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Abstract

Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of 
certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little 
is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause 
spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from 
seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by com-
parison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes 
analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes 
from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging 
to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination 
pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the 
Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germina-
tion to occur.

DATA SUMMARY
The authors confirm all supporting data, code and protocols have been provided within the article or through supplementary 
data files. All clostridia isolates that were genome-sequenced in this study were deposited in GenBank (BioProject accession 
number PRJNA574489).

INTRODUCTION
Spore-forming bacteria are common contaminants of food and the environment, and as such represent a major source of food 
poisoning and food spoilage. Blown pack spoilage (BPS) typically occurs in red meat that has been vacuum packaged and stored 
at consistent chilled temperatures (−1.5 °C) [1], and has been reported in chilled vacuum-packed meats from many countries, 
including Brazil, Canada, Iceland, Ireland, Germany and New Zealand. BPS is caused by psychrophilic and psychrotrophic 
Clostridium species, including Clostridium estertheticum and Clostridium gasigenes [2–4]. The economic losses in New Zealand 
and worldwide attributed to product spoilage and market access issues are significant [5, 6], in particular BPS of chilled meat 
(e.g. venison, lamb and beef) [7].
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Spore germination occurs when spores sense specific molecules in the environment [8]. Following germination, bacterial cells are 
more susceptible to inactivating processes such as heat, desiccation, chemical sanitization and UV radiation [9, 10]. Currently, 
inactivation of spores relies on the use of strong disinfectants or toxic chemicals, including 10 % bleach solutions and fumigation 
with oxidating agents [11]. These strategies can be challenging to implement over large areas or on porous surfaces. Historically, 
due to the lack of genetic systems, our understanding of the mechanisms of spore germination in Clostridium species has lagged 
far behind that of the genus Bacillus [12–15].

Genome sequences are rapidly becoming available for many different clostridia [16–18], and recently we have gathered genome 
sequences of several Clostridium species involved in meat spoilage [4, 19–25]. These genomes will yield important information 
about the modes of germination that will inform the development of germination induction strategies for a group of economically 
important spoilage organisms for the New Zealand meat industry. Until recently, germination of Gram-positive anaerobic spore-
formers was thought to be similar to that of Bacillus subtilis [26]. However, studies in Clostridium sporogenes and Clostridioides 
difficile have identified two different mechanisms of spore germination. C. sporogenes follows a similar germination pathway to 
that of B. subtilis, whereas a different pathway has been observed in C. difficile that has not been observed in any other endospore-
forming organisms to date [27]. Determination of the genomic conditions for germination in meat spoilage clostridia may allow 
for the identification of candidate spore germinants.

Triggers of spore germination in Clostridium are usually low-molecular-weight biomolecules found in the environment and 
commonly include amino acids and other molecules (cholesterol-based compounds, organic acids, nucleosides, peptidoglycan 
fragments, etc.). Once triggered, spore germination is initiated via a germinant receptor (GR) followed by the release of dipicolinic 
acid (DPA) into the core of the developing spore via the SpoVA proteins [15]. Release of DPA results in partial hydration of the 
core and subsequent activation of the cortex-lytic enzymes (CLEs) CwlJ, SleB-C or Csp1-C [8, 9]. The spore cortex is then broken 
down by the CLEs that allows additional core hydration and facilitates core expansion, and thus completion of germination and 
initiation of spore outgrowth. However, the germinant systems and mechanisms differ within the genus Clostridium and in some 
cases within species.

To identify the known genes responsible for germination, we incorporated long-read (MinION) technology to re-sequence and 
improve the quality of recent genomes sequenced, combined with an in-depth comparative in silico genomics analysis of selected 
meat-associated clostridia. This study aimed to apply a genomics-based approach to investigate the occurrence of genes encoding 
germination of clostridia spores associated with meat spoilage. This approach can be adopted to control other spore-forming 
bacteria associated with other food systems, and human or veterinary health.

METHODS
Bacterial cultivation and growth conditions
The methods for isolation and cultivation of the various meat spoilage-associated Clostridium species (strains FP1, FP2, FP3, FP4 
and M14) have been previously detailed [4, 28]. C. estertheticum strains DSM 14864T and DSM 8809T, as well as C. bowmanii DSM 
14206T were acquired from the Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures. All cultures 
were retrieved from storage, grown anaerobically at 10 °C in pre-reduced peptone, yeast extract, glucose, starch broth (PYGS) [29], 
and culture purity was checked by plating. The PYGS was pre-reduced by boiling to remove oxygen and then adding the reducing 
agent cysteine-HCl. Following autoclaving the PYGS medium was placed into the anaerobic cabinet to reduce further overnight.

Preparation of genomic DNA and whole-genome sequencing
Genomic DNA was extracted from freshly grown cells using a modification of the phenol–chloroform procedure [4]. Bacterial 
strain identity was verified by 16S rRNA gene amplification [30]. Total DNA concentrations were determined using a NanoDrop 
ND-1000 (Thermo Scientific) and a Qubit Fluorometer dsDNA BR Kit (Invitrogen), in accordance with the manufacturer’s instruc-
tions. Genomic DNA integrity was verified by agarose gel electrophoresis, NanoDrop ND-1000 spectrophotometer (Nanodrop 
Technologies) and the Qubit dsDNA broad-range (BR) assay kit (Life Technologies).

Impact Statement

In this work, we present improved genome assemblies for clostridia species associated with meat spoilage. Our comparative 
analysis of the improved assemblies provided further resolution of the phylogenetic relationships of the genus Clostridium with 
a focus on identification of genes encoding spore germination functions.
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Long-read genome sequencing and assembly
Long-read sequencing using the Oxford Nanopore Technologies (ONT) MinIon was carried out on the New Zealand meat 
spoilage strains FP1, FP2, FP3, FP4 and M14, as well as the C. estertheticum strains DSM 14864T and DSM 8809T. Libraries were 
prepared using the ONT rapid barcoding kit (SQK-RBK004) and sequencing was carried out using a MinION Mk 1B device 
with a SpotON R9 flow cell (version FLO-MIN106D). Sequencing was followed by base-calling using Guppy v.5.0.7. Reads were 
demultiplexed using qcat v.1.1.0 (ONT), trimmed using Porechop v.0.2.4 and filtered using Filtlong v.0.2.0. Genome assembly 
was carried out using Unicycler v.0.4.9b [31] in hybrid mode using previously sequenced Illumina reads [19–25].

Genome sequences
The genome sequences of the seven meat spoilage Clostridium strains [five strains previously isolated from New Zealand vacuum 
packed venison and lamb (FP1, FP2, FP3, FP4, M14) and two strains (C. estertheticum DSM 14864T and DSM 8809T) from spoiled 
beef] were compared with the genome sequences of 33 other strains from the genus Clostridium previously sequenced by other 
institutes (Table S1, available in the online version of this article) [32–37]. All these genomes were re-annotated using Prokka 
v.1.13.3 [38].

Comparative pan genome analysis
The program Roary v.3.8.2 [39], using the Prokka-generated GFF file (this is in GFF3 format and comprises both the annotation 
and sequence for each CDS [38]) as the input, was used to generate a core-genome nucleotide sequence alignment using PRANK. 
A neighbor-net was constructed in Splits Tree v.4.14.8 [40], using the core-genome alignment.

Comparative genomics of the germination genes were carried out using the OrthoMCL algorithm from the tool GET_HOMO-
LOGUES v.3.4.2 [41], where a default E-value of 1e-05 and a coverage of 20 % was used. Previously characterized germination 
genes (Table S2) concatenated in Geneious v.9.1.8 [42] and exported as a GBK file were used as the reference. Nucleotide and 
amino acid orthologous clusters were generated. The additional script ‘​compare_​clusters.​pl’ within GET_HOMOLOGUES was 
used to generate a pangenome matrix using the amino acid sequence clusters only. A heatmap and dendrogram were generated to 
visualize the number of homologues for each germination gene using the heatmap.2 function in the gplots library of R (v.4.1.2), 
visualized in Rstudio (v.2021.09.1). The dendrogram was generated using the euclidean measure to obtain a distance matrix and 
the complete agglomeration method for clustering. To examine whether there was any correlation between the core genome 
phylogeny and the dendrogram representing the germination gene presence, a tanglegram was generated using the tanglegram 
function in the dendextend library of R.

The gerX operons were identified using both the annotations generated by Prokka and the orthologous clusters containing the 
reference gerX genes using GET_HOMOLOGUES, then extracted using Geneious (v.9.1.8). The GerA, GerB and GerC proteins 
were aligned using the default settings of muscle in mega v.10.0.5 [43] and a phylogenetic tree was generated using the maximum-
likelihood method with the Jones–Taylor–Thorton substitution model.

RESULTS AND DISCUSSION
To gain an understanding of whether genome phylogeny was related to the number of germination gene orthologues and type 
of germination receptors in Clostridium species associated with meat spoilage, a comparative genomics approach was taken. To 
improve the quality of the assemblies we undertook an illumina short-read and ONT long-read hybrid approach on five strains 
previously isolated from New Zealand vacuum packed venison and lamb, as well as the type strains C. estertheticum DSM 14864T 
and DSM 8809T (Table S3). These strains were compared with 33 strains from ten Clostridium species previously associated with 
meat spoilage [5, 6, 44–49].

Core genome analysis
Roary was used to carry out a pan-genome analysis of the 40 Clostridium strains and B. subtilis 168, with 111 genes identified in 
the core genome. To examine the genomic phylogeny of these strains, a phylogenetic neighbour-network was generated using 
the core genome alignment (Fig. 1). In agreement with previous studies, our analysis grouped these genomes into two distinct 
groups. C. estertheticum, Clostridium tagluense, Clostridium bowmanii and Clostridium frigoris along with strains FP3, CF012, FP4, 
CM028 and CM027 formed one group (A; (a) in Fig. 1). Clostridium botulinum, Clostridium perfringens, C. gasigenes, Clostridium 
frigidicarnis, Clostridium algidicarnis and Clostridium putrefaciens along with strain M14 formed a second group (B; (b) in Fig. 
1). The New Zealand strains FP1 and FP2 sat within the C. tagluense group, whereas strains FP3, FP4 and M14 formed distinct 
subgroups. FP3 and FP4 were most closely related to C. tagluense (type strain A121) and C. bowmanii (type strain DSM 14206) 
respectively. Similarly, M14 was most closely related to C. gasigenes. The species boundaries identified in our study (as indicated 
by the coloured ovals in Fig. 1) agree with those proposed by previous comparative genomics analyses using average nucleotide 
identify (ANI) [4, 17]. Similarly, in these same studies the three strains FP3, FP4 and M14 have been proposed as representing 
new taxa. However, phenotypic analyses are required to confirm this proposition.
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Conservation of germination genes in meat spoilage Clostridium species
Germination comprises five main stages: (1) germination recognition, (2) germination activation, (3) DPA release, (4) cortex 
hydrolysis and (5) spore hydration [50, 51]. Experimental studies suggest C. sporogenes follows the order of this pathway and is 
similar to Bacillus species [52]. By contrast, cortex degradation begins before DPA release in C. perfringens and C. difficile [53–55]. 
In our study, differences in the number and type of germination genes conserved by the different meat spoilage Clostridium 
species suggests that there are differences in the germination pathway. However, the number and type of germination genes 
conserved within each strain did not necessarily relate to its core genome phylogeny. This relationship between core genome 
phylogeny and the conservation of germination genes was depicted using a tanglegram (Fig. S1), with a cophenetic correlation 
coefficient of 0.36. All of the germination genes detected were present on the chromosome for those strains sequenced using 
ONT long-read sequencing.

During the first stage of germination, a germinant is recognized by a germination receptor. Germination receptors are generally 
made up of three proteins: GerA, GerB and GerC [50]. Strain CF003 had the greatest number of gerX genes, with seven gerXA, 
12 gerXB and nine gerXC orthologues.

In the model organism B. subtilis, DPA uptake during sporulation and DPA release during germination are associated with the 
spoVA operon (spoVAA, spoVAB, spoVAC, spoVAD, spoVAEa, spoVAEb, spoVAF) [56–58]. Three of these genes, spoVAC, spoVAD 
and spoVAE, are conserved in Clostridium species [59, 60]. Few studies have investigated the function of SpoVA proteins in 
Clostridium, but one study suggests that SpoVAC is a ‘mechanosensing’ protein, and in C. difficile senses changes in osmolarity 

M14

Bacillus subtilis 168

0.01

FP1

DSM14206T
C. bowmanii

FP3
CF012

A121T

FP2
CM024

CM008

CM028
CM027 FP4

C. tagluense

DSM14864TDSM8809T
DSM14204T

C. frigoris

CM018

C. estertheticum
CF002

DSM17811
CF013

CF007

CF003
MA14
MA19

CF005

CM004
CM001

DSM17727T

CGAS001
CM005

C. gasigenes

VPI 5395T

C. putrefaciens

C. algidicarnis

CM017CM030
CM002
CM003

CM011
DSM15099T

DSM12271T

C. frigidicarnis

ATCC13124T

C. perfringens

ATCC3502
C. botulinum Group I

(a)

(b)

C. estertheticum-like
Genomspecies2

C. estertheticum-like
Genomspecies1

Clostridium sp.
Genomspecies3
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resulting in release of DPA [61]. However, in C. perfringens the spoVA operon is not essential for germination [62]. C. gasigenes 
strains as well those strains belonging to group A (Fig. 1), which included C. estertheticum, C. frigoris, C. bowmanii and C. 
tagluense species, all harboured two copies of the spoVA operons (Fig. 2). The presence of two spoVA operons has been found in 
some strains of C. botulinum and C. sporogenes as well as various Bacillus species and has been associated with increased heat 
resistance [63, 64].

In B. subtilis and C. sporogenes, cortex degradation occurs through activation of the cortex lytic enzymes CwlJ and SleB 
followed by peptidoglycan degradation [52, 65–67]. Studies suggest that YpeB is required for SleB activation [66, 68]. Ortho-
logues of ypeB as well as sleB and cwlJ were present in all the strains belonging to group A (Fig. 2), suggesting that cortex 
degradation is initiated via at least the SleB/YpeB pathway. A previous study demonstrated that although some strains of C. 
botulinum harbour both sleB and cwlJ genes, CwlJ was not crucial for germination [68]. In C. perfringens, the cortex lytic 
enzyme SleC is activated by a protease CspB [69, 70]. In our analysis, strain M14 and all the C. gasigenes genomes contained 
both an sleC and cspA homologue, suggesting these strains follow a similar germination pathway to that of C. perfringens.

Germination gene clusters
To investigate the diversity of germination receptor operons of meat spoilage clostridia, we searched the genomes of the five 
New Zealand meat spoilage strains along with strain CF003 and the three strains C. estertheticum DSM 14864, C. tagluense 
A121 and C. gasigenes CGAS001 for gerX operons. Five different putative gerX configurations were identified (types 1, 3, 
4, 5 and 6), along with a lone gerA in M14 and a lone gerB in strain CF003 (Fig. 3). Three of these configurations (types 1, 
3 and 4) have been previously identified in a variety of Clostridium species, including C. botulinum, Clostridium kluyveri, 
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Clostridium tetani and C. perfringens [59, 71]. To our knowledge, the configuration types 5 and 6 have not previously been 
identified. Type 5 has a gerABCBCCB configuration and was identified in three of the New Zealand meat spoilage strains 
(FP1, FP2, FP3), as well as the strains C. estertheticum DSM 14864 and C. gasigenes CGAS001 (Fig. 3). Multiple gerB genes 
have been identified in other gerX configurations, but to our knowledge this is the first time a putative gerX operon with 
multiple gerC genes has been identified. Type 6 has a gerBCA configuration and was identified in two New Zealand meat 
spoilage strains, FP2 and FP3, but not in any of the reference strains. Interestingly GerB from the BCA cluster was in the 
same orthologous group as GerB from the ACB configurations as defined using GET_HOMOLOGUES. Strain M14 was 
unusual in that it contained one putative gerBAC operon and a lone gerA gene. A lone GerA in C. botulinum has previously 
been shown to be required for l-alanine-initiated germination [72].

The gerX operons have previously been grouped into subtypes based on the similarity of the amino acid sequences [59]. 
In agreement with previous results [59], amino acid sequences encoding the Ger A, B and C proteins clustered by type or 
subtype not by strain (Fig. 3b). The gerX type 1 configurations ABC were distributed throughout, with them grouping by 
subtype. All the strains (except for M14) harboured at least one type 1 operon. Type 1 germination receptors have been 
shown to sense a variety of germinants, including l-alanine, l-cysteine, l-methionine, l-serine and l-phenylalanine (in the 
presence of l-lactate) [73].

Our findings suggest that Clostridium species follow two germination pathways (Fig. 4). The first pathway recognizes germi-
nants through multiple receptors, and cortex degradation occurs via the cwlJ/sleB pathway similar to that of B subtilis. The 
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second pathway recognizes germinants through the GerX1 or GerX3 type receptors with cortex degradation occurring 
through the cspA-C/sleC pathway.

CONCLUSIONS
This study was carried out to determine whether a genomics approach could be used to provide insights into the possible 
molecular mechanisms of germination in meat spoilage clostridia. The core components of the germination pathway were 
conserved in these Clostridium species, indicating that they undergo the same major steps as B. subtilis for sporulation to 
occur. A key difference between C. gasigenes and the C. estertheticum/C. tagluense cluster strains was the presence of the gene 
sleC coding for a cortex lytic enzyme in C. gasigenes strains but not strains from the C. estertheticum/C. tagluense cluster, 
suggesting C. gasigenes strains follow a germination pathway similar to that of C. perfringens. Two additional putative ger 
operon configurations were identified in some strains of C. estertheticum and C. tagluense. Experimental data are needed to 
determine whether these additional ger gene clusters recognize alternative germinants.
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