3.10 Heritability comparison 

We were interested in comparing heritability estimates between SNP chip panels, 

between breeds, and between REML models. REML estimators are asymptotically normal 

but their exact distribution is unknown (Searle, Casella, and McCulloch 2009; Cressie and 

Lahiri 1993). Their sample distribution is approximated by a mean and standard error, 

but these cannot be compared between estimates using Z-tests, or confidence intervals. 

Instead, a conservative method was used, appealing to Chebyshev’s inequality (Chebyshev 

1867). Chebyshev’s inequality is a generalised probability theorem that produces an 

upper limit for confidence intervals that can be applied to any probability distribution. 

This generality may reduce its power but increases its utility. The inequality can be used 

to calculate the maximum probability that there is no difference between two probability 

distributions with known mean and variance.  This probability can be calculated using 

𝑃(|𝑋 − µ| ≥ 𝑘) ≤  
𝜎2

𝑘2
 

Where  X  and µ are REML estimates from different distributions such that  X - µ indicates 

the difference between the REML estimates of each distribution, k indicates the 

magnitude of the difference between X and µ, and σ2 represents the variance of the 

difference of the REML estimators while assuming the covariance between the two 

estimators is zero. We considered a difference significant at p ≤ 0.1. 

3.3.11 Marker effect estimation 

We chose to fit marker effects from the BovineSNP50 panel as random effects in our 

GWAS model and we aimed to estimate all random marker effects simultaneously. The 

Bayesian Alphabet is used to describe a series of Bayesian models for estimating the 
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posterior distributions of marker effects (Fernando and Garrick 2013). These Bayesian 

alphabet models can be implemented using Gibbs sampling techniques where inferences 

on marker effects and variance components are made on plausible samples drawn from 

their posterior distributions (Fernando and Garrick 2013). In BayesC0, each plausible 

marker effect (αi) is drawn from a univariate normal distribution with variance σ𝛼
2  

(Habier et al. 2011; Fernando and Garrick 2013).  These posterior marker effect 

distributions can be used to account for the population structure while testing another 

variant of interest (Toosi, Fernando, and Dekkers 2018). We chose this BayesC0 approach 

to estimate marker effects in our GWAS model.  

3.3.12 Proximal contamination 

When fitting population structure parameters derived from genomic data like GRMs or 

marker effects, double fitting of the variant of interest can occur and this causes what is 

known as proximal contamination. This is because the variant of interest (or another 

variant in moderate to high linkage with the variant of interest) already contributes to the 

GRM or marker effects, which can shrink the estimate of the effect and lead to it being 

falsely rejected. Leave one chromosome out (LOCO) and leave one segment out (LOSO) 

are two approaches to address this problem. LOCO involves ignoring variants on the same 

chromosome as the variant of interest. Similarly, LOSO involves ignoring variants in the 

same chromosomal segment as the variant of interest, where the size of the segment can 

vary depending on the effective population size which is determined by the population 

structure. We implemented the LOSO approach with 10Mbp segments as we aimed to 

account for as much population structure as possible while avoiding proximal 

contamination. 



 

 

123 

 

3.3.13 Model Implementation 

We implemented the GWAS model developed in two steps to reduce computational effort. 

Step 1 involved estimating the effects of population structure and adjusting the phenotype 

using a LOSO approach.  Step 2 uses these LOSO-adjusted phenotypes to test each of 16 

million genome-wide variants using the specified encoding to detect dominance and 

recessive effects. We also needed to implement the majority of the code ourselves such 

that it fit the model developed in Chapter 2 (Methods).  We chose the relatively new 

programming language, Julia (Bezanson et al. 2017), which specialises in fast computation 

and is positioned for data science and statistical and functional programming.   

Step 1 

Step 1 involved fitting a BayesC0 algorithm across a set of markers and subsequently 

using these markers’ effects to account for population stratification.  GenSel is a software 

which can be used to run multiple Bayesian models including BayesC0 in an efficient 

manner (Fernando and Garrick 2013). GenSel also allows control of sampling approaches 

such as Markov chain length and burn-in amount, as well as a range of definitions of 

priors for variance components.  We used GenSel to sample plausible marker effects for 

SNP chip markers genome wide. 

An important aspect of our model is that it allows phenotypes to be the aggregates of 

different numbers of records. For example, one individual may have been measured three 

times for the same trait, whereas other individuals may have only been measured once. 

This introduces differences in the error variance of each measurement where the record 

measured three-times has a smaller variance than the record measured once (Garrick, 

Taylor, and Fernando 2009). To account for this difference, we fit D, an n x n diagonal 
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matrix where the diagonal elements vary according to the number of observations in the 

aggregated record (Chapter 2 - Methods).   

The remainder of the processing and analysis for the two-step GWAS model was 

implemented in the Julia programming language. To determine whether inferences 

obtained from the Markov chains had converged we need to extract and interpret the 

marker effects from GenSel result files.  Assessing the convergence of a multivariate chain 

is very difficult, to overcome this we tested convergence for each variable via the 

univariate Geweke diagnostic (Geweke 1991). The Geweke diagnostic works by 

comparing the distributions from the first 20% of the chain with the last 10% of the chain 

using a t-test. If greater than 95% of variables appeared stationary, the multi-variate 

chain was considered to have converged. This process allowed us to determine 

convergence of the marker effect Markov chains and use these data to assess population 

structure.  

The leave one segment out (LOSO) approach required adjusting phenotypes for marker 

effects from all SNP chip markers except those within the relevant 10Mbp window. A key 

challenge to this analysis is the matrix multiplication Mα (Chapter 2 – (1)), where M is an 

n x m matrix, and α is an m x c matrix where n indicates the number of individuals, m the 

number of SNP chip markers, and c represents the number of plausible marker effect 

samples. As n, m, and c increase, this calculation becomes more computationally 

challenging. The variables n and m are based on the sample set available while c can be 

modified.  The number of plausible marker effect samples needs to be sufficiently large to 

represent the effect distribution of each variant. We chose c = 500 to fit this purpose as it 

results in a sufficiently large number of samples to summarise the distribution, while 

being small enough such that the computation of LOSO adjusted phenotypes remains 
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feasible. The resulting n x c matrices are subtracted from the phenotypic deviations 

resulting in c LOSO-adjusted phenotypic deviation vectors of order n to be used in the 

subsequent GWAS analysis.  

Step 2 

In Step 2, we aimed to test each genome-wide sequence variant for association with the 

LOSO-adjusted phenotypes. Using the genotype means parameterisation (4), we 

estimated genotype class effects for each vector of plausible phenotypes adjusted for 

population structure. These genotype class means can then be converted to other 

substitution, additive, and dominance effects by transforming the effect estimates to those 

of an equivalent model (See Chapter 2, Supplementary Note; (Henderson 1985)). Matrix 

multiplication is a computationally demanding task and is required to calculate fixed 

effect estimates.  As described in Chapter 2 – Methods, if T is a design matrix relating 

individuals to genotype classes for a sequence variant of interest, instead of calculating 

T’DT we can calculate the dot product of T and D and sum the columns to create the 

output diagonal of the cell counts (T’DT).  This adjustment may save on computational 

resources, especially as samples sizes increase and if the model becomes increasingly 

complex. 

Through this computation, vectors of plausible effect estimates are drawn from the 

posterior distributions of each sequence variant, x. These can be summarised by their 

posterior means, βx, posterior standard deviations, σx, and z-statistics, zx, following a 

standard Normal distribution as in Bernal Rubio et al 2015. The statistical significance of 

the genetic effects was then evaluated using a Z-test (5).  
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𝑧𝑥 =  

𝛽𝑥

𝜎𝑥

, as if 𝑧𝑥  ~ 𝑁(0,1) 
(5) 

Many computers come with multiple CPUs, but most basic code only uses one of these 

CPUs at a time. In some cases, software can be written to utilise multiple CPUs in parallel, 

so the program evaluates its code faster, this is termed multi-threading or parallel 

computing. Here, we are testing millions of genome wide markers one at a time where 

markers are tested independently of each other. This provides an opportunity to use 

multiple CPUs to process the GWAS in less time than performing each test sequentially. 

On the other hand, starting up a CPU can also take time especially if it needs access to a 

larger dataset as it does in this case.  We struck a balance between sequential and parallel 

computing, where up to 10,000 markers are tested on each CPU available. This allows 

many CPUs to run at the same time, so wall clock time is divided by the number of CPU 

available.  

3.3.14 Transitioning to a new genome assembly 

We used the model and algorithm described above in Chapter 2 where we investigated 

dominance and recessive effects on growth and developmental phenotypes measured on 

over 80,000 cows (Reynolds et al. 2021).   During that research, the world of bovine 

genomics made a major transition between reference genome assemblies from UMD 3.1 

(UMD, Zimin et al. (2009)) to ARS-UCD1.2 (ARS, Rosen et al. (2020)) and, in turn, we 

wanted to make use of this new resource. Much of the process of transitioning our dataset 

was undertaken by scientists in the research and development department at LIC. To use 

our GWAS model on the new genome assembly, we needed to create a new set of genomic 

positions for the marker effects on ARS, we used the ARS-based BovineSNP50 genotyping 

panel as the basis of this and the filtering applied to this dataset is described below.   We 



 

 

127 

 

used the milk-fat yield phenotype in the Application Dataset to assess how well the ARS 

marker set accounted for population structure compared to the UMD marker set 

(described in Chapter 2) by comparing association results of imputed to sequence 

genotypes on chromosome 1.  

3.3.15 Filtering the ARS BovineSNP50 panel 

We aimed to extract a new set of marker positions from the ARS-based BovineSNP50 

panel. We filtered this panel in a similar way to the manner in which the UMD-based panel 

was filtered in Chapter 2, also presented in Chapter 5. Briefly, the 50K panel had 54,708 

autosomal SNPs, we filtered these SNPs to remove markers with high missing genotype 

rates (> 0.01), low minor allele frequency (< 0.02), or high deviations from expected 

Hardy-Weinberg equilibrium (> 0.15, calculated within breed). We then removed markers 

that appeared to impute poorly (dosage R2 < 0.9), and markers in high LD with another 

marker on the panel (pairwise R2 > 0.9, within 1 Mbp). These conditions resulted in a set 

of 31,451 SNP chip marker positions. 

3.3.16 Dominance population structure 

We were interested in how dominance population structure may cause spurious 

associations in GWAS. In Chapter 2, we adjusted phenotypic deviations for pairwise 

heterosis effects derived from the national genetic evaluation models. The heterosis 

covariates were estimated using pedigree and breed composition records which can be 

inaccurate and ignore un-recorded ancestral relationships. Since we were interested in 

studying the dominance population structure of our sample, we chose not to adjust for 

pairwise heterosis in this Chapter and in Chapter 5.  We contrasted GWAS results when 

fitting only additive marker effects (additive-only) versus the results obtained when 
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fitting both additive and dominance marker effects (additive and dominance). We 

quantified inflation by calculating the genomic control inflation factor, calculated as  

𝜆𝐺𝐶 =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑍𝑖

2)

𝑚𝑒𝑑𝑖𝑎𝑛(𝜒1
2)

, where 𝑍𝑖
2 represents a vector of observed squared Z-statistics from 

GWAS and 𝜒1
2 is the expected chi-squared distribution with a median value of 0.455 

(Devlin and Roeder 1999).  We used the milk fat yield phenotype and chromosome 1 to 

make this comparison.  

 

3.4 Results 

3.4.1 Model specification simulation 

We assessed the power to detect causal variants of differing genetic mechanisms under 

additive, recessive, and genotype class models. Figure 3.3 presents the power of these 

models at varying sample sizes for cow and sire datasets.  These power calculations 

indicate the genotype class means model has the highest or near-highest power to capture 

variation across genetic mechanisms across cow simulations.  We observe the power of 

the additive model and recessive model to fluctuate depending on the genetic mechanism 

of the locus. These results indicate the additive model will be much less effective at 

detecting complete recessive QTL and the recessive model similarly will not effectively 

detect complete additive QTL, but the genotype class means model will have adequate 

power in both such cases (given sufficient sample sizes). In sire simulations, power is 

typically higher than the equivalent cow models similar to results previously observed 

(Weller, Kashi, and Soller 1990) and calculations indicate the additive models and 

genotype class models have the strongest power, while the recessive model has the 

lowest across genetic mechanisms. 
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Figure 3.3 | Power comparisons across genetic mechanisms. 

Plots comparing the power of different models across different modes of effect (additive, complete 

recessive, partial dominance, over dominance). Each colour indicates a different model. The parameter 

k indicates the dominance coefficient of the mutation. Population size indicates the number of cows or 

sires in the model, Number of daughters indicates the number of non-genotyped daughters simulated 

to generate the sire phenotypes in the model. Power indicates the probability of detection as 

determined via a non-central F distribution and a critical value equivalent to a p-value of 5x10-8.  
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3.4.2 Heritability results 

We were interested how much genetic variance could be attributed to additivity and 

dominance. The heritability estimates in Table 3.1 and Table 3.2 show additive 

heritabilities are typically far greater than dominance heritabilities across the growth and 

developmental traits investigated here. The largest additive and dominance heritabilities 

were 0.429 and 0.067, respectively, in Holstein Friesian liveweight. Body condition score 

exhibited low dominance heritabilities with estimates ranging from 0.00 to 0.026.  These 

findings suggest additivity is the primary mode of inheritance for these traits.  

We aimed to evaluate the differences in estimates of genetic variance components and 

heritabilities between SNP-chip panels. We used Chebyshev’s inequality to calculate the 

maximum probability that the heritabilities estimated differed between the BovineSNP50 

and BovineHD SNP-chips (Table 3.1 and 3.2).  While heritabilities based on the BovineHD 

SNP-chip were typically numerically higher than those based on the BovineSNP50 SNP-

chip, we did not find any significant differences across estimates between these panels, 

suggesting the 50K panel accounts for as much genetic variance as the HD panel. As such, 

further heritability comparison was only performed on the BovineSNP50 SNP chip. 

Table 3.1 | Heritability estimates for Holstein-Friesian cattle 

 

Holstein-Friesian

Phenotype (N) h2 (se) δ2 (se) h2 (se) δ2 (se) max. p (h2) max. p (δ2)

Liveweight

(12149)

0.3904

(0.0131)

0.0378

(0.0119)

0.4291

(0.0136)

0.0667

(0.0174)
0.24 0.53

Stature

(10753)

0.3411

(0.0141)

0.0488

(0.0147)

0.3696

(0.0147)

0.0589

(0.0212)
0.51 1.00

Body condition score

(10840)

0.2497

(0.0138)

0.0184

(0.0152)

0.2741

(0.0146)

0.0265

(0.0219)
0.68 1.00

50K panel HD panel 50K vs HD
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Table 3.2 | Heritability estimates for Jersey Cattle 

 

Table 3.1 and 3.2 present additive (h2) and dominance (δ2) heritability estimates for Holstein-Friesian 

and Jersey cattle, respectively, for various phenotypes and the different SNP-chip panels densities 

BovineSNP50 (50K) and BovineHD (HD). We calculated the maximum probability (max. p) that the 

distributions of the heritability estimates from HD and 50K were the same as calculated using 

Chebyshev’s Inequality. 

We investigated whether breed impacted the heritability estimates (Table 3.3).  Holstein-

Friesian additive heritability estimates were significantly higher than Jersey additive 

heritability estimates for stature. However, this was not the case for additive heritabilities 

of the other traits or for dominance heritabilities. Investigating stature with the 50K 

panel, we observe Holstein Friesian h2 = 0.3411 versus Jersey h2 = 0.2644 while HF δ2 = 

0.0488 versus J δ2 = 0.0540.   

Table 3.3 | Maximum probability of breed differences in heritability estimates 

 

Table 3.3. presents the maximum probabilities (max. p) that there was no difference between the 

distributions of the Holstein-Friesian (HF) and Jersey (J) heritability estimators calculated using 

Chebyshev’s Inequality. 

