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Abstract

Speech enhancement, aiming at improving the intelligibility and overall perceptual

quality of a contaminated speech signal, is an effective way to improve speech com-

munications. In this thesis, we propose three novel deep learning methods to improve

speech enhancement performance.

Firstly, we propose an adversarial latent representation learning for latent space

exploration of generative adversarial network based speech enhancement. Based

on adversarial feature learning, this method employs an extra encoder to learn an

inverse mapping from the generated data distribution to the latent space. The

encoder establishes an inner connection with the generator and contributes to latent

information learning.

Secondly, we propose an adversarial multi-task learning with inverse mappings method

for effective speech representation. This speech enhancement method focuses on en-

hancing the generator’s capability of speech information capture and representation

learning. To implement this method, two extra networks are developed to learn the

inverse mappings from the generated distribution to the input data domains.

Thirdly, we propose a self-supervised learning based phone-fortified method to im-

prove specific speech characteristics learning for speech enhancement. This method

explicitly imports phonetic characteristics into a deep complex convolutional network

via a contrastive predictive coding model pre-trained with self-supervised learning.

The experimental results demonstrate that the proposed methods outperform previ-

ous speech enhancement methods and achieve state-of-the-art performance in terms

of speech intelligibility and overall perceptual quality.
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Chapter 1

Introduction

This chapter provides an overview of this thesis. The background of speech en-

hancement is introduced briefly in Section 1.1, where the issues with current

speech enhancement approaches are analyzed. The motivations are explained

in Section 1.2. The contributions of this thesis are summarized in Section 1.3.

Finally, the organization of this thesis is listed in Section 1.4.

1.1 Overview of Speech Enhancement

Speech is the most common form of human-to-human communication [18]. Natural

human speech can deliver a lot of information including basic context meaning,

speakers’ present status information, such as identity, emotion, gender, age bracket,

etc., to receivers [14]. However, various disturbing noises usually contaminate the

natural speech signals and compromise the effectiveness of information delivery in

real life [21]. Therefore, there has been a focused research topic to reduce the

negative effects of disturbing noises and improve speech information delivery in

speech signal processing currently.

1



Introduction 2

Speech enhancement, aiming to improve the intelligibility and overall perceptual

quality of a contaminated speech signal, is one of the most important speech signal

processing technologies [2, 3]. The intelligibility is a measurement of how compre-

hensible a speech signal is, while the perceptual quality measures how easy it is for

a listener to perceive the content of a speech signal. Normally, a perceptual high-

quality speech sounds more natural, rhythmic, yet less raspy, hoarse or scratchy, etc.

In practice, speech enhancement is widely used in many applications such as mobile

communications [3], hearing aids [5, 19], and robust speech recognition [33].

Generally, the disturbing noises can be categorized into stationary additive noise

(e.g., fan noise) and non-stationary convolutional noise (e.g., room reverberation),

which can badly degrade both the intelligibility and perceptual quality of speech sig-

nals [39]. Correspondingly, many kinds of speech enhancement approaches, such as

classic digital signal processing [4, 8], traditional machine learning [13, 15, 29, 34],

and novel deep neural networks [10, 12, 22, 31, 36, 37, 40, 41], were proposed to

suppress the stationary or non-stationary noises and improve enhancement perfor-

mance.

The classic digital signal processing approaches (e.g., spectral subtraction [4], Wiener

filtering [21], minimum mean square error [8]) usually manipulate spectrum magni-

tudes of noisy speech signals and perform well in additive noise suppression. How-

ever, due to the sophisticated statistical properties of interactions between speech

and noise signals [37], the digital signal processing approaches often result in speech

distortion and residual noise to some extent, in a low signal-to-noise ratio scenario.

Moreover, the digital signal processing approaches also struggle to deal with non-

stationary noises in complex scenarios.

Besides, a series of machine learning approaches (e.g., Gaussian mixture model [15],

hidden Markov model [34], and non-negative matrix factorisation [13]) were also
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applied to speech enhancement. Those approaches, based on data distribution mod-

elling and analysis, mitigate speech distortion and residual noise problems and im-

prove speech enhancement greatly. However, learning effective speech representation

and improving non-stationary speech enhancement in more noisy acoustic environ-

ments are still long-standing and challenging tasks.

With the progressive development of artificial intelligence algorithms, deep learning

has shown its revolutionary capability in many research areas, such as computer vi-

sion [16, 35], natural language processing [7], and recommender system [38]. As one

of the most important research topics of speech signal processing, speech enhance-

ment has also applied deep learning based models such as the denoising autoencoder

[22, 30], Recurrent Neural Networks (RNN) [12, 32], Convolutional Neural Networks

(CNN) [9, 24], and Generative Adversarial Networks (GAN) [1, 11, 25] to improve

speech representation learning and enhancement performance. With powerful learn-

ing and inference capability, data-driven deep learning is suitable for complex speech

signal processing. Based on that, this thesis focuses on deep learning based speech

enhancement. The related studies are presented in detail in the following chapters.

1.2 Motivations

Although deep learning based speech enhancement methods have greatly alleviated

the existing problems that are difficult to solve using the traditional methods, there

are still several research points to be considered:

• Effective speech representation learning. Current deep learning based

methods require large amounts of data for model training. Learning effec-

tive data representation from the large amounts of speech data is the key



Introduction 4

to obtain outstanding performance [6]. For speech enhancement, learning ef-

fective speech representation and exploring sufficient latent information with

advanced model can significantly improve enhancement performance [23], how-

ever, are still huge challenges in current speech signal processing.

• Appropriate loss functions design. For GAN-based speech enhancement,

improving the robustness and effectiveness of model training is one of the most

challenging aspects. An appropriate loss function with empirical hyperparam-

eters setup can greatly stabilize model training [20] and further improve the

performance of speech enhancement.

• Specific speech information preservation. Previous traditional speech

enhancement methods usually ignore the specific speech information such as

phase information and phonetic characteristics, which have been proven to

be effective for mitigating residual noise and improving speech signal recon-

struction [17]. Thus, explicitly learning speech phase information and utilizing

phonetic characteristics is an effective way of improving speech enhancement.

1.3 Contributions

To address the issues mentioned above and improve speech enhancement, three novel

methods are proposed in this thesis, summarized below:

• For sufficient latent space exploration, we propose a novel Adversarial Latent

Representation Learning (ALRL) method for speech enhancement [26]. Based

on adversarial feature learning, ALRL employs an extra encoder to learn an

inverse mapping from the generated data distribution to the latent space. The

encoder establishes an inner connection with the generator and facilitates rele-

vant latent information learning. A new loss function is proposed to implement
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the encoder mapping. In addition, the multi-head self-attention is also applied

to learn the long-range dependencies of speech utterances.

• For effective speech representation learning, we propose a novel adversarial

multi-task learning with inverse mappings method for speech enhancement

[27]. This method focuses on enhancing the generator’s capability of speech

information capturing and representation learning. To implement this method,

two extra networks (namely P and Q) are developed to establish the inverse

mappings from the generated distribution to the input data domains. Corre-

spondingly, the latent loss and equilibrium loss are proposed for the inverse

mappings learning and the enhancement model training based on the original

adversarial loss.

• For specific speech characteristics preservation, we propose a novel Self-Supervised

learning based Phone-Fortified (SSPF) method for speech enhancement [28].

This method explicitly incorporates phonetic characteristics into a deep com-

plex convolutional network via a Contrastive Predictive Coding (CPC) model

pre-trained with self-supervised learning. The deep complex network can ef-

fectively deal with complex-valued spectrums of speech signals and greatly

improve speech phase information learning.

1.4 Organization of Thesis

This is a thesis with publication, which is organised in the following ways:

(i) Literature review corresponding to each proposed method is presented

in each chapter; (ii) All references related to each chapter are listed at

the end of each chapter.
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Chapter 2 presents the proposed adversarial latent representation learning method

for latent information exploration and adversarial feature learning.

Chapter 3 presents the proposed adversarial multi-task learning method for speech

information capture and representation learning.

Chapter 4 presents the proposed self-supervised learning based phone-fortified method

for phonetic characteristics extracting and speech enhancement improvement.

Chapter 5 summarizes this thesis and discusses the future work.
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Chapter 2

Adversarial Latent Representation

Learning for Speech Enhancement

In this chapter, we propose a novel Adversarial Latent Representation Learn-

ing (ALRL) method for speech enhancement. Based on adversarial feature

learning, ALRL employs an extra encoder to learn an inverse mapping from

the generated data distribution to the latent space. The encoder establishes an

inner connection with the generator and provides relevant latent information

for adversarial feature modelling. A new loss function is proposed to imple-

ment the encoder mapping. In addition, the multi-head self-attention is also

applied to the encoder for learning of long-range dependencies and further

effective adversarial representations. The experimental results demonstrate

that ALRL outperforms current GAN-based speech enhancement methods.

13
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2.1 Introduction

Speech enhancement aims to improve the intelligibility and overall perceptual quality

of contaminated speech signals [19]. There are many practical applications such

as telephone communications [20], hearing-aid devices [17], and human-computer

interactions [31], which regard speech enhancement as an essential operation for

different purposes and processing stages. More complicated and critical application

scenarios require higher performance of speech enhancement.

Classic digital signal processing methods of speech enhancement (e.g. Wiener filter-

ing [33], spectral subtraction [4]) perform well in specific additive noise suppressing.

However, these methods are difficult to process assorted unknown noise interference

satisfactorily. To solve this problem, learning appropriate representation of noise

data distribution is a key procedure in current data-driven approaches.

Recently, deep learning based methods have shown revolutionary information learn-

ing and reconstruction property in many research areas. Profiting from this, a series

of neural network based speech enhancement methods such as denoising autoencoder

[6, 29], Long Short-Term Memory (LSTM) based [11], Convolutional Neural Net-

works (CNN) based methods [14, 24] were also developed for improving speech en-

hancement performance. Particularly, the Generative Adversarial Networks (GAN)

[12, 26, 27], which was originally proposed with artful architecture design for high-

quality images generation in computer vision, has been applied successfully to speech

enhancement [18, 25].

GAN consists of a generator and a discriminator, which are trained adversarially

up to the Nash Equilibrium [12]. For speech enhancement as shown in Figure 2.1,

the generator usually takes in noisy speech and extra noise distributions (i.e. la-

tent vectors) as input and exports targeted data distribution. The discriminator is

considered as a classifier trained to distinguish generated samples and clean speech
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Latent
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Figure 2.1: The basic framework of GAN-based speech enhancement. The
Generator (G) converts noisy signal and latent vector to the generated samples.
The Discriminator (D) is trained to distinguish the generated samples and clean

speech as fake or real.

as fake or real. With effective representation learning and enhancement perfor-

mance, GAN-based speech enhancement methods have attracted a good proportion

of attention[2, 25] in speech enhancement.

However, no attention has been paid to latent space for representation learning in

speech enhancement. Initially, GAN can generate high-quality targets from latent

vectors based on real data distribution. Thus, in speech enhancement, we hypothe-

sise that the latent vectors play an important part in representation learning condi-

tional upon explicit noisy data distribution.

In this work, we propose a novel GAN-based method named Adversarial Latent

Representation Learning (ALRL), which employs an extra encoder inversely map-

ping the generated data distribution to the latent space, for speech enhancement

improvement. In particular, the encoder attempts to build an inner connection with

the generator and provides relevant representation information for the modelling of

the adversarial features. The new architecture remodels the inner projection from

the concatenated input of noisy speech and latent vectors to the clean speech distri-

bution. To implement the encoder mapping, we propose a new encoder mapping loss
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function, which captures latent representation by calculating the squared Euclidean

distance from the inverse mapped generator samples to the latent vectors. Also,

we combine the encoder loss with the relativistic loss [16] to further improve the

effectiveness of information learning between the generator and discriminator. In

the meanwhile, the multi-head self-attention mechanism [32] is also applied to the

encoder in our ALRL for long-range dependencies capturing and further effective

representation learning.

This chapter is organized as follows. The related work is given in Section 2.2. The

details of our adversarial latent representation learning are introduced in Section

2.3. Sections 2.4 gives the design of the experiments, and the experimental results

are presented in Section 2.5. Finally, the conclusions and future work are shown in

Section 2.6.

2.2 Related Work

In this section, we introduce related GAN-based speech enhancement methods and

present a preliminary investigation of latent space in GAN-based architecture. Based

on these works, our ALRL is proposed to learn semantic representation and improve

speech enhancement performance.

2.2.1 GAN-based Speech Enhancement

Recently, the GAN-based models have derived huge progress on semantic represen-

tation learning and improved speech enhancement performance significantly. Speech

Enhancement GAN (SEGAN) is one of the most famous frameworks proposed for
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time-domain speech enhancement with improved conditional GAN [25], which com-

bined the conditional GAN with the Least-Squares GAN (LSGAN) together to fur-

ther alleviate vanishing gradients. This modification is proved to be effective in

performance improvement. Below is the loss function of its discriminator:

LD =
1

2
Ex∼Px,xc∼Pxc

[(D(x, xc)− 1)2]+

1

2
Ez∼Pz ,xc∼Pxc

[(D(G(z, xc), xc))
2] (2.1)

and its generator:

LG =
1

2
Ez∼Pz ,xc∼Pxc

[(D(G(z, xc), xc)− 1)2] (2.2)

where xc denotes noisy speech; x denotes clean speech; and z denotes random noise

distribution (i.e. latent information).

SEGAN operated on raw speech waveform directly rather than the processed spectral

features, which is considered to be able to preserve original sequential information

such as phase information effectively. SEGAN worked end-to-end and was trained

adversarially based on GAN. The fully convolutional architecture consists of down-

sampling and upsampling modules (i.e. encoder and decoder). The random noise z

(i.e. latent vectors) was added to the bottleneck layer for information compensation

whereas without the further introduction of it. As we know, this work applied con-

ditional GAN to speech enhancement firstly and obtained outstanding performance.

In the meanwhile, conditional GANs were also applied to noise-robust speaker veri-

fication [23] and speech recognition [7]. However, the latent space still has not been

explored thoroughly in speech signal processing.

Speech Enhancement Relativistic GAN (SERGAN) [2] is another framework explor-

ing speech enhancement based on GAN. In the standard GAN, the discriminator is
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developed to estimate the probability that the original data is real and the generated

data is fake, on the contrary, the generator is trained to increase the probability that

fake data is real. However, it should simultaneously decrease the probability that

real data is real when the generator learns to increase that probability. To accom-

plish the assumption, the relativistic GAN [16] was proposed for a more stable model

and higher quality data samples. Below is the loss function of the discriminator:

LD = −Ex∼Px,xc∼Pxc
[log(σ(C(x, xc)− C(G(z, xc), xc)))] (2.3)

and generator:

LG = −Ex∼Px,xc∼Pxc
[log(σ(C(G(z, xc), xc)− C(x, xc)))] (2.4)

where σ is the sigmoid non-linearity, and C(x) denotes the discriminator without

the final sigmoid layer. D(x) = σ(C(x)).

SERGAN built a closer information connection between the generator and discrim-

inator for speech enhancement. Moreover, the gradient penalty was also utilized to

stabilize model training and improve enhancement performance. The method held

a similar architecture with SEGAN but adopted a new loss function to boost in-

formation communication between the generator and discriminator. However, this

work still did not explore latent space further.

In addition, the improved Speech Enhancement GAN (iSEGAN) [1] conducted a

preliminary experiment to explore the impact of the latent vectors on a speech

enhancement model by comparing the performance of the model trained with and

without latent vector. The results showed that the latent vectors could slightly affect

the model performance but were helpful to stabilize model training.

These methods mentioned above attempt to obtain performance gains by modifying
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model architecture. Also, some works explore data space for better model perfor-

mance.

2.2.2 Latent Space

The latent vectors may be used by the generator in a highly entangled way, causing

the individual dimensions of latent vectors to not correspond to semantic features

of the data. For image generation, Chen et al. [5] proposed to adopt a mutual

information strategy for inducing latent vectors. The method decomposed the input

noise vectors into a set of semantically meaning factors of variation rather than using

single unstructured noise vectors. The work discovered that these latent factors can

target salient semantic features of data distribution.

Similarly, Donahue et al. [8] noticed that GAN models could capture semantic vari-

ation from latent space, however, have no means of projecting data back into the

latent space. This resulted in the architecture ignoring much of the useful informa-

tion presenting in the structure of the data itself. In addition, interpolations in the

latent space of the generator produced smooth and plausible semantic variations and

made the model learns to associate particular latent directions with specific features.

Thus, the Bidirectional Generative Adversarial Networks (BiGAN) was proposed to

learn a generative mapping from simple latent distributions to arbitrarily complex

data distribution [8]. Another similar work about latent space exploration was pro-

posed to map training examples in the data space to the space of latent variables as

well [10].

Inspired by the mentioned work, we infer that the latent space plays an important

role in a generative model for semantic representation capturing. Thus, we propose

an adversarial latent representation learning method for speech enhancement.
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2.3 Adversarial Latent Representation Learning

In this section, we introduce the details of our Adversarial Latent Representation

Learning (ALRL) method for speech enhancement.

2.3.1 ALRL

The related studies [5, 8] show that the latent space can target salient semantic

features of data distribution and provide effective guidance for information learn-

ing. One effective method is to project the data back into the latent space. In our

work, an encoder is built for latent representation learning whereas our encoder will

be trained for inverse mapping from generated samples to latent space as shown in

Figure 2.2. An inner connection is established by the encoder to learn more useful

information for speech representation learning. To implement the encoder mapping,

we propose a new encoder loss function, which captures latent representation by cal-

culating the squared Euclidean distance from the inverse mapped generator samples

to the latent vectors.

To further improve the effectiveness of information learning, we combine the encoder

loss with the relativistic loss function [16]. The encoder, generator and discriminator

will be trained simultaneously. Below is our new loss function for the generator:

LG =− Ex∼Px,xc∼Pxc
[log(σ(C(G(z, xc), xc)− C(x, xc)))]

− Ez∼Pz ,xc∼Pxc
[||E(G(z, xc))− z||22] (2.5)

where E is defined by calculating the squared Euclidean [9] loss. The new loss func-

tion improves the semantic representation learning of the generator. To further avoid

vanishing gradients, the gradient penalty regularization is also used in discriminator

as proposed in [2]. Below is the discriminator:
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Figure 2.2: The framework of adversarial latent representation learning. The
Encoder (E) processes the generated samples and provides latent information for

model training.

LD =− Ex∼Px,xc∼Pxc
[log(σ(C(x, xc)− C(G(z, xc), xc)))]

− λEx̃,x∼P(x̃,x)
[(|| ▽x̃,x C(x̃, x)||2 − 1)2] (2.6)

where P(x̃,x) is the joint probability of x̃ = ϵx + (1 − ϵ)G(z, xc) and x; ϵ is sampled

from a uniform distribution in [0, 1]; λ is the hyper-parameter that controls the

gradient penalty.

Similar setup as SEGAN, the generator receives the noisy speech signal and latent

vectors and put them into multi-layers convolutions with the filter (width = 31 and

strides N = 2). Before the intermediate layer, a normal 2D convolutional followed

by Parametric Rectified Linear Units (PReLU) [22] is used for inherent information

capturing from input distributions. Then 2D transposed convolutional, followed

again by PReLU, is used for information reconstruction.

The discriminator is considered as a binary classifier for judgement to real samples

and generated samples. The main component is the 2D convolutional layer as well.
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Differently, the discriminator applies the LeakyReLU function [13] and virtual batch

normalization function rather than only PReLU in the generator. This will greatly

improve the discriminable information learning of the discriminator and alleviate

gradients vanishing.

The main structural ingredients of the encoder are also the 2D convolutional layer.

Especially, the multi-head self-attention layer is applied to the encoder for the spe-

cific speech information locating and the long-range dependencies learning [32].

2.3.2 Multi-head Self-attention

For each input sequence, the Query (Q), Key (K), and Value (V) vectors will be

created by applying learned linear projection or using feed-forward layers. Then the

attention will be applied to all other positions with the three vectors. The procedure

can be described as below:

Attention(Q,K, V ) = softmax(
QKT

√
dk

) · V (2.7)

where dk is the dimension of the key vectors. The purpose of this scaling is to

improve numerical stability as the dimensions of keys, values, and queries grow.

The obtained attention at each position will be used to times the value vector of

all other positions including itself. This will produce multiple results called multi-

head attention. The sum of all heads will be the final result of the first position

input. The same operation will be applied at each subsequent position. Below is

the equation of the multi-head calculation:
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MultiHead(Q,K, V ) = concat(headi, ..., headh)WO (2.8)

where headi = Attention(QWQ
i , KWK

i , V W V
i ), the matrices WQ

i , WK
i , W V

i , and

WO are the projection weight matrices, respectively. The self-attention module can

calculate the response at a specific local position based on the resource collecting

from all positions, where the attention vectors are calculated with a small compu-

tational cost.

2.4 Experiments

2.4.1 Database

The selected database is an open and standard resource for the performance eval-

uation of a speech enhancement system. The original clean speech was selected

from Voice Bank corpus1, including 28 speakers – 14 males and 14 females with

the same accent region (England). There are two artificially generated noises (i.e.

speech-shaped noise and babble) and eight real noises extracted from the Diverse

Environments Multi-channel Acoustic Noise Database (DEMAND) database [30].

For training data, the Signal-to-Noise Ratio (SNR) values are 15dB, 10dB, 5dB and

0dB. That signifies 40 different noisy conditions are produced in this corpus. Each

speaker contributes 10 sentences, the corpus will add 400 sentences in total. Each

clean speech waveform needs to be normalized and trimmed off silence segments of

which are longer than 200ms at the beginning and the end.

1https://datashare.is.ed.ac.uk/

https://datashare.is.ed.ac.uk/
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Another two speakers (a male and a female), not including in the training data, are

picked as the test data from the Voice Bank corpus with the same England accent.

Five other noisy types were selected from the DEMAND database. The SNR values

are 17.5dB, 12.5dB, 7.5dB and 2.5dB, respectively. Thereby, there are 20 different

conditions for each sentence per test speaker.

2.4.2 Setup

ALRL adopts the Adam optimizer [3], a learning rate of 0.0002. The raw speech

waveforms preserving the original inherent content of speech signals are used the

same as SEGAN [25]. About one-second speech chunks (16384 samples) is segmented

by a sliding window (500ms overlap) during training, however, is no overlap during

the test. In addition, a high-frequency pre-emphasis filer of coefficient 0.95 to all

input samples is applied. The epoch is 80 and the batch size is 100. In this work,

fully convolution is used for distribution modelling during downsampling. For more

stable training, the 2D convolutional layers followed by PReLU [22] are applied

to the project and compress the input signal. Furthermore, the 2D transposed

convolutional layers are designed as the key components of upsampling to reconstruct

condensed representations.

2.5 Results

Many objective evaluation measures can evaluate enhanced speech performance with

high correlation. The Perceptual Evaluation of Speech Quality (PESQ: from -0.5

to 4.5) for wide band speech is an effective full-reference speech quality evaluation

algorithm [15], Moreover, we also implement the composite evaluation metrics of

the enhanced speech including the predicted Mean Opinion Score (MOS) of signal
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distortion (CSIG: from 1 to 5), background noise distortion (CBAK: from 1 to 5),

and overall quality (COVL: from 1 to 5).

The intelligibility of enhanced speech is also implemented in this work. The Coherence-

based Speech Intelligibility Index (CSII) measure is computed for the medium-level

(CSIImid) and high-level (CSIIhigh) segments of each speech sentence, which can pre-

dict the intelligibility of peak-clipping and centering-clipping distortion in the speech

signal [21]. In addition, another popular speech intelligibility evaluation metrics the

Normalized Covariance Metric (NCM) [21] and the Short-Time Objective Intelligi-

bility (STOI) [28] are also conducted.

The experimental results of different methods are shown in Table 2.1. We set the

SEGAN method as the baseline and its result was described in study [25]. According

to the description of the SERGAN method [2], we retrain the SERGAN model and

obtained the results as shown in Table 2.1. Besides the overall evaluation results,

we also split the test data to four respective SNR conditions (i.e. 17.5dB, 12.5dB,

7.5dB, and 2.5dB) and obtain evaluation results.

As shown in Table 2.1, our Adversarial Latent Representation Learning (ALRL)

method outperforms the SEGAN and SERGAN methods and achieves the highest

scores in both speech quality and intelligibility. Specifically, our method improves

PESQ by 1.98% and 19.0%, improves STOI by 0.213‰ and 9.81‰ over SERGAN

and SEGAN, respectively. Moreover, our method also obtains outstanding enhance-

ment performance in each SNR condition. Our method improves PESQ by 1.69%

and 15.4% in 17.5dB, 2.39% and 21.6% in 2.5dB, improves STOI by -0.208‰ and

7.23‰ in 17.5dB, 1.33‰ and 14.4‰ in 2.5dB over SERGAN and SEGAN. Our

ALRL can effectively improve the intelligibility and quality of noisy speech, espe-

cially for low SNR scenarios.
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2.6 Conclusions

In this chapter, we propose a novel Adversarial Latent Representation Learning

(ALRL) method for speech enhancement. An extra encoder model is built in our

ALRL to learn the semantic representation by inverse mapping from the generated

samples to the latent space. The encoder greatly improves the effectiveness of ad-

versarial training and complex data distribution learning. To accomplish the inverse

mapping, we propose a new loss function, which captures latent representation by

calculating the squared Euclidean distance from the inverse mapped generator sam-

ples to the latent vectors. In addition, the multi-head self-attention mechanism,

applied to the encoder, is also effective for long-range dependencies capturing and

further semantic representation learning. The experimental results demonstrate that

ALRL outperforms current existing methods in both speech quality and intelligibil-

ity, especially for low signal-to-noise ratio scenarios. Our experiments have shown

that the latent space is effective to learn semantic representation with adversarial

training and our ALRL is effective for speech enhancement performance improve-

ment.
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Chapter 3

Adversarial Multi-Task Learning

with Inverse Mappings for Speech

Enhancement

For speech enhancement, Adversarial Multi-Task Learning (AMTL) has demon-

strated its promising capability of information capture and representation

learning in complex scenarios. However, previous AMTL-based approaches

focused on enhancing the distinguishable performance of the discriminator.

In this chapter, we propose a novel Adversarial Multi-Task Learning with In-

verse Mappings (AMTL-IM) method for speech enhancement. Our method

focuses on enhancing the generator’s capability of speech information capture

and representation learning. To implement our method, two extra networks

(namely P and Q) are developed to establish the inverse mappings from the

generated distribution to the input data domains. Correspondingly, the latent

loss and equilibrium loss are proposed for the inverse mappings learning and

the enhancement model training based on the original adversarial loss.

33
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3.1 Introduction

Speech enhancement, one of the most important topics in speech signal process-

ing [33], is to improve the intelligibility and overall perceptual quality of degraded

speech. The intelligibility is a measurement of how comprehensible a speech is,

while the perceptual quality measures how easy it is for a listener to perceive the

content of a speech. Normally, a perceptual high-quality speech sounds more natu-

ral, rhythmic, yet less raspy, hoarse, or scratchy. In practice, speech enhancement

has been widely applied in scenarios such as mobile communications [3], hearing

aids [27], and noise-robust speech recognition or speaker recognition [51, 54]. In real

life, there are various negative interferences such as additive noise (e.g., fan noise)

and convolutional noise (e.g., room reverberation), which can badly degrade speech

intelligibility and overall perceptual quality.

Different speech enhancement methods have been proposed to eliminate the negative

effects of the environmental noises [1, 9, 29, 38, 43, 45, 46, 59, 60]. For example,

Wiener filtering is a classic single-channel statistical estimation based approach,

which is considered to be an effective way for stationary additive noise reduction [1].

However, for reverberation or unknown noise interference, the statistical estimation

based approaches perform unsatisfactorily in the current complex noisy environment.

Another popular approach is microphone arrays based multi-channel speech en-

hancement [29, 43], such as the acoustical beamforming algorithm [61]. This ap-

proach is conducted on the output signals of microphone arrays and converts them

into a single-channel speech signal while amplifying the speech signals from the tar-

geted direction and attenuating the noise signals coming from other directions. The

microphone arrays based multi-channel approaches usually take the spatial position

information into account and can effectively mitigate the reverberation problem [29].
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With the rapid development of intelligent technologies and hardware resources, data-

driven deep neural networks have been thriving in speech signal processing [52], com-

puter vision [6, 25, 47], and natural language processing [20]. For speech enhance-

ment, denoising autoencoder [7, 53], Long Short-Term Memory (LSTM) [16], and

Convolutional Neural Networks (CNN) based methods [21, 40] have been applied to

improve high-dimensional data representation learning and speech enhancement per-

formance as well. For example, Zhao et al. [62] introduced convolutional-recurrent

neural networks to exploit local structures in the frequency and temporal domains.

The results showed that their method was more data-efficient and achieved better

generalization on both seen and unseen noise. With a deeper neural architecture,

deep learning based approaches display a huge potential in dealing with complex

signal processing and specific representation learning [39]. However, recent works

also revealed that the performance of deep architecture degrades inversely if we

exhaustively enlarge the network’s scale only [28], which would cause vanishing gra-

dients or degradation problems. Benefiting from the normalized initialization [18],

intermediate normalization layers [24], and skip connections of residual network [19],

these aforementioned problems can be largely addressed.

