
MASTER THESIS

Peter Guba

Analysis of different MCTS
implementations of artificial intelligence

for the Children of the Galaxy
computer game

KSVI

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.

Study programme: Computer Graphics and Game
Development

Study branch: IPGVPH

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

I would like to thank my supervisor, Jakub Gemrot, for his guidance and many
useful insights.

ii

Title: Analysis of different MCTS implementations of artificial intelligence for
the Children of the Galaxy computer game

Author: Peter Guba

department: KSVI

Supervisor: Mgr. Jakub Gemrot, Ph.D., KSVI

Abstract: Monte Carlo Tree Search (MCTS) is a popular game AI algorithm that
searches the state space of a game while using randomized playouts to evaluate
new states. There have been many papers published about various adjustments of
the original algorithm, however, work that compares multiple of these algorithms
together does not seem to exist. This lack of data can make it difficult to decide
which variant to use without implementing and testing them which is potentially
quite time-consuming. The aim of this thesis is therefore twofold. First to create
such a comparison in a specific setting and second to introduce a new variant,
WP MCTS, which is based on the idea that one should be able to gather more
information from a playout by taking a look at all the states encountered during
its computation. For our setting, we chose battles between small armies in a 4X
computer game called Children of the Galaxy. The results presented here indicate
that many, though not all tested variants outperform basic MCTS in this setting.

Keywords: artificial intelligence, game tree, Monte Carlo methods, MCTS imple-
mentations, computer games, Children of the Galaxy, 4X games

iii

Contents

1 Introduction 4

2 Related Work 6

3 MCTS 7
3.1 Game tree . 7
3.2 Monte Carlo methods . 8
3.3 Multi-Armed Bandit . 8
3.4 Algorithm . 9

3.4.1 Selection . 9
3.4.2 Expansion . 9
3.4.3 Simulation . 10
3.4.4 Backpropagation . 10

3.5 Pros and Cons . 11

4 Children of the Galaxy 12
4.1 4X Games . 12
4.2 Gameplay . 13
4.3 Combat . 13
4.4 Branching factor . 14

5 Script-based search 16
5.1 No-Overkill-Attack-Value (NOKAV) 16
5.2 Kiter . 16

6 MCTS Variants 17
6.1 UCT [9] . 17
6.2 SR+CR MCTS [18] . 17
6.3 VOI-aware MCTS [18] . 19
6.4 UCB1-Tuned MCTS [1] . 19
6.5 Sigmoid MCTS [15] . 20
6.6 Relative Bonus MCTS [13] . 21
6.7 Qualitative Bonus MCTS [13] . 22
6.8 MCTS HP [21] . 22
6.9 FAP MCTS [19] . 23
6.10 WP MCTS . 24

1

7 Experiments 26
7.1 Setup . 26

7.1.1 Definitions . 26
7.1.2 Test design . 26
7.1.3 Experiment Design . 27
7.1.4 Experiment Specification 28

7.2 Abbreviations . 30
7.3 Results . 30

7.3.1 Playout Analysis . 30
7.3.2 Combat Analysis . 37

8 Conclusions and Future Work 49
8.1 Conclusions . 49
8.2 Future Work . 50

Bibliography 51

A User Documentation 53
A.1 Data and Files . 53
A.2 XML Manager . 54

A.2.1 makeai . 54
A.2.2 makebmrk . 55
A.2.3 makebmrks . 56
A.2.4 makebset . 56
A.2.5 makebsets . 56
A.2.6 delete . 57
A.2.7 change . 57
A.2.8 sethome . 58
A.2.9 setscripts . 58
A.2.10 quit . 58
A.2.11 help . 58

A.3 CSV Cruncher . 59
A.4 Data Visualizer . 59

A.4.1 battledata1.py . 59
A.4.2 battledata2.py . 60
A.4.3 battlerankings.py . 60
A.4.4 common functions.py . 60
A.4.5 playoutdata.py . 60
A.4.6 playoutrankings.py . 61
A.4.7 timedepthdata.py . 61

2

A.5 Position Generator . 61
A.6 Result Trimmer . 61
A.7 Time-Depth Cruncher . 62

B Additional Data 63

3

1 Introduction

Artificial intelligence (AI) for games is a very extensive field of research with
a long history that arguably goes all the way back to the very first computer
games. Problems from this field of study are interesting for two reasons. One
is commercial – AI is often responsible for creating challenges that the player
of a game has to overcome, such as controlling non-playable characters and the
environment that the player interacts with, and is therefore often an essential
part of the experience that a game provides. The other is scientific – games can
often pose very hard problems for AI and these challenges have long been at
the forefront of AI research with games such as chess [6] and Go [17] forming
important milestones in this field.

Each game has its own AI requirements, most algorithms and approaches are
therefore situation-specific and hard to generalise, but some algorithms for gen-
eral game playing do exist nonetheless. Perhaps the most prominent of these is
Monte Carlo Tree Search (MCTS). This algorithm partially explores the game
tree of a game and uses randomized simulations to determine how good the en-
countered states are while trying to balance the exploration of new states and the
exploitation of ones already deemed to be good. This approach is very versatile
and able to combine with game-specific knowledge to create very skilful agents,
such as AlphaGo, famously used by DeepMind to defeat the world Go champion
for the first time.

Since the algorithm’s introduction in 2006 [5], many adjustments have been
proposed [3, 20], each claiming to outperform the original in some setting, how-
ever, we have not been able to find any paper that would compare any of these
variants together. This is unfortunate as the contexts in which these adjust-
ments can be applied often have overlaps and one cannot easily determine which
variant best fits their purposes without implementing and trying them which
can potentially be quite time-consuming. In this thesis, we aim to take the first
step towards remedying that by comparing ten different MCTS variants together.
Nine of these are taken from papers by other authors while the ninth one, called
WP MCTS, is our own variant which adjusts the way that playouts are evaluated.

It would of course be incredibly time consuming to gather data on how the
variants compare in every possible context, so we chose only one – a 4X game
called Children of the Galaxy (CotG).

4X is an abbreviation of Explore, Exploit, Expand, Exterminate and it is a
term for a subgenre of strategy games. In general, these games involve creating
some kind of empire through various means, from technological research to mil-
itary expansion. 4X games can be divided into subtasks, each of which can be

4

managed by its own AI. In this thesis therefore, we are not building agents for
the whole game but only for one such subtask – combat between units, which is
a crucial part of CotG. We chose this context so that we can capitalize on a sim-
ulator created by Šmejkal [21]. Since we are working only with a small subtask
of the game, the results obtained from this comparison should be generalizable
to various games which involve strategic fights between groups of units.

The rest of this thesis is structured as follows: In the second section, we
present some related work. In the third section, we go over how the original
MCTS algorithm works. In the fourth section, we go over the workings of our
testing environment, the Children of the Galaxy computer game. In the fifth
section, we introduce script-based search - a restriction of traditional action-space
search used to shrink the branching factor of our search. In the sixth section, we
briefly go over the workings of the MCTS variants that we will be comparing.
In the seventh section, we detail the experiments we have performed and their
results. In the eighth and final section, we offer some conclusions and describe
potential subjects for future work.

5

2 Related Work

The MCTS algorithm functions completely independently of any game-specific
knowledge, although it does entail some assumptions about what kind of a game is
being played - namely that it is a two-player discrete sequential game with perfect
information. The algorithm can be tweaked however to accommodate deviations
from these assumptions. This makes it very versatile and easily applicable to a
wide variety of games.

Perhaps the most famous AI that utilizes MCTS is DeepMind’s AlphaGo
[17], which succeeded in defeating the world Go champion Lee Sedol in 2016. It
accomplished this by combining the algorithm with two neural networks, one for
evaluating game states and another which provided a policy for choosing moves.

Equally impressive is the fact that DeepMind later created an expanded AI
called AlphaZero [16], capable of playing chess, shogi and Go. This AI defeated
the world’s strongest chess playing engine, Stockfish. This is especially interesting
given the fact that chess is a game that is inherently difficult for MCTS to play
due to the fact that states often have a very limited number of very good moves
while all other moves are terrible.

MCTS has also been successfully used in agents that play other board games,
such as Hex, where an agent called MoHex [7] which utilizes MCTS won the gold
medal at the 2009 Computer Olympiad, and Arimaa [10], although it has not
achieved top level performance among AIs there.

Notable results using this algorithm have likewise been made in the field of
RTS games which is notoriously difficult for AIs to play due to factors like a
large branching factor, imperfect information and their real-time nature. For
example, the campaign AI of the game Total War: Rome II uses two MCTS
implementations, one to control the allocation of resources to tasks and another
to execute those tasks1. And in the field of scientific experimentation, Santiago
Ontañón has obtained good results when combining MCTS with Bayesian models
that estimate the probability distribution of actions of a strong player in the µRTS
environment [11].

Agents based on MCTS have achieved good results in other real-time video
games too, such as Ms. Pac-man [14].

And in the field of nondeterministic games, MCTS has achieved ntable success
when it was utilised in poker to create the first exploiting no-limit Texas Hold’em
bot that can play at a reasonable level in games of more than two players [2].

1https://web.archive.org/web/20170313041719/http://aigamedev.com/open/
coverage/mcts-rome-ii/ [Accessed 15.07.2022]

6

3 MCTS

3.1 Game tree

Every video game has some state that can change through time. Playing the game
means applying actions that change that state, i.e., move the game forward. The
game must also offer the player multiple possible actions in a single state that can
lead to different states, otherwise the player would just be linearly progressing
through some predetermined set of states without any feeling of agency.

This structure can be expressed in the form of a tree with vertices correspond-
ing to game states and directed edges corresponding to actions that lead from
one state to another. The initial state of an edge is the one that is closer to the
root.

Figure 1 shows an example of this data structure which is called a game tree
and its exploration is an essential part of many game AI algorithms. If a computer
is able to explore the entire game tree, it can play the given game perfectly as
it always knows which of its actions lead to the best outcomes. This is rarely
possible however, as many games have game trees that are far too large for a
computer to explore under reasonable time and space constraints. The best one
can hope for with such games is to explore only a part of the game tree in some
organized fashion and use the gathered data to pick a good move.

Figure 1: A partial game tree of the game tic-tac-toe.

7

Some important aspects of a game tree that we will be discussing in this work
are its depth (the length of the longest path from the root to some leaf node) and
branching factor (the average number of children that a non-leaf node has).

3.2 Monte Carlo methods

Monte Carlo methods are a broad class of algorithms that rely on randomly
sampling some domain in order to get an estimate of some value. They are useful
when it is difficult or impossible to compute the desired value exactly. A simple
example is shown in figure 2 where a Monte Carlo based algorithm is used to
approximate the area of a circle with a radius of 0.5.

The algorithm randomly samples a 1 by 1 square containing the circle N

times. The circle’s area is then approximated as #points in the circle
#points outside the circle .

Figure 2: Monte Carlo method algorithm example.

3.3 Multi-Armed Bandit

The Multi-Armed Bandit (MAB) [1] is a well-known problem from probability
theory and it is encountered repeatedly during the course of running MCTS, as
will be explained in the following subsection.

In the most famous formulation of this problem, a gambler is faced with n slot
machines (also known as one-armed bandits), each of which has an arm which
can be pulled, after which he obtains a reward. The rewards associated with
the arms have unknown probability distributions. The goal of the gambler is to
gather as much reward as possible.

The MAB is a classic problem that showcases the exploration-exploitation
trade-off dilemma - one must balance between allocating the arm pulls to explo-
ration of arms that have not been pulled that much in order to explore how good
they are and to exploitation of the arm that is believed to be the best.

8

3.4 Algorithm

MCTS is and algorithm that uses the Monte Carlo method to explore the game
tree of a game. During its run time, it progressively builds a partial game tree
where every node stores a game state, its child nodes, the number of times it has
been visited and some score used to determine how good the state is for a player.

It is closely related to the MAB problem discussed previously - since it cannot
explore the entire game tree, the algorithm must balance the exploration of new
moves with the exploitation of ones already deemed to be good at every node.
Every such decision can therefore be conceptualised as an instance of MAB.