We noted a non-zero negative sampling covariance between the additive and dominance 

variance components across breeds and phenotypes. To investigate whether the 

Jersey

Phenotype (N) h2 (se) δ2 (se) h2 (se) δ2 (se) max. p (h2) max. p (δ2)

Liveweight

(7502)

0.3294

(0.0170)

0.0593

(0.0158)

0.3554

(0.0176)

0.0631

(0.0182)
0.89 1.00

Stature

(7088)

0.2644

(0.0174)

0.0540

(0.0180)

0.2882

(0.0181)

0.0247

(0.0184)
1.00 0.77

Body condition score

(7132)

0.2259

(0.0167)

0.0165

(0.0163)

0.2406

(0.0173)

0.0000

(0.0139)
1.00 1.00

50K panel HD panel 50K vs HD

50K panel

Phenotype max. p (h2) max. p (δ2)

Liveweight 0.12 0.85

Stature 0.09 1.00

Body condition score 0.83 1.00

HF vs J



132 

 

dominance heritabilities were underestimated due to the inclusion of the additive 

variance component, we calculated the dominance heritability estimates without 

including the additive GRM in the model (Table 3.4). Dominance heritability estimates for 

liveweight were significantly greater when dominance was fitted alone, than when fitted 

with an additive GRM for both breeds. The same was not true for analysis of stature or 

body condition score for which the estimates were not significantly different between the 

two models.   

Table 3.4 | Dominance heritability estimates. 

 

Table 3.4 presents dominance heritabilities (δ2) estimated within breed (Holstein-Friesian (HF), Jersey 

(J)) across different phenotypes. We calculated the maximum probability that there was no difference 

between the distributions of the δ2 estimates from the dominance-only model and the additive and 

dominance model using Chebyshev’s Inequality.  

3.4.3 Dominance GWAS model  

The foremost aim of fitting this association model was to detect deleterious recessive 

alleles while also providing insight on other non-additive mechanisms. To this end, we 

decided to investigate cow phenotypes using the genotype class means model due to the 

consistent power this model provides across genetic mechanisms and the increased 

resolution the extra parameter provides for inferring the mechanism underlying a QTL. 

We developed a two-step GWAS model which fits marker effects using a LOSO approach 

to avoid proximal contamination, then fits each tested sequence variant one-at-a-time. 

HF 50K J 50K HF 50k J 50K

Phenotype (NHF, NJ) δ2 (se) δ2 (se) max. p (δ2) max. p (δ2)

Liveweight

(12149, 7502)

0.0989

(0.155)

0.1391

(0.0202)
0.10 0.10

Stature

(10753, 7088)

0.097

(0.0177)

0.1145

(0.0212)
0.23 0.21

BCS

(10840, 7132)

0.0288

(0.0174)

0.0366

(0.0182)
1.00 1.00
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These criteria result in the following extended description of (1) as provided in Chapter 2 

- Methods (Reynolds et al. 2021). 

 𝑦 = 𝑇𝑏 + M_α_ + e (5) 

Where y is a vector of phenotypes for one trait, b is a vector of genotype class effects for 

the tested sequence variant, T is a design matrix relating records to the genotype classes 

at the tested sequence variant. α_ is a vector of random SNP chip marker effects with 

coverage across the whole genome except for the 10Mbp segment of interest such that α_ 

~ N (0, Iσα
2), where I is an identity matrix of order equal to the number of marker effects 

and σα
2 represents the marker effect variance, M_ is a matrix obtained from M (a matrix 

relating records to markers (encoded [0, 1, 2])), by deleting the columns corresponding to 

the region neighbouring the tested sequence variant, e is an error vector with e ~ N (0, D), 

where diagonal elements of D vary according to the number of observations in the 

aggregated phenotypic record.  

3.4.4 Genotypic parameterisation implemented for biological inference 

Genotype class means are not as interesting as some of the contrasts between the means 

of different genotype classes.  We used an equivalent model to overcome these challenges. 

A set of models are equivalent if any one of the formulations can be fitted and the 

estimated effects transformed to generate the estimated effects that would have been 

obtained from any of the other models (Henderson 1985).  We considered three 

equivalent models, as explained in the Supplementary Note of Chapter 2 (Reynolds et al. 

2021). Here, we implemented an association model with the primary aim of detecting 

deleterious recessive alleles, therefore we chose the genotypic parameterisation. Briefly, 

the genotypic parameterisation fits a genotypic additive effect (a) and a genotypic 
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dominance effect (d) representing the genotypic values described in Figure 3.1. Where a 

represents half the difference between homozygote genotype classes, and d represents 

the deviation of the heterozygote genotype class from the mean of the homozygote 

genotype classes. 

3.4.5 Modelling association of non-additive effects package 

We implemented a package called Modelling Association of Non-Additive effects (MANA) 

in the Julia programming language (https://github.com/egmreynolds/MANA.git, 

(Reynolds et al. 2021)). That software incorporates marker effect samples from GenSel 

and implements part of Step 1 and Step 2 of our association model utilising Julia’s high 

performance computing. The GWAS model was run on a large computing cluster called 

the New Zealand eScience Infrastructure (NeSI) and our software can utilise the many 

CPUs available to reduce the real time it took for it to run, making it possible to rapidly 

investigate over 16 million variants in datasets of over 100,000 individuals.  

3.4.6 Accounting for population structure on the ARS-UCD1.2 reference genome 

Reynolds et al. (2021) details how the GWAS model was used in the discovery of novel 

recessive mutations affecting growth and developmental phenotypes in cattle.  This 

method appeared to accurately account for population structure presenting several 

plausible candidate causal mutations associated with genetic disorders. In transitioning 

from UMD to ARS, we investigated how differing marker sets and marker specifications 

captured population structure and accounted for spurious associations.  

We observed concordance between GWAS results from the ARS-based marker set 

performed compared to the UMD-based marker set, suggesting our analyses on the new 

reference genome would account for spurious associations at least as well as the previous 
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study presented in Chapter 2. Figure 3.4 contrasts the significance of genotypic additive 

and genotypic dominance effects of 396,241 imputed-to-sequence variants on 

chromosome 1 between UMD-based and the ARS-based marker sets. We observe strong 

concordance between marker effect panels. We therefore chose to use the ARS-50k set of 

31,451 marker positions to account for population structure on the ARS assembly. 

 

Figure 3.4 | Scatter plots comparing genotypic effects between reference datasets 

Plots comparing significance (Z-statistics) of genotypic additive and genotypic dominance effects when 

using different marker sets to account for population structure.  

3.4.7 Investigating dominance population structure 

We were interested in the impact of dominance population structure and investigated 

how it might cause spurious associations. We performed GWAS on the milk-fat yield 

phenotype, which had not been pre-adjusted for pairwise heterosis, using two different 

scenarios for account for population structure. First, we fit additive marker effects 

(additive-only) for the 31,451 markers, and second, we fit additive and dominance 

marker effects (additive and dominance) for the same marker set. Figure 3.5 presents 
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GWAS results for genotypic additive and genotypic dominance effects for the two 

scenarios. We observe that while the significance of genotypic additive effects appeared 

moderately consistent across scenarios, the significance of genotypic dominance effects 

did not. In the additive-only scenario statistics (Figure 3.5a) appear far inflated relative to 

the additive and dominance scenario (Figure 3.5b). To investigate the inflation of each 

scenario on chromosome 1, we contrasted significance statistics against those we would 

expect from their assumed normal distribution with null mean and variance of 1 (Figure 

3.6). We calculated a genomic control inflation factor to quantify the inflation or deflation 

of each scenario. The genotypic additive effects had an inflation factor of 1.47 in the 

additive-only scenario and 1.02 in the additive and dominance scenario. The genotypic 

dominance effects had an inflation factor of 2.37 in the additive only scenario suggesting 

strong inflation of test statistics, and 0.83 in the additive and dominance scenario 

suggesting slight deflation of test statistics.  

This observation suggests accounting for dominance marker effects is important to avoid 

spurious associations. Therefore, in order to use this GWAS model on milk production and 

milk composition phenotype as in Chapter 5, we chose to additionally fit random 

dominance marker effects. This modified equation (5) to include this additional term. 

 𝑦 = 𝑇𝑏 + 𝑀_𝛼_ + 𝑀𝛿_𝛿_ + 𝑒 (6) 

Where all terms are as previously discussed in (5) as well as the addition of δ_, a vector of 

random SNP chip dominance effects with coverage across the whole genome except for 

the segment of interest such that δ_ ~ N (0, Iσδ
2), where I is an identity matrix of order 

equal to the number of dominance effects and σδ
2 represents the marker effect variance, 

Mδ_ is a matrix obtained from Mδ (a matrix relating records to markers (encoded [0, 1, 
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0])), by deleting the columns corresponding to the region neighbouring the tested 

sequence variant.  

 

Figure 3.5 | Manhattan plots of genotypic additive and dominance effects for contrasting model 

implementations. 

Genotypic additive and genotypic dominance Manhattan plots of milk fat yield when (a) fitting additive-

only marker effects and (b) fitting both additive and dominance marker effects. Alternating colours are 

used to demarcate chromosomes. A multiple testing correction threshold is indicated by a horizontal 

grey line at P = 5 × 10-8. 
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Figure 3.6 | Plots contrasting the expected vs observed GWAS significance values. 

Scatter plots indicating the distribution of observed significance values for genotypic dominance effects 

against their expected distribution for both the additive-only model and the additive and dominance 

model. The black diagonal line indicates x = y.   
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3.5 Discussion 

3.5.1 Cow phenotypes more readily present recessive effects  

In this research, we developed a GWAS model and algorithm to detect non-additive intra-

locus effects. A notable observation from the simulation analysis was that sire phenotypes 

were consistently more powerful than cow phenotypes. However, it is important to note 

that each sire phenotype was based on the mean of 100 daughter phenotypes and these 

daughter counts were presented as ‘Number of daughters’ in Figure 3.3. The dairy cattle 

industry promotes a small number of bulls to be used across a large proportion of the 

national herd. Between the years 2000 and 2015 an average of 439 bulls/year were 

proven (Livestock Improvement Corporation 2020), each proof typically comprising of 

less than 100 daughters.  Only about 10% of those sires are used subsequently to their 

progeny test. This means attaining large numbers of sires with many (>100) offspring is 

difficult and the power advantages demonstrated by simulation would be impractical to 

achieve in real terms. It is interesting that additive models can detect a rare recessive QTL 

in sires, a result that differs from that attainable using cow models. This difference 

indicates how affected daughters’ phenotypes blend with the non-affected daughter 

phenotypes when aggregating the sire’s phenotype. This means that a recessive mutation 

may be detectable as an additive QTL, though the effects may be missed unless further 

dissection of the underlying data is performed. Together, these limitations of sample size 

and the phenomenon of ‘phenotype blending’ make cow phenotypes easier to work with 

than sire models.  As such, we decided to investigate cow phenotypes in subsequent 

analyses. 
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3.5.2 The BovineSNP50 panel sufficiently captures the genomic relationships of the 

population 

We aimed to examine the variance components of growth and developmental traits, 

identifying substantial dominance heritabilities for liveweight and stature. These findings 

presented the opportunity to investigate how dominance plays a role in these traits, 

where we detected dominance QTL as described in Chapter 2. This knowledge may also 

be exploited in future selection strategies and prediction models. Through incorporating 

dominance in genomic prediction models the accuracy of estimated genomic breeding 

values can be increased (Varona et al. 2018), and through mate allocation strategies 

breeders can achieve an improvement in selection response when including dominance to 

guide their decisions (Toro and Varona 2010).  

We investigated whether a medium or a high density SNP chip would be sufficient to 

capture the genetic variance attributable to these traits. Although the heritability 

estimates derived from the BovineHD panel were typically numerically higher than those 

of the BovineSNP50 panel, we did not observe a significant change in heritability 

estimates between these panels and the increase in marker density from 34,738 to 

280,570 independently distributed SNPs did not capture any additional genetic variance 

when fitted simultaneously. The lack of difference in heritability estimates between 

genotyping panels suggests the BovineSNP50 panel can adequately capture the 

relationship structures between individuals, and this indicates it may be used to 

represent the population structure in our sample.  

We used Chebyshev’s Inequality (Chebyshev 1867) because it is a generalised theorem 

that can apply when the probability distributions are unknown. Due to its generality, this 
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test was very conservative and meant we had reduced power to detect a difference in 

heritability estimates between panels. However, in cases where significant differences 

were identified (like the breed and model comparisons discussed below), we can be more 

comfortable with our results.  

For stature, we observed Holstein-Friesians had significantly higher additive heritability 

estimates than Jerseys. Additive heritability gives an indication of the future opportunity 

for genetic gain via selection (Hill, Goddard, and Visscher 2008), as there is more genetic 

variance for selection to act on. Therefore, this finding suggests (using the data available) 

there is increased opportunity for selection on stature in Holstein-Friesians than Jerseys. 

We did not observe differences in dominance heritabilities between breeds which may 

indicate dominance plays a similar role in these traits across breeds.   

Huang & Mackay (2016) have shown additive genetic variance can appear to contribute 

the majority of the total genetic variance regardless of the underlying genetic 

mechanisms.  We identified a non-zero sampling covariance between additive and 

dominance variance components, as such we investigated dominance genetic variance in 

the absence of an additive genetic variance term.  We observed a significant increase in 

dominance heritability between the two models for liveweight.  While this dominance 

genetic variance estimation is not the same as the alternative model described in Huang & 

Mackay (2016), it does indicate that the order the variance components are fitted matters, 

as each GRM can capture at least some proportion of the variation explained by the other. 

The finding also shows that while heritability estimates can be useful for genetic selection, 

they do not define the genetic architecture of a phenotype. 
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3.5.3 The non-additive GWAS model was implemented 

We chose to fit the genotype class means model to represent the sequence variant being 

tested because it appeared to best capture the variation of different non-additive genetic 

mechanisms. While this parameterisation can capture the variation of a locus of interest, 

it is not particularly useful for interpretation. Instead, we can transform the effect 

estimates to those of equivalent models (Henderson 1985), as discussed in Chapter 2 – 

Supplementary note. We chose one of these equivalent models, the genotypic model, 

which fits a genotypic additive and a genotypic dominance term.  Other researchers have 

applied different approaches to detecting dominance effects. Instead of fitting the 

genotypic model, these studies fit a more traditional additive or breeding value term as 

derived from an additive-only model and a dominance deviation term (Zhu et al. 2015; 

Jiang et al. 2019).  An important consideration when modelling additivity in this way is 

that instead of modelling biological additivity, instead one is modelling the breeding 

value, α, where α = a + (1-2p) d. This term depends on the allele frequency of the variant 

(p) and the dominance effect of the variant, so while it is useful for selection purposes it 

may be less useful for understanding the biological effect of the mutation. The genotypic 

dominance and dominance deviation terms fitted in the different model 

parameterisations are identical in effect estimate so when identifying dominance QTL 

through GWAS, the models are equivalent. However, when interpreting the biological 

mechanism underlying the QTL, we found the genotypic model more appropriate 

(Reynolds et al. 2021). 

In implementing Step 1 and Step 2 of the GWAS model, we observed the difficulties of 

working with a programming language that was in its infancy.  Many updates to the Julia 

language during its beta stages made it difficult to develop stable tools and syntax changes 
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often broke tools as future updates were released.  The 8th of August 2018 saw the release 

of Julia 1.0 and a massive update which resulted in the requirement of several bug fixes, 

fortunately this did help stabilise the language development and made it easier to develop 

future tools.   

3.5.4 Managing a new marker set and accounting for dominance population 

structure 

We developed a GWAS model to scan millions of sequence variants for dominance and 

recessive mechanisms. We applied this model to growth and developmental traits in 

Chapter 2 and discovered several candidate causal mutations with recessive effects.  

Through these discoveries and through simulation, we suggest the GWAS model 

developed is fit for purpose.  The transition between reference genome assemblies and 

application to new phenotypes presented a new challenge.  