Recently, the advent of Generative Adversarial Networks (GAN) [17] has attracted

much attention and made remarkable progress in the generative model community.

With the powerful ability of information learning and reconstruction, complex image

and speech signal processing achieved a great breakthrough [2, 47]. The original

GAN consists of a Generator (G) and a Discriminator (D). G is set to learn an

effective mapping between the given random noise (z) and the ground-truth (x). In

contrast, D is an initialized binary classifier, which receives both x (real) and G(z)

(fake) and gives a corresponding judgment. With continuous iterative processing,

the procedure is trained adversarially up to a Nash Equilibrium [17]. For speech

enhancement [41] as shown in Figure 3.1, G usually takes noisy speech and extra
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Figure 3.1: The framework of GAN-based speech enhancement. The Generator
(G) consumes raw noisy speech and latent vector (i.e., random noise) as input.
The Discriminator (D) is a binary classifier aiming to judge the similarity between

the generated sample and raw clean speech.

noise distributions as input and exports targeted data distribution. D is considered

as a classifier trained to distinguish generated samples and clean speech as fake or

real.

Although numerous speech enhancement methods have been developed in the past

and worked properly in many scenarios to some extent, it is necessary to further im-

prove the generalization of the model and the performance of speech enhancement.

Adversarial Multi-Task Learning (AMTL), which combines an adversarial training

mechanism with Multi-Task Learning (MTL), is an effective method to improve the

complex multiple domains information learning and generalization [15, 63]. Specifi-

cally, MTL is an inductive transfer mechanism aiming to improve the generalization

performance by leveraging the domain-specific information contained in related tasks

[4].

With powerful information capture and reconstruction capability, AMTL has been

used in text classification [31], image feature learning [32], speaker normalization

in replay detection [49] and speech enhancement [35, 36]. For speech enhancement,

Meng et al. [35, 36] proposed AMTL-based methods to enhance the distinguishable

performance of models. In [36], two discriminators were added on top of the basic
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cycle-consistent framework. The multiple losses including the discrimination losses,

the reconstruction losses, and the identity-mapping losses were jointly optimized

to distinguish the enhanced and noised features from the real samples. A simi-

lar AMTL-based idea was proposed in [35]. The experimental results showed that

Meng’s AMTL-based speech enhancement methods effectively reduced the Word

Error Ratio (WER) of noise-robust speech recognition. The AMTL-based methods

of Meng et al. [36] focused on discriminability improvement of the discriminator.

However, little attention has been paid to improve the specific information capture

and speech representation learning of generators.

Moreover, establishing the inverse mappings from the output distribution domain

to the input data domain is an effective way to improve representation learning

[11, 12, 23]. Thus, in this chapter, we propose a novel Adversarial Multi-Task Learn-

ing with Inverse Mappings (AMTL-IM) method for speech enhancement. Based on

the architecture of GAN, two extra networks (namely P and Q) are developed to

establish the inverse mappings from the generated distribution to the input data do-

mains. Correspondingly, two new loss functions (i.e., latent loss and equilibrium loss)

are proposed for the inverse mappings learning and the enhancement model training

based on the original adversarial loss. With the latent loss function, network P

aims to extract relevant latent information from the latent space (i.e., random noise

domain) and further facilitate the sample generation. The network Q is developed

to balance the adversarial representation learning by mapping the generated dis-

tribution to the noisy speech domain with an equilibrium loss function. Thus, our

proposed method consists of four sub-models with respective loss functions to learn

speech representation and further improve speech enhancement.

This chapter is organized as follows. Section 3.2 describes the related work. Section

3.3 details the proposed method. Section 3.4 provides the details of our experiments.
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The results and discussions are presented in Section 3.5. Finally, the conclusions are

shown in Section 3.6.

3.2 Related Work

In this section, we introduce the related work about GAN-based speech enhancement

and inverse mapping learning.

3.2.1 Speech Enhancement with Adversarial Networks

Recently, GAN-based models have achieved huge progress on semantic representa-

tion learning and improved speech enhancement performance significantly. Speech

Enhancement GAN (SEGAN) [41] is one of the most prominent frameworks proposed

for time-domain speech enhancement. SEGAN combines the conditional GAN with

the Least-Squares GAN (LSGAN) to further alleviate vanishing gradients. This

modification is proved to be effective for performance improvement. Below is the

loss function of its discriminator:

LD =
1

2
Ex∼Px,xc∼Pxc

[(D(x, xc)− 1)2] +
1

2
Ez∼Pz ,xc∼Pxc

[(D(G(z, xc), xc))
2], (3.1)

and its generator:

LG =
1

2
Ez∼Pz ,xc∼Pxc

[(D(G(z, xc), xc)− 1)2], (3.2)

where xc denotes noisy speech; x denotes clean speech; z denotes random noise

distribution.

SEGAN operated directly on the raw speech waveform rather than on the processed

spectral features with an end-to-end architecture. The end-to-end architecture is
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considered to be able to preserve original sequential information such as phase in-

formation effectively. The fully convolutional architecture consisted of a downsam-

pling module and an upsampling module (i.e., encoder and decoder). This enforced

the network to focus on temporally close correlations of the input speech signal and

throughout the entire processing of the network [41]. The random noise z (i.e., latent

vectors) was added to the bottleneck layer for information compensation. However,

the latent space has not been explored thoroughly in speech signal processing.

The latent vectors may be used by the generator in a highly entangled way [5]. For

inducing latent vectors, Chen et al. [5] proposed to adopt a mutual information

strategy, which decomposed the input noise vectors into a set of semantically mean-

ing factors of variation rather than using single unstructured noise vectors. They

discovered that these latent factors could target salient semantic features of data

distribution. Thus, establishing an inverse mapping to explore the latent space for

effective representation learning is one of the main tasks in our work.

Speech Enhancement Relativistic GAN (SERGAN) [2] is another framework explor-

ing speech enhancement based on GAN. In the conventional GAN, the discriminator

is trained to detect if a sample is an original one or a generated one, while the gen-

erator is trained to generate data to be more similar to original data to fool the

discriminator. The relativistic GAN [26] argued that the probability of D(x) should

decrease as the probability of D(G(z, xc)) increases. However, the original GAN can-

not incorporate this situation described above since G does not influence D(x). To

circumvent this problem, the relativistic loss function was proposed and used in the

speech enhancement task [2]. Below is the loss function of SERGAN’s discriminator

:

LD = −Ex∼Px,xc∼Pxc
[log(σ(C(x, xc)− C(G(z, xc), xc)))], (3.3)
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and generator:

LG = −Ex∼Px,xc∼Pxc
[log(σ(C(G(z, xc), xc)− C(x, xc)))], (3.4)

where C(x) denotes the discriminator without the final sigmoid layer; σ is the sig-

moid non-linearity, and thus D(x) = σ(C(x)). The method had a similar architec-

ture with SEGAN but adopted a new loss function to boost information communi-

cation between the generator and discriminator.

Benefiting from adversarial training, more GAN-based methods have been proposed

for speech enhancement. Michelsanti and Tan [37] explored the potential of the

conditional GAN for speech enhancement; Soni et al. [48] exploited GAN with

time-frequency mask based enhancement framework; Donahue et al. [10] conducted

a detailed study to measure the effectiveness of GAN-based speech enhancement for

robust speech recognition where the speech is contaminated by both additive and

convolutional noise.

With various model architectures and task requirements, GAN-based speech en-

hancement has demonstrated a promising capability of complex distribution mod-

elling and speech representation learning.

3.2.2 Inverse Mapping Learning

For effective information capture and data representation learning, the inverse map-

pings learning with GAN’s architecture has shown its success in image processing

[11, 12, 23]. The Stacked GAN (SGAN) [23] was proposed to invert the hierarchical

representations of a traditional bottom-up encoder to a stack of top-down generators

for high-quality image generation. Each generator learned to generate lower-level

data representations conditional upon high-level representations. The bottom-up
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encoder, employing a fully connected network, was pre-trained to provide inher-

ent information for the stacked layers of generators. The separated generators and

discriminators were trained independently and then jointly to invert the hidden lay-

ers information of the encoders. The iterative adversarial training transformed the

inherent information from the bottom-up encoder to the top-down generators for

higher resolution image output. The proposed method improved the inherent in-

formation learning and enhanced high-resolution image generation by inverting the

hidden layers information to the target data domain inversely.

Donahue et al. [11] noticed that GAN models could capture semantic variation from

latent space but with no means of projecting data back into the latent space. Thus,

the GAN architecture ignored much of the useful information found in the struc-

ture of the data itself. Besides, interpolations in the latent space of the generator

produced smooth and plausible semantic variations and made the model learn to

associate particular latent directions with specific features. Thus, the Bidirectional

Generative Adversarial Networks (BiGAN) was proposed to learn an inverse map-

ping from the projecting data back into the latent spaces [11] with a new encoder

model. The learned feature representation was thus useful for auxiliary supervised

discrimination tasks. Another similar work about latent space exploration with

multiple models was proposed in [13]. As introduced in [13], the generation network

mapped samples from stochastic latent variables to the data domain while the infer-

ence network mapped training examples in the data domain to the space of latent

variables inversely. The operation could effectively enhance representation learning

and sample reconstruction with an adversarial process.

The related work mentioned above demonstrates that the GAN-based methods have

a huge potential in speech enhancement tasks. To further improve the performance

of GAN-based speech enhancement, exploring the input data domain with inverse
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mappings is an effective way. Thus, in this chapter, we propose a novel speech

enhancement method based on adversarial multi-task learning and inverse mappings.

3.3 Methodology

Based on adversarial multi-task learning and inverse mapping learning, we propose

a novel method to further enhance speech representation learning and the perfor-

mance of speech enhancement. As shown in Figure 3.2, our method consists of four

networks: a generator G, a discriminator D, and the proposed two extra networks

P and Q. G consumes raw noisy speech and random noise as input and outputs the

generated sample; D aims to judge the similarity between the generated sample and

the raw clean speech. The networks P and Q compensate the information extracted

by G by learning the inverse mappings from the generated distribution to the input

spaces with two additional new loss functions (i.e., latent loss and equilibrium loss).

3.3.1 Loss Functions

The loss function of G consists of three parts: adversarial loss (LG adv), latent loss

(LG lat), and equilibrium loss (LG equ). The weighted sum of these three parts is

expected to capture real-data information and learn an effective representation of

G. Below is the combined loss function of G:

LG = LG adv + λ1LG lat + λ2LG equ, (3.5)

where P and Q can be activated or deactivated by setting λ1 and λ2 as 0 or 1. We

can also try different weight groups to evaluate the effect of P and Q on the whole

model.
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The basic adversarial loss function can learn necessary information for G when D is

frozen. Here, we adopt the adversarial loss function used in SERGAN [2]. Below is

the adversarial loss function:

LG adv = −Ex∼Px,xc∼Pxc
[log(σ(C(G(z, xc), xc)− C(x, xc)))], (3.6)

where x denotes the clean speech, which subjects to data distribution Px; xc denotes

the noisy speech, which subjects to data distribution Pxc ; z denotes the random

noise subjecting to distribution Pz (i.e., latent space); D(x, xc) = σ(C(x, xc)) as

mentioned above.

The latent space plays an important role in GAN architecture-based representation

learning and stable model training [11]. However, current models generally ignore

thoroughly exploring latent space information. Thus, in our method, P is built

to excavate latent space information by mapping the generated distribution to the

latent space inversely. Below is the latent loss function:

LG lat = −Ez∼Pz ,xc∼Pxc
[||P (G(z, xc))− z||22], (3.7)

where the squared Euclidean distance ∥·∥22 is adopted to measure the similarity of

random noise distribution z with the output distribution of P . Here, the distance

measurement can be designed in other ways, but we choose ∥·∥22 because it makes

the hyper-parameter tuning easier [12].

We propose to establish the inverse mapping from generated data distribution to la-

tent space with network P . The latent loss function works with the adversarial loss

function together to enhance G to capture more effective information for informa-

tion reconstruction. However, a potential unbalanced learning problem may appear
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Figure 3.2: The framework of our proposed method. Based on basic GAN archi-
tecture, the Generator (G) receives raw noisy speech and random noise as input.
The Discriminator (D) gives the judgment (i.e., fake or real) of the generated
sample and raw clean speech. The networks P and Q are proposed to establish
the inverse mappings from the generated distribution to the input data domain

for information capture and representation learning.

and result in defective real-data distribution modelling. Also, unnecessary complex-

ity and model instability may be introduced if just feeding more extra conditional

information [23]. Thus, another network Q with the equilibrium loss function is de-

veloped as well to obtain a trade-off during model training. Below is the equilibrium

loss function:

LG equ = −Ez∼Pz ,xc∼Pxc
[||Q(G(z, xc))− xc||22], (3.8)

where ∥·∥22 is also adopted to measure the similarity of noisy speech distribution

with the output of Q.
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With the pre-set weights, the adversarial loss, latent loss, and equilibrium loss func-

tions form the overall loss function of G. The multi-task learning based architecture

achieves the related distribution mapping and representation learning with an ad-

versarial training mechanism.

Following [2], the gradient penalty regularization is also applied in our work to avoid

further vanishing gradients. Below is the loss function of D:

LD =− Ex∼Px,xc∼Pxc
[log(σ(C(x, xc)− C(G(z, xc), xc)))]

− γEx̃,x∼P(x̃,x)
[(|| ▽x̃,x C(x̃, x)||2 − 1)2] (3.9)

where x and xc denote the clean and noisy speech pair, which subject to data

distribution Px and Pxc , respectively; z denotes random noise, which subjects to Pz;

P(x̃,x) is the joint probability of x̃ = ϵx + (1− ϵ)G(z, xc) and x; ϵ is sampled from a

uniform distribution in [0, 1], and γ = 10 is the hyper-parameter that controls the

gradient penalty.

3.3.2 Model Architecture Setup

In this subsection, we introduce the architecture of our model. As shown in Fig-

ure 3.3, G is a standard downsampling and upsampling architecture developed for

information learning and reconstruction. Before the intermediate bottleneck layer,

the normal 2D convolutional kernels followed by Parametric Rectified Linear Units

(PReLU) [18] are adopted for information capture from real-data distributions.

Then, the 2D transposed convolutional kernels with PReLU are applied for desir-

able sample reconstruction. Latent vector z gets concatenated with the condensed

representation of the bottleneck layer. Additionally, the skip connections linking the
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...

Skip
 Connections

Random Noise
8×1024

...

 16384×1
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Speech

Generated 
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Conv2d_T +PRelu
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16×1024
Conv2d_T+PRelu

32×256

4096×64
Conv2d_T+PRelu

8192×16

Figure 3.3: The details of Generator (G). The downsampling adopts 2D con-
volutional kernels followed by PReLU for information capture. The upsampling
adopts 2D transposed convolutional kernels followed by PReLU for sample recon-
struction. Latent vector z gets concatenated with the condensed representation
of the bottleneck layer. The skip connections are used to boost the stability of

model training.

downsampling and upsampling of G can transfer the fine-grained information of the

speech waveform to the upsampling stage and boost the stability of model training

[42].

As shown in Figure 3.4, D is considered as a binary classifier to judge the similarity

between the ground truth and the generated sample. The main components of D

are also the 2D convolutional kernels but followed by Virtual Batch Normalization
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Generated
Sample

Raw Clean
Speech

Figure 3.4: The details of Discriminator (D). D is a binary classifier to give
the judgment (fake or real) of the ground truth and the generated sample. The
main components are the 2D convolutional kernels followed by Virtual Batch
Normalization (VBN) and LeakyReLU for distinguishable information learning.

(VBN) and LeakyReLU [41]. This architecture is suitable for learning distinguish-

able information.

In this work, network P also employs 2D convolutional kernels with PReLU similar

to D but removes the final fully connected layer to match the dimension of random

noise. Network Q employs a downsampling and upsampling architecture similar to

G but reduces the number of layers and discards the skip connections. The model’s

training procedure is presented in Algorithm 1. In particular, we also apply the

multi-head self-attention to G and Q in the bottleneck layer for locating specific

speech information and learning the contextual long-range dependencies.
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Algorithm 1 Training procedure of our speech enhancement method

Require:
Raw clean-noisy speech pairs (x, xc) and random noise z
Initialized weights and biases of D,G, P,Q networks

Ensure:
Trained speech enhancement model

1: θD, θG, θP , θQ ← initialize network parameters
2: for epoch (number of training iterations) do
3: speech signal pre-processing
4: (z, xc) ← batch input of G
5: G(z, xc) ← enhanced output of G
6: (x,G(z, xc)) ← batch input of D
7: LD, LG ← loss calculation
8: θD, θG, θP , θQ ← parameters update
9: end for
10: return trained model

3.4 Experiments

3.4.1 Database

The selected database [55, 56] is an open and standard speech corpus for the eval-

uation of speech enhancement systems. The database contains selected speech re-

sources from multiple speech corpus. Some of the noise files were obtained from

the DEMAND corpus1. Another two noise files2 (i.e., the speech-shaped and babble

noise) were also selected for noisy speech production. The original clean speech was

selected from the Voice Bank corpus [58]. According to the number of speakers,

two sub-databases were created: one includes 28 speakers (14 males and 14 females)

with the same accent (England); another one includes 56 speakers (28 males and 28

females) with different accents (Scotland and United States).

As mentioned above, the database added ten different noise types to the clean speech

waveform using the ITU-T P.56 method [33], including eight real noise types and two

1http://parole.loria.fr/DEMAND/
2http://homepages.inf.ed.ac.uk/cvbotinh/se/noises/

http://parole.loria.fr/DEMAND/
 http://homepages.inf.ed.ac.uk/cvbotinh/se/noises/
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Table 3.1: The evaluation results of our method compared with previous meth-
ods including Wiener filtering [30], SEGAN [41], SERGAN [2], MMSE-GAN [48],
BiLSTM [14], CRN-MSN [52], NAAGN [8]. All the presented methods were
trained with the 28-speaker database. ”†” denotes that we reproduced the re-
sults with the provided open resource. “-” denotes that the result is not reported

or not available. The best scores are highlighted in bold.

Models PESQ CSIG CBAK CVOL SSNR STOI
Noisy 1.97 3.35 2.44 2.63 1.68 0.921
Wiener filtering 2.22 3.23 2.68 2.67 5.07 -
SEGAN† 2.16 3.48 2.94 2.80 7.73 0.928
SERGAN† 2.52 3.66 3.18 3.06 9.40 0.937
MMSE-GAN 2.53 3.80 3.12 3.14 - 0.930
BiLSTM 2.70 3.99 2.95 3.34 - 0.925
MDPhD 2.70 3.85 3.39 3.27 10.2 -
CRN-MSE 2.74 3.86 3.14 3.30 - 0.934
NAAGN 2.90 4.13 3.50 3.51 10.3 0.948
Proposed I(λ1=1,λ2=0) 2.57 3.78 3.23 3.16 9.32 0.937
Proposed II(λ1=0,λ2=1) 2.52 3.73 3.22 3.11 9.06 0.935
Proposed III(λ1=1,λ2=1) 2.79 3.90 3.34 3.56 9.67 0.941
Proposed IV(λ1=1,λ2=1,MHSA) 2.88 4.01 3.50 3.51 9.72 0.945

artificially generated noises. In detail, the eight real noise types include a domestic

kitchen room noise, a meeting room noise, three public space noises including cafe-

teria, restaurant, and subway station, two transportation noises including car and

metro, a busy traffic intersection noise; the two artificially generated noises contain

a speech-shaped noise by adding white noise, and a babble noise by adding extra

speech.

For training data, the Signal-to-Noise Ratio (SNR) values were set to 15dB, 10dB,

5dB, and 0dB. It signified that each clean sentence would produce 40 noisy sentences

with different noise types. Each speaker contributed with 10 clean sentences. Thus,

each speaker would contribute with 400 sentences to the database. Moreover, each

clean speech waveform would be normalized, and the silence segments would be

trimmed off when the silence segments were longer than 200ms at the beginning and

at the end.
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Another two speakers (a male and a female), not included in the training data, were

selected for the testing data with an accent from England. Five other noise types

were selected from the DEMAND database, including a domestic living room noise,

an office room noise, a transport noise of a bus, and two street noises including an

open area and a public square. The SNR values were 2.5dB, 7.5dB, 12.5dB, and

17.5dB, respectively.

3.4.2 Setup

Our model is trained using the RMSprop optimizer [64] with a learning rate of

0.0002. The number of epochs is 180 and the batch size is 100. As an end-to-

end architecture, our model takes in the raw speech waveform and outputs the

enhanced waveform directly, which is considered to preserve the original content

of speech signals including phase information. About one-second speech chunks

(16384 samples) are segmented by a sliding window (500ms overlap) during training,

however, there is no overlap during the test. Besides, a high-frequency pre-emphasis

filter of coefficient 0.95 is applied to all input samples.
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3.4.3 Evaluation Metrics

Although subjective evaluation is more accurate and reliable, it is costly and time-

consuming [22]. Many objective evaluation measures can evaluate enhanced speech

with high correlation. The Perceptual Evaluation of Speech Quality (PESQ: from -

0.5 to 4.5) for wideband speech is an effective full-reference speech quality evaluation

algorithm [22]. Moreover, we also implement the composite evaluation metrics of

the enhanced speech including the predicted Mean Opinion Score (MOS) of signal

distortion (CSIG: from 1 to 5), background noise distortion (CBAK: from 1 to 5),

and overall quality (COVL: from 1 to 5). The Segmental Signal-to-Noise Ratio

(SSNR: from 0 to ∞) is another crucial evaluation metric for speech quality.

The intelligibility of enhanced speech is also tested in this work. The Coherence-

based Speech Intelligibility Index (CSII) measure is computed for the low-level high-

level (CSIIhigh), medium-level (CSIImid), and (CSIIlow) segments of each speech sen-

tence, which can predict the intelligibility of peak-clipping and centering-clipping dis-

tortions in a speech signal [34]. Besides, the Normalized Covariance Metric (NCM)

[34] and the Short-Time Objective Intelligibility (STOI) [50] are also conducted for

intelligibility evaluation of enhanced speech.

3.5 Results and Discussions

In this section, we introduce two experimental results along with the respective

discussion on the achieved results. The first experiment is performed on the 28-

speaker database. We conduct a series of ablation experiments to evaluate our

method. In the second experiment, we evaluate our method and several reproducible

methods on different sizes of training data.
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Figure 3.5: Spectrograms of selected utterance (SNR=2.5dB) enhanced with
our method.
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Noisy Speech Spectrogram (SNR=7.5dB)
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Figure 3.6: Spectrograms of selected utterance (SNR=7.5dB) enhanced with
our method.
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Noisy Speech Spectrogram (SNR=12.5dB)
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Figure 3.7: Spectrograms of selected utterance (SNR=12.5dB) enhanced with
our method.
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Noisy Speech Spectrogram (SNR=17.5dB)
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Figure 3.8: Spectrograms of selected utterance (SNR=17.5dB) enhanced with
our method.
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The performances of our proposed method and several compared methods on the

28-speaker database are listed in Table 3.1. Along with the previous evaluation

strategy, we report the experimental results in terms of several main evaluation

metrics including PESQ, CSIG, CBAK, CVOL, SSNR, and STOI.

In our ablation experiment, we activate the networks P and Q with corresponding

loss functions by controlling the parameter λ for inverse mapping learning from

output space to input space. We adopt SERGAN architecture in this chapter. Thus,

the experimental results are the same as SERGAN† if we set λ1 = 0, λ2 = 0. We just

activate the network P and learn the inverse mapping from the generated space to the

latent space when we set λ1 = 1, λ2 = 0. Compared with the original architecture

(SERGAN) as we can see in Table 3.1, the experimental results show that our

method achieves higher evaluation scores in terms of PESQ (2.52 to 2.57), CSIG

(3.66 to 3.78), CBAK (3.18 to 3.23), CVOL (3.06 to 3.16), which relatively improves

by 1.98%, 3.28%, 1.57%, and 5.23%, respectively. Moreover, we also find that the

evaluation score decreases slightly in terms of SSNR (9.40 to 9.32) and remains

the same in terms of STOI (0.937). We can infer that the proposed method of

adversarial multi-task learning can further improve speech representation learning

and speech enhancement performance. Compared with the previous methods, the

proposed method can obtain competitive results based on 28-speaker training data.

Further, when we activate Q and inactivate P (i.e., λ1 = 0, λ2 = 1), the performance

degrades slightly compared with the first ablation experiment (i.e., λ1 = 1, λ2 = 0)

but still obtains a slight improvement compared with the original SERGAN architec-

ture. We infer that re-excavating information from the input data domain by inverse

mapping learning can improve representation learning and speech enhancement per-

formance. However, the network P learning inverse mapping from the generated

data domain to the latent domain is more effective in speech enhancement improve-

ment than network Q.



Adversarial Multi-Task Learning with Inverse Mappings for Speech Enhancement 59

Naturally, when we activate P and Q simultaneously (i.e., λ1 = 1, λ2 = 1), our

method further improves the enhancement performance. Thus, we can infer that our

proposed adversarial multi-task learning based method can improve speech represen-

tation learning and speech enhancement performance by inverse mapping learning.

Moreover, when we add the multi-head self-attention [57] layer in the bottleneck

layer of network G and Q, the evaluation results are further improved and obtain a

competitive score compared with the state-of-the-art method.

To further demonstrate the effectiveness of our proposed method, we also unfold the

details of the evaluation results with two reproducible methods (i.e., SEGAN and

SERGAN) with a more comprehensive evaluation metric in Table 3.2. Compared

with the two methods, we can find that our method improves speech enhancement

performance in each SNR condition and evaluation metrics. Moreover, through

careful comparison from high SNR to low SNR (17.5dB to 2.5dB), we find that our

method performs better in lower SNR. In particular, the intelligibility improvement

is dramatic. For example, in the 17.5dB scene, the NCM evaluation score of our

method (0.997) is similar to other methods (0.994 and 0.997). However, in 2.5dB,

the NCM score of our method (0.967) is much higher than other methods (0.928

and 0.959). Thus, we infer that our method performs well in low SNR, in terms of

speech intelligibility and quality.

To visualize the performance, we also present the spectrograms of four selected

speech utterances in different SNR in Figure 3.6 (2.5dB and 7.5dB) and Figure 3.8

(12.5dB and 17.5dB). From the top to bottom, the figures are noisy, clean, and

enhanced speech waveforms. We can observe that our method can enhance noisy

speech. Compared to Figure 3.6 and 3.8, it seems that the enhancement performance

in low SNR (2.5dB and 7.5dB) is more effective than in high SNR (12.5dB and

17.5dB).
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Moreover, we conduct experiments in different sizes of training data to further ex-

plore the effectiveness of our method. As we can see from Table 3.3, our method

obtains further improvement in terms of speech quality and intelligibility with more

training data. We also find that not all the evaluation metrics can achieve further

improvement with more training data. We speculate that the results may be caused

by the different distribution of training data.

3.6 Conclusions

In this chapter, we propose a novel adversarial multi-task learning with inverse map-

ping method for speech enhancement. Based on the generative adversarial structure,

two extra networks are proposed to learn the inverse mappings from the generated

distribution to the input data domain with the addition of two new functions (i.e.

the latent loss and equilibrium loss functions). Working with the original adversar-

ial loss function, our adversarial multi-task learning with inverse mapping method

improves information capture and speech representation learning. The experimental

results demonstrate that our proposed method can greatly improve speech enhance-

ment performance in terms of speech quality and intelligibility, especially in a low

SNR scene. Moreover, the multi-head self-attention is also effective to locate specific

information and learn long-range dependencies of the speech signals, and improve

speech enhancement further.
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Chapter 4

Self-Supervised Learning Based

Phone-Fortified Speech

Enhancement

Recent speech enhancement methods focus on further optimization of net-

work structures and hyperparameters, however, ignore inherent speech char-

acteristics (e.g., phonetic characteristics), which are important for networks

to learn and reconstruct speech information. In this chapter, we propose

a novel Self-Supervised learning based Phone-Fortified (SSPF) method for

speech enhancement. Our method explicitly imports phonetic characteristics

into a deep complex convolutional network via a Contrastive Predictive Cod-

ing (CPC) model pre-trained with self-supervised learning. This operation

can greatly improve speech representation learning and speech enhancement

performance. Moreover, we also apply the self-attention mechanism to our

model for learning long-range dependencies of a speech sequence, which fur-

ther improves the performance of speech enhancement.

71
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4.1 Introduction

Speech enhancement is an important speech processing task aiming to improve the

intelligibility and overall perceptual quality of a contaminated speech signal [19].

The intelligibility is a measurement of how comprehensible a speech signal is, while

the perceptual quality measures how easy it is for a listener to perceive the content

of a speech signal. Normally, a perceptual high-quality speech sounds more natural,

rhythmic, yet less raspy, hoarse or scratchy, etc [19].

In the real world, additive noise (e.g., fan noise) and convolutional noise (e.g., room

reverberation) are two common noise types that can degrade speech signals dras-

tically. Correspondingly, many approaches (e.g., denoising, dereverberation) have

been proposed and widely used in practical applications such as mobile communica-

tion [16], hearing-aids [13], and noise-robust speech recognition [38]. However, the

performance of speech enhancement, especially in a real-life environment, still needs

to be improved further.

Currently, data-driven deep learning based methods have been thriving in speech

signal processing [30, 34], computer vision [12, 28, 42], and natural language pro-

cessing [8]. For speech enhancement, existing deep learning based models, which

pursued the optimal structures with dozens of network layers, have improved the

performance of speech enhancement in different scenarios [2, 5, 24, 32, 37]. However,

the performance might not be improved all along if we just stack the network layers

exhaustively [15]. In addition, ignoring essential information of speech signals (e.g.,

phase and phonetic information) is also a challenging issue in speech enhancement

[35].

For phase-aware speech enhancement, deep complex network based methods have

demonstrated their effectiveness in dealing with complex-valued spectrums [10]. A

deep complex network was originally proposed to construct richer and more versatile
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representations of an image or audio signal [36]. Based on this network, recently,

Hsieh et al. [9] proposed a Phone-Fortified Perceptual loss (PFP) for enhancing

network optimization. They indicated that the phonetic characteristic information

is the key to optimizing speech enhancement with respect to human perception,

but the latent features for speech characteristics learning in previous models seemed

to be lacking in phonetic characteristic information. Moreover, they also indicated

that the objective functions based on point-wise distances might not fully reflect

the perceptual difference between noisy and clean speech signals. Thus, the pho-

netic characteristics extracted by a pre-trained Contrastive Predictive Coding (CPC)

model were introduced in their model but just for loss calculation.

Inspired by [9], we propose a new speech enhancement method, which focuses on

improving speech representation learning via importing the phonetic characteristics

into an improved deep complex network explicitly. We adopt a self-supervised learn-

ing based CPC model for speech phonetic information extraction because of CPC’s

great speech representation learning capability. To import phonetic characteristics,

we propose a new feature embedding network to re-embed the extracted features

and then fuse them with the original frequency spectrum features. We consider that

explicitly supplementing speech phonetic information can effectively enhance speech

representation learning. Moreover, we also apply the self-attention mechanism to

the deep complex network specifically, which aids in learning long-range dependen-

cies of a speech sequence and improving the performance of speech enhancement

further. In our experiments, we explore multiple CPC-based pre-trained models for

speech phonetic information extraction and compare their performance fully. We

also investigate the impact of the size of training data on our enhancement model

and unfold the results in terms of Signal-to-Noise Ratios (SNR) and noise types.

In the following, we give the related work in Section 4.2. We describe the details of

our model in Section 4.3. In Section 4.4, we describe the setup of experiments. The
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experimental results are presented in Section 4.5. Finally, we report our conclusions

in Section 4.6.

4.2 Related Work

The existing work related to speech phase information preservation and representa-

tion learning is introduced in this section.

4.2.1 Phase Information Preservation

For phase information preservation, an end-to-end speech processing framework has

been considered as a plausible solution, which receives a raw speech waveform as

input and outputs the processed speech waveform directly [23]. Since a raw speech

waveform naturally contains phase information, the end-to-end speech enhancement

can preserve the phase information from the contaminated speech sequence without

extra handcrafted feature pre-processing. Generally, the handcrafted pre-processing

operation such as traditional speech feature extraction may only capture acoustic

information, but ignore other important information such as the speech phase [44].

The end-to-end framework can alleviate this problem by taking in the raw speech

waveform. However, for speech enhancement, reusing the phase information of noisy

speech generally causes a serious mismatch between reconstructed speech and clean

speech, especially under extremely noisy conditions [10].

Further, jointly estimating the speech magnitude and phase information with a

complex-valued network is another approach [44]. Unlike the real-valued network

that only changes the scale of the magnitude spectral mapping without the phase

information processing [35], the complex-valued network [36] learns speech magni-

tude and phase information with the real and imaginary part, respectively, which
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has been proven to be an effective framework [9, 10] for speech enhancement. Thus,

we also adopt the complex-valued network for speech magnitude and phase response

preservation in this research.

4.2.2 Speech Representation Learning

Learning appropriate speech representation is a fundamental and effective way to

improve speech signal processing. With the development of speech signal processing,

different speech feature representations were proposed such as Mel-Frequency Cep-

stral Coefficients (MFCCs), a general all-purpose frame-level acoustic feature [45];

Identity vector (I-vector), a high-dimensional utterance-level speech representation

[4]; Speech2vec (i.e., speech version of word2vec [20]), a semantic representation of

an audio segment with a fixed-length vector [3]. These speech feature representations

have been used widely in specific speech tasks.

Recently, a self-supervised learning based CPC model was developed to extract

useful data representation from high-dimensional data space with a powerful au-

toregressive model [22]. Specifically, the probabilistic contrastive loss was proposed

to induce the latent space to capture information that was maximally useful to pre-

dict future samples. The self-supervised learning mechanism enables CPC to learn a

general and effective representation with massive unlabelled data. CPC was tested

in different data modalities such as speech, images, natural language and obtained

promising results [22, 27, 43]. In this chapter, we introduce two CPC-based models

(i.e., wav2vec [27] and vq-wav2vec [1]) for speech representation learning.

4.2.2.1 Wav2vec

Wav2vec [27], a pre-trained CPC model as shown in Figure 4.1, can learn a general

speech representation by training with large amounts of unlabelled raw audio data.
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Figure 4.1: The framework of wav2vec and vq-wav2vec. For wav2vec, the En-
coder (E) network maps the raw audio to a dense representation z. z is aggregated
into a Context (C) network for representation c, which refers to the contrastive
loss calculation (l) with the future samples. With the addition of a quantized (q)

layer, this framework represents vq-wav2vec.

The model consists of two convolutional neural networks (i.e., an encoder network

and a context network). The encoder network embeds the raw audio signal in a

latent space and outputs a low-frequency representation to the context network

(also known as an aggregator), which creates a contextualized vector representation

by combining the latent representation from multiple time steps. The model can

be trained to distinguish a future sample from the distractor samples, which is

drawn from a proposal distribution, by minimizing the contrastive loss for each

step. After training, the output of the context network can be considered as the

desired representation of the input audio.
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4.2.2.2 Vq-wav2vec

Vq-wav2vec [1] is based on wav2vec, as shown in Figure 4.1. It has an architecture

like wav2vec but with an additional quantization module between the encoder net-

work and the context network. The quantization module replaces the original repre-

sentation z by z′ from a fixed size codebook, of which the one-hot representation can

be computed by using the Gumbel-Softmax or K-means clustering approaches [1].

Vq-wav2vec, which learns the discrete representations of fixed length segments of an

audio signal, enables well-performing language processing algorithms [6] to be ap-

plied directly to speech data. In this chapter, we use both wav2vec and vq-wav2vec

as phonetic characteristics extractors for speech enhancement model training and

compare their performances in the Results Section.

4.3 The Proposed Method

In this chapter, we propose a new Self-Supervised learning based Phone-Fortified

(SSPF) method for speech enhancement. Our method adopts a deep complex con-

volutional network to estimate a complex ratio mask for noisy information filtering.

As shown in Figure 4.2, the deep complex network is a refined U-Net architecture [26]

and incorporates multiple well-defined complex-valued blocks to deal with complex-

valued spectrum [36]. In detail, the complex U-Net adopts multiple complex con-

volutional and transposed convolutional layers with skip-connections [21], complex

batch normalization, and LeakyRelu activation [9] as the main components, which

are admittedly functional parts to learn representations of multiple data modalities

effectively such as image and speech. For speech enhancement, the complex-valued

architecture with real and imaginary parts is used to learn speech magnitude and

phase information simultaneously [36].
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Referring to Figure 4.2, our speech enhancement model converts a noisy speech sig-

nal to an enhanced speech signal with a learnable complex mask derived from the

complex U-Net model. To improve the speech representation learning of our speech

enhancement model, we employ a pre-trained CPC-based model to extract the pho-

netic characteristics, which are then fused with the standard frequency spectrum

feature converted by Short-Time Fourier Transform (STFT). Here, a simple feature

embedding network is proposed to re-embed and normalize the representation of the

phonetic characteristics so that it can be fused with the frequency spectrum feature

by point-wise addition. The proposed feature embedding network consists of mul-

tiple transposed convolutional layers followed by Relu activation and max-pooling

[29] and the network parameters are trained along with the complex U-Net simul-

taneously. We apply a self-attention layer in the middle of complex U-Net since the

self-attention layer can learn the long-range dependencies of a speech sequence and

further improve speech representation learning. At last, the frequency spectrum fea-

ture is point-wise multiplied with the complex-valued ratio mask again to derive the

enhanced spectrum, and then the inverse STFT module transforms the enhanced

spectrum to a speech waveform.

During the loss calculation, the same pre-trained CPC model is applied again to

transform the waveform into a batch of sequence vectors, which are rich in phone-

fortified information for a speech evaluation. We follow the effective phone-fortified

perceptual loss proposed in [9]. The formulation can be described as below:

Lpfp(x, x̂) := Ex,x̂∼D[∥ϕcpc(x)− ϕcpc(f(x̂))∥1], (4.1)

where x denotes the clean speech; x̂ denotes the paired noisy speech; ϕcpc is the

pre-trained CPC model for phonetic representation extraction; f denotes the en-

hancement procedure. The PFP loss calculates the absolute distance between a

clean and an enhanced speech phonetic vector.
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4.4 Experiments

4.4.1 Database

The VCTK database [39, 40] is an open and standard speech corpus for performance

evaluation of speech enhancement systems. The original clean speech was selected

from the Voice Bank corpus [41]. In addition, eight real noise files and two artificially

generated noise files were used to generate paired noisy speech.

For training, two sub-databases were created: one has 28 speakers, which includes

14 males and 14 females with the same accent (England) [40]; another one has 56

speakers, which includes 28 males and 28 females with different accents (Scotland

and United States) [39]. The SNR values were set to 15dB, 10dB, 5dB and 0dB.

Moreover, each clean speech waveform was normalized, and the silence segments

were trimmed off at the beginning and the ending when the silence segments were

longer than 200ms.

Another two speakers (a male and a female), not included in the training data,

were selected as the test data with an England accent. Five other noise types,

different from training data, were selected from the DEMAND database1, including

a domestic noise (in a living room), an office noise (in an office space), a transport

noise (in a bus) and two street noises (in an open area cafeteria and a public square).

The SNR values were set to 17.5dB, 12.5dB, 7.5dB and 2.5dB, respectively.

4.4.2 Setup

Before training, we randomly separate a validation part from the training data at a

ratio of 9:1. The model is optimized using the RAdam optimizer [18] with a learning

1http://parole.loria.fr/DEMAND/

http://parole.loria.fr/DEMAND/
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Table 4.1: The evaluation results of various methods with the 28-speaker VCTK
training data. The compared methods are Wiener filtering [17], ALRL [24], BiL-
STM [7], CRN-MSN [34], AMTL-IM [25], NAAGN [5], U-NetC [2, 37], PHASEN
[44], HiFi-GAN [31], T-GSA [14]. “-” denotes that the result is not reported or
not available. ”†” denotes that we reproduced the results with the provided open

resource. The best scores are highlighted in bold.

Models PESQ CSIG CBAK CVOL STOI
Noisy 1.97 3.35 2.44 2.63 0.921
Wiener 2.22 3.23 2.68 2.67 -
ALRL 2.57 3.78 3.23 3.16 0.937
BiLSTM 2.70 3.99 2.95 3.34 0.925
CRN-MSE 2.74 3.86 3.14 3.30 0.934
AMTL-IM 2.88 4.01 3.50 3.51 0.945
NAAGN 2.90 4.13 3.50 3.51 0.948
U-NetC 2.90 4.22 3.32 3.58 0.938
HiFi-GAN 2.94 4.07 3.07 3.49 -
PHASEN 2.99 4.21 3.55 3.62 -
T-GSA 3.06 4.18 3.59 3.62 -
W2V† 2.98 4.01 3.46 3.50 0.945
W2VF 3.02 4.11 3.52 3.60 0.943
W2VFSA 3.04 4.17 3.59 3.63 0.945
W2V-G 2.99 4.09 3.46 3.55 0.944
W2V-GF 3.00 4.12 3.48 3.57 0.944
W2V-GFSA 2.96 4.04 3.47 3.50 0.944
W2V-K 2.93 4.06 3.45 3.50 0.942
W2V-KF 2.95 4.11 3.54 3.57 0.943
W2V-KFSA 3.00 4.14 3.46 3.58 0.942

rate of 0.0001 and weight decay of 0.1. The model is trained for 100 epochs with a

batch size of 8. For each epoch, we save the best model according to the performance

evaluated with the validation data. During the inference stage, each noisy speech

is point-wise multiplied with the complex mask for noisy information filtering and

then is converted to an enhanced speech waveform.
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4.4.3 Evaluation Metrics

Although subjective evaluation is accurate and reliable, it is costly and time-consuming

[11]. Many objective evaluation measures can evaluate enhanced speech performance

with high correlation. For speech quality evaluation, we use an effective full-reference

speech quality evaluation algorithm [11] namely Perceptual Evaluation of Speech

Quality (PESQ: from -0.5 to 4.5), which compares each sample of the reference sig-

nal (clean speech) to each corresponding sample of the degraded signal, and analyses

sample-by-sample after a temporal alignment of corresponding excerpts of reference

and testing signals. Moreover, we also implement the composite evaluation metrics

of the enhanced speech including the predicted Mean Opinion Score (MOS) of sig-

nal distortion (CSIG: from 1 to 5), background noise distortion (CBAK: from 1 to

5), and overall quality (COVL: from 1 to 5). For speech intelligibility evaluation,

we adopt the Short-Time Objective Intelligibility (STOI) [33] that is based on a

correlation coefficient between the temporal envelopes of the clean and degraded

speech.

4.5 Results

As shown in Table 4.1, we explore three CPC-based models for phonetic informa-

tion extraction and loss calculation: Wav2Vec (W2V), vq-Wav2Vec with Gumbel-

Softmax (W2V-G), and vq-Wav2Vec with K-means clustering (W2V-K). To imple-

ment the ablation experiments, we test our speech enhancement model with the

frequency spectrum feature only (i.e., W2V, W2V-G, W2V-K as shown in Table

4.1), with the phonetic embedding fused feature (i.e., W2VF , W2V-GF , W2V-KF ),

and further with self-attention mechanism (i.e., W2VFSA, W2V-GFSA, W2V-KFSA).
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Compared with the previous methods, W2VFSA (i.e., wav2vec model with fused

features and self-attention mechanism) obtains the best score in CBAK (3.59), and

CVOL (3.63). In terms of other metrics, W2VFSA also achieves competitive re-

sults. Focusing on the ablation experiments, we find that the performance can be

improved gradually when we import the phonetic information and employ the self-

attention mechanism with both wav2vec and vq-wav2vec. Thus, we conclude that

our proposed method can effectively learn speech representation and the phone-

fortified method has a huge potential to improve speech enhancement. In addition,

we find that the wav2vec based models outperform vq-wav2vec models. We infer

that the non-discrete representations learned by wav2vec outperform the discrete

representations learned by vq-wav2vec for speech enhancement.

To further explore the effectiveness of our proposed method, we conduct another

experiment with different sizes of training data. Meanwhile, we reveal the results

in four SNR and five noise type scenes respectively as shown in Table 4.2. In this

experiment, we present the evaluation results on the best W2VFSA model trained

with 56-speaker and 84-speaker (the mixture of 28-speaker and 56-speaker). As we

can see, with more training data, the W2VFSA model further improves the perfor-

mance and achieves state-of-the-art performance in most scenes. Moreover, we also

find that our method can perform better in scenarios where SNR is as low as 2.5dB.

4.6 Conclusions

In this chapter, we propose a novel Self-Supervised learning based Phone-Fortified

method (SSPF) for speech enhancement. Our SSPF method can effectively esti-

mate a complex ratio mask for noisy speech filtering with a self-attention mechanism

boosted complex U-Net model. SSPF explicitly imports the phonetic characteristics
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into the enhancement model via a self-supervised learning based CPC model to fur-

ther improve speech phase estimation and representation learning. The experimental

results demonstrate that our method outperforms previous methods in most evalu-

ation metrics and achieves state-of-the-art performance with more training data in

terms of speech quality and intelligibility.
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Chapter 5

Summary

This chapter provides a summary of this thesis. Firstly, we give a research

summary of contributions in Section 5.1, including latent space information

exploration based on GAN-based architecture (Chapter 2); speech representa-

tion learning with adversarial multi-task learning method (Chapter 3); speech

phase information and phonetic characteristics learning with self-supervised

learning method (Chapter 4). Furthermore, we also discuss future work of

speech enhancement in Section 5.2.

5.1 Research Summary

In this thesis, we proposed three novel methods for speech enhancement aiming to

improve speech representation learning and enhancement performance. A recap of

our methods and contributions is listed as follows:

• Chapter 2 presents a novel Adversarial Latent Representation Learning (ALRL)

method for speech enhancement [8]. Based on adversarial feature learning,

93
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ALRL employs an extra encoder to learn an inverse mapping from the gener-

ated data distribution to the latent space. The encoder establishes an inner

connection with the generator and provides relevant latent information for ad-

versarial feature modelling. A new loss function is proposed to implement the

encoder mapping. In addition, the multi-head self-attention is also applied

to the encoder for learning of long-range dependencies and further effective

adversarial representations. The experimental results demonstrate that ALRL

outperforms current GAN-based speech enhancement methods.

• Chapter 3 presents an adversarial multi-task learning with inverse mapping

method for speech enhancement [9]. This method focuses on enhancing the

generator’s capability of speech information capture and representation learn-

ing. To implement our method, two extra networks (namely P and Q) are

developed to establish the inverse mapping from the generated distribution to

the input data domains. Correspondingly, two new loss functions (i.e., latent

loss and equilibrium loss) are proposed for the inverse mapping learning and

the enhancement model training based on the original adversarial loss. The

experimental results demonstrate that this method can effectively improve

speech representation learning and outperform current methods in terms of

speech quality and intelligibility.

• Chapter 4 presents a Self-Supervised learning based Phone-Fortified (SSPF)

method for speech enhancement [10]. This method explicitly incorporates

phonetic characteristics into a deep complex convolutional network via a Con-

trastive Predictive Coding (CPC) model pre-trained with self-supervised learn-

ing. This operation can greatly improve speech representation learning and

speech enhancement performance. Moreover, we also apply the self-attention

mechanism to this model for learning long-range dependencies of a speech se-

quence, which further improves the performance of speech enhancement. The
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experimental results demonstrate that our SSPF method outperforms existing

methods and achieves state-of-the-art performance in terms of speech quality

and intelligibility.

5.2 Future Work

In this section, we propose some future work for speech enhancement research.

• Enlarge experiment scale. We will further conduct experiments with suf-

ficient speech data including more realistic scenarios to evaluate the effective-

ness and robustness of our methods. The training data should consider as

many scenarios as possible to reflect the realistic environments and improve

the adaptability of the speech enhancement model.

• Multiple features fusion for speech representation learning. Multiple

features fusion can provide multiple hierarchies data representation for model

training and mapping learning. In many research areas, feature fusion methods

are used to achieve a more robust and effective model [2, 4, 12, 15]. Thus,

further exploration about multiple features fusion in speech enhancement will

be one of our future projects.

• Novel neural networks for speech enhancement. Recently, several novel

architectures were proposed and made a breakthrough in many research areas

such as attention based transformer architecture [14] and its variants [5, 6, 11].

Those models, adopting a revolutionary concept by eliminating recurrent or

convolutional portions to improve information learning and result inference,

will be applied to speech enhancement in our future work.
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• Applications of speech enhancement. For robust speech recognition

[3, 16], speaker recognition [7, 13], and speech synthesis [1], speech enhance-

ment can be considered as front-end preprocessing and be used to improve

the performance of those back-end applications. We will apply the proposed

methods to back-end applications in future work.
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