The core of the algorithm consists of four steps – Selection, Expansion, Simu-
lation and Backpropagation. These repeat in a loop until some terminal condition
is reached (usually time limit being exceeded). The steps work as follows:

Algorithm 1 MCTS
1: function MCTS(state, algorithmBudget, playoutBudget)
2: root←MakeNode(state)
3: while algorithmBudget not drained do
4: nodeToExpand← Select(root)
5: newNode← Expand(nodeToExpand)
6: reward← Simulate(newNode, playoutBudget)
7: Backpropagate(newNode, reward)
8: return root.GetBestChild()

3.4.1 Selection

In this step, the algorithm traverses the already explored part of the game tree,
starting at the root. If it encounters a node that is not fully expanded yet, it moves
on to the Expansion step. Otherwise, it decides which of the node’s children to
move to. The algorithm needs a strategy based on which to make this decision.
This strategy is referred to as the tree policy. It is this policy that is responsible
for balancing exploration and exploitation. We will be going over what such a
policy can look like in section 6, where we discuss the different MCTS variants
that we implemented.

3.4.2 Expansion

The algorithm picks a move which has not yet been tried in the state correspond-
ing to the node picked in the previous step and creates a new node which holds
the state to which that move leads. This new node is appended to the node
picked in the previous step. The possible moves are not evaluated in any way
and one is simply picked either at random or in some predetermined order.

9

Algorithm 2 MCTS Step 1: Selection
1: function Select(root)
2: currentNode← root
3: bestNode← null
4: while bestNode is null do
5: if currentNode not fully expanded then
6: bestNode← currentNode
7: else
8: currentNode← GetBestChild(currentNode, TreePolicy)
9: return bestNode

Algorithm 3 MCTS Step 2: Expansion
1: function Expand(node)
2: return currentNode.GetNextChild()

3.4.3 Simulation

A simulation (called a playout) of the game is performed, starting from the state
corresponding to the newly created node. During this simulation, moves are
picked at random. The strategy used to pick moves in this step is referred to as
the default policy and it is usually different from the tree policy.

When the simulation ends (either because a terminal state is reached or be-
cause it is stopped by some other cut-off condition), the state at which it ended
is evaluated and a numeric score is obtained.

Algorithm 4 MCTS Step 3: Simulation
1: function Simulate(startNode, budget)
2: currentState← startNode.State
3: currentPlayer← startNode.Player
4: while budget not drained and currentState is not terminal do
5: nextMove← GetMove(currentState, currentPlayer, defaultPolicy)
6: currentState← currentState.ApplyMove(nextMove)
7: currentPlayer← the other player
8: return Evaluate(currentState, startNode.Player())

3.4.4 Backpropagation

The score obtained in the previous step is backpropagated up the tree and used
to adjust the scores of all the nodes on the path from the newly created node to
the root.

10

Algorithm 5 MCTS Step 4: Backpropagation
1: procedure Backpropagate(node, score)
2: node.NumOfVisits + +
3: node.Score += score
4: if node.HasParent then
5: Backpropagate(node.Parent, -score)

3.5 Pros and Cons

The biggest advantages of MCTS are its simplicity, independence of game-specific
knowledge, ability to stop at any time and asymmetric building of the game tree
which allows it to adapt to various situations. These characteristics have allowed
it to become a popular algorithm used in a wide variety of games.

To obtain good results however, this algorithm often needs to run a very
large amount of iterations which can take a lot of time. Also, since it treats all
possibilities as equal, it can have problems dealing with trap states (states which
lead to immediate rewards but are bad in the long run) and making efficient
sacrifices which doesn’t make it a good fit for games like chess.

11

4 Children of the Galaxy

4.1 4X Games

Children of the Galaxy (CotG) belongs to the genre of 4X games which is a
subgenre of strategy games. These games are usually very complex and require
the player to balance various different aspects of gameplay, such as research,
battles with enemies and gathering of resources. The goal is generally the creation
of an empire using the steps denoted by the four Xs:

• Explore - The player has to explore new areas of the game world.

• Expand - The player expands his empire by building settlements

• Exploit - The player gathers resources from the areas he controls.

• Exterminate - The player destroys other players.

Figure 3: A screenshot of the galaxy view of CotG. The colored hexagons represent
territory that is under the control of some player. The hexagons with light blue outlines
contain units that are moving through interstellar space. The places that are marked
with insignias of the different factions and have some stats displayed above them are
the individual solar systems. In the upper right corner, a map of the entire galaxy can
be seen. On the left side of the screen are the player’s stats, a list of planets he controls
and a menu bar from which the player can activate screens that control different parts
of the game, like research and diplomacy.

12

4.2 Gameplay

CotG is a turn-based game played on a hexagonal grid that takes place in a
single galaxy and revolves around colonizing solar systems. The player picks one
of three available races and starts out with a single solar system with a single
planet under his control. From there, he can expand by building space ships
which can be used to discover and colonize new planets.

The player can also research technologies which can give him various advan-
tages, such as new units, upgrades and more effective ways of gathering resources.

There are three possible winning conditions – colonizing over 25% of planets
in the galaxy, colonizing all the home planets of other players and researching
and building a Dyson sphere.

4.3 Combat

At some point, the player will encounter other races trying to expand their own
empires whereupon a battle may ensue. A battle in CotG can involve more than
two players, however, we decided to restrict ourselves to a two-player format as
that is the setting that MCTS is meant to be used in.

Like the rest of the game, battles in CotG take place on a hexagonal grid and
in turns. A turn consists of issuing commands to one’s units.

A unit has the following important stats:

• hull - How much damage a unit can take. When this value becomes zero,
the unit is destroyed.

• damage - How much damage the unit can deal in one turn.

• shields - Absorb part of damage that would otherwise be subtracted from
the unit’s hull when it is attacked.

• power - The amount of hexes that a unit can move in a single turn.

• attack range - How far a unit’s attack can reach. If an enemy unit is outside
this range, this unit cannot attack it.

In every turn, a player can issue commands to however many units he wants.
A single unit can be issued multiple commands and the issuing of commands can
be interleaved (for example, a player can first issue a command to unit u, then
to unit v and then issue another command to unit u).

Since battles are not an isolated part of CotG, the player can issue many
different commands to units, some of which do not necessarily have anything to

13

do with combat. For example, the player can order a unit to destroy itself, or
to make it move to interstellar space, thereby removing it from the solar system
where the battle is taking place. When a unit has gained enough experience, the
player can also upgrade it.

From our perspective however, there are only two relevant commands - Attack
and Move. Attack makes a unit deal damage to another unit, provided that it
is within its attack range. Move makes the unit move to a given hexagon, given
that it has enough power.

There is no time limit for a turn, it ends when the player decides to end it by
clicking the ”End Turn” button. As the battles are not an isolated part of the
game, they do not have clearly defined beginnings or ends from the perspective
of the game, but a battle can be thought to be over when one player has either
retreated or all of his units were destroyed.

Figure 4: A screenshot of a small battle in CotG. The orange-red units belong to one
player and the grey-blue ones to another. The white numbers represent experience that
some units gained after destroying one of the enemy’s units. The red and blue numbers
represent the damage sustained to a unit and to a unit’s shields respectively. In the
bottom right corner of the screen is the End Turn button which allows the player to
finish his turn.

4.4 Branching factor

Strategy games where players battle using a potentially large number of units
which can move freely are notorious for their large branching factors which make
them really hard for AIs to conquer [12] and CotG is no different in this aspect.

14

Let us take a look at a single unit with power p. The amount of hexagons this
unit can move to is given by the formula hCount(u) = 3 · p · (p + 1) = 3p2 + 3p.
For a unit with power 4, this gives us 3 · 42 + 3 · 4 = 60 possible hexagons, so if
we only consider the possible moves of one such unit, we have a branching factor
of 60.

For simplicity, let us dispense with the fact that unit actions can be interleaved
and suppose that all units must perform their actions at once. If we then have 5
units with power 4, we already have a branching factor of 605 ≈ 7, 78 ∗ 108. This
is without even taking into account the attack actions.

Players in strategy games often manipulate units which number in at least
lower tens. It can therefore be easily observed that such a setting produces a
branching factor that is absolutely intractable for ordinary consumer hardware
to work with.

There are various approaches to this problem. A common one is dispensing
with search altogether and instead creating an AI solely based on scripts. The
disadvantage of this approach is that the AI will forever be stuck in the same
patterns which the player can learn and then find ways to counter.

Another approach lies in using search techniques that do not rely on building
a tree. Notable examples which have achieved good results are Portfolio Greedy
Search [4] and Online Evolution [8].

The previous two approaches overcome the problem of a large branching factor
by getting rid of the necessity to explore a substantial portion of the game tree.
If one wants to stick to an AI based on tree search, it is necessary to somehow
restrict the branching factor. This can be in principle be done using one of two
approaches - clustering and script-based search.

Clustering means that the AI separates units into groups and assigns the same
action to every unit. If we imagine for example that we have a CotG game where
an AI controls 30 units with power 4, this gives us a branching factor of around
6030 ≈ 2, 21 · 1053. If the AI employs clustering to split the units into 5 groups of
6 units, the branching factor is reduced to 605 ≈ 7, 78 · 108 which is a reduction
by a factor of 1045.

Script-based search, on the other hand, relies on restricting the actions avail-
able to units. As this is the technique we chose to use, we offer a detailed ex-
planation of its workings in the following section. The reason we decided to use
this technique was that it was already implemented in the software created by
Šmejkal [21] on top of which we were building.

15

5 Script-based search

By default, searching for a good action for a unit to take is done in the space of
all possible actions. In script-based search however, the search is done in script
space - a subset of actions from action space that is offered by scripts. A script
in this context can be conceptualised as a function which takes the current game
state and a unit as input and outputs a possible action for that unit (it can also
output multiple actions, but in our work, we restrict ourselves to scripts that
return a single action).

Exploring only actions offered by a few scripts greatly reduces the branching
factor. If we again consider the example where a player has 30 units with power
4 and consider using script-based search with 2 scripts, the branching factor is
reduced to approximately 230 ≈ 1, 07 ·109 which is a reduction by a factor of 1044.

This decrease comes at an increased computational cost, as each script needs
to perform some sort of computation on the current game state. It is therefore
necessary to choose scripts which are easily computable.

We chose scripts No-Overkill-Attack-Value (NOKAV) and Kiter as these are
commonly used for creating these kinds of action abstractions [4] and were already
present in the framework created by Pavel Šmejkal. They function as follows:

5.1 No-Overkill-Attack-Value (NOKAV)

Find and attack an enemy unit u in weapons range with the highest value of
damage(u)/hp(u) where damage(u) is the amount of damage the unit can deal
and hp(u) is the amount of hit points the unit has left. If the unit has already
been assigned a lethal amount of damage by another unit however, ignore it and
try to attack the unit with next highest damage(u)/hp(u) (while applying the
same condition). If there are no enemy units in range that fit the criteria, move
towards the closest enemy unit.

In CotG, the value that strictly corresponds to the commonly used term hit
points is the hull of a unit. However, since a unit also has shields, using NOKAV
with only this value would be incorrect, since it would expect a unit to be dealt a
lethal amount of damage, when the unit would in fact survive. We are therefore
using the sum of hull and shields as hit points in the NOKAV implementation.

5.2 Kiter

Like NOKAV, but the unit also moves away from the enemy after having attacked.

16

6 MCTS Variants

In our search for MCTS variants to implement, we went over a number of papers,
including an extensive survey of MCTS techniques [3]. Only a few of the variants
we encountered turned out to be actually applicable to our testing environment
however, therefore this was the only criterion based on which we chose which of
them to implement. The following is a list of the variants we have implemented.

6.1 UCT [9]

Upper Confidence Bounds applied to Trees (UCT) is the most well-known variant
of MCTS. It balances the exploration of new states and the exploitation of ones
already considered to be good using the UCB1 formula [1].

UCB stands for Upper Confidence Bounds and it is a formula that was devel-
oped for the MAB problem. It looks as follows:

wi

ni

+ c

√︄
ln n

ni

wi is the number of wins associated with the node, ni is the number of times
the considered node has been visited, n is the number of times its parent has
been visited and c is the exploration parameter, which is usually set to

√
2.