During this research, the world of bovine genomics made a major transition between 

reference genomes from UMD 3.1.1 to ARS-UCD1.2 (Zimin et al. 2009; Rosen et al. 2020). 

Although updated genome assemblies can provide novel insights, this change can also 

cause disruption and required major updates and changes to sequence mapping, genotype 

panel specifications, sequence imputation, and other genomic pipelines. This change 

promised improvements in all these areas as well due to increased continuity and 

accuracy of the reference assembly (Rosen et al. 2020). To account for these changes, we 

filtered the ARS-based BovineSNP50 panel to get a set of 31,451 markers to account for 

population structure. Despite fewer genomic positions in the marker set, it appeared to 

sufficiently remove spurious associations.  
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Instead of adjusting phenotypes for the pedigree-derived pairwise heterosis term in the 

national genetic evaluation model we wanted to see what impact dominance population 

structure had on our GWAS results. We observed increased inflation in the significance of 

genotypic additive and dominance effects when we only fit additive marker effects. This 

inflation appeared to decrease when we fit both additive and dominance marker effects, 

where the genotypic additive effects were very weakly inflated, and the dominance effects 

were somewhat deflated. As a result of these observations, to account for the spurious 

associations caused by dominance population structure, we extended the model to 

include random dominance effects which appeared to sufficiently account for spurious 

dominance associations although may be somewhat conservative in dominance effect 

estimation. This was implemented and applied in an investigation of lactation phenotypes 

presented in Chapter 5.  

3.6 Conclusion 

Elucidating the genetic architecture of complex traits is a key consideration in the genetic 

improvement of species and prevention to genetic disease.  Many previous experiments 

have largely ignored the contributions from non-additive genetic mechanisms, owing 

partly to the lack of statistical models capable of doing so.  We have addressed these 

challenges and successfully implemented an intra-locus non-additive GWAS model in a 

Julia package called Modelling Association of Non-Additive effects (MANA).  This method 

accounts for population structure using additive or additive and dominance random 

marker effects to reduce spurious associations. This tool can be used to detect non-

additive QTL and locate genomic regions of interest which may contain causal mutations 

useful for selection and discovery of novel genetic disease.  
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 Chapter 4 An investigation of a MUS81 nonsense mutation 

on recombination rate 
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4.1 Abstract 

The MUS81 gene has an important role in DNA damage repair and the resolution of errors 

during replication, whereby knockout of the gene can lead to deleterious consequences in 

both human and mice cells. Recently, a knockout mutation in the MUS81 gene was 

discovered in cattle presenting a large deleterious recessive effect on growth and 

production traits. Here, we investigated whether recombination rate might act as a proxy 

phenotype for MUS81’s role in DNA damage repair. While we corroborate differences in 

recombination rate between sexes and between breeds, we could not detect a significant 

relationship between the MUS81 mutation and recombination rate. These findings suggest 

more specialised DNA damage repair phenotypes may be required to elucidate the 

molecular basis of the inherited genetic disorder.  

 

4.2 Introduction 

In a recent non-additive GWAS study we discovered several recessive loci and mutations 

for growth and developmental traits (Reynolds et al. 2021)[Chapter 2]. One of the most 

prominent loci identified was a signal on chromosome 29 that presented two plausible 

candidate causative mutations for this effect, consisting of a conserved missense variant 

in the DPF2 gene (double PHD fingers 2), and a premature stop codon in the MUS81 gene 

(MUS81 structure-specific endonuclease subunit). To attempt to differentiate which of 

these candidates might be responsible, we assessed the biology of these genes to perform 

targeted analyses that might differentiate the effects of both candidate mutations. Chapter 

2 presented hoof anatomical data to explore gene-specific phenotypes related to DPF2, a 

known regulator of finger and toenail characteristics in humans (Vasileiou et al. 2018). 
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Here, we present an association analysis of recombination rate, a process with potential 

relevance to the function of MUS81.  

An organism’s DNA may be damaged through naturally occurring cellular and 

environmental processes, that can compromise the genomic integrity of the cell and lead 

to premature cell death, rapid ageing, or cancer. DNA damage repair mechanisms exist to 

prevent and resolve this damage and act through multiple biological pathways (Hakem 

2008).  While DNA damage and its subsequent repair can occur at checkpoints throughout 

the cell cycle, during meiosis the repair of double stranded DNA breaks can cause 

crossover events to occur through a process called homologous recombination (Hakem 

2008).  Crossover events facilitate the exchange of genetic information between parental 

homologous chromosomes (Coop and Przeworski 2007).   When recombination 

catastrophically fails, through inconsistencies in double stranded DNA break repair or 

through other processes, chromosomal instability can occur whereby gametes may have 

an atypical number of chromosomes (aneuploidy) or may have chromosomal 

rearrangements due to non-homologous recombination (ectopic exchange) (Coop and 

Przeworski 2007).  

Recombination plays a significant role in genomic diversity because it is the process that 

dictates the erosion of linkage disequilibrium through the breakage and formation of 

haplotypes (Baudat, Imai, and de Massy 2013). The recombination rate of an individual, 

often quantified by the number of crossover events, is a heritable complex quantitative 

phenotype and is modulated by many genes, several of which have been identified to have 

major effects in both humans and model organisms (Baudat, Imai, and de Massy 2013; 

Stapley et al. 2017). The deleterious consequences resulting from recombination failures 
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can have a highly deleterious impact on the health of offspring and makes meiotic 

recombination an important mechanism to study.  

The MUS81 gene is involved in DNA damage repair and can prevent genomic aberrations 

by resolving replication complications (Hanada et al. 2007; Fu et al. 2015). Null mutations 

of MUS81 in human cell lines result in slower DNA replication rates (Fu et al. 2015), and in 

mice increase the cells’ susceptibility to DNA damage and chromosomal aberrations 

(Dendouga et al. 2005).  MUS81 holds a complex, multi-faceted role in cancer cells with 

instances of both promoting and obstructing cell proliferation (Chen et al. 2021). In one 

case, MUS81 was shown to aid recombination in telomerase negative cancer cells (Zeng et 

al. 2009). While the viability and fertility of MUS81 knockout mice suggests MUS81 is not 

essential for meiotic recombination (McPherson et al. 2004), the role of MUS81 in DNA 

repair and maintenance of genomic integrity in humans and mice cells suggests it may 

play a similar role in cattle. We propose recombination rate may act as a proxy for the 

efficacy of DNA damage repair in cattle. As such, we hypothesise the deleterious mutation 

in MUS81 (p.Gly70*) may increase the number of crossing over events that occur in an 

individual’s cells.   Here, we estimated a recombination rate phenotype in over 28,000 

animals to investigate the impact of the premature stop mutation in MUS81.  

 

4.3 Methods 

4.3.1 Animal population and genotyping 

Our study consisted of 28,053 animals from the New Zealand dairy cattle population.  

These cattle included 3,578 males and 24,475 females and the breeds of these animals 

were primarily 16/16ths Holstein-Friesian (HF), 16/16ths Jersey (J), or crossbred (HFxJ).  



 

 

149 

 

An individual’s breed may be coded as 16/16ths; however, this does not preclude the 

possibility that an ancestor may be crossbred. 

Study animals were genotyped on a variety of medium- and high-density genotyping 

platforms, previously described in Chapter 2 (Reynolds et al. 2021). For recombination 

rate estimation, we used physical genotypes of autosomal SNPs which had not been 

imputed. Genotypes of the MUS81 mutation were extracted from the imputed to sequence 

genotype set described in Chapter 2. 

4.3.2 Phenotype generation 

We estimated the number of crossover events per animal to represent recombination 

rate. To do so, we identified crossover events using LINKPHASE3 (Druet and Georges 

2015), in a similar way to Kadri et al. (2016). LINKPHASE3 uses SNP-chip and pedigree 

information to reconstruct haplotypes and identify crossover events between parent-

offspring pairs. Autosomal SNP genotypes which provide utility in identifying crossover 

events are termed informative markers and the number of informative markers used for 

each parent-offspring pair is reported by LINKPHASE3. Informative markers must be 

phased in the parent, parentally phased in the offspring, and heterozygous in the parent. 

An increased density of informative markers in a genomic interval increases the 

likelihood of identifying crossover events in that interval if they exist.  As such those 

animals that are genotyped on lower density SNP chips or have a higher degree of 

homozygosity will have fewer informative markers and this may mask crossover events 

from being detected and result in an artificially lower recombination rate than their true 

recombination rate. 
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Our study consisted of 131,464 sire-offspring pairs and 40,950 dam-offspring pairs. In the 

case of trios, an offspring will contribute to both the sire’s and dam’s phenotype as the 

offspring’s haplotypes have been parentally phased so the crossover event estimates for 

the two parental gametes that formed the individual are independent. 

4.3.3 Single locus model 

To analyse this dataset, we used a similar approach to the Single Locus Models presented 

in Chapter 2. We fit a mixed linear model including pedigree to account for population 

structure, and repeated measures using the Julia packages, JWAS (Cheng, Fernando, and 

Garrick 2018) and MANA (Reynolds et al. 2021). 

The model is represented by 

 𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑊𝑝 + 𝑒 (1) 

where y is a vector of the number of crossing over events identified across all autosomes, 

b is a vector of fixed effects including the variant of interest (encoded as genotype class 

effects), the number of informative markers (a quantitative covariate), breed (an animals 

Holstein-Friesian breed proportion in 16ths), and sex (a class effect), X is a design matrix 

relating records to respective fixed effects, u is a vector of random breeding value effects 

such that u ~ N (0, Aσu
2) where σu

2 represents the additive genetic variance and A is the 

additive relationship matrix conditional on the pedigree and, Z is a design matrix relating 

records to breeding values, p is a vector of random permanent environment effects such 

that p ~ N (0, Iσp
2) where σp

2 represents the permanent environment variance, and I is an 

identity matrix of order equal to the number of phenotypic records, W is a design matrix 

relating records to permanent environment effects, and e is a random error term where e 
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~ N (0, Iσe
2) where σe

2 represents the residual error variance. The random variables u, p 

and e are assumed to be uncorrelated (Reynolds et al. 2021). 

JWAS implements a Gibbs sampler to draw plausible samples of effects and variance 

components from their posterior distributions at each iteration (Cheng, Fernando, and 

Garrick 2018). We ran the chain for 100,000 iterations with a burn in of 50,000, keeping 

every 10th iteration thereafter.  Through this computation, we obtained vectors of 

plausible effect estimates from the posterior distribution of each effect fit in the model, x. 

These vectors were then summarised by their posterior mean (𝛽𝑥), standard deviation 

(𝜎𝑥), and z-statistic (𝑧𝑥).  The statistical significance of these effects was evaluated using a 

Z-test, where 𝑧𝑥 =
𝛽𝑥

𝜎𝑥
 and 𝑧𝑥  ~ 𝑁(0, 1).  

 

4.4 Results 

4.4.1 Estimation of a crossing over phenotype 

We used data from our mixed breed population to estimate a recombination rate 

phenotype using LINKPHASE3. We identified 3,418,097 crossover events in gametes 

transmitted from 3,578 males to 131,464 offspring, and 937,604 crossover events in 

gametes transmitted from 24,475 females to 40,950 offspring.  The average global 

recombination rate (GRR) was 25.4 in males and 22.7 in females (Figure 4.1). Previous 

estimates of male GRR are 27.4 in Angus, and 26.9 in Limousin cattle which are consistent 

with our findings (Weng et al. 2014). These recombination rates are also consistent with 

those observed in Ma et al. (2015), where that study estimated GRRs at approximately 

25.5 in males and 23.2 in females. These findings demonstrated the ability of 

LINKPHASE3 to detect crossover events.  
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Figure 4.1 | Crossover events between parent offspring pairs. 

Density plots comparing the number of crossover events for male (M) and female (F) animals and for 

each of the Holstein Friesian and Jersey breeds. An animal was considered to be Holstein-Friesian or 

Jersey if they were at least 13/16ths purebred. 

4.4.2 MUS81 is not associated with recombination rate 

We fit a linear mixed model with pedigree and random permanent environment terms to 

assess the effect of MUS81 on recombination rate. While we observe fewer crossover 

events in affected individuals for the MUS81 mutation, this is not a significant result 

(Table 4.1). As such, there is no evidence from these data that the MUS81 mutation has an 

impact on recombination rate.  
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Table 4.1 | Summary statistics for recombination rate analysis. 

Covariate Posterior mean Standard deviation p-value 

A1A2 – A1A1 (MUS81) 0.104 0.094 0.27 

A2A2– A1A1 (MUS81) -0.731 0.487 0.13 

Holstein-Friesian (per 16th) 0.087 0.018 2.36e-6 

Sex (Male/Female) 2.618 0.051 9.81e-575 

Informative Markers (per 10,000) 6.54E-05 8.94E-07 4.69e-1164 

Table 4.1 presents the posterior means, standard deviations, and p-values derived from the Markov 

chains of effects fitted in the single locus recombination rate model.  The effects of the MUS81 locus are 

presented as differences between the three genotype classes (A1A1, A1A2, and A2A2).  

We estimated the heritability and repeatability of the recombination rate phenotype using 

the pedigree and permanent environment terms in the model. Heritability was estimated 

as 0.106 ± 0.007 and repeatability estimated as 0.224 ± 0.005, these values are similar to 

those reported in Kadri et al. (2016) who used the same LINKPHASE3 software.  This 

suggests that our recombination rate phenotype is characterising real crossover events 

and that there is a genetic component to the phenotype.  

We note a significant impact of breed on the number of crossover events transmitted 

between parents and their offspring (Table 4.1). This result indicates a purebred 

(16/16ths) Holstein Friesian has 1.4 additional crossover events compared to a purebred 

Jersey.  This effect appears to be consistent across sexes, where purebred Holstein-

Friesian GRRs are 26.2 for males and 23.5 for females whereas purebred Jersey GRRs are 

24.4 for males and 21.3 for females.  Breed-specific recombination rates have been 

previously observed in Shen et al. (2018) where the authors compared Holstein-Friesian, 

Jersey, Ayrshire, and Brown Swiss breeds.  
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We detect a large effect of sex on recombination rate, where males have 2.6 more 

crossover events in their gametes than females.  This finding is consistent with previous 

research that observed an average of 1.9 (Kadri et al. 2016) and 2.3 (Ma et al. 2015) more 

crossover events in males than females. We observe the number of informative sites is 

strongly significant in the number of crossover events.  This confirms that recombination 

will be more definitively resolved at an increased density of informative markers.  

 

4.5 Discussion 

4.5.1 MUS81 mutation does not act through recombination rate  

The MUS81 gene has been implicated in DNA damage repair pathways and the resolution 

of complexities during replication in humans and mice (Hanada et al. 2007; Dendouga et 

al. 2005; Fu et al. 2015). A premature-stop mutation in MUS81 was identified as a 

candidate causal variant resulting in a large recessive effect on growth, developmental, 

and production traits in New Zealand dairy cattle (Reynolds et al. 2021). Given MUS81s 

role in preventing chromosomal aberrations, we hypothesised loss-of-function of the 

protein would result in increased chromosomal structural changes that might present as 

an increased recombination rate. We did not identify a significant difference in 

recombination rate between genotype classes, although individuals homozygous for the 

mutation present 0.73 fewer crossover events compared to their wild type counterparts.  

These findings suggest the deleterious impact caused by the loss-of-function mutation 

does not act through increased recombination rate, similar to previous findings 

(McPherson et al. 2004) in which mice homozygous fora MUS81 knockout mutation were 

still viable and fertile. Instead, the deleterious impact may manifest through another yet 
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to be determined cellular mechanism or the MUS81 mutation might not be the causal 

mutation responsible for the growth and developmental trait QTL. Assuming that the 

mutation is involved, it may operate through failure to repair DNA damage leading to 

more holistic health complications such as immunodeficiency, neurological disorders, and 

cancer (Hakem 2008).  Future work might investigate structural variant or de novo 

mutation frequencies as alternative proxies of DNA damage and chromosomal 

aberrations, however these experiments may require higher resolution genotypic 

datasets, and additional, more specialised genomic data such as accurately called 

structural variants datasets. 

4.5.2 Further evidence for effect of sex and breed on recombination rate 

We identified differences in the number of crossover events between sexes and between 

breeds.  Males had 2.6 additional crossover events over females, and purebred Holstein 

Friesians had 1.4 more than purebred Jerseys.  These differences between sexes in cattle 

have been identified previously, where Ma et al. (2015) identified the recombination map 

of male cattle was 10% longer than females for every chromosome, a result that was 

confirmed in a separate population (Kadri et al. 2016). Ma et al. (2015) suggested the 

greater artificial selection intensity on males over females has led to this discrepancy in 

recombination map length.  The difference between breeds has been presented in Shen et 

al. (Shen et al., 2018), where the authors identified several SNP intervals with differing 

recombination rates between Holsteins and Jerseys.  We observed comparable but 

numerically fewer crossover events in Holstein-Friesian and Jersey bulls compared to that 

observed in Angus and Limousin bulls (Weng et al. 2014).  These differences between 

breeds might suggest recombination rate QTL are segregating between breeds, or that the 

increased homozygosity or inbreeding in some breeds such as Jerseys (Pryce et al. 2014) 
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may mask crossover events resulting in an artificially lower estimate of recombination 

rate. 

While we have generated a recombination rate phenotype that was consistent with those 

reported by others (Weng et al. 2014; Ma et al. 2015; Kadri et al. 2016; Shen et al. 2018), it 

is important to note that our dataset may be limited by the density of SNP interrogated.  

We observed a highly significant association between the number of informative markers 

and the number of crossover events. Several recent reports suggest there are many more 

crossover events in the telomeres of cattle autosomes compared to their centres (Ma et al. 

2015; Kadri et al. 2016; Shen et al. 2018). This may suggest having more individuals 

genotyped on higher density SNP-chip panels with an increased density in telomere 

regions would allow us to observe crossover events more accurately using LINKPHASE3.   

 

4.6 Conclusion 

Here, we have generated a dataset to examine recombination rate in cattle, and validated 

recombination rate differences between sexes and between breeds in the New Zealand 

dairy cattle population. We found no evidence that a deleterious loss-of-function mutation 

in the MUS81 gene has an impact on recombination rate, suggesting that, if the mutation is 

indeed responsible for the large recessive QTL detailed in Chapter 2, it likely acts through 

some other biological mechanism. These findings suggest more detailed chromosomal 

and molecular phenotypes will be required to highlight such as function.  
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5.1 Abstract 

5.1.1 Background 

Deleterious recessive conditions have been primarily studied in the context of Mendelian 

diseases. Recently, several deleterious recessive mutations with large effects were 

discovered via non-additive genome-wide association studies (GWAS) of quantitative 

growth and developmental traits in cattle, which showed that quantitative traits can be 

used as proxies of genetic disorders when such traits are indicative of whole-animal 

health status. We reasoned that lactation traits in cattle might also reflect genetic 

disorders, given the increased energy demands of lactation and the substantial stresses 

imposed on the animal. In this study, we screened more than 124,000 cows for recessive 

effects based on lactation traits. 

5.1.2 Results 

We discovered five novel quantitative trait loci (QTL) that are associated with large 

recessive impacts on three milk yield traits, with these loci presenting missense variants 

in the DOCK8, IL4R, KIAA0556, and SLC25A4 genes or premature stop variants in the 

ITGAL, LRCH4, and RBM34 genes, as candidate causal mutations. For two milk 

composition traits, we identified several previously reported additive QTL that display 

small dominance effects. By contrasting results from milk yield and milk composition 

phenotypes, we note differing genetic architectures. Compared to milk composition 

phenotypes, milk yield phenotypes had lower heritabilities and were associated with 

fewer additive QTL but had a higher non-additive genetic variance and were associated 

with a higher proportion of loci exhibiting dominance. 
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5.1.3 Conclusions 

We identified large-effect recessive QTL which are segregating at surprisingly high 

frequencies in cattle. We speculate that the differences in genetic architecture between 

milk yield and milk composition phenotypes derive from underlying dissimilarities in the 

cellular and molecular representation of these traits, with yield phenotypes acting as a 

better proxy of underlying biological disorders through presentation of a larger number 

of major recessive impacts. 

5.2 Background 

Non-additive genetic effects are best known from studies of Mendelian diseases, where 

recessive conditions have been shown to have major deleterious impacts on health and 

performance. These studies have mostly used a ‘forward genetics’ approach, where the 

observation of a disease phenotype precedes fine mapping and sequencing to highlight 

the mutation (Charlier et al. 2012; Littlejohn, Henty, et al. 2014; Bourneuf et al. 2017). 

However, the reverse approach has also been applied, which first identifies candidate 

loss-of-function genotypes and subsequently performs phenotyping on traits likely to 

reflect the impact of the mutation (VanRaden et al. 2011; Charlier et al. 2016; Michot et al. 

2016). Genome-wide association studies (GWAS) have been used to investigate non-

additive effects in quantitative traits, but the number of findings remains limited in 

comparison to additive effects, where most such analyses fit an additive model only. 

Recent studies of non-additive effects include the investigation of complex traits in both 

humans (Zhu et al. 2015) and cattle (Bolormaa et al. 2015; Sun et al. 2014; Aliloo et al. 

2016; Jiang et al. 2019; Reynolds et al. 2021). In cattle, Reynolds et al. (2021) identified 
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several recessive mutations with major negative impacts on growth and developmental 

traits, where some of these effects were found to be due to underlying genetic syndromes. 

The concept of using routinely gathered, quantitative traits as proxies of genetic disorders 

is based on the idea that phenotypes such as growth or liveweight might be indicative of 

the overall health status of the animal, e.g. reduced growth could be caused by an 

underlying genetic disorder, in which case such effects could be detected via GWAS. Thus, 

it is relevant to investigate whether other easily measured traits might also serve as 

proxies of animal fitness, with a view to extend the scope of this approach. Lactation traits 

such as milk volume comprise one of the most commonly targeted classes of quantitative 

traits studied in cattle, where additive analyses of these traits have identified numerous 

candidate causative genes such as DGAT1 (Grisart et al. 2002), GHR (Blott et al. 2003), 

ABCG2 (Cohen-Zinder et al. 2005), GPAT4 (Littlejohn, Tiplady, et al. 2014), and MGST1 

(Littlejohn et al. 2016). Lactation traits might also reflect genetic disorders, given the 

increased energy demands of lactation and the substantial metabolic and physiological 

stresses imposed on the animal (Bauman and Bruce Currie 1980). Thus, we were 

interested in investigating whether the application of non-additive models to lactation 

data might identify recessive mutations in addition to those found for growth traits, and 

to this end, have conducted non-additive GWAS for milk traits on 124,000 animals. We 

contrast the additive and non-additive genetic architectures of milk yield traits and milk 

composition traits. Finally, we describe the discovery of several novel major effect 

recessive loci and highlight candidate mutations that could underlie these undiagnosed 

recessive disorders. 
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5.3 Methods 

5.3.1 Animal populations 

The dataset reported in this study consists of 124,364 New Zealand dairy cattle. These 

animals come from a mixed breed population, where 20,893 were recorded as 16/16th’s 

Holstein–Friesian (HF), 13,184 were recorded as 16/16th’s Jersey (J), 67,520 were crosses 

with varying proportions of the two breeds (HFXJ), and 22,767 were HF or J crossbreeds 

with minor proportions of other breeds including Ayrshire, Brown Swiss, or Hereford 

(and other crosses). The breed of an individual may be coded as 16/16ths, however, this 

does not preclude the possibility that an ancestor may have been crossbred since matings 

between 15/16ths and 16/16ths animals are recorded as producing 16/16ths offspring. 

The animals were born between 1990 and 2018 with a mean birth year of 2010. 

5.3.2 Phenotypes 

We analysed five first-lactation yield deviation phenotypes: three milk yield traits, i.e. 

milk volume (L/lactation; a lactation refers to a standardised 268-day lactation period; 

N = 124,356), milk protein yield (kg/lactation; N = 124,356), and milk fat yield 

(kg/lactation; N = 124,356); and two milk composition traits, i.e. milk protein percentage 

(%; N = 124,363), and milk fat percentage (%; N = 124,363). Milk protein yield and milk 

fat yield are calculated on individual herd tests and are the product of the herd test milk 

volume multiplied by the herd test milk protein percentage or milk fat percentage, 

respectively. 

Prior to genetic analysis, the phenotypes were adjusted for non-genetic effects obtained 

from the national genetic evaluation of the entire cattle population (30 × 
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 106 animals), which fits a mixed linear model, including effects for: contemporary group, 

age at calving, stage of lactation, and record type (i.e. am milkings, or pm milkings, or 

both). Since the number of herd-test measurements varies for each animal, these adjusted 

test day phenotypes were aggregated to a first lactation phenotypic deviation such that 

each animal has a single record and a corresponding weighting that reflects the amount of 

information contributing to the record (Garrick, Taylor, and Fernando 2009). 

5.3.3 Reference population for sequence-based imputation 

Whole-genome sequencing was performed on 1300 animals that were mostly ancestral 

sires and represented the reference population for sequence-based imputation. These 

animals: HF (N = 306), J (N = 219), HFXJ (N = 717), or other breeds and crossbreeds 

(N = 58); were sequenced on Illumina HiSeq 2000 instruments targeting 100-bp paired-

end reads. The sequence data were aligned to the ARS-UCD1.2 reference genome 

assembly using the Burrows–Wheeler alignment algorithm (BWA) version 0.7.17 (Li 

2013), which resulted in a mean read depth of 15×. For variant calling, we used the 

Genome Analysis ToolKit (GATK) v4.0.6.0 (DePristo et al. 2011), followed by filtering of 

the variants with the variant quality score recalibration technique (DePristo et al. 2011). 

Based on the animals with a read depth > 10× (N = 850), variants that were singletons or 

were multi-allelic, had a map quality score lower than 50, or a Mendelian error rate 

higher than 5%, were filtered out leaving 21,005,869 whole-genome sequence variants. 

The genotypes at the positions of these filtered variants were extracted from the sequence 

data of all 1300 animals and were phased using the software Beagle 5.0 (Browning, Zhou, 

and Browning 2018) to generate the sequence-based imputation reference panel. 
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5.3.4 Genotyping 

DNA was extracted either from ear-punch tissue samples or blood samples for the 

124,364 animals included in our study. These samples were processed to extract DNA at 

GeneMark (Hamilton, New Zealand) using Qiagen BioSprint kits, or at GeneSeek (Lincoln, 

NE, USA) using the Life Technologies’ MagMAX system. Genotyping was performed using 

a variety of single nucleotide polymorphism (SNP) arrays including GeneSeek GGPv1 

(8729 SNPs), GGPv2 (20,012 SNPs), GGPv2.1 (20,015 SNPs), GGPv3 (31,813 SNPs), 

GGPv3.1 (31,945 SNPs), GGPv4 (37,092 SNPs), GGP50kv1 (48,156 SNPs), GGP50kv1.1 

(48,161 SNPs), Illumina BovineSNP50v1 (53,126 SNPs), Illumina BovineSNP50v2 (53,629 

SNPs), or the BovineHD (772,235 SNPs) chips.  

5.3.5 Consolidation of SNP-chip panels for sequence imputation 

Imputation from the genotyping panels to sequence resolution was performed as 

described in Wang et al. (2020). The various genotyping panels were grouped into four 

sets: GGP panels (GGPv1, GGPv2, GGPv2.1, GGPv3, GGPv3.1, and GGPv4), 50K panels 

(BovineSNP50v1 and BovineSNP50v2), GGP50k panels (GGP50kv1 and GGP50kv1.1), and 

the BovineHD panel. Animals genotyped on the GGP panels were imputed to the 

BovineSNP50v1 panel, then combined with the physically genotyped 50K panel animals 

and successively imputed to the BovineHD panel. Animals genotyped on the GGP50k 

panels were separately imputed to the BovineHD panel in a single step. In order to 

incorporate the custom content that had been genotyped on the GGPv3 platform, we 

conducted similar imputation steps to impute all animals to GGPv3. Then, we combined 

the imputed and physically genotyped panels (imputed HD, imputed GGPv3, and 

physically genotyped HD), and finally imputed the resulting animals to sequence 
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resolution using the sequence-based imputation reference population, described above. 

LINKPHASE3 (Druet and Georges 2015) and Beagle 5.0 (Browning, Zhou, and Browning 

2018) were used for all phasing and imputation steps. In Beagle 5.0, we applied the 

default parameters except for effective population size that was set at 400, and a window 

size of 20 Mb was used except for chromosomes 7, 10, 12, 14, and 23, for which a 7-Mb 

window size was applied because of the greater computational demands for these 

chromosomes, probably due to assembly and structural complexities (as previously 

reported (Pausch et al. 2017)). Very rare variants (homozygous alternate count ≤ 5) were 

removed by post-imputation filtering and poorly imputed variants based on the dosage R2 

statistic (DR2; DR2 < 0.7) were also filtered out. In total, 16,640,294 variants remained for 

the GWAS and further analyses. 

5.3.6 Genotypes for the adjustment of population structure 

We used the genotyping data from the Bovine SNP50 chip platforms to account for 

spurious effects due to population structure. From the initial 54,708 autosomal SNPs, 

markers with a high missing genotype rate (> 0.01), a low minor allele frequency (< 0.02), 

or that deviated from the expected Hardy–Weinberg equilibrium (> 0.15, calculated 

within breed) were excluded. An additional filtering step was carried out to remove 

poorly imputed markers (DR2 < 0.9) and markers in high linkage disequilibrium (LD) with 

another marker on the panel (pairwise R2 > 0.9, within 1 Mb). After these edits, a set of 

31,451 SNPs remained for subsequent analyses. 

5.3.7 Heritability estimates 

We estimated breed-specific additive and dominance heritabilities based on genomic 

relationship matrices (GRM) using the GCTA software (Yang et al. 2011; Zhu et al. 2015). 
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Additive and dominance variance components were estimated simultaneously from 

purebred individuals (HF = 20,893 and J = 13,184), using the same set of 31,451 filtered 

BovineSNP50 SNPs as for population structure adjustment (see previous section). The 

GCTA software estimates the variance components using a restricted maximum likelihood 

(REML) approach. It estimates the additive heritability (h2) as the ratio of additive genetic 

variance to phenotypic variance, and dominance heritability (δ2) as the ratio of 

dominance genetic variance to phenotypic variance. We analysed yield deviations which 

aggregate the herd test records that are described in the ‘Phenotypes’ section, thus no 

additional records not already described were used in this analysis. 

5.3.8 GWAS 

Overview of the model 

We applied a non-additive GWAS approach that is similar to that described in Reynolds et 

al. (2021) to identify non-additive QTL for milk traits. This approach is a two-step method 

that leaves-one-segment-out (LOSO) and fits all other genomic SNP effects among the 

31,451 SNPs to adjust for population structure, and then applies a Markov chain Monte 

Carlo (MCMC) method to test the effects of all imputed-to-sequence variants in the 

segment that had been left out, one at a time. In general, for each sequence variant the 

method fits the following model: 

𝐲 = 𝟏𝜇 + 𝐓𝐛 + 𝐌𝛂𝛂 + 𝐌𝛅𝛅 +  𝐞,       (1) 

where 𝐲 is the vector of one of the five phenotypes of interest that were pre-adjusted as 

described in the ‘Phenotypes’ section; 𝜇 is the overall mean; 𝟏 is a vector of 1s; 𝐛 is a 

vector of genotype class effects for the sequence variant of interest; 𝐓 is the design matrix 

relating records to genotype class for the sequence variant; 𝛂 is a vector of random 
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additive effects of SNPs spanning the whole genome except the segment of interest such 

that 𝛂 ~ 𝑁(𝟎, 𝐈𝜎𝛼
2), and 𝐈 is an identity matrix of order equal to the number of SNP effects 

and 𝜎𝛼
2 is the additive variance of the SNP effects; 𝛅 is a vector of random dominance 

effects of SNPs spanning the whole genome except the segment of interest such that 

𝛅 ~ 𝑁(𝟎, 𝐈𝜎𝛿
2), and 𝜎𝛿

2 is the dominance variance of the SNP effects; 𝐌𝛂 and 𝐌𝛅 are 

matrices in which each column represents the covariate values for a marker locus ([0, 1, 

2] and [0, 1, 0], respectively); and 𝐞 is the vector of residual errors with 𝐞 ~ 𝑁(𝟎, 𝐑), such 

that for a simple model based on single observations 𝐑 = 𝐈σe
2, and 𝐈 is an identity matrix 

of order equal to the number of phenotypic records and σe
2 is the residual error variance. 

Since the traits investigated here are represented by the mean of a variable number of 

repeated test day observations, the diagonal elements of 𝐑 varied according to the 

number of observations contributing to the yield deviation. One notable contrast to the 

model previously implemented in Reynolds et al. (2021), is that here, we fit both additive 

(𝐌𝛂) and dominance (𝐌𝛅) effects of the genomic markers to adjust for population 

structure. This modification was made to better control the inflation that was observed 

when analysing milk traits in a population larger than that studied in Reynolds et al. 

(2021). 

Adjustment of population structure 

Five hundred samples of vectors of plausible additive and dominance SNP effects, �̃� and �̃�, 

were generated for the 31,451 SNPs using single-site Gibbs sampling based on the 

BayesC0 algorithm implemented in the GenSel program using standard priors (Fernando 

and Garrick 2013). The fitted model omitted the 𝐓𝐛 term from Eq. (1) and the 

convergence of the Markov chain of plausible SNP effects was determined using the 
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Geweke diagnostic (Geweke 1991). The LOSO approach was used to avoid fitting effects of 

nearby SNPs that are in linkage disequilibrium with the sequence variant being tested. 

The genome was partitioned into 10-Mb LOSO intervals and, for each interval, phenotypes 

were adjusted for the samples of SNP effects except for those within the relevant LOSO 

interval. This produced distinct LOSO-adjusted phenotypic deviations for each 10-Mb 

interval for each sample of plausible SNP effects. 

Association analysis 

We sampled the effects of genotype classes for each sequence variant separately, for every 

plausible sample of LOSO-adjusted phenotypic deviations. We obtained MCMC chains of 

additive and dominance genotypic effects, and standard-additive effects as contrasts of 

these plausible effects of genotype classes. The posterior distributions were summarised 

in terms of their posterior means, posterior standard deviations, and z-statistics that 

assumed a standard normal distribution (Bernal Rubio et al. 2015). The statistical 

significance of standard-additive, additive, and dominance genetic effects were evaluated 

using a Z-test. 

5.3.9 QTL identification, significance criteria, and annotation 

Our primary aim was to detect non-additive QTL, thus we declared variants as significant 

if the dominance genotypic effect, 𝑑, passed a false discovery rate (FDR) threshold of 

1×10-3. For each phenotype, this FDR threshold was calculated using q-values (Storey and 

Tibshirani 2003) as implemented in the qvalue package in R (Storey et al. 2020). Since we 

were particularly interested in medium- to large-effect QTL, only the loci with effect sizes 

(𝑎 or 𝑑) greater than 5% of the phenotypic standard deviation of the trait were 

considered for further downstream analyses. We calculated the dominance coefficient 𝑘 =
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𝑑

|𝑎|
  for each significant QTL to characterise the underlying non-additive mechanism where 

𝑘 ≈ 0 represents a completely additive locus, 𝑘 ≈ 1 a completely recessive locus, 𝑘 < 1 a 

partially dominant locus, and 𝑘 > 1 an over-dominant locus. For standard additive effects, 

α, we used GCTA-COJO (Yang et al. 2012) to detect tag variants for QTL identified in our 

standard additive GWAS. The GCTA-COJO routine uses LD structure and GWAS summary 

statistics to iteratively identify significant QTL at the FDR threshold of 1×10-3. 

We used sequence annotations from variant effect predictor (VEP; Ensembl 97, (McLaren 

et al. 2016)) to highlight mutations that might be responsible for the non-additive QTL 

identified, and then used SIFT scores to evaluate the potential impact of any missense 

mutations on protein function (Ng and Henikoff 2003). To assess the quality of VEP-

derived variant annotations and ensure that the predicted missense and nonsense 

variants intersected expressed exons, we manually visualised mammary RNA-seq 

alignments as described in Reynolds et al. (2021) using the Integrative Genomics Viewer 

(IGV) (Robinson et al. 2011). These analyses confirmed that, for the three nonsense 

candidate mutations identified in ITGAL, LRCH4, and RBM34, all appeared to encode valid 

premature stop variants, and in the case of the LRCH4 mutation, its position that is 

adjacent to the exon 3 splice acceptor boundary suggested that the variant might also 

have splicing consequences.  We also manually inspected genome sequence alignments 

representing the non-additive QTL regions in animals of contrasting QTL genotypes (i.e. 

those carrying opposing alleles of the QTL tag SNPs),  to look for possible gene-disrupting 

structural variants in these regions. 
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5.3.10 Iterative GWAS 

We were interested in determining if multiple dominance QTL might segregate at 

associated loci, thus we implemented an iterative GWAS approach to differentiate QTL. 

First, we identified on each chromosome the variants with an FDR lower than the 

threshold. Next, we adjusted the phenotype for the effects of the genotype classes of the 

most significant variant (or candidate causal variant if identified) and then re-ran the 

GWAS model on the chromosome of interest using the adjusted phenotype. This process 

was iteratively repeated until no significant QTL remained on the chromosome. 

 

5.4 Results 

5.4.1 Heritabilities of lactation traits 

First, we estimated the additive and dominance heritabilities for each phenotype within 

each breed to investigate the additive and non-additive genetic architecture of each trait. 

These results (Table 5.1) show that the dominance heritabilities were far outweighed by 

the additive heritabilities. This was not surprising as the values presented are of similar 

magnitude to those reported for other traits and populations in the literature (Sun et al. 

2014; Jiang et al. 2017). Milk fat yield in Jersey cows had the highest dominance 

heritability at 0.074, and milk protein percentage in Holstein–Friesian cows had the 

lowest dominance heritability at 0. It should be noted that there was a clear contrast 

between the relative heritabilities of milk composition and milk yield traits, with milk 

composition traits displaying high additive heritabilities but near to zero dominance 

heritabilities, whereas milk yield traits displayed lower additive heritabilities but higher 

dominance heritabilities (Table 5.1). 
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Table 5.1 | Heritability estimates for lactation traits 

Trait 𝒉𝐇𝐅
𝟐  (SE) 𝜹𝐇𝐅

𝟐  (SE) 𝒉𝐉
𝟐 (SE) 𝜹𝐉

𝟐 (SE) 

Milk volume 0.296 (0.010) 0.044 (0.007) 0.312 (0.012) 0.064 (0.009) 

Milk fat yield 0.261 (0.010) 0.059 (0.008) 0.232 (0.012) 0.074 (0.010) 

Milk protein yield 0.235 (0.009) 0.053 (0.008) 0.236 (0.012) 0.073 (0.010) 

Milk fat percentage 0.700 (0.007) 0.006 (0.004) 0.616 (0.010) 0.015 (0.006) 

Milk protein percentage 0.642 (0.008) 0 (0.005) 0.636 (0.010) 0.005 (0.005) 

ℎ2: additive heritability: 𝛿2: dominance heritability; HF: Holstein-Friesian, J: Jersey; SE: standard error 

5.4.2 GWAS for lactation traits 

We performed GWAS across the five milk traits of interest, namely milk volume, milk 

protein yield, milk fat yield, milk protein percentage, and milk fat percentage, to identify 

non-additive QTL (Figure. 5.1). Both additive and dominance effects are included in these 

plots, and the iterative analysis identified 23 dominance QTL signals that were above the 

FDR threshold of 1×10-3. Some of the QTL were identified for multiple traits. These 

dominance QTL included 10, 11, 12, 8, and 7 QTL from 4618, 2706, 8525, 8987, and 5800 

significant variants for milk volume, milk protein yield, milk fat yield, milk protein 

percentage, and milk fat percentage, respectively. The QTL spanned 13 discrete 

autosomes. After the iterative COJO analysis, standard additive GWAS identified 217, 152, 

142, 673, and 457 QTL for milk volume, milk protein yield, milk fat yield, milk protein 

percentage, and milk fat percentage, respectively. 



 

 

171 

 

 

Figure 5.1 | Manhattan plots of genotypic additive and dominance effects on lactation traits 

Manhattan plots for milk volume (a), milk protein yield (b), milk fat yield (c), milk protein percentage 

(d), and milk fat percentage (e) showing significance of genotypic dominance (blue and light blue), and 

additive (grey and light grey) estimates for ~16.6 million imputed sequence variants. Chromosomes 

are differentiated by alternating colours and a grey line indicates the false discovery rate of 1×10-3, 

used to account for multiple testing. The y-axes are truncated for display purposes (indicated by 3 

dots); chromosome numbers are shown on the x-axis (labels for chromosomes 20, 22, 24, 26 and 28 are 

not shown for clarity of display). 
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5.4.3 Dominance QTL 

We identified 15 significant dominance QTL for milk yield traits, and 11 for milk 

composition traits (Table 5.2 and see Additional file 1: Table S1 at 

https://doi.org/10.1186/s12711-021-00694-3). Twelve of the 15 milk yield dominance 

QTL had recessive effects and were located on chromosomes 2, 4, 5, 8, 12, 25, 28, or 29. 

Seven of these signals did not appear to have been previously reported, whereas the 

remainder were highlighted in our analysis (Reynolds et al. 2021) of growth and 

developmental traits in a population that overlapped with that described here. Eight of 

the 11 milk composition dominance QTL presented partial dominance effects of which six 

were identified in our previously published additive GWAS (see Additional file 1: Table 

S1). Figure 5.2a compares the minor allele frequency and the size of the effect of the 

dominance components for all these loci. Interestingly, milk composition QTL appeared to 

be tagged by high minor allele frequency variants with comparatively small effects, 

whereas milk yield QTL were tagged by variants that had low minor allele frequencies 

and large effects. The type of effects also appeared to differ between traits (Figure. 5.2b), 

where milk yield traits were mostly impacted by recessive QTL, whereas milk 

composition traits near-exclusively presented QTL showing partial dominance. 

https://doi.org/10.1186/s12711-021-00694-3
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Table 5.2 | Association statistics for candidate mutations at recessive loci. 

Trait 

QTL Chr8_44 Mb Chr25_24-27 Mb Chr25_35 Mb Chr27_15 Mb Chr28_6-7 Mb 

Position g.8.44119667T>A g.25.24904939C>T g.25.25161613G>A g.25.26689392G>A g.35975573C>T  g.27.15491451C>T g.28.7922207G>A 

rsID rs483207034 rs453138457 rs471945767 rs1116814780  NA rs523126258 NA  

Candidate 
Gene 

DOCK8 IL4R KIAA0556 ITGAL LRCH4 SLC25A4 RBM34 

VEP AA substitution AA substitution AA substitution Premature stop Premature stop AA substitution Premature stop 

Protein 
Impact 

p.His649Leu p.Pro151Leu p.Arg158His p.Trp731* p.Arg123* p.Thr197Met p.Arg55* 

SIFT score 0 0.02 0.14  NA  NA 0.01  NA 

MAF (HF /J 
/ALL) 

0.013 / 0.059 / 
0.03 

0.001 / 0.043 / 
0.017 

0.001 / 0.042 / 
0.016 

0.002 / 0.049 / 
0.019 

0.034 / 0.001 / 
0.031 

0.046 / 0.001 / 
0.027 

0.044 / 0.004 / 
0.043 

Milk (L/Lactation) 

a ± sd -129.181 ± 23.604 -218.249 ± 39.988 -279.656 ± 49.108 -169.491 ± 37.441 -153.832 +/- 24.201 -123.607 ± 25.598 -106.454 ± 17.786 

p 4.43E-08 4.82E-08 1.24E-08 5.99E-06 2.05E-10 1.38E-06 2.16E-09 

d ± sd 109.644 ± 23.905 215.668 ± 40.648 269.952 ± 49.887 161.062 ± 37.587 97.084 +/- 245.537 120.056 ± 25.895 106.246 ± 17.929 

p 4.51E-06 1.12E-07 6.26E-08 1.83E-08 7.60E-05 3.55E+06 3.10E-09 

k 0.849 0.988 0.965 0.95 0.63 0.971 0.998 

Fat (kg/Lactation) 

a ± sd -5.643 ± 1.177 -11.827 ± 2.109 -15.569 ± 2.359 -9.708 ± 1.870 -6.849 +/- 1.137 -7.075 ± 1.201 -5.170 ± 0.866 

p 1.66E-06 2.05E-08 4.10E-11 2.09E-07 1.71E-09 3.84E-09 2.40E-09 

d ± sd 5.110 ± 1.181 11.339 ± 2.087 14.744 ± 2.372 9.022 ± 1.910 4.412 +/- 1.133 5.729 ± 1.249 5.546 ± 0.859 

p 1.51E-05 5.56E-08 5.08E-10 2.33E-06 9.82E-05 4.48E-06 1.06E-10 

k 0.906 0.959 0.947 0.929 0.64 0.809 1.073 

Protein (kg/Lactation) 

a ± sd -4.981 ± 0.870 -9.226 ± 1.616 -11.885 ± 1.834 -7.847 ± 1.374 -5.498 +/- 0.838 -5.008 ± 0.944 -3.539 ± 0.587 

p 1.05E-08 1.12E-08 9.23E-11 1.11E-08 5.49E-11 1.14E-07 1.60E-09 

d ± sd 4.308 ± 0.897 9.023 ± 1.631 11.435 ± 1.829 7.497 ± 1.389 4.067 +/- 0.844 4.595 ± 0.949 3.695 ± 0.592 

p 1.56E-06 3.14E-08 4.02E-10 6.77E-08 1.43E-06 1.30E-06 4.29E-10 

k 0.865 0.978 0.962 0.955 0.74 0.917 1.044 

VEP: variant effect predictor; NA: Not applicable or unknown; AA substitution: amino-acid substitution; a: genotypic additive effect; d: genotypic 

dominance effect; k: dominance coefficient; sd: standard deviation; p: p-value; MAF: minor allele frequency; HF: Holstein-Friesian; J: Jersey; ALL: all 

animals. Linkage values with top variants are in Additional file 1: Table S1 at https://doi.org/10.1186/s12711-021-00694-3. 
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Figure 5.2 | Plots presenting the genetic architecture of significant dominance QTL from 

GWAS on lactation traits. 

The plots contrast the minor allele frequency (MAF) against the dominance effect size (a), and the 

absolute value of k, where 𝑘 = 𝑑/|𝑎| against the dominance effect size (b) across five lactation 

traits: milk volume, milk protein yield, milk fat yield, milk protein percentage, and milk fat 

percentage. 

5.4.4 Identification of candidate causal mutations 

Given that the recessive milk yield QTL potentially represented novel bovine 

disorders, we prioritised these QTL for further investigation and selected those for 

which the dominance coefficient (𝑘) was near 1 (0.7 < 𝑘 < 1.3). We used sequence 

annotations from VEP to highlight the mutations that might be responsible for these 

effects (Ensembl 97, (McLaren et al. 2016)), i.e. pinpointing variants that were in 

strong to moderate LD (R2 > 0.7) with the lead variant per locus, and that were also 

predicted to alter or disrupt protein function. Furthermore, we manually investigated 

each QTL by visualising the whole-genome sequence alignments that corresponded to 

animals with contrasting QTL genotypes. This step was performed to identify obvious 

structural mutations that were not detected by automated variant calling, i.e. those 

intersecting genes that could be similarly expected to modify or ablate gene function. 
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However, we did not identify any structural variants that tagged QTL. It should be 

noted that these methods focussed only on protein-coding variants as candidates 

since, for recessive signals at least, we consider that protein altering mutations are 

primary candidates given the loss of function mechanism assumed to underlie 

recessive QTL. However, this does not preclude the involvement of regulatory 

variants, which we did not consider in our study. We identified five novel recessive 

QTL (including one near-significant recessive QTL), and several other previously 

identified recessive effects attributed to mutations in the PLCD4, FGD4, MTRF1, 

GALNT2, DPF2, and MUS81 genes (Reynolds et al. 2021). Figure 5.3 presents the 

position, regional LD, and association statistics for the QTL that are novel to this paper. 

Additional File 1: Table S1 shows all significant QTL identified, including those that are 

not described in detail here. 
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Figure 5.3 | Manhattan plots for the five novel milk protein yield QTL representing the 

chr8:44Mbp (a), chr25:24-27Mbp (b), chr25:35Mbp (c), chr27:15Mbp (d), and chr28:7Mbp 

(e) loci. 

Variants are coloured by LD (R2) values with the top tag variant per locus, protein coding variants 

are shown as outlined triangles. Gene tracks are presented below each plot based on Ensembl 97, 

where gene names have been filtered on size. 
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Chromosome 8 

Chromosome 8 presented a significant signal at 45 Mb for milk protein yield and milk 

fat yield. The most significant variants for these signals (g.45878531A>C and 

g.45880948C>T) were in strong LD (R2 = 0.99), and an annotated missense variant 

(g.44119667T>A, rs483207034) was in high LD with both of the top-associated 

variants (R2 = 0.85 and 0.85, respectively; Fig. 3a). This variant in the DOCK8 gene 

results in an amino acid (p.His649Leu) change and has a predicted deleterious impact 

(SIFT = 0). 

Chromosome 25 

A dispersed QTL signal was found on chromosome 25 spanning 24-27 Mb for the three 

lactation yield traits. The region presented different top-associated variants for milk 

fat yield (g.25921991AT>T) and milk protein yield and volume traits 

(g.27868969C>T). Variant effect prediction highlighted three candidate causal 

mutations in the region. These included a p.Pro151Leu substitution in the IL4R gene 

(g.24904939C>T, rs453138457) with R2 = 0.74, and 0.62, for the milk fat and milk 

protein/milk volume top variants, respectively, another missense variant 

(p.Arg158His) in the KIAA0556 gene (g.25161613G>A, rs471945767) with R2 = 0.89, 

and 0.74, respectively, and a nonsense variant (p.Trp731*) in the ITGAL gene 

(g.26689392G>A, rs1116814780) with R2 = 0.76, and 0.70, respectively (Figure 5.3b). 

Although all these variants represented plausible candidates to explain the QTL, we 

were not able to distinguish between the candidates through iterative analysis, since 

when any one of these candidates was fitted, the majority of the association for any of 

the other candidates was removed at this locus. 

A second signal for protein yield on chromosome 25 was observed at 35 Mb. That 

locus maintained its significance after accounting for the QTL on chromosome 25 at 
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24-27 Mb through iterative analysis, suggesting that it was a different effect. The locus 

presented a strong candidate causative mutation that could underlie the effect, i.e. a 

stop gain mutation (g.35975573C>T; Arg123*) in the LRCH4 gene that was the third 

most highly associated variant at this locus overall (Figure 5.3c). We observed a 

mostly recessive effect for this variant (𝑘 = 0.74), with the animals that carried the 

heterozygous and homozygous alternate genotypes producing 1.44 kg, and 11.21 kg 

less milk protein per lactation compared to the homozygous reference genotype. 

When g.35975573C>T was fitted as a fixed effect, the significance of the QTL was 

removed, and no other QTL was detected on the chromosome (Extended Data Figure 

5.1).  

Chromosome 27 

We observed a signal at 15 Mb on chromosome 27 for milk protein yield. Although this 

did not exceed our q-value FDR threshold of 1×10-3 (equivalent to p-value = 

1.65×10-7), this signal was notable given that the top variant (g.15491451C>T; 

rs523126258, p-value = 1.30×10-6) is a predicted deleterious missense mutation 

(p.Thr197Met) in the SLC25A4 gene. Figure 5.3d shows a Manhattan plot for this 

region. 

Chromosome 28 

We previously reported a major recessive bodyweight QTL on chromosome 28 that 

corresponds to a likely causative splice acceptor mutation in the GALNT2 gene 

(g.2281801G>A) (Reynolds et al. 2021). This QTL was observed in the current analysis 

and impacted all three milk yield traits. However, iterative association analysis 

revealed a secondary QTL that is located approximately 4 Mb downstream of the 

GALNT2 mutation at Chr28:6-7 Mb (top variant at g.6223350G>A). This residual signal 

highlighted a stop-gain nonsense mutation (g.7922207G>A) that is strongly linked to 
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the g.6223350G>A variant (R2 = 0.89; Figure 5.3e). This stop-gain mutation (p.Arg55*) 

is located in the RBM34 gene, appears to be in linkage equilibrium with the GALNT2 

causal mutation (R2 < 0.001), and was not associated with bodyweight in our previous 

analysis (p = 0.37;(Reynolds et al. 2021)). A second GWAS iteration on chromosome 

28 (fitting both GALNT2 and RBM34 mutations as fixed effects) did not reveal any 

other significant QTL on the chromosome (Extended Data Figure 5.2). 

5.4.5 Comparison between lactation and growth trait recessive QTL 

We were interested in determining whether the novel recessive candidate causal 

mutations identified here had effects on the growth and developmental traits 

investigated in our previous study (Reynolds et al. 2021). Here, we assessed the 

association statistics of these variants reported in that study, and while none of the 

novel mutations reached statistical significance (and would have thus been reported 

as part of that analysis), some did display apparent recessive mechanisms of moderate 

effect size. This suggests that, with increased sample sizes, these variants may present 

significant effects on growth traits. Notably, the mutation in KIAA0556 was one of the 

most strongly associated variants for body condition score in that study, presenting 

the 10th smallest dominance p-value of the ~16 million variants tested in that analysis. 

Supplementary Table 5.1 includes the association statistics for five of the seven 

candidate causal mutations presented above (the ITGAL and SLC25A4 mutations were 

not captured in the genotype dataset reported by Reynolds et al. (2021)). All of the 

novel candidate mutations highlighted in Reynolds et al. (2021) were also associated 

with lactation traits (Additional file 1: Table S1) except for the MYH1-disrupting 

structural variant which was only associated with body condition score in that study.  
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5.4.6 Dominance QTL for composition traits 

In addition to the recessive QTL identified for milk yield traits, we also identified 

dominance QTL for milk composition traits. We investigated these effects and 

observed several partial dominance QTL that are in close proximity to previously 

described additive loci. The tag variants of these QTL were adjacent to the following 

genes: CSF2RB (Lopdell et al. 2019), MGST1 (Littlejohn et al. 2016), DGAT1 (Grisart et 

al. 2002), GHR (Blott et al. 2003), GPAT4 (Littlejohn, Tiplady, et al. 2014), and PICALM 

(Lopdell et al. 2017) and, in each case, these variants were in high linkage 

disequilibrium (R2 > 0.8) with previously identified causal and/or tag variants 

(Additional file 1:Table S1).  

Milk protein percentage presented multiple dominance QTL on chromosome 6 within 

the 80 to 85 Mb region (Additional file 1: Table S1). Among these QTL, the most 

significant variant (g.84112451C>A) showed a partial dominance effect. Unlike in the 

above examples, we did not identify any very strongly linked candidate mutation 

although this variant was in moderate LD with a previously proposed causative 

variant in the CSN1S1 gene (R2 = 0.53; p.Glu192Gly mutation; g.85427427A>G) (Caroli, 

Chessa, and Erhardt 2009). Chromosome 12 presented a significant dominance QTL, 

for which we observed a partial dominance effect at 68 Mb for milk protein percentage 

with the top variant at g.68763031T>TG. As observed for the chromosome 6 locus, no 

particularly obvious candidate causal variant or gene was identified that might 

account for that signal. 

5.4.7 Comparison between the additive and dominance GWAS results 

Figure 5.4 compares the minor allele frequency (MAF) and the effect sizes between 

homozygous genotypes across all traits and genetic mechanisms. As expected, we 

observed many more additive QTL than dominance QTL across all traits. On the one 
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hand, it is noteworthy that the mutations detected via dominance GWAS for milk yield 

traits had very large effects compared to the additive QTL detected for these traits, and 

most of them had a recessive effect. On the other hand, the largest effects observed for 

the two milk composition traits were mostly additive QTL, and dominance effects 

tended to have high MAF and presented mostly partial dominance effects.  

 

Figure 5.4 | Plots contrasting minor allele frequency and effect size for different genetic 

mechanisms. 

Plots of minor allele frequency (MAF) and the absolute effect size between homozygote genotype 

classes (effect size) for additive (blue) and dominance (red) QTL detected via GWAS across 

lactation traits.  

5.5 Discussion 

Our results highlight the presence of many non-additive QTL for milk traits in cattle. 

The majority of these signals for milk yield traits present recessive QTL, that involve 

five novel loci and several previously described recessive loci (Reynolds et al. 2021). 

Although the milk protein percentage and milk fat percentage traits also yielded many 

dominance GWAS signals, most of them correspond to partially dominant effects that 

are attributable to previously reported additive QTL. 
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5.5.1 Different trait classes present contrasting additive and non-additive genetic 

architectures 

One remarkable observation from our study is the apparent difference in additive and 

non-additive genetic architectures between milk yield traits and milk composition 

traits. Dominance heritabilities for the milk yield traits ranged from 3 to 7%, whereas 

for the milk composition traits they were zero or near zero. In contrast, the additive 

heritabilities ranged from 23 to 31% for the milk yield traits and from 64 to 70% for 

the milk composition traits. These findings are consistent with those of Sun et al. 

(2014) who report similar additive and dominance heritabilities, and suggest that 

dominance, in particular recessive mechanisms, may play a bigger role in the 

regulation of milk yield traits than that of composition traits. 

These differences in the genetic architecture of the milk traits investigated in this 

study were also observed when the properties of individual dominance QTL were 

compared between milk yield and milk composition traits. The majority of the 

dominance QTL identified for milk yield traits had recessive genetic effects, while the 

majority of the milk composition traits had partial dominance effects. Furthermore, 

the dominance QTL for milk yield traits were characterised by low MAF and large 

effect sizes, whereas those for milk composition traits were characterised by high MAF 

and comparatively smaller effect sizes. We hypothesize that these observations reflect 

the way in which different traits may represent underlying recessive syndromes—i.e., 

their utility as proxies for genetic disorders. Among all the recessive QTL detected in 

our study, a subset of these had previously been validated as representing new genetic 

disorders (Reynolds et al. 2021). Although we did not investigate the novel recessive 

loci in this study with the same rigour as those analysed in Reynolds et al. (2021), their 

very large, uniformly negative effects suggest that at least some of them will be 
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similarly validated. Notably, none of these loci (new or old) show substantial effects on 

milk composition, suggesting that milk fat and protein percentage traits do not readily 

reflect recessive effects. This finding can be rationalised by the comparatively broad 

range of biological processes expected to impact milk yield traits (or the growth and 

development traits investigated in Reynolds et al. (2021)), where the energy demands 

of lactation (or growth) may manifest a wide range of other organismal stresses. In 

contrast, the relative composition of milk components likely represents a narrower 

spectrum of mammary-specific biological mechanisms, and thus we hypothesise that 

these traits are less able to serve as proxies of animal fitness. 

It should be acknowledged that given that protein yield and fat yield are the products 

of milk volume and their respective percentages, these traits are not independent. We 

observed that the variance components and the genetic architectures of milk fat yield 

and milk protein yield are more comparable to milk volume than their respective 

composition traits. 

5.5.2 Previous studies highlighting recessive effects on quantitative traits 

As discussed above, we recently reported an investigation of growth and 

developmental traits that identified non-additive QTL using similar approaches to 

those presented here (Reynolds et al. 2021). That study demonstrated how 

quantitative traits can be used as proxies to map genetic disorders without prior 

disease identification. In doing so, we highlighted several recessive QTL represented 

by variants in the PLCD4, FGD4, MTRF1, GALNT2, DPF2, and MUS81 genes, each with 

large effects on bodyweight and other quantitative traits. The work presented in the 

current paper builds on those findings; we identified many of the same recessive 

mutations as well as several additional recessive QTL. Some of these additional QTL 

displayed moderate but not significant recessive effects for growth traits and their 



184 

 

discovery may be assumed to reflect the increased sample sizes leveraged in the 

current study. These findings suggest that milk yield traits might also be used to 

represent whole-animal health, and since lactation measurements are more routinely 

derived than bodyweight phenotypes (at least in bovine dairy systems), these likely 

represent a more accessible phenotype relevant to a larger number of international 

evaluation systems. 

Few studies other than Reynolds et al. (2021) have highlighted major recessive effects 

using quantitative trait data. Although non-additive GWAS with large sample sizes 

have been performed in cattle (Jiang et al. 2017; 2019), the low density of the SNP 

arrays used in those earlier studies may have hampered the ability to directly resolve 

candidate causative variants (Reynolds et al. 2021). This challenge arises due to the 

different linkage disequilibrium (LD) properties between causal and observed variants 

for additive and non-additive QTL, such that the variance that an observed variant can 

explain decreases by R2 for additive QTL, and by R4 for dominant or recessive QTL. 

This means that the observed tag variants need to be more closely linked to the causal 

dominance variants to capture the QTL (Wei, Hemani, and Haley 2014; Visscher et al. 

2017). The fact that major deleterious alleles are also likely to be infrequent 

compounds this problem. Under Hardy–Weinberg expectations where 

p2 + 2pq + q2 = 1, the number of rare allele homozygotes (q2) decreases exponentially 

as allele frequency decreases. Practically, this means very large sample sizes are 

needed to represent rare allele homozygotes, where at 1% MAF, 10,000 individuals 

would be expected to present a single homozygote (with 1,000,000 individuals 

required at MAF = 0.1%). However, as sample sizes and high-density genotyping 

platforms begin to permit such analyses, we anticipate similar such studies in other 

populations to begin to appear. One recent, noteworthy such study has suggested the 

importance of recessive variants in the context of male fertility and semen traits in 
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cattle (Hiltpold et al. 2021). In that study, recessive QTL and candidate causal 

mutations were identified in several genes including a missense variant in the 

SPATA16 gene. That discovery was based on imputed genotypes at high density (the 

Illumina BovineHD platform), but the size of the studied population was quite small (N 

= 3736 bulls). It is likely that the discovery of these QTL was partly aided by the 

remarkable frequency of the deleterious haplotypes identified in that study, 

presenting allele frequencies ranging from 9-34% (Hiltpold et al. 2021). 

5.5.3 Recessive QTL of interest 

Although many non-additive signals were identified in our study, we were particularly 

interested in the recessive QTL with large effects, given that these might represent 

underlying genetic disorders. We highlighted protein-coding variants as candidates 

because we considered these to be the most probable causal variants, but we 

acknowledge this is a relatively simple approach and that regulatory or unidentified 

structural variants may alternatively underlie these recessive QTL. These caveats 

aside, the five novel recessive QTL on chromosomes 8, 25, 27, and 28 are presented 

and discussed below. 

Chromosome 8 – DOCK8 

Our results present a missense mutation in the DOCK8 gene as potentially having a 

deleterious recessive impact on milk yield traits. The QTL appears to operate in a 

completely recessive manner, with the DOCK8 variant present at low allele frequencies 

in each breed (Holstein-Friesian MAF = 0.013 and Jersey MAF = 0.059).The DOCK8 

gene encodes dedicator of cytokinesis 8, a member of the DOCK180 family of guanine 

nucleotide exchange factors, which influences intracellular signalling networks and is 

important in immune responses and lymphocyte regulation in humans and mice 

(Kearney, Randall, and Oliaro 2017). Recessive mutations in DOCK8 have been 
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associated with the hyper immunoglobulin E syndrome which leads to the onset of an 

immunodeficiency disease combined with other health complications (Engelhardt et 

al. 2009). In mice, compromised immune responses are also observed including 

negative impacts on B cell migration (Randall et al. 2009), and T cell migration and 

viability (Lambe et al. 2011; Qian Zhang et al. 2014). DOCK8 variants have not 

previously been associated with cattle performance traits, but if this missense 

mutation underlies the QTL on chromosome 8, we hypothesized that it could act 

through similar negative impacts on the immune system. Under this hypothesis, it is 

unknown whether the effects on lactation are due to mammary immune function or 

secondary impacts. However, given that higher levels of circulating immunoglobulins 

E and lymphocyte profiling can indicate DOCK8 deficiency in humans (Janssen et al. 

2014; Engelhardt et al. 2009), it would be interesting to sample and profile 

homozygous animals to definitively establish the causality of the DOCK8 missense 

mutation for this QTL. 

Chromosome 25 – IL4R, KIAA0556, ITGAL 

The QTL identified on chromosome 25 at 24-27 Mb presented three candidate 

mutations in the IL4R, KIAA0556, and ITGAL genes. The IL4R gene encodes the 

interleukin 4 receptor, which is a transmembrane protein involved in immune 

responses in humans (Shirakawa et al. 2000). The KIAA0556 gene is associated with 

microtubule regulation in humans, and KIAA0556 knockout mutations in humans and 

mice have been associated with Joubert syndrome, a neurological disorder (Sanders et 

al. 2015). The ITGAL gene encodes the integrin alpha L chain, and loss of function 

variants in this gene have been associated with compromised immunity including 

increased susceptibility to infection to Salmonella in mice (J. Zhang et al. 2019). Given 

that the iterative association analysis failed to prioritise one of these variants over the 
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other, it is unknown which of these variants might be responsible for the QTL, and our 

focus on protein-coding variants as candidates may have also overlooked alternative 

non-coding or structural mutations. These variants are nevertheless in moderately 

strong, though not in perfect LD (maximum pairwise R2 = 0.79), thus physical 

genotyping for fine mapping and future functional testing should help to resolve the 

identity of the gene (or genes) underpinning this QTL. 

Chromosome 25 – LRCH4 

Although iterative GWAS did not resolve candidates in the above example, this 

approach did highlight a second QTL on chromosome 25 represented by a nonsense 

mutation in the LRCH4 gene, which encodes leucine-rich repeats and calponin 

homology containing protein 4. It regulates the signalling of toll-like receptors (TLR) 

and has been shown to influence innate immune responses in mice (Aloor et al. 2019). 

In that study, researchers showed that LRCH4-silenced cells presented a reduced 

expression across pro-inflammatory cytokines produced in the TLR4 pathway, most 

notably in that of IL-10 and MCP-1. We hypothesise that the LRCH4 knockout mutation 

identified in our study may have negative impacts on the innate immunity of cattle and 

those impacts could lead to the recessive effects we observed on milk volume, milk fat 

yield, and milk protein yield. 

Chromosome 27 – SLC25A4 

While non-significant at the genome-wide level (cf. P = 1.65×10-7 vs P = 1.30×10-6), the 

locus on chromosome 27 at 15.5 Mb presented a conserved amino acid mutation in the 

SLC25A4 gene as the lead associated variant and was therefore of interest. This variant 

demonstrated a complete recessive effect on all three lactation yield traits. The 

SLC25A4 (solute carrier family 25 member 4) gene encodes the adenine nucleotide 

translocator (Ant1) protein, responsible for the translocation of ATP and ADP between 
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the cytoplasm and mitochondria. In mice, SLC25A4 knockouts result in mitochondrial 

myopathy and cardiomyopathy, and severe intolerance to exercise (Graham et al. 

1997). Similarly, in humans, childhood-onset mitochondrial disease and exercise 

intolerance have been observed for both dominant (Kaukonen et al. 2000) and 

recessive mutations (Palmieri et al. 2005) in SLC25A4. Given the implication that 

mitochondrial functional deficits might underlie the negative lactation effects 

highlighted in the current study, it would be intriguing to examine the phenotypes of 

homozygous cows further in this context. 

Chromosome 28 – RBM34 

At first glance, the strong associations with the lactation yield traits on chromosome 

28 might reasonably be attributed to the previously reported splice site mutation in 

GALNT2 (Reynolds et al. 2021). However, when this mutation was fitted as a covariate 

in our iterative GWAS approach, a secondary QTL was observed, highlighting a 

nonsense mutation in the RBM34 gene as potentially responsible for the effect. The 

RBM34 gene encodes an RNA recognition motif protein with an RNA-binding domain. 

The literature on RBM34 in humans or model organisms is scarce with limited 

implication of the gene in embryonic stem cell differentiation (X. Wang et al. 2021). 

Here, we observed a predicted homozygous knockout of RBM34 that may influence 

milk volume, milk protein yield, and milk fat yield in a recessive manner, although its 

status as a largely uncharacterised RNA-binding protein leaves little room for 

speculation as to how these effects might manifest. Mechanism aside, the identification 

of two co-locating, yet uncorrelated recessive QTL demonstrates the utility of using 

iterative GWAS approaches, given that conventional analysis would likely fail to 

differentiate these effects. We note that other researchers have observed effects on 

lactation at the 6-10 Mb locus (Raven et al. 2016). However, the LD (R2 with RBM34 = 
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0.04, GALNT2 = 0.02) between the tag variant identified by Raven et al. (2016) 

(rs41607517) and the nonsense mutations identified here is very low, which suggests 

that they are different effects. 

5.5.4 Previously described additive QTL present partial dominance 

We observed several partial dominance QTL that are closely linked to previously 

described QTL identified from standard additive analyses. As presented in Additional 

file 1: Table S1 we identified dominance components in high LD with variants 

associated with the CSF2RB (Lopdell et al. 2019), MGST1 (Littlejohn et al. 2016), 

DGAT1 (Grisart et al. 2002), GHR (Blott et al. 2003), AGPAT6 (Littlejohn, Tiplady, et al. 

2014), PLAG1 (Karim et al. 2011; Fink et al. 2017), and PICALM (Lopdell et al. 2017) 

genes (and in moderate LD with a variant in the CSN1S1 gene (Caroli, Chessa, and 

Erhardt 2009)). These partial dominance associations were mostly identified in milk 

composition traits. These observations suggest that many well-known major-effect 

QTL that are identified in additive GWAS’ incorporate some level of non-additivity, in 

agreement with the analyses of milk traits reported by Jiang et al. (2017; 2019). 

5.6 Conclusions 

In this study, we have highlighted that different classes of lactation traits (yield 

compared to composition traits) present different additive and non-additive genetic 

architectures. We speculate, that these differences derive from dissimilarities in the 

cellular and molecular manifestation of these traits, and although milk yield traits have 

comparatively low additive heritabilities, these traits may better reflect whole-animal 

energy and fitness status and be a better proxy of a wider range of underlying 

biological disorders. At the single locus level, we identified five QTL presenting seven 

candidate causative variants in the DOCK8, IL4R, KIAA0556, ITGAL, LRCH4, SLC25A4, 
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and RBM34 genes, highlighting medium- to large-effect recessive variants that may 

provide future opportunity for diagnostic testing and animal improvement. 
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5.7 Extended Data Figures 

 

Extended Data Figure 5.1 | Iterative Manhattan plots for milk protein yield on chromosome 

25. 

Blue indicates the candidate causal variants in genes; IL4R, KIAA0556, and ITGAL, and red indicates 

the candidate causal variant in the LRCH4 gene. A grey line indicates the false discovery rate of 

1×10-3, used to account for multiple testing. 

 

Extended Data Figure 5.2 | Iterative Manhattan plots for milk protein yield on chromosome 

28. 

Blue indicates the candidate causal variant in the GALNT2 gene, and red indicates the candidate 

causal variant in the RBM34 gene. A grey line indicates the false discovery rate of 1×10-3, used to 

account for multiple testing. 
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Supplementary Table 5.1 | Association statistics for growth traits 

Phenotype 

QTL Chr8_44Mbp Chr25_24-26Mbp Chr25_35Mbp Chr28_7Mbp 

Position g.8.44119667T>A g.25.24904939C>T g.25.25161613G>A g.35975573C>T  g.28.7922207G>A 

Candidate Gene DOCK8 IL4R KIAA0556 LRCH4 RBM34 

Bodyweight 

a ± sd -12.262 ± 2.671 -9.309 ± 4.677 -24.211 ± 5.640 -18.669 ± 3.016 -1.812 ± 1.916 

p 4.41E-06 0.047 1.76E-05 6.00E-10 0.344 

d ± sd 10.861 ± 2.726 10.182 ± 4.703 24.847 ± 5.693 12.903 ± 3.019 1.692 ± 1.892 

p 6.75E-05 0.03 1.27E-05 1.93E-05 0.371 

Stature 

a ± sd -0.874 ± 0.204 -0.490 ± 0.371 -1.100 ± 0.474 -0.831 ± 0.240 -0.125 ± 0.149 

p 1.85E-05 0.186 0.02 5.37E-04 0.401 

d ± sd 0.754 ± 0.202 0.471 ± 0.377 1.074 ± 0.478 0.593 ± 0.246 0.089 ± 0.149 

p 1.87E-04 0.212 0.025 0.016 0.551 

Body condition score 

a ± sd -0.042 ± 0.019 -0.076 ± 0.003 -0.206 ± 0.041 -0.038 ± 0.021 -0.003 ± 0.014 

p 0.029 0.024 5.18E-07 0.065 0.835 

d ± sd 0.037 ± 0.019 0.084 ± 0.034 0.211 ± 0.042 0.034 ± 0.021 -0.019 ± 0.014 

p 0.057 0.013 4.05E-07 0.102 0.178 
ITGAL and SLC25A4 mutations were not examined in Reynolds et al. (2021). a: genotypic additive effect; d: genotypic dominance effect; sd: standard deviation; p: p-

value. 
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 Chapter 6 General discussion and conclusion 
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6.1 Introduction 

Dairy cattle are an important socio-economic resource across the globe.  Technologies 

such as artificial insemination (AI) and genetic selection have led to tremendous gains 

in the productivity and efficiency of cattle (Dekkers and Hospital 2002). A key driver 

for this gain has been garnered by AI facilitating the use of a relatively small number of 

superior bulls to sire subsequent generations. However, through this intensive 

selection and past population bottlenecks, the effective population sizes of cattle 

breeds were small in 2008 small (de Roos et al. 2008) and are likely smaller again 

today, in 2022.  Furthermore, although these superior bulls pass on advantageous 

gene variants, deleterious variants carried by the bulls may also be transmitted.  A 

widely used bull carrying a novel deleterious allele will lead to a substantial increase 

in its allele frequency in just one generation, much more than that which occurs in 

other naturally selected species (Charlier et al. 2016; Georges, Charlier, and Hayes 

2018). 

The genetic architecture of a trait represents the number, frequency, effect size, and 

mechanism of all the causal mutations that contribute to variation for a given 

phenotype (Mackay 2001).  Most research on the genetic architecture of complex 

traits has focussed on additive genetic mechanisms where each allele at each causal 

locus has some independent effect on the trait of interest. Non-additive genetic 

mechanisms such as dominance (intra-locus interactions) and epistasis (inter-loci 

interactions) can also influence traits but have largely been overlooked, principally 

because they are harder to estimate, more difficult to exploit in an outbreeding 

programme and appear to contribute a seemingly negligible amount of variance to 

trait variation (Hill, Goddard, and Visscher 2008). However, as the work described in 
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this thesis has shown, non-additive effects exist and can have large consequences on 

the phenotypes of individuals, even if contributions to population variances are small.  

This thesis has aimed to elucidate the non-additive genetic architecture of growth, 

developmental, and production traits in dairy cattle. To achieve this goal, we 

developed and implemented a non-additive GWAS model and algorithm to assess 

dominance and recessive effects across quantitative traits while accounting for 

complex population structures (Chapter 2, Chapter 3). We applied this model to 

growth and developmental traits (Chapter 2), and to lactation traits (Chapter 5) to 

detect dominance QTL in our dairy cattle population. Through this approach, we 

identified several recessive QTL that presented candidate causal mutations underlying 

probable genetic disorders (Chapter 2, Chapter 5). We further investigated these 

candidates for anatomical, molecular, and metabolic phenotypes to understand how 

these disorders manifest (Chapter 2, Chapter 4). Here, I discuss the overarching 

findings of that research including description of the physiological effects of the 

highlighted mutations and their linkages to analogous disorders in other species. 

Furthermore, I discuss the key impacts the work may have on farmers and breeding 

schemes, limitations to the work, and the future of genomics in agriculture in these 

contexts. 

6.2 Mutation discoveries linked to genetic disorders 

Through GWAS we identified thirteen novel recessive mutations with deleterious 

effects on growth, production, and welfare traits.  These mutations included 

premature-stop (MUS81, ITGAL, LRCH4, RBM34), splice disrupting (FGD4, GALNT2), 

and missense (PLCD4, MTRF1, DPF2, DOCK8, SLC25A4, KIAA0556, IL4R) variants 

(Reynolds et al. 2021; Reynolds et al. 2022). These primarily breed-specific variants, 

now occurring at surprisingly high frequencies in the New Zealand dairy herd, provide 
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an insight into the potential to account for non-additive effects in the improvement of 

livestock selection.  

Deleterious mutations in FGD4, DPF2, GALNT2, DOCK8, KIAA0556, and SLC25A4 gene 

mutations have been proposed to underlie genetic disorders in humans and mice, 

where some of the defining physiological features of these conditions appear to be 

shared in cattle bearing analogous mutations. Variants in FGD4 can cause Charcot 

Marie Tooth disease (CMT), the most commonly inherited neurological disorder in 

humans (Delague et al. 2007; Stendel et al. 2007). Symptoms of CMT include nerve 

degeneration and muscle wastage that can lead to difficulties in motor control, 

resulting in individuals being prone to injury (Stendel et al. 2007).  In humans, 

deleterious mutations in the DPF2 gene are associated with a developmental disorder 

called Coffin Siris Syndrome (CSS), with symptoms including intellectual disability and 

nail abnormalities (Kosho, Miyake, and Carey 2014). Small Calf Syndrome (Cronshaw 

2013) is a recessive genetic disorder in cattle caused by a nonsense splice-site 

mutation in the GALNT2 gene (Charlier et al. 2016).  Recently, analogous mutations in 

GALNT2 in humans have been associated with a novel congenital disorder of 

glycosylation called GALNT2-CDG (Zilmer et al. 2020), similarly defined by small 

stature and a host of other abnormalities. 

In humans, hyper Immunoglobulin E (hyper-IgE) syndrome can result from analogous 

recessive mutations in the DOCK8 gene (Engelhardt et al. 2009).  Resulting from 

negative impacts on B cell and T cell migration, hyper-IgE syndrome can lead to 

combined immunodeficiency disease (Randall et al. 2009; Lambe et al. 2011). 

Knockout mutations in KIAA0556 have been associated with the recessively inherited 

cilia-based neurological disorder, Joubert syndrome, in both humans and mice 

(Sanders et al. 2015).  Finally, knockout mutations in SLC25A4 cause mitochondrial 
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disease in mice and humans where individuals display a severe intolerance to exercise 

(Graham et al. 1997; Palmieri et al. 2005).  These diseases and disorders in other 

species present the potential impacts and biological mechanisms through which the 

discovered mutations might be causing reduced growth and production phenotypes in 

our cattle population. 

For some of the variants, we conducted research farm studies to investigate whether 

these mutations manifested in a similar way to analogous mutations in humans and 

model organisms.  FGD4 mutants were 50kgs lighter than controls at 2 years of age, 

validating our effect estimation from GWAS.  Through histology of peripheral nerves, 

we observed axonal degeneration and Schwann cell demyelination consistent with 

muscular atrophy and nerve damage, key characteristics of CMT (Bird 1993). Although 

DPF2/MUS81 mutants presented lower mature bodyweights, growth rates, and 

qualitative differences in hoof characteristics, these findings were not significantly 

different from controls and thus we could not confirm the CSS phenotype.  At 

discovery, the GALNT2 mutation did not have an analogous disorder in other species 

and had been previously termed Small Calf Syndrome in cattle (Charlier et al. 2016). 

However, recently GALNT2-CDG has been proposed as a new human syndrome where 

individuals typically have lower bodyweights and developmental delays (Zilmer et al. 

2020). GALNT2 mutant cattle displayed slower growth rates and reduced levels of 

circulating triglycerides and creatine, consistent with observations of human GALNT2-

CDG.  These results suggest the FGD4 and GALNT2 recessive mutations in cattle have 

similar symptoms and consequences to those displayed in human and mouse 

disorders.   

Several additional recessive mutations were identified which did not have a known 

analogous disorder in another species. The variant with the largest effects, a mutation 
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in the PLCD4 gene, caused deleterious impacts across growth, milk yield and 

conformation traits including ‘farmer opinion’, a subjective 1 to 10 score of the overall 

like or dislike of the animal by the farmer (Reynolds et al. 2021). While we could not 

identify an analogous disorder in another species, the mutation presented some of the 

largest effect sizes observed in our studies, being similar in magnitude to those seen in 

individuals affected by Small Calf Syndrome (GALNT2 mutation). We validated these 

effects via a research farm trial and so believe PLCD4 mutant animals have a relatively 

severe underlying genetic disorder causing these symptoms.  

6.3 Proxy phenotypes can be used to detect genetic disorders 

We proposed that phenotypes that indicate an animal’s performance can be used to 

detect mutations underlying genetic disorders detrimental to individual health.  

Previous work to detect causal recessive mutations had required disease diagnoses 

and had focussed on Mendelian disorders such as Brachyspina (Charlier et al. 2012) or 

retinal degeneration (Michot et al. 2016). However, Reed et al. (2008) presented work 

showing that the knockout of any of thousands of genes led to reduced bodyweight in 

mice. That indicated bodyweight might act as a latent variable or proxy phenotype in 

genetic disorders and might be used to detect the presence of deleterious knockout 

mutations themselves.  

We conducted GWAS on bodyweight and discovered six deleterious recessive 

mutations. These results suggested bodyweight could be used as a proxy of inherited 

disease diagnosis to identify genetic disorders in cattle without prior knowledge that 

the disorders existed. We also investigated how other phenotypes might serve as 

proxies for genetic disorders and we identified several additional recessive QTL in 

traits such as stature and milk volume, suggesting that these traits might similarly act 

as proxies for animal health and wellbeing. While the GWAS approach requires much 
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larger sample sizes, its utility comes from the availability of genotypes and phenotypes 

gathered via routine commercial activities.  Furthermore, by identifying undiagnosed 

genetic disorders before they become endemic, we can act to generate a healthier, 

more productive national herd.  

6.4 The population structures of cattle present high frequency 

deleterious mutations 

Domestication and breed differentiation bottlenecks have shaped the population 

history of cattle to where it is today (Felius et al. 2014), resulting in a widely different 

structure compared to other highly studied species such as humans and mice. The 

recent intensification of breeding technologies such as artificial insemination has had 

a dramatic impact on the relatedness structures in cattle populations, where some 

highly ranked sires have been used for over one million inseminations (Tacon 2002). 

While this dispersion of gametes from a small number of sires can rapidly increase 

genetic gain, it also means every deleterious variant carried by such widely used sires 

propagate throughout the national herd at a concerningly high rate.  In simulation 

analyses of recessively lethal variants, Charlier et al. (2016) described how cattle, 

despite carrying fewer embryonic lethal mutations than humans, present mutations 

that will segregate at a much higher frequency on average. Given that the power to 

detect a causal mutation is dependent on its allele frequency, these population 

structures likely empowered our mutation discoveries over what would otherwise be 

achievable in less inbred species.  

The majority of the recessive candidate causal mutations identified in this thesis were 

breed-specific.  The within-breed allele frequencies ranged from 3.6% (LRCH4 – 

Holstein-Friesian) to 11.4% (MTRF1 – Jersey).  Notably, even the most severe 

mutations identified had relatively high frequencies (e.g. GALNT2 at 5.5% in Holstein-
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Friesian). Recently, recessive mechanisms impacting male fertility in cattle were 

discovered at surprising allele frequencies as well, ranging from 9 to 34% in Brown 

Swiss cattle (Hiltpold et al. 2021).  Both studies indicate how the current selection 

methodology can overlook deleterious variants and allow recessive mutations to reach 

common frequencies. The summation of these findings presents the importance of 

investigating non-additive mechanisms to improve selection decisions. 

As study sample sizes increase, exploration of the effects of lower frequency variants 

becomes possible. While we initially believed human populations wouldn’t present 

deleterious variants at detectable frequencies, very recently, Guindo-Martinez et al. 

(2021) identified three novel recessive effects across disease-related traits including 

cardiovascular disease and type-II diabetes at allele frequencies of 0.9 to 3.6%.  That 

work suggests that while we expect deleterious variants to segregate at lower allele 

frequencies in human populations (Charlier et al. 2016), other factors such as 

increases in sample sizes and disease-specific phenotypes may make these approaches 

tenable in a human disease context as well.  

6.5 Different genetic architectures require different models 

Genetic architecture is often summarised and studied based on variance component 

estimation or GWAS techniques (Mackay 2001). While authors have suggested the 

contribution of non-additive genetic variation is negligible (Hill, Goddard, and Visscher 

2008; Crow 2010), recent studies have disputed that claim and significant dominance 

variance components have been identified in economically important traits in cattle 

(Sun et al. 2014; Jiang et al. 2017). Furthermore, that dominance genetic variance may 

be underestimated due to the parameterisation of commonly used models (Huang and 

Mackay 2016).  Across several traits such as bodyweight, stature and milk production 

traits, we present significant estimates of dominance genetic variance similar to those 
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previously observed (Sun et al. 2014; Jiang et al. 2017). These findings, along with the 

discovery of large effect recessive mutations, present further evidence that non-

additive genetic variants exist, and that we should not ignore looking for them. 

Comparing milk yield traits (milk volume, milk-fat yield, and milk protein yield) to 

milk composition traits (milk-fat percentage and milk protein percentage) we observe 

differences in the estimate of variance components and the distribution of effect 

mechanisms identified through GWAS (Chapter 5, (Reynolds et al. 2022)).  Milk yield 

traits presented a much higher proportion of recessive mechanisms compared to milk 

composition traits, while composition traits present much more additive QTL. The 

higher heritabilities observed in composition traits compared to yield traits suggest 

the variation in these phenotypes is more closely regulated by genetics and less 

perturbed by environmental factors or measurement error. That may explain why 

composition traits present a greater quantity of additive QTL as the effect of allele 

substitutions is not masked by environmental interactions in the same way as they are 

in yield traits. We did not observe QTL in composition traits representing the 

discovered recessive mutations, which may support the hypothesis that the recessive 

QTL identified in yield traits represent holistic impacts on animal health rather than 

direct effects on milk-fat yield or milk protein yield.  Different genetic architectures 

require different models to best understand their underlying genetic mechanisms and 

to better appreciate what these phenotypes represent.  More precise selection 

protocols and an increased rate of genetic gain may thus be achieved through more 

accurate description and measurement of the phenotypes we wish to select for. 

6.6 Limitations 

Winner’s curse is the phenomenon whereby the effect sizes of significant QTL are 

overestimated compared to the true genetic effects in the population (Beavis 1994) 
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(Göring, Terwilliger, and Blangero 2001; Lohmueller et al. 2003).  Winner’s curse can 

lead to false positives or failure in replicating results; however, its impact is reduced 

as sample sizes increase and the problem is alleviated through successful replication 

of results (Beavis 1994) (Göring, Terwilliger, and Blangero 2001).  We were concerned 

the QTL we discovered were affected by winner’s curse and their effect sizes were 

inflated. Due to the non-random way in which commercially gathered genotypes and 

phenotypes are obtained (namely that a discrete number of farms is targeted 

recurrently each year), we were also aware that allele frequencies might differ 

between our sample and the New Zealand dairy cattle population, and we would have 

greater power to detect QTL with inflated frequencies.  

We made three attempts to investigate these possible biases. First, in Chapter 2 we 

attempted to overcome the winner’s curse problem by validating the effect size and 

allele frequencies of the discovered candidate causal mutations in a separate, 

independent dataset. A caveat to this analysis is that it was conducted on a sample 

closely related to the discovery dataset and, therefore, did not represent a truly 

random sample from the New Zealand dairy cattle population. Second, research farm 

trials for affected animals representing the PLCD4, DPF2, FGD4, and GALNT2 mutations 

demonstrated similarly significant effects for the PLCD4, FGD4, and GALNT2 mutants 

but not the DPF2 mutants where the estimated effect size from the research trial on 

bodyweight was half that of the discovery dataset (Reynolds et al. 2021).  Our power 

to validate effect size may have been limited due to the research farm sample sizes (N 

= 9 individuals per genotype class) and a larger study may be required to have the 

power to validate the effect size of the DPF2 mutation.  Finally, Livestock Improvement 

Corporation (LIC) has recently developed a 1K SNP-chip for parentage testing of calves 

in the national herd, a panel that includes several of the recessive candidate causal 

mutations described in this thesis (LIC 2020). Over 400,000 individuals have been 
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genotyped on this panel in the past year and differences in allele frequencies have 

been observed between those genotyped on the 1K panel and our discovery sample 

(M. Littlejohn, personal communication, 2021).  If the mutant alleles identified are less 

abundant or have a different impact in the national population, the mutations 

discovered in this thesis may have reduced relevance. This difference would not 

discount our findings but is an important reminder that the dramatic effects we 

observe might not be the same in another independent sample of the same population. 

Critically, these findings suggest there may be recessive mutations in the greater 

population that are underrepresented in our sample, and therefore suggests future 

discoveries will be made as samples accumulate and new populations are targeted. 

6.7 Future Work 

Genetics companies and research organisations have developed customised 

genotyping panels targeting variants specific to their population. In New Zealand, LIC 

has recently developed 1K and 50K SNP panels that can be used across hundreds of 

thousands of animals each year (M. Littlejohn, personal communication, 2021). While 

these panels have been developed for commercial products such as confirming a calf’s 

parentage or personalised genomic breeding values, variants of interest (including the 

recessive mutations outlined in this thesis) have been added to the panels (LIC 2020).  

Ideally, we will be able to avoid the conception of affected calves in the first place, 

however, preventing dozens of deleterious matings across millions of inseminations is 

not a trivial problem in practice. In the meantime, the mutation status of animals for 

the most severe of these variants (PLCD4, FGD4, DPF2/MUS81, GALNT2, and 

KIAA0556) (LIC. 2021) can be communicated to farmers. This approach will allow 

farmers to make more informed rearing and selection decisions on young animals, 

ultimately reducing the prevalence of genetic disorders in their herds. 
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Several of the mutations described in this thesis have not been validated through a 

research trial, however, physiological validation of the deleterious FGD4 and GALNT2 

mutations suggests we might also validate some of the other variants. Future animal 

trials of the discovered mutations in genes such as DOCK8, KIAA0556, and SLC25A4 to 

test phenotypes relevant to hyper Immunoglobulin E syndrome, Joubert disease, or 

mitochondrial diseases would indicate if the recessive effects we observe are due to 

disorders analogous to those observed in humans and mice. These mutations were 

only detected in milk yield traits so a trial would require milking cows to validate the 

effects, though, more direct analyses such as blood or muscle biopsy sampling might 

similarly be applied to validate and explore these effects.  

This thesis has focused on identifying intra-locus interactions; therefore, a natural 

extension of these approaches is to attempt to the detect epistatic inter-locus 

interactions. Epistatic mechanisms are considered to be important contributors to 

biological processes (Phillips 2008), yet their contribution to genetic variance is often 

captured by additive genetic variance and few causal loci have been identified in 

mammals (Crow 2010; Huang and Mackay 2016).  Insufficient statistical and 

computational power are often cited as barriers to further discovery of epistasis 

(Mackay 2013; Wei, Hemani, and Haley 2014; Varona et al. 2018) but dramatic 

increases in sample sizes and continued algorithmic advances may alleviate these 

roadblocks such that these analyses may now be possible. We propose a targeted QTL 

approach investigating epistasis between known QTL for quantitative traits. A similar 

study design in drosophila identified many significant pairwise interactions and 

showed epistatic effects associated with many previously identified additive QTL 

(Huang et al. 2012).  Exhaustive GWAS’ investigating pairwise epistasis across milk 

production traits in dairy cattle would also be an ambitious (yet intriguing) study and 

may lead to the discovery of causal mutations.  The discovery of epistatic mechanisms 
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might provide additional motivation to advancing non-additive genetic methodology 

such that we can exploit these mechanisms in breeding and selection decisions, and it 

might also lead to a better understanding of biological systems.   

While we may have discovered primarily negative mutations in this study, it is 

important to consider the potential impact of desirable mutations as well.  Breeding 

programmes have steadily resulted in genetic gain year on year for decades (Dekkers 

and Hospital 2002) through the indirect selection of positive genetic variation. Known 

large-effect genetic variants can be used to directly select desirable phenotypes as well 

such as polled variants and the A2 β-casein variant. The process of dehorning raises 

animal welfare concerns which may be alleviated by selecting animals without horns 

carrying the dominant polled variant (Georges et al. 1993).  A2 milk is the product of 

herds that are homozygous for the A2 β-casein variant (Truswell 2005) and is 

marketed at a premium, incentivising farmers to select for it.  Other novel phenotypes 

may be discovered to create niche dairy products or improve milk processing 

efficiency.  A recent example is a dominant mutation in DGAT1 that significantly alters 

the saturated fat profile in a cow’s milk that was discovered using high-throughput 

phenotypic outlier screening techniques (Lehnert et al. 2015).  Although this DGAT1 

mutation caused a disorder in homozygous animals, similar methods could be applied 

to detect other variants. The examples described here make it desirable to search for 

genetic mutations which present novel phenotypes. 

Beyond the selection of a handful of desirable or deleterious variants with major non-

additive effects, non-additive selection in dairy cattle is difficult. Genomic selection 

methods that leverage non-additive effects offer increased accuracy in genomic 

breeding value estimation but come with added complexity in calculation and 

implementation (Varona et al. 2018).  These complications are exacerbated by the 
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admixed structure of the New Zealand dairy cattle population and the seasonality of 

the dairy system.  As more of the national population is genotyped on medium-density 

SNP chip panels like the 50K panel, strategies for mate allocation may be able to better 

integrate non-additive contributions and improve the prediction of future offspring. In 

any case, further research in this area is required to get there. 

6.8 Conclusion 

This thesis has aimed to dissect the dominance relationship between genotype and 

phenotype and elucidate some of the non-additive genetic architecture of growth, 

developmental, and production traits in dairy cattle. Through the development and 

implementation of a non-additive GWAS model, we discovered several deleterious 

recessive mutations with moderate to high impacts across a range of economically 

important traits.  In some cases, these mutations were analogous to disorder-causing 

mutations in other species, and by analysing their physical, metabolic, and molecular 

impacts, we validated a subset of these effects and confirmed the likely causality of 

some of the candidate mutations highlighted. As increasing numbers of animals are 

genotyped and phenotyped, our capability to detect causal mutations will continue to 

improve.  Overall, these are important findings that can be used to improve the health 

and productivity of dairy cattle in New Zealand. 
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