The default policy of this variant simply consists of randomly picking moves
and it evaluates the final states of playouts to 1, 0, or -1, depending on whether
the result was a win (or closer to a win, if the state was not terminal), draw or
loss (or closer to a loss, if the state was not terminal). As we are working in script
space, the random moves it picks are picked from the set of moves offered by the
used scripts.

Note that the default policy and way of evaluating final states used here is
not a part of the specification of this variant – UCT only defines the tree policy.
We decided to go with these two approaches because they can be considered the
most basic implementations of these two parts of the MCTS algorithm, just like
UCT can be considered the most basic implementation of the tree policy (not
because of its simplicity but because of how widely it is used).

The approaches used in this variant are taken as defaults, so unless a variant
is mentioned explicitly to differ in some aspect from UCT, it does not.

6.2 SR+CR MCTS [18]

SR and CR in the name of this variant stand for “simple regret” and “cumulative
regret” respectively. These are measures of the difference between the reward

17

Algorithm 6 UCT Selection
1: function Select(root)
2: currentNode← root
3: bestNode← null
4: while bestNode is null do
5: if currentNode not fully expanded then
6: bestNode← currentNode
7: else
8: currentNode← GetBestChild(currentNode, UCB1)
9: return bestNode

Algorithm 7 UCT Evaluation
1: function Evaluate(state, player)
2: if state is a draw then
3: return 0
4: else
5: if state.Winner = player or player is in a better position then
6: return 1
7: else
8: return -1

for an optimal decision and the reward for a decision made based on some strat-
egy. Simple regret is measured over a single decision while cumulative regret is
measured over multiple decisions.

The UCB1 formula that is used by UCT aims to minimize the cumulative
regret of all the arm pulls in an MAB setting. The algorithm only gets a reward
for actually performing a move at the end of its computation however, so UCB1
causes the algorithm to exploit the best moves a lot more than it needs to.

In order to remedy this issue, this variant uses a policy that minimizes simple
regret at the root (otherwise, it uses UCB1).

Algorithm 8 SR+CR Selection
1: function Select(root)
2: currentNode← root
3: bestNode← null
4: while bestNode is null do
5: if currentNode not fully expanded then
6: bestNode← currentNode
7: else
8: if currentNode == root then
9: currentNode← GetBestChild(currentNode, rootPolicy)

10: else
11: currentNode← GetBestChild(currentNode, UCB1)
12: return bestNode

18

6.3 VOI-aware MCTS [18]

Like SR+CR MCTS, this variant tries to minimize simple regret when picking
actions at the root. It does this by approximating the value of information (VOI)
provided by the playouts using the myopic assumption that the algorithm will
only sample one of the available actions. It then selects the action with the
highest estimated VOI.

The formulas for the VOI approximation look as follows:

V OIα ≈
Xβ

nα + 1exp(−2(Xα −Xβ)2nα)

V OIi ≈
1−Xα

ni + 1 exp(−2(Xα −X i)2ni), i ̸= α

where X i is the average reward for action i, ni is the number of times the action
was tried, α = arg min

i
X i and β = arg min

i, i ̸=α
X i.

To get a more in-depth understanding of how these formulas work and how
they were derived, we encourage the reader to take a look at the original paper.

The pseudocode of the selection step for this variant is the same as for the
SR+CR variant.

6.4 UCB1-Tuned MCTS [1]

UCB1-Tuned is a formula that improves on the original UCB1 formula in that it
more tightly bounds the uncertainty of our observations. The formula is defined
as follows:

wi

ni

+ c

√︄
ln n

ni

·min{1, Vi}

Vi = σ +
√︄

2 ln n

ni

where σ is the current sample variance.
The uncertainty of observations is multiplied here by an upper confidence

bound of the variance. The constant 1 is derived from the fact that the back-
propagated scores can take on the values -1, 0 and 1 which means that 1 is the
maximum possible variance. If the score has a different possible range of values,
this constant needs to be adjusted accordingly.

This variant uses this formula as the tree policy.

19

Algorithm 9 UCB1-Tuned Selection
1: function Select(root)
2: currentNode← root
3: bestNode← null
4: while bestNode is null do
5: if currentNode not fully expanded then
6: bestNode← currentNode
7: else
8: currentNode← GetBestChild(currentNode, UCB1Tuned)
9: return bestNode

6.5 Sigmoid MCTS [15]

In the discussion of UCT, we mentioned that the most basic way of evaluating
states is assigning them a score of 1, 0 or -1 based on which player won. This
is called the win-or-lose approach. Another basic approach is using some sort of
final score which evaluates how good the state is in more detail. For example, in
a game of chess, one might compute the difference between the sums of values of
pieces belonging to the two teams. This is called the final score approach.

Both of these approaches can work well under different circumstances. Fi-
nal score works better when the number of simulations is higher, as it captures
more information than win-or-lose but also suffers from a much higher variance.
Win-or-lose therefore performs better when the number of simulations is lower,
however, because it makes the algorithm only care about winning or losing, it can
make it play safe moves when it is in a favourable position and play risky moves
otherwise, causing it to win by a neck and lose big.

As both of these approaches offer different advantages the authors of this
variant decided to try and combine them. They did so by making an algorithm
which computes the final score, to which it then applies the sigmoid function:

f(x) = 1
1 + e−kx

This function changes the value to something between win-or-lose and final
score. How close it is to either of these is determined by the constant parameter
k.

Final score in our case is computed as the difference between the sums of
remaining hull of all the units of the two teams. If the state is terminal, it
amounts to the sum of the remaining hull of the units belonging to the winning
player.

20

Algorithm 10 Sigmoid Evaluation
1: function Evaluate(state, player)
2: score← state.GetUnitHullDifference(player)
3: return 1

1+exp−k·score

6.6 Relative Bonus MCTS [13]

This variant applies a variance reduction method called control variates to the
evaluation of a playout. This technique takes advantage of the correlation between
two random variables, provided that one of them has a known mean, in order to
create an unbiased estimator with a reduced variance. If we consider X to be an
unbiased estimator of a value we want to compute and Y to be a random variable
with a known mean, we can compute a new value, Z, in the following way:

Z = X + a · (Y − E(Y))

We can see that Z is also an unbiased estimator of E(X). If X and Y have a
non-zero correlation, it is provable that there exists a value a∗ = −Cov(X, Y)/Var(Y)
which minimizes Var(Z).

In our case, X is set to be the evaluation of the playout and Y is a bonus
computed based on the length of the playout and the depth at which it starts.
The idea is that the longer the playout, the less reliable the information obtained
from it.

The bonus is computed as follows. First, a standardized value λ is computed
from an online approximation of the mean (D̄τ) and standard deviation (σ̂τ

D)
of the playout lengths (the τ index denotes the player for whom the value is
computed).

λ = D̄
τ − d

σ̂τ
D

Then, this value is passed through a sigmoid function in order to bound and
shape the values of the bonus.

b(λ) = (−1 + 2
1 + e−kλ

)

The parameter k is a constant to be determined by experimentation. Finally,
this value is multiplied by α and sign of the reward r obtained from the playout.

r′ = r + sgn(r) · α · b(λ)

α is approximated as |ˆ︃Cov(Y w
, Y)/ ˆ︃Var(Y)|, where Y is the length of a playout

21

and Y w is another random variable such that Y w
i equals Yi if player w won the

playout and 0 otherwise. The value Y w
i is not computed for each player separately,

like with D̄
τ and σ̂τ

D, but instead one player is chosen and the value is always
computed with respect to that player.

Algorithm 11 Relative Bonus Evaluation
1: function Evaluate(state, player)
2: if state is a draw then
3: score← 0
4: else
5: if state.Winner = player or state is more beneficial for player then
6: score← 1
7: else
8: score← −1
9: λ← D̄

τ −d
σ̂τ

D

10: bonus← sgn(score) · α · (−1 + 2
1+e−kλ)

11: return score + bonus

6.7 Qualitative Bonus MCTS [13]

Just like Relative Bonus MCTS, this variant adds a bonus to the score that is
computed at the end of every playout. This time however, the bonus is computed
based on the quality of the last state of the playout, which in our case is the
difference between the sums of hull of all the units of the two teams (the same
metric which we used in the Sigmoid MCTS variant as the final score metric).
The formulas and pseudocode are the same as in the previous variant, except for
the way the lambda value is computed.

λ = q − Q̄
τ

σ̂τ
Q

The order of subtraction in the computation is switched because a higher q

value here means that the state is better, while in the previous variant, a lower d

value meant that the playout was better.
We also tried combining the two bonuses, but we did not find this combination

produced improved results.

6.8 MCTS HP [21]

Instead of just backpropagating whether a player won or lost in a playout, this
variant backpropagates the difference of the remaining hull of the two teams.
This is again the same metric which we used in the Sigmoid MCTS variant as the

22

final score part of the computation and its purpose is to provide more detailed
information about the quality of the final state to the algorithm.

Instead of just adding up these scores at every node when backpropagating
however, this variant also normalizes them by the sum of all the hull of units of
the winning player at the given state. This is done to preserve the information
of how much of a loss the player suffered. For example, if the player retains two
units with full hull in the final state of the playout, the quality of that result is
different if he started with three units compared to if he started with twenty.

Figure 5: An example of how MCTS HP backpropagation works. The numbers in the
nodes are the sums of the hull of the remaining units of a player, the numbers next to
them are the normalised values obtained from the result of the playout.

Algorithm 12 MCTS HP Evaluation
1: function Evaluate(state, player)
2: return state.GetUnitHullDifference(player)

Algorithm 13 MCTS HP Backpropagation
1: procedure Backpropagate(node, score, winner)
2: node.NumOfVisits + +
3: node.Score← node.Score + score

SumOfHull(winner)
4: if node.HasParent then
5: Backpropagate(node.Parent, -score, winner)

6.9 FAP MCTS [19]

This variant partitions playouts into groups based on the time at which they
are computed (the later the better) and assigns a multiplicative factor to each
group. Every playout from a group is considered to be worth n playouts, where
n is the multiplicative factor assigned to the group. The reason the playouts

23

are partitioned this way is because of the assumption that playouts that are
performed later offer more information.

The authors suggested two schemes for partitioning – linear and exponential.
In the former, the playouts are partitioned into K equal parts. In the latter,
the size of segments increases exponentially, so the n-th segment has a size of
S · (2n−1/2K), where S is the total number of simulations.

The authors similarly suggested a linear and exponential scheme for comput-
ing the multiplicative factor. In the former scheme, the multiplicative factor is
just the number of the segment, whereas in the latter, it is 2n−1.

It is important to note that, unlike the other variants, this one relies on
knowing the number of playouts beforehand. This information is usually not
available however and the algorithm’s execution is instead given a time limit. It
should be possible to adapt this variant to such a setting by either setting the
expected number of playouts to some number and doing computations based on
that, or by computing the weight of a playout based on the time at which it
occurs, but it is not certain whether such an adaptation would result in a variant
with performance similar to this one.

Algorithm 14 FAP MCTS Evaluation
1: function Evaluate(state, player, currentIterationNum, maxIterations)
2: n← GetSegment(currentIterationNum, maxIterations)
3: multiplicativeFactor ← 2n−1

4: if state is a draw then
5: return 0
6: else
7: if state.Winner = player or state is more beneficial for player then
8: return multiplicativeFactor
9: else

10: return -multiplicativeFactor

6.10 WP MCTS

Weighted Propagation (WP) MCTS is our own variant. It is based on the idea
that, given that one has a good heuristic available for measuring state quality, it
should be possible to extract more useful information out of a playout than just
what outcome it leads to by simply taking into account how the states encountered
in the playout evolved through time.

In order to achieve this, we have tried various functions which assigned weights
to the information in the different states in the playout, trying to take into ac-
count both the fact that states the occur later have a lower probability of being
encountered than those that occur earlier and the fact that states occur earlier

24

offer less information about how good the current state is than states that occur
later. Out of the approaches that we tried however, the best one turned out to
be a simple average of the scores of all the states encountered during the playout.

How well this variant performs equipped with a different function is certainly
a potential topic for future research.

For our heuristic function, we chose the same function that was used in vari-
ants MCTS HP, Qualitative Bonus MCTS and Sigmoid MCTS to judge the qual-
ity of a state - the difference between the sums of hulls of the remaining units of
the two teams.

Algorithm 15 WP MCTS Evaluation
1: function Evaluate(states, player)
2: score← 0
3: for all state ∈ states do
4: stateScore← state.GetUnitHullDifference(player)
5: pos← state.PositionInPlayout
6: length← states.Length
7: score← score + ImportanceFunction(stateScore, pos, length)
8: return score

25

7 Experiments

In this section, we go over how we designed our experiments, what data we ob-
tained and what they might mean. The data presented here are always averaged
over a number of battles selected according to criteria which will be explained
later. More detailed data on the individual metrics we measured can be found in
section B of the appendix.

Our aim was to determine whether some of the MCTS variants that we dis-
cussed in section 6 could be said to perform better than others. In order to do
this, we created tests in which we pitted the variants against each other and
ran them in a round-robin tournament fashion while gathering data about the
performance of the different variants.

7.1 Setup

7.1.1 Definitions

• variant - one of the algorithms described in section 6

• combat setting - the number, types and positions of units used in a set of
battles

• playout setting - the number of playouts available to an MCTS variant

• algorithm setting - the settings of parameters of a specific MCTS variant

• test - a set of 1 vs 1 battles during which data is gathered

7.1.2 Test design

Each test that we ran was parameterized by two variants with specific algorithm
settings and a playout setting which was identical for both variants. The reason
why we decided to impose a restriction on playouts rather than time was that
such results are independent of the underlying software (the operating system and
its configuration) and hardware that they are run on. Ten years from now, any
paper published now about MCTS that restricts how long the algorithm can run
will be outdated and its results no longer applicable. Results based on restricting
the number of playouts however will always remain replicable and relevant. We
also hypothesize that restricting the number of playouts should ensure that the
agents perform the same on every computer.

Each test consisted of individual battles that were separated into categories
based on the number of units that each team had at its disposal and multiple
battles were conducted in each category in order to get more reliable results.

26

For each of the two variants participating in a test, we measured six statistics
- the number wins, the number of symwins, the remaining hull of the units of the
winning player, the amount of damage dealt to the other player, iteration time
and tree depth, with the last two being measured on a separate set of tests.

A symwin is achieved either when an agent wins the same battle both when it
goes first and when it does not, or when it wins only one battle but its remaining
hull at the end of the two battles is higher. If one agent wins each battle and
they have the same amount of hull left at the ends of the two battles, neither of
them gets a symwin (such a result is called a symdraw).

The reason why we place emphasis on remaining hull is that a strategy game
is usually not about winning a single battle but about winning multiple battles in
order to accomplish some larger goal. Units are therefore reused between battles
and how many units are preserved after a battle and what condition they are in
is important. These two pieces of information are reflected in the remaining hull
at the end of a battle.

We will refer to the first four metrics (wins, symwins, hull and damage) as
primary metrics and to the remaining two (time and depth) as secondary metrics.

7.1.3 Experiment Design

It would have been ideal if we had tested all possible pairs of MCTS variants
with multiple possible settings in many different scenarios with both large and
small numbers of units. It was clear from the start however, that due to time
constraints this would not be feasible, so we had to narrow down our domain of
experimentation.

We started with testing all the possible algorithm settings we wanted to try.
We then tested each of these against UCT which, as we mentioned in section
6.1, can be considered to be the default implementation of MCTS. Based on
the results, we picked the best performing algorithm settings (with at least one
setting for each variant) and tested every possible pair. We then selected one
algorithm setting for each variant and ran one more round of tests, the results of
which are presented in this paper.

We ran one more round of tests where we pitted each variant (with algo-
rithm settings picked in the previous rounds) against UCT once again in order to
measure the average iteration time and average tree depth. The reason for this
was that the other tests were run in parallel in order to produce results as fast
as possible. However, we did not find a tool that would allow us to accurately
measure the time of each variant while they were run in parallel, so to measure
this metric, we had to run tests sequentially. In order to do this in a reasonable

27

amount of time, we restricted the tests to only fights against UCT.

7.1.4 Experiment Specification

Listing all the possible algorithm settings we wanted to try yielded 70 different
settings files. From the first round of tests where all the variants with all their
different algorithm settings were run against UCT (with the exception of UCT
itself), we picked 27 algorithm settings that performed the best with at least one
setting belonging to each variant. In the second round, we tested these algorithm
settings against each other. After this, we picked one algorithm setting for every
variant which we moved to the final round of tests. This meant 69+351+45 = 465
tests in total, plus the 10 sequential tests to measure iteration time and depth.
The settings we describe in the rest of this section were applied only to the final
round of tests, while the preliminary rounds ran under simplified conditions in
order to ensure fast execution.

The chosen algorithm settings for the final round were the following:

• FAP MCTS - we set the number of segments to 100 and picked the expo-
nential segmentation scheme and linear multiplication scheme.

• Relative Bonus MCTS and Qualitative Bonus MCTS - we set the value of
the parameter k to 0.1.

• Sigmoid MCTS - the parameter k was also set to 0.1.

• SR+CR MCTS - the simple-regret-maximizing policy that we chose was ϵ-
greedy. This policy picks the current best move with probability ϵ and picks
any other move with probability 1−ϵ

N−1 , where N is the number of moves. The
parameter ϵ was set to 0.75.

The other variants - UCT, MCTS HP, VOI-aware MCTS, UCB1-Tuned MCTS
and WP MCTS did not have any parameters to set. All of our experiments were
conducted on a computer with AMD Ryzen Threadripper 1950X 16-Core CPU @
3.39Ghz and 32GB of RAM. The operating system was Windows 7 Professional
and the software was written in C# targeting .NET version 4.7.2.

In our battles, we used two types of units - Destroyers and Battleships. The
former is a unit with high damage but short attack range and low hull while
the latter is a unit with medium attack range, lower damage, but high hull and
shields. As for the distance which they can move in a single turn, a Destroyer has
a movement radius of 5 while a Battleship has a movement radius of 6. Both of
these units were used without any upgrades. While the game offers other units,
we felt that these two provided enough diversity for our purposes.

28

In every test in the final round we used 6 combat settings with 6 battles played
on each setting. The settings were symmetric with respect to the number of units
and their positioning (an example of such positioning can be seen in Figure 6).
The player with the first move alternated between the battles, so in half the
battles one side had the first move and in half the battles the other side. A battle
was considered finished when only one player remained. There was a round limit
of 1000 set for the battles, the exceeding of which would have caused the battle
to terminate and the winner to be decided based on the remaining hull, but this
limit was never reached (the maximum number of rounds reached in any battle
was 139 and the average was around 52).

Figure 6: An example of a symmetric combat setting. Both teams have seven units,
the positions of which are mirrored through the origin.

The 6 combat settings that be used can be divided into three pairs - 4 vs 4
and 8 vs 8, which represent small scale combat, 16 vs 16 and 32 vs 32, which
represent medium scale combat and 48 vs 48 and 64 vs 64, which represent
large scale combat. In all settings, half the units were battleships and half were
destroyers. The positions for units of one team for each setting were randomly
generated beforehand and remained constant. As the battles were symmetric,
this determined the positions for the other team too. Since the positions and
unit numbers are uniquely determined by the number of units on each team, we
will denote different combat settings by team sizes (like 4 vs 4) for brevity.

We also chose 3 playout settings - 100, 500 and 1000. This may seem like
too few, as it is not unusual for MCTS to get to run tens of thousands or even a
million iterations in some games. However, in CotG, running even 100 playouts

29

on a consumer PC took a number of seconds, therefore we find these numbers to
be sufficient.

7.2 Abbreviations

In the following subsection, we present our results. These results include tables
and graphs that visualise our data. For the sake of readability, we needed to
abbreviate the names of the tested variants. We list these abbreviations here.

• SR+CR MCTS - SR

• VOI-aware MCTS - VOI

• UCB1-Tuned MCTS - U-T

• Sigmoid MCTS - Sig

• Relative Bonus MCTS - RB

• Qualitative Bonus MCTS - QB

• MCTS HP - HP

• FAP MCTS - FAP

• WP MCTS - WP

7.3 Results

7.3.1 Playout Analysis

In this section, we take a look at data on each of the variants that have been
accumulated based on the number of playouts that the variant had at its disposal.
All the data presented here are averaged - wins, symwins, depth and iteration time
are averaged over the number of battles, hull and damage over the total number
of units at an agent’s disposal across all battles. The graphs with primary metrics
in figures 7, 8, 9 and 10 are sorted according to the remaining hull from left to
right in ascending order. The graphs with secondary metrics in those figures are
sorted according to average iteration time. This metric is different from others in
that less means better, so the variants are sorted from left to right in descending
order. The variants in the tables are presented in the order in which they were
introduced. The values in the tables are rounded up to two decimal places which
can sometimes make it seem like two variants performed equally well on some
metric, when in reality they achieved a score which differed by too small an

30

primary metric data (100 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 15.0 14.3 14.6 13.8 15.1 13.3 14.8 16.3 24.1 20.7
symwins 4.2 3.9 7.5 3.8 10.1 3.4 4.1 11.4 14.1 13.4
hull 0.26 0.27 0.27 0.25 0.29 0.25 0.26 0.3 0.62 0.36
damage 1.41 1.4 1.41 1.41 1.46 1.4 1.4 1.48 1.69 1.51

primary metric ranks (100 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 5.0 8.0 7.0 9.0 4.0 10.0 6.0 3.0 1.0 2.0
symwins 6.0 8.0 5.0 9.0 4.0 10.0 7.0 3.0 1.0 2.0
hull 7.0 6.0 5.0 9.0 4.0 10.0 8.0 3.0 1.0 2.0
damage 6.0 9.0 5.0 7.0 4.0 10.0 8.0 3.0 1.0 2.0
avg rank 6.0 7.75 5.5 8.5 4.0 10.0 7.25 3.0 1.0 2.0

secondary metric data (100 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 5.85 6.4 5.83 5.85 6.01 5.84 6.14 6.5 6.02 6.26
depth 2.79 2.68 3.0 2.66 2.41 2.69 2.56 2.46 2.87 3.47

secondary metric ranks (100 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 4.0 9.0 1.0 3.0 5.0 2.0 7.0 10.0 6.0 8.0
depth 4.0 6.0 2.0 7.0 10.0 5.0 8.0 9.0 3.0 1.0

Figure 7: Data accumulated over tests with the number of playouts set to 100. The
first graph shows the average number of wins (blue), symwins (orange), the average
remaining hull (orange) and damage dealt to the enemy (red). It is sorted according
to the remaining hull. The second graph shows the average iteration time (yellow) and
tree depth (cyan). It is sorted according to the former metric. The four tables report
specific values of the data and the ranks of the different variants when they are sorted
according to a given metric.

31

primary metric data (500 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 14.3 16.1 16.4 14.4 14.3 13.9 14.5 15.7 23.0 19.4
symwins 3.3 5.0 7.8 3.9 9.5 4.0 4.3 12.0 13.7 14.1
hull 0.12 0.14 0.15 0.12 0.15 0.12 0.12 0.17 0.31 0.2
damage 0.69 0.69 0.7 0.7 0.72 0.69 0.7 0.74 0.87 0.75

primary metric ranks (500 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 8.5 4.0 3.0 7.0 8.5 10.0 6.0 5.0 1.0 2.0
symwins 10.0 6.0 5.0 9.0 4.0 8.0 7.0 3.0 2.0 1.0
hull 9.0 6.0 5.0 7.0 4.0 10.0 8.0 3.0 1.0 2.0
damage 10.0 9.0 5.0 7.0 4.0 8.0 6.0 3.0 1.0 2.0
avg rank 9.375 6.25 4.5 7.5 5.125 9.0 6.75 3.5 1.25 1.75

secondary metric data (500 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 5.49 5.85 5.77 5.56 5.55 5.31 5.32 6.11 5.83 6.02
depth 3.12 3.1 3.24 2.96 2.79 3.22 2.96 2.69 3.07 4.29

secondary metric ranks (500 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 3.0 8.0 6.0 5.0 4.0 1.0 2.0 10.0 7.0 9.0
depth 4.0 5.0 2.0 8.0 9.0 3.0 7.0 10.0 6.0 1.0

Figure 8: Data accumulated over tests with the number of playouts set to 500. The
first graph shows the average number of wins (blue), symwins (orange), the average
remaining hull (orange) and damage dealt to the enemy (red). It is sorted according
to the remaining hull. The second graph shows the average iteration time (yellow) and
tree depth (cyan). It is sorted according to the former metric. The four tables report
specific values of the data and the ranks of the different variants when they are sorted
according to a given metric.

32

primary metric data (1000 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 13.3 16.7 16.7 13.6 14.9 12.6 13.0 16.1 25.0 20.1
symwins 3.5 4.9 8.6 3.7 10.0 3.6 3.2 11.7 13.6 15.1
hull 0.06 0.07 0.08 0.06 0.08 0.06 0.06 0.09 0.19 0.11
damage 0.34 0.34 0.34 0.34 0.36 0.34 0.34 0.37 0.43 0.38

primary metric ranks (1000 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 8.0 3.5 3.5 7.0 6.0 10.0 9.0 5.0 1.0 2.0
symwins 9.0 6.0 5.0 7.0 4.0 8.0 10.0 3.0 2.0 1.0
hull 9.0 6.0 5.0 7.0 4.0 8.0 10.0 3.0 1.0 2.0
damage 10.0 6.0 5.0 8.0 4.0 9.0 7.0 3.0 1.0 2.0
avg rank 9.0 5.375 4.625 7.25 4.5 8.75 9.0 3.5 1.25 1.75

secondary metric data (1000 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 5.6 6.38 5.58 5.79 6.01 5.58 5.72 7.36 5.93 6.49
depth 3.21 2.93 3.38 2.9 2.67 3.08 2.97 2.61 3.4 4.03

secondary metric ranks (1000 playouts)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 3.0 8.0 2.0 5.0 7.0 1.0 4.0 10.0 6.0 9.0
depth 4.0 7.0 3.0 8.0 9.0 5.0 6.0 10.0 2.0 1.0

Figure 9: Data accumulated over tests with the number of playouts set to 1000. The
first graph shows the average number of wins (blue), symwins (orange), the average
remaining hull (orange) and damage dealt to the enemy (red). It is sorted according
to the remaining hull. The second graph shows the average iteration time (yellow) and
tree depth (cyan). It is sorted according to the former metric. The four tables report
specific values of the data and the ranks of the different variants when they are sorted
according to a given metric.

33

primary metric data (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.1 7.85 7.95 6.97 7.38 6.63 7.05 8.02 12.02 10.03
symwins 1.83 2.3 3.98 1.9 4.93 1.83 1.93 5.85 6.9 7.1
hull 0.07 0.08 0.08 0.07 0.09 0.07 0.07 0.09 0.19 0.11
damage 0.41 0.41 0.41 0.41 0.42 0.41 0.41 0.43 0.5 0.44

primary metric ranks (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.0 5.0 4.0 9.0 6.0 10.0 8.0 3.0 1.0 2.0
symwins 9.5 6.0 5.0 8.0 4.0 9.5 7.0 3.0 2.0 1.0
hull 7.0 6.0 5.0 9.0 4.0 10.0 8.0 3.0 1.0 2.0
damage 9.0 8.0 5.0 6.0 4.0 10.0 7.0 3.0 1.0 2.0
avg rank 8.125 6.25 4.75 8.0 4.5 9.875 7.5 3.0 1.25 1.75

secondary metric data (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 5.72 6.21 5.81 5.75 5.85 5.65 5.84 6.37 6.02 6.18
depth 2.9 2.83 3.08 2.76 2.54 2.88 2.71 2.53 2.87 3.75

secondary metric ranks (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 2.0 9.0 4.0 3.0 6.0 1.0 5.0 10.0 7.0 8.0
depth 3.0 6.0 2.0 7.0 9.0 4.0 8.0 10.0 5.0 1.0

Figure 10: Data accumulated over all playout settings. The first graph shows the
average number of wins (blue), symwins (orange), the average remaining hull (orange)
and damage dealt to the enemy (red). It is sorted according to the remaining hull.
The second graph shows the average iteration time (yellow) and tree depth (cyan). It
is sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

34

amount. The ranks however are computed from unrounded data, so they can be
used to determine which variant actually performed better.

From the four figures presented here, we can see that the performance of the
individual variants did not change much based on this metric, with the top five
variants remaining constant. We will now go over each of the variants in the
order in which we introduced them in section 6.

UCT is the variant that all MCTS adjustments are usually compared to.
Given this, it performs surprisingly well at 100 playouts, never dipping below
seventh place according to any metric and scoring as high as fifth place on the
number of wins. Going by average rank, this variant reaches sixth place in this
setting. This may simply show that 100 playouts is too low for the strengths of
some other variants to show however, and the results obtained at different playout
settings seem to confirm this hypothesis.

At 500 playouts, the performance of UCT drops dramatically, suddenly plac-
ing it in the last place according to average rank and at 1000 playouts, it remains
there, although it is joined by Qualitative Bonus MCTS.

In total, the numbers this variant reaches are still a bit surprising, but this
seems to simply be due to the fact that the results obtained at 100 playouts skew
the overall averages in its favour. The overall trend seems to be that UCT is
among the worst performing variants, which is to be expected.

As for the average time per iteration and average tree depth, UCT scores
surprisingly well, scoring second on the former and third on the latter overall.
Its good score with respect to time is probably simply due to the fact that,
since all the other variants expand on UCT, they often require some additional
computation that slows them down in comparison.

SR+CR MCTS quite consistently occupies the sixth place, except for the
100 playouts setting where it performs worse, underperforming even UCT on all
metrics except for average remaining hull. This probably means that at such a low
number of playouts, this variant allocates too few playouts to verifying whether
the moves it considers good really are. This is supported by the fact that this
variant always scores near the bottom with respect to average iteration time -
seeing as this variant only differs from normal UCT in how decisions are made at
the root and should therefore have almost identical time complexity, this suggests
that it mostly makes longer playouts, which means that the playouts start from
a place higher up in the search tree.

VOI-aware MCTS mostly oscillates around the fifth place on all metrics. It
outperforms SR+CR MCTS which would suggest that out of the two approaches
to minimizing simple regret at the root, this is the better one. This is consistent
with the findings in the original paper. From the graphs shown in this section, it

35

can be seen that it has a noticeably higher number of symwins compared to all
the variants ranked below it.

Another interesting property of this variant is that it always achieves a high
average tree depth which would suggest that it hones in on good moves more
quickly than most other variants. Its lower score with respect to average iteration
time might be due to the somewhat complicated way the estimates of the value
of information provided by playouts is computed.

UCB1-Tuned MCTS does not perform particularly well. Going by average
rank, it can be placed at the ninth place, just before UCT. As far as we know,
the UCB1-Tuned policy has never actually been tested against basic UCB1, so
it may be that the any gain caused by this policy simply is not good enough to
outperform the gains provided by the other variants.

As for its average iteration time and tree depth, UCB1-Tuned MCTS is con-
sistently ranked near the bottom on depth but shows rather good results with
respect to time. The former hints at significantly different behavior compared to
normal UCT which has quite a high score in this metric while the latter points to
a similarity between the two - since UCB1-Tuned MCTS does not require much
more complex computations than normal UCT, it is comparably fast.

Sigmoid MCTS seems to not be so good with respect to average number of
wins, but its other scores place it squarely at the fourth place, right above VOI-
aware MCTS. Especially visible from the graphs is again its number of symwins
which is markedly higher than in all the variants ranked beneath it.

Its average tree depth is consistently among the lowest which would suggest
that it focuses more on exploration than exploitation and thus builds a broader
tree. It is probably due to this that its average iteration time also is not remark-
able.

Relative Bonus MCTS performs very poorly in all the tested settings and
on every metric, making it the worst performing variant of all. This is surprising
as in the original paper which tested the variant on six different games, it was
reported to give a significant performance boost in five of the six tested games,
although each game was tested with different parameters. It may simply be the
case that this approach is not well-suited for our setting.

This variant’s ranking according to average iteration time is consistently
among the best, taking the top spot at both 500 and 1000 playouts while its
average depth remain average. It is unclear why this is the case, as its computa-
tion complexity should be among the higher ones.

Qualitative Bonus MCTS also does not perform very well, taking the sev-
enth place on average, just above UCB1-Tuned. This variant was reported to
show similar performance improvements to Relative Bonus MCTS, so its perfor-

36

mance is also somewhat surprising, although it does at least outperform UCT.
The average tree depth and iteration time ratings for this variant vary quite a

bit but never achieve notable results which is in stark contrast to Relative Bonus
MCTS and suggests that the trees these two variants build are quite different.

MCTS HP occupies a solid third place with only slight deviations. Its mean
time and depth results are consistently among the worst which is in contrast
with other well-performing variants, namely VOI-aware MCTS and WP MCTS.
It therefore seems that both distributing playouts more evenly to build a broader
tree and focusing on deeply exploring some moves can lead to good results.

FAP MCTS is the best performing variant by quite a large margin. It clearly
outperforms every other variant in every metric, except for symwins where WP
MCTS seems to be on par with it. Its mean time and depth ratings are not
remarkable however.

WP MCTS is consistently the second best performing variant. This shows
that our assumption about playouts offering more information than just the eval-
uation of the final state was correct. This variant also permanently holds the top
spot with respect to average tree depth while it is always ranked near the bottom
with respect to average iteration time. This suggests that even though it builds
a deeper tree, the computations it does along the way are too expensive and drag
down its average iteration time.

7.3.2 Combat Analysis

In this section, we look at the results separated by battle type. The data reported
here are averaged in the same way as in the previous section and the data in the
graphs and tables are ordered in the same way too.

At first glance at the graphs, we can see that the results here are much more
diverse than in the previous section. We can see some common trends, espe-
cially in the graphs that detail the average iteration times and tree depths of the
different variants, namely that the former keeps increasing across the different
combat settings while the latter keeps decreasing. This is to be expected, as with
more units, the state space grows in both breadth and depth which increases the
lengths of playouts (and therefore the average iteration time) and makes MCTS
focus more on exploration as there is more to explore (which decreases average
tree depth).

Another visible trend is the decrease of the remaining hull among all variants
with increasing number of units, except for the 64 vs 64 setting where it suddenly
jumps up. The decrease is to be expected however, as the number is being
averaged over a larger number of units. Imagine, for example, that a 4 vs 4

37

primary metric data (4 vs 4)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 8.2 7.8 7.9 8.0 7.9 8.1 8.2 8.3 7.9 8.7
symwins 2.3 1.7 2.6 2.1 7.0 3.0 1.9 7.0 4.6 7.3
hull 2.14 2.15 2.33 1.92 3.77 2.12 2.09 3.98 2.54 4.01
damage 3.57 2.86 3.23 3.69 6.06 3.92 3.55 6.05 4.92 5.97

primary metric ranks (4 vs 4)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 3.5 10.0 8.0 6.0 8.0 5.0 3.5 2.0 8.0 1.0
symwins 7.0 10.0 6.0 8.0 2.5 5.0 9.0 2.5 4.0 1.0
hull 7.0 6.0 5.0 10.0 3.0 8.0 9.0 2.0 4.0 1.0
damage 7.0 10.0 9.0 6.0 1.0 5.0 8.0 2.0 4.0 3.0
avg rank 6.125 9.0 7.0 7.5 3.625 5.75 7.375 2.125 5.0 1.5

secondary metric data (4 vs 4)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 0.34 0.43 0.24 0.38 0.87 0.38 0.38 0.49 0.45 0.46
depth 4.75 4.99 5.16 4.84 4.46 5.06 4.6 4.53 5.51 8.07

secondary metric ranks (4 vs 4)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 2.0 6.0 1.0 5.0 10.0 4.0 3.0 9.0 7.0 8.0
depth 7.0 5.0 3.0 6.0 10.0 4.0 8.0 9.0 2.0 1.0

Figure 11: Data measured in the 4 vs 4 combat setting. The first graph shows the
average numbers of wins (blue), symwins (orange), the average remaining hull (orange)
and damage dealt to the enemy (red). It is sorted according to remaining hull. The
second graph shows the average iteration time (yellow) and tree depth (cyan). It is
sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

38

primary metric data (8 vs 8)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 5.3 10.0 10.4 6.6 7.3 5.6 6.5 8.0 8.6 12.7
symwins 1.5 4.0 5.0 2.8 4.9 2.0 2.6 5.2 4.7 7.8
hull 0.36 1.83 1.99 0.57 1.64 0.52 0.52 2.15 1.54 4.01
damage 4.33 5.69 5.94 4.79 6.02 4.7 5.01 6.42 5.97 6.88

primary metric ranks (8 vs 8)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 10.0 3.0 2.0 7.0 6.0 9.0 8.0 5.0 4.0 1.0
symwins 10.0 6.0 3.0 7.0 4.0 9.0 8.0 2.0 5.0 1.0
hull 10.0 4.0 3.0 7.0 5.0 9.0 8.0 2.0 6.0 1.0
damage 10.0 6.0 5.0 8.0 3.0 9.0 7.0 2.0 4.0 1.0
avg rank 10.0 4.75 3.25 7.25 4.5 9.0 7.75 2.75 4.75 1.0

secondary metric data (8 vs 8)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 0.8 0.82 0.81 0.87 0.86 0.93 0.95 0.79 0.79 0.89
depth 3.99 4.08 4.03 3.35 3.12 3.95 3.75 3.48 4.46 4.86

secondary metric ranks (8 vs 8)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 3.0 5.0 4.0 7.0 6.0 9.0 10.0 2.0 1.0 8.0
depth 5.0 3.0 4.0 9.0 10.0 6.0 7.0 8.0 2.0 1.0

Figure 12: Data measured in the 8 vs 8 combat setting. The first graph shows the
average numbers of wins (blue), symwins (orange), the average remaining hull (orange)
and damage dealt to the enemy (red). It is sorted according to remaining hull. The
second graph shows the average iteration time (yellow) and tree depth (cyan). It is
sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

39

primary metric data (16 vs 16)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.3 7.0 7.5 6.3 6.8 5.8 6.8 8.9 14.7 9.9
symwins 3.2 3.0 3.6 2.3 4.0 2.0 2.4 5.8 8.1 6.0
hull 0.47 0.63 0.69 0.29 0.77 0.34 0.43 1.1 3.32 1.4
damage 5.86 5.72 5.9 5.84 6.2 5.71 5.8 6.65 7.02 6.72

primary metric ranks (16 vs 16)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 5.0 6.0 4.0 9.0 7.5 10.0 7.5 3.0 1.0 2.0
symwins 6.0 7.0 5.0 9.0 4.0 10.0 8.0 3.0 1.0 2.0
hull 7.0 6.0 5.0 10.0 4.0 9.0 8.0 3.0 1.0 2.0
damage 6.0 9.0 5.0 7.0 4.0 10.0 8.0 3.0 1.0 2.0
avg rank 6.0 7.0 4.75 8.75 4.875 9.75 7.875 3.0 1.0 2.0

secondary metric data (16 vs 16)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 1.37 1.61 1.39 1.41 1.41 1.47 1.5 1.61 1.82 1.66
depth 3.56 3.2 3.59 3.18 2.98 3.17 3.04 2.52 2.37 4.67

secondary metric ranks (16 vs 16)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 1.0 8.0 2.0 4.0 3.0 5.0 6.0 7.0 10.0 9.0
depth 3.0 4.0 2.0 5.0 8.0 6.0 7.0 9.0 10.0 1.0

Figure 13: Data measured in the 16 vs 16 combat setting. The first graph shows the
average numbers of wins (blue), symwins (orange), the average remaining hull (orange)
and damage dealt to the enemy (red). It is sorted according to remaining hull. The
second graph shows the average iteration time (yellow) and tree depth (cyan). It is
sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

40

primary metric data (32 vs 32)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.4 7.8 6.8 7.5 8.3 7.0 7.3 8.1 10.9 9.9
symwins 1.5 2.8 3.7 2.0 5.3 1.9 2.3 5.9 7.8 7.3
hull 0.2 0.45 0.51 0.24 0.56 0.19 0.2 0.75 1.52 1.03
damage 6.33 6.36 6.38 6.35 6.66 6.37 6.4 6.83 6.67 6.89

primary metric ranks (32 vs 32)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.0 5.0 10.0 6.0 3.0 9.0 8.0 4.0 1.0 2.0
symwins 10.0 6.0 5.0 8.0 4.0 9.0 7.0 3.0 1.0 2.0
hull 8.0 6.0 5.0 7.0 4.0 10.0 9.0 3.0 1.0 2.0
damage 10.0 8.0 6.0 9.0 4.0 7.0 5.0 2.0 3.0 1.0
avg rank 8.75 6.25 6.5 7.5 3.75 8.75 7.25 3.0 1.5 1.75

secondary metric data (32 vs 32)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 3.54 3.76 3.4 3.44 3.64 3.46 3.47 3.78 4.48 3.87
depth 2.76 2.78 3.27 2.81 2.46 2.81 2.73 2.57 2.54 3.71

secondary metric ranks (32 vs 32)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 5.0 7.0 1.0 2.0 6.0 3.0 4.0 8.0 10.0 9.0
depth 6.0 5.0 2.0 3.0 10.0 4.0 7.0 8.0 9.0 1.0

Figure 14: Data measured in 32 vs 32 combat setting. The first graph shows the
average numbers of wins (blue), symwins (orange), the average remaining hull (orange)
and damage dealt to the enemy (red). It is sorted according to remaining hull. The
second graph shows the average iteration time (yellow) and tree depth (cyan). It is
sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

41

primary metric data (48 vs 48)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.1 7.3 7.8 6.2 6.7 6.1 6.3 7.6 14.4 11.5
symwins 2.4 2.2 4.1 2.2 4.0 1.7 2.2 5.1 8.1 7.1
hull 0.18 0.23 0.28 0.18 0.3 0.13 0.16 0.36 2.57 0.68
damage 6.46 6.4 6.49 6.46 6.58 6.42 6.44 6.68 7.06 6.81

primary metric ranks (48 vs 48)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 6.0 5.0 3.0 9.0 7.0 10.0 8.0 4.0 1.0 2.0
symwins 6.0 8.0 4.0 8.0 5.0 10.0 8.0 3.0 1.0 2.0
hull 7.0 6.0 5.0 8.0 4.0 10.0 9.0 3.0 1.0 2.0
damage 6.0 10.0 5.0 7.0 4.0 9.0 8.0 3.0 1.0 2.0
avg rank 6.25 7.25 4.25 8.0 5.0 9.75 8.25 3.25 1.0 2.0

secondary metric data (48 vs 48)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 6.2 6.88 6.19 6.13 6.3 6.09 6.58 6.31 7.68 6.6
depth 2.43 2.51 2.9 2.53 2.2 2.54 2.31 2.22 2.17 3.09

secondary metric ranks (48 vs 48)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 4.0 9.0 3.0 2.0 5.0 1.0 7.0 6.0 10.0 8.0
depth 6.0 5.0 2.0 4.0 9.0 3.0 7.0 8.0 10.0 1.0

Figure 15: Data measured over in the 48 vs 48 combat setting. The first graph
shows the average numbers of wins (blue), symwins (orange), the average remaining
hull (orange) and damage dealt to the enemy (red). It is sorted according to remaining
hull. The second graph shows the average iteration time (yellow) and tree depth (cyan).
It is sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

42

primary metric data (64 vs 64)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.3 7.2 7.3 7.2 7.3 7.2 7.2 7.2 15.6 7.5
symwins 0.1 0.1 4.9 0.0 4.4 0.4 0.2 6.1 8.1 7.1
hull 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.14 3.24 2.15
damage 4.56 4.56 4.58 4.56 4.58 4.56 4.56 4.65 7.08 4.74

primary metric ranks (64 vs 64)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 4.0 8.0 4.0 8.0 4.0 8.0 8.0 8.0 1.0 2.0
symwins 8.5 8.5 4.0 10.0 5.0 6.0 7.0 3.0 1.0 2.0
hull 8.0 6.0 5.0 10.0 4.0 7.0 9.0 3.0 1.0 2.0
damage 6.0 9.0 4.0 7.0 5.0 8.0 10.0 3.0 1.0 2.0
avg rank 6.625 7.875 4.25 8.75 4.5 7.25 8.5 4.25 1.0 2.0

secondary metric data (64 vs 64)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 18.49 17.79 16.8 17.85 17.88 17.88 17.87 18.3 14.28 16.73
depth 1.32 1.15 1.22 1.16 1.17 1.16 1.16 1.27 1.45 1.25

secondary metric ranks (64 vs 64)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 10.0 4.0 3.0 5.0 8.0 7.0 6.0 9.0 1.0 2.0
depth 2.0 10.0 5.0 8.0 6.0 8.0 8.0 3.0 1.0 4.0

Figure 16: Data measured in the 64 vs 64 combat setting. The first graph shows the
average numbers of wins (blue), symwins (orange), the average remaining hull (orange)
and damage dealt to the enemy (red). It is sorted according to remaining hull. The
second graph shows the average iteration time (yellow) and tree depth (cyan). It is
sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

43

primary metric data (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.1 7.85 7.95 6.97 7.38 6.63 7.05 8.02 12.02 10.03
symwins 1.83 2.3 3.98 1.9 4.93 1.83 1.93 5.85 6.9 7.1
hull 0.91 1.24 1.32 0.89 1.53 0.91 0.92 1.75 2.45 2.21
damage 5.19 5.27 5.42 5.28 6.02 5.28 5.29 6.21 6.45 6.34

primary metric ranks (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

wins 7.0 5.0 4.0 9.0 6.0 10.0 8.0 3.0 1.0 2.0
symwins 9.5 6.0 5.0 8.0 4.0 9.5 7.0 3.0 2.0 1.0
hull 8.0 6.0 5.0 10.0 4.0 9.0 7.0 3.0 1.0 2.0
damage 10.0 9.0 5.0 7.0 4.0 8.0 6.0 3.0 1.0 2.0
avg rank 8.625 6.5 4.75 8.5 4.5 9.125 7.0 3.0 1.25 1.75

secondary metric data (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 5.72 6.21 5.81 5.75 5.85 5.65 5.84 6.37 6.02 6.18
depth 2.9 2.83 3.08 2.76 2.54 2.88 2.71 2.53 2.87 3.75

secondary metric ranks (total)
UCT SR VOI U-T Sig RB QB HP FAP WP

time 2.0 9.0 4.0 3.0 6.0 1.0 5.0 10.0 7.0 8.0
depth 3.0 6.0 2.0 7.0 9.0 4.0 8.0 10.0 5.0 1.0

Figure 17: Data measured over all the combat settings. The first graph shows the
average numbers of wins (blue), symwins (orange), the average remaining hull (orange)
and damage dealt to the enemy (red). It is sorted according to remaining hull. The
second graph shows the average iteration time (yellow) and tree depth (cyan). It is
sorted according to the former metric. The four tables report specific values of the
data and the ranks of the different variants when they are sorted according to a given
metric.

44

battle ends with the winner having just one unit with full hull remaining. This
could mean that the two sides were pretty evenly matched. If a 64 vs 64 battle
ends with 64/4 = 16 units remaining on one side, then that side has achieved a
pretty substantial victory. This is why it is quite surprising that the remaining
hull suddenly jumps up in the 64 vs 64 combat setting. It is possible that the
randomly generated positions we used somehow allow a variant which gets into
a slightly advantageous position to win quickly or that the state space suddenly
becomes too large for most variants to explore properly and the battles become
more random which leads to stronger wins for agents that happen to stumble
upon good moves.

We can also observe that the average number of wins seems to diversify start-
ing at the 8 vs 8 and then approach the same mean in all the variants except
for FAP MCTS. This seems to support our previous hypothesis that most vari-
ants are not good at dealing with large state spaces which also causes them to
approach the same performance as the state space gets larger.

We once again go over all the variants in the order in which they were intro-
duced and analyse what the results mean for them.

UCT’s performance is quite inconsistent throughout the different settings. In
battles of 4 against 4, it achieves a surprisingly high average number of wins, but
performs poorly on all other metrics. The average number of wins in this setting
has a pretty narrow range of values however (from 7.8 to 8.7, although the upper
bound actually goes down to 8.3 if we discard the best performing variant), so
UCT’s good score may just be due to variance of the results.

In the 8 vs 8 setting, UCT suddenly drops down to last place on every metric.
When we move on to the 16 vs 16 setting however, we see that UCT jumped
back up to around the sixth place and keeps oscillating around that place in the
remaining settings as well. It may therefore be the case that the positions we
generated in the 8 vs 8 setting were somehow less advantageous to UCT or more
advantageous to some other variants, or that the size of the state space was ideal
for some variants.

As we mentioned in the previous section, the fact that UCT performs this
well quite consistently is pretty surprising, given that all the other variants are
supposed to present improvements over it.

UCT’s rankings with respect to mean iteration time and tree depth vary
wildly, although this may mostly be due to variance of the results as the range
of values of these metrics is quite narrow.

SR+CR MCTS starts out with a very poor performance in the 4 vs 4
setting, but them jumps up to around the fifth place at 8 vs 8 and descends
to around the sixth place where it remains until the 64 vs 64 setting where its

45

performance drops again. The one place drop from 8 vs 8 to 16 vs 16 can probably
be explained by the fact that FAP MCTS improves drastically between these two
settings, moving to first place, so it shifts all the variants that were before it by
one place (although SR+CR MCTS outperformed it in only 2 out of four metrics
in the 8 vs 8 setting).

It is unclear why this variant performs so poorly in the first setting. Perhaps,
since the state space is quite small, the other variants simply have a chance to
explore it better and therefore this variant’s strengths do not come into play.

Its time and depth rankings seem to mostly be quite average across the dif-
ferent settings.

VOI-aware MCTS, just like SR+CR MCTS, does not perform very well in
the 4 vs 4 combat setting and then improves greatly in the 8 vs 8 setting, going
up to around third place on average and then drops one place, possibly due to the
improvement of FAP MCTS. This behavior is similar to SR+CR MCTS which
suggests that it is caused by what they have in common - attempting to minimize
simple regret at the root.

A notable property of this variant is that is keeps a relatively high number
of symwins even in the 64 vs 64 setting where all the variants ranked beneath
it with respect to this metric except for Sigmoid MCTS have almost none which
means that its wins are usually better than those of its opponents.

As for its mean time and depth performance, it is among the higher ranked
variants in most settings, especially in the former category and never reaches a
lower place than fifth on either metric. Like we mentioned in the previous section,
this seems to imply that it hones in faster on moves it considers to be good and
explores them in more depth.

UCB1-Tuned MCTS performs quite poorly in all settings, usually under-
performing UCT. This is consistent with our observations from the previous sec-
tion. Its time and depth rankings also do not seem particularly remarkable.

Sigmoid MCTS seems to perform quite well in all metrics, usually placing at
around the fourth place, except for the average number of wins, where it usually
does not achieve such good results.

Its depth rankings are consistently among the worst, except for the 64 vs 64
setting, while its time rankings mostly oscillate around the middle. The latter is
probably due to the fact that shallow trees mean longer playouts.

Relative Bonus MCTS achieves some notable results in the 4 vs 4 settings,
but then drops on all measured metrics and stays near the bottom in all settings
except for 64 vs 64 where there are three variants with an average ranking worse
than it, although, as we explained previously, this is probably just due to some
of the different variants approaching the same level of performance as the state

46

space grows larger.
This variant has very inconsistent rankings with respect to average iteration

time and average tree depth. It is unclear why this is the case.
Qualitative Bonus MCTS shows no significant achievements in any setting,

always oscillating around the eighth place on almost all metrics and its time and
depth rankings are also unremarkable.

MCTS HP consistently achieves good results, always placing itself right be-
hind WP MCTS. It is notable that it consistently achieves good scores on all
primary metrics except for the number of wins. Its time and depth rankings
are usually near the bottom which is consistent with the data from the previous
section.

FAP MCTS starts out weak, achieving no particularly notable results in
either the 4 vs 4 or the 8 vs 8 settings. However, starting with 16 vs 16, it
takes the number one spot and stays there, clearly becoming the best performing
variant on average. It is also the only variant which seems to be good at dealing
with large state spaces as is evident from its performance in the 64 vs 64 setting
where it most notably achieves an average number of wins that is more than
double the second best variant. It is also interesting to note however that its
number of symwins does not show the same boost and remains comparable to
WP MCTS and MCTS HP. This means that in a situation when it loses once
and wins once, its hull is most likely lower than that of its opponent, meaning
that it probably does not achieve very strong victories.

The average iteration time of this variant is usually ranked low, with the
exception of the 8 vs 8 and 64 vs 64 setting. Its average depth rating shows
similar behavior, except it achieves second place in the 4 vs 4 setting. It is
unclear why it achieves such good results according to these metrics in the 8 vs
8 setting, but its good results in the 64 vs 64 setting are just further testament
to the fact that it is the only variant capable o dealing with a state space of such
size.

Meanwhile its poor performance in the other settings may be due to the fact
that, since it treats a single playout as many playouts, depending on when it
occurred, the path from the root to the node where the playout was started may
be seen by the algorithm as sufficiently explored after a single playout, therefore
encouraging exploration a lot more.

WP MCTS is the only variant that consistently performs well on all primary
metrics. In overall performance, it is second only to FAP MCTS, although it
also seems to be incapable of effectively dealing with large state space and its
performance devolves towards a common mean with increasing state space size.
Most notable is its high number of symwins which, in the 64 vs 64 setting, almost

47

matches its number of wins, meaning that even in situations when it loses once
and wins once, it usually achieves a stronger win than its opponent.

This variant also consistently holds the first place in the average depth rank-
ings, except for the 64 vs 64 setting, which, in combination with its high per-
formance, suggests that it identifies good moves more quickly than most other
variants.

Its average iteration time, on the other hand, is always ranked near the bottom
(except for the 64 vs 64 setting), which is probably due to the fact that the
computation it has to do at the end of every playout is rather expensive.

48

8 Conclusions and Future Work

8.1 Conclusions

In this thesis, we have gone over ten variants of the Monte Carlo Tree Search
algorithm, including one of our own making, and compared them in the context
of a 4X computer game called Children of the Galaxy. Since the branching factor
of this game was too large, we resorted to doing our search in script space.

We performed a series of preliminary tests to select the best algorithm settings
for all the variants and picked one setting for each one. We then tested all the
variants with their chosen algorithm settings against each other in various combat
settings and with various numbers of playouts at their disposal. During these
tests, we measured their average number of wins, symwins, their remaining hull,
the damage they dealt to the enemy, their average iteration time and their average
tree depth. The results showed a pretty consistent ranking of the first six variants.
These variants were FAP MCTS, WP MCTS, MCTS HP, Sigmoid MCTS, VOI
MCTS and SR+CR MCTS in that order. The remaining variants - Relative
Bonus MCTS, Qualitative Bonus MCTS, UCT and UCB1-Tuned MCTS did not
show particularly good results in any setting that we tested and almost always
occupied the bottom four spots according to most metrics that we measured,
although their ordering was not as clearly determined.

The fact that UCT was among the worst performing variants that we tried
is a good thing, since it represents the default implementation of MCTS that
all the others were supposed to present improvements over. It is therefore a bit
surprising that it did not consistently occupy the lowest rank. We ran enough
tests to rule out the possibility of this being just due to variance of the data
with a large degree of certainty. It might be the case however, that Relative
Bonus MCTS, Qualitative Bonus MCTS and UCB1-Tuned MCTS simply were
not suited for our chosen environment and would perform better in some other
environment.

Our own variant, WP MCTS, which we introduced in the paper, was based on
the idea that a playout can offer more information than just the final state and
that the entire trajectory should be taken into account instead. We found that this
variant had the most consistently good results of all the tested variants, occupying
the first or second spot according to every primary metric independent of how
we separated the data with only one exception - it was ranked third according to
damage dealt to the enemy in the 4 vs 4 combat setting.

49

8.2 Future Work

Obvious possibilities for future work are comparing the variants we tested here in
different settings to see whether the results reported here still hold and comparing
them against algorithms that are not based on MCTS, like Portfolio Greedy
Search [4].

Another area for possible research is trying out different combinations of these
variants. As the variants tested by us often augment different parts of the original
algorithm, it should be possible to combine multiple of them into one algorithm
and test if doing so yields improved results.

As for future work regarding WP MCTS, we only tested a few approaches
to how weights can be assigned to states encountered during a playout, so this
is definitely another topic that can be explored further. It would be especially
interesting to test whether best results are achieved if all states are treated as
equally ”important”, or if there are some states which should be considered to
contain more valuable information than others.

50

Bibliography

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2):235–256, 2002.

[2] G. V. D. Broeck, K. Driessens, and J. Ramon. Monte-carlo tree search in
poker using expected reward distributions. In Asian Conference on Machine
Learning, pages 367–381, 2009.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, and S. Colton. A survey of monte carlo tree search meth-
ods. IEEE Transactions on Computational Intelligence and AI in games,
4(1):1–43, 2012.

[4] D. Churchill and M. Buro. Portfolio greedy search and simulation for large-
scale combat in starcraft. In Proceedings of the Conference on Computational
Intelligence in Games, pages 1–8, 2013.

[5] R. Coulom. Efficient selectivity and backup operators in monte-carlo tree
search. In International conference on computers and games, volume 26,
pages 72–83, 2006.

[6] Dennis Dacoste. The future of chess-playing technologies and the significance
of kasparov versus deep blue. The Computer Journal, 1997.

[7] S. C. Huang, B. Arneson, R. B. Hayward, M. Müller, and J. Pawlewicz.
Mohex 2.0: a pattern-based mcts hex player. In International Conference
on Computers and Games, pages 60–71, 2013.

[8] N. Justesen, T. Mahlmann, and J. Togelius. Online evolution for multi-
action adversarial games. In European Conference on the Applications of
Evolutionary Computation, pages 590–603, 2016.

[9] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293, 2006.

[10] T. Kozelek. Methods of mcts and the game arimaa. Master’s thesis, Charles
University, 2009.

[11] S. Ontañón. Informed monte carlo tree search for real-time strategy games.
In 2016 IEEE Conference on Computational Intelligence and Games (CIG),
pages 1–8, 2016.

51

[12] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss. A survey of real-time strategy game ai research and competi-
tion in starcraft. IEEE Transactions on Computational Intelligence and AI
in games, 5(4):293–311, 2013.

[13] T. Pepels, M. J. Tak, M. Lanctot, and M. H. Winands. Quality-based re-
wards for monte-carlo tree search simulations. In ECAI, pages 705–710,
2014.

[14] T. Pepels, M. H. Winands, and M. Lanctot. Real-time monte carlo tree
search in ms pac-man. Transactions on Computational Intelligence and AI
in games, 6(3):245–257, 2014.

[15] K. Shibahara and Y. Kotani. Combining final score with winning percentage
by sigmoid function in monte-carlo simulations. In 2008 IEEE Symposium
On Computational Intelligence and Games, pages 183–190, 2008.

[16] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. ... Guez,
and D. Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. arXiv preprint, 2017.

[17] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre,
George Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal
Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[18] D. Tolpin and S. Shimony. Mcts based on simple regret. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 26, pages 570–576,
2012.

[19] F. Xie and Z. Liu. Mcts based on simple regret. In 2009 Third International
Symposium on Intelligent Information Technology Application, volume 2,
pages 125–128, 2009.

[20] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk. Monte carlo
tree search: A review of recent modifications and applications. arXiv
preprint, 2021.

[21] P. Šmejkal and J. Gemrot. Engaging turn-based combat in the children of
the galaxy videogame. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, volume 14, 2018.

52

A User Documentation

Since the original project was created by Pavel Šmejkal, we omit its user docu-
mentation and instead refer the reader to the one created by its author2.

We left the original code mostly intact with only a few changes. Most notably,
we added scripts for representing the different Monte Carlo Tree Search that we
were testing (with the exceptions of UCT and MCTS HP, as they were already
present) and made a few small adjustments to the original MCTS script. The
changes made here were for one of two reasons - to make it possible for the
new variants to override inherited methods and to change what data was being
outputted.

Since we were adding new variants which were supposed to be configurable
using xml files, we also had to expand the BenchmarkFactory class, which is
responsible for parsing xml configurations, so that it would properly parse the
configurations for our variants.

We also tinkered with the ExecuteMicro.cs script when debugging different
variants, as this script calls the variants during every round of gameplay, and
adjusted the Game and GameResult classes to allow for the accumulation of
intermediate values during playouts.

Besides the main project however, we have created a number of programs to
help with processing data and include them in case they might be useful to anyone
who would try to follow up on our work. Please keep in mind that many of these
programs were created hastily with the purpose of quickly processing some data
and are far from polished. Except for the XML Manager program, none of them
have UI, so any changes in behaviour must be done by adjusting the source code.

Before we can explain the workings of these programs however, we need to go
over the data that we worked with.

A.1 Data and Files

Our data were gathered in two types of files - .txt files that contained measure-
ments of an algorithm’s iteration time and tree depth and .csv tables which con-
tained various metrics, including the numbers of wins, symwins and the amount
of remaining hull, all separated by combat setting. For every test that we ran,
one of each of these files was created with the former being stored in a folder
called {algorithm name}/data, the path to which is specifiable in the Mcts.cs file
and the latter being stored in a folder called results, present in the same directory
as the executable.

2https://bitbucket.org/smejkapa/cog-ai/src/master/Thesis/UserDocumentation.docx
[Accessed 15.07.2022]

53

The program also outputted different files, like .gv files which contained graphs
of the trees built by the different MCTS variants and logs that detailed messages
and warnings encountered during the running of the program, but we didn’t use
these in our work.

Besides these files containing our data, we also had to work with xml files
which detailed the settings of our algorithms and tests. These were stored in
subfolders of a folder named Resources, present in the same directory as the
executable. As these files were desinged by Pavel Šmejkal, their description can
be found in his user documentation. Please note that, since he called the files that
we used for our test settings ”benchmarks”, we will use the terms ”benchmark”
and ”setting” interchangeably here. We will also use the term ”benchmark set”
to denote an xml file which contains multiple tests that are supposed to be run
one after another.

A.2 XML Manager

This is a C++ program for creating and working with xml files that contain
settings for the different AIs, benchmarks and benchmark sets. The program
uses a configuration file (simply called config.txt) where it stores paths to two
folders - one which contains subfolders with xml files (referred to as the home
directory) and another which contains C# files that define the individual AIs
(referred to as the scripts directory).

The home directory needs to contain subdirectories called AI, Benchmarks
and BenchmarkSets for the program to accept it.

When the program starts, it checks if this file is present and if the paths
contained in it are valid. If not, it prompts the user to enter paths to these
directories. Otherwise, the user is free to enter commands. If the program detects
that the user has entered the wrong number of arguments or that the arguments
do not have the correct format, it informs the user and terminates the execution
of the command.

The following subsections detail the commands that this program recognizes.
At the end of each subsection is an example of the correct usage of the discussed
command.

A.2.1 makeai

This is a command for creating xml files that correspond to AIs. Such a file is
supposed to contain the parameters that are to be passed to the AI’s constructor.
The command has the following arguments:

54

• The name of the C# script from which the xml file is supposed to be
created. This parameter is mandatory and has to be entered first, the
others are optional and can be entered in arbitrary order. The name of the
script needs to be entered without the ”.cs” suffix.

• A list of arguments from the constructor of the class contained in the passed
C# file that are supposed to be omitted in the xml file. The user starts
the list by entering the ”-e” option (e stands for exclude). The list can
be terminated when another option is encountered, otherwise it continues
until the end of the list of arguments. The default value of this option is
an empty list.

• A list of C# data types that are allowed to be present in the xml file. The
user starts the list by entering the ”-p” option (p stands for permitted).
The list can be terminated when another option is encountered, otherwise
it continues until the end of the list of arguments. The default value of this
option contains the types int and double.

• A list of names of scripts that the AI is supposed to have in its portfolio.
The user starts the list by entering the ”-s” option (s stands for scripts).
The list can be terminated when another option is encountered, otherwise
it continues until the end of the list of arguments. The default value of this
option is an empty list.

If the program does not find the entered C# script in the scripts directory,
the program informs the user and terminates the execution of the command. If
everything goes smoothly, the program prompts the user to enter the values of all
the parameters that are to be included in the xml file and then the name of the
file. When entering the name, the program checks whether the name is allowed
and whether a file with the same name does not already exist - if either of these
conditions is false, the program communicates it to the user. The user can enter a
different name (or choose to replace the present files) and the process is repeated.
After the file is created, the programs notifies the user of success.

Example of the correct usage of this command:
makeai MyAIFile -s NOKAV Kiter -e undesirableArgName

A.2.2 makebmrk

This command creates an xml file that corresponds to a benchmark made from
two AI files. As arguments, it takes the names of the two xml files that correspond

55

to the AIs. The names are entered without the ”.xml” suffix. If one of the given
files does not exist, the program notifies the user. If both files exist, the program
tries to create a file called ”name of the first file vs name of the second file”. If
such a file already exists, the program notifies the users and asks whether it is
supposed to overwrite the file. If not, the user can enter a new name. The new
name is checked for validity and again for conflicts with other files (if there is a
conflict, the procedure repeats).

Example of the correct usage of this command:
makebmrk AIFile1 AIFile2

A.2.3 makebmrks

A command that gets a list of regular expressions as its arguments, then goes
through the folder with AIs, picks those that match the regular expressions and
creates benchmark files for all possible pairs. The regexes are supposed to be
entered without the ”.xml” suffix.

Example of the correct usage of this command:
makebmrks MCTS (.*) Sigmoid MCTS(.*)

A.2.4 makebset

This command serves to create a file that contains a set of benchmarks that are
supposed to be run one after another. As its arguments, this command takes a
list of regular expressions that are then matched to files in the directory which
contains benchmarks. The regexes are supposed to be entered without the ”.xml”
suffix. After the command is entered, the program asks the user what the new
file should be called. The entered name is checked for validity and conflict with
existing files. If such a file already exists, the program notifies the users and asks
whether it is supposed to overwrite the file. If not, the user can enter a new
name. The user also enters a new name if the first one was found to be invalid.
The new name is again checked and the procedure repeats.

Example of the correct usage of this command:
makebset (.*)MCTS Kiter

A.2.5 makebsets

A command that goes through all the xml files that specify AIs and finds all
those that differ in more than just the number of playouts. From these files it

56

creates all the possible pairs, finds their corresponding benchmarks and creates a
benchmark set from them. This command does not take any arguments.

Example of the correct usage of this command:
makebsets

A.2.6 delete

This command allows the user to delete files. It takes the following arguments:

• Location from which the files are supposed to be deleted (ai/benchmark/set
depending on whether the files are supposed to be AI settings, benchmarks
or benchmark sets). This argument has to be entered first.

• A list of regular expressions that get matched to files from the given folder.
The matched files are deleted by the command.

After the command finishes, it informs the user of how many files were suc-
cessfully deleted and how many failed.

Example of the correct usage of this command:
delete ai (.*)MCTS 100 Kiter ([0-9]*)

A.2.7 change

Serves to change attributes and elements of the xml files. It takes the following
arguments in the order in which they are listed here:

• Location of the files that are supposed to be changed (ai/benchmark/set
depending on whether the files are supposed to be AI settings, benchmarks
or benchmark sets).

• The name of the element/attribute that is supposed to be changed.

• The new value of the element/attribute.

• Specification of whether it is an attribute or an element.

• The position of the occurrence of the element/attribute that is supposed
to be changed. This is necessary because some files have some elements or
attributes mentioned more than once.

• An arbitrary number of regular expression that are supposed to be matched
to files that are to be changed.

57

Example of the correct usage of this command:
change benchmark Script Kiter elem 3 (.*)MCTS

A.2.8 sethome

Changes the path to the home directory. It takes just one argument - the new
path (entered without quotes).

Example of the correct usage of this command:
sethome C:\Users\user name\C++ programs

A.2.9 setscripts

This command changes the path to the scripts directory. It takes only one argu-
ment - the new path (entered without quotes).

Example of the correct usage of this command:
setscripts C:\Users\user name\C# programs

A.2.10 quit

Terminates the program. Does not take any arguments. Just like other com-
mands, it can not be entered while another command is being executed (for
example, if the user types ”quit” when prompted to enter some data by another
command, ”quit” just gets interpreted as data) with one exception - when the
program asks the user to enter the paths to the home and scripts directories at
the start. In this case, the program will terminate when the user types ”quit”
and presses enter.

Example of the correct usage of this command:
quit

A.2.11 help

Displays a help text which lists all the possible commands along with short de-
scriptions. Does not take any arguments.

Example of the correct usage of this command:
help

58

A.3 CSV Cruncher

This program was made in C# and used to process the csv tables that were
outputted by the benchmarks. Its main method goes through a list of csv files
stored in a variable called files, extracts the relevant data from them (for us,
that was the number of wins, the number of symwins, the remaining hull and
the damage dealt to the enemy) and stores it in a variable called sheets. All the
csv files should be in a single directory, the path to which is stored in a variable
called path.

This variable keeps the values separated based on battle type and based on
which implementation was going up against which. This allows us to process the
data in various ways. We can, for example, create a table that averages the wins
of all the variants over all the battles at 100 playouts. We can just as easily create
a different table that averages the remaining hull of all the variants in a given
battle setting over all the playout settings.

After the data is processed, a method can be called to output some tables.
There are two main methods for this - MakeCSVTable and MakeLatexTable which
output a csv file and a text file respectively, which contains the LATEX definition
of a table. Both of these methods make use of the MakeSheet method which is
used to create a table which averages some of the data stored in sheets. Which
data is supposed to be taken into account is determined through the method’s
parameters.

There is one more important method - MakeAllLatexTables. This method was
made to print all the tables that are present in the appendix of the thesis.

A.4 Data Visualizer

This Python projects contains five Python scripts for processing different data
and one script with auxiliary functions. Most of the scripts here visualize data
in the form of graphs. These scripts always output multiple graphs in one image.
The program doesn’t support creating individual graphs - for our thesis, they had
to be separated in a different program.

A.4.1 battledata1.py

Creates three bar graphs that show the average number of wins, symwins, re-
maining hull and damage dealt to the enemy for every variant. The graphs show
data for three different battle settings - 4 vs 4, 8 vs 8 and 16 vs 16. There is also
a fourth plot which copies the data obtained in the 16 vs 16 setting. The reason
for its presence is that the other Python scripts we used for creating graphs make

59

four plots, so this ensures that they all have the same size.
The graphs are created using matplotlib and seaborn using data contained in

files the path to which is stored in the files variable. They are sorted according to
the field stored in the sorting field variable. Each metric has a divisor associated
with it (in the form of a variable named {metric name} divisor) by which its
values are divided. The divisors for wins and symwins are set to 1 while the
divisors for hull and damage are set to 6 · 3 = 18 - this is the total number
of battles that any variant plays against any other variant with a given combat
setting (it is the number of repeats for a combat setting (6) times the number of
playout settings (3)). These divisors are then further mutiplied when computing
data for every plot by the number of units at one teams disposal in the given
combat setting.

A.4.2 battledata2.py

A script that is just like battledata1.py, except it shows graphs for the three
remaining combat settings (32 vs 32, 48 vs 48 and 64 vs 64) and the last graph
shows data that is averaged over all the combat settings.

A.4.3 battlerankings.py

Loads the same data that was visualized in battledata1.py and battledata2.py,
as well as data about the time and depth of the different variants, orders it and
prints the rankings of the variants in a format that can be copied straight into
LATEX tables.

A.4.4 common functions.py

An auxiliary script containing some functions used by multiple other scripts for
fetching and processing data.

A.4.5 playoutdata.py

Like battledata1.py and battledata2.py, except it processes data that is grouped
based on the number of playouts. Like in battledata2.py, the fourth plot shows
an average of the data in the previous three plots.

The divisors for wins and symwins are again set to 1 while the divisors for
hull and damage are set to (4 + 8 + 16 + 32 + 48 + 64) · 6 = 1032 - this is the total
number of units in all the battles that a single variant fought against any other
variant with a given playout setting.

60

A.4.6 playoutrankings.py

Like battlerankings.py, except it ranks variants variants according to data accu-
mulated over the number of playouts.

A.4.7 timedepthdata.py

Similarly to battledata1.py, battledata2.py and playoutdata.py, this script creates
four bar graphs, this time detailing the average iteration time and average tree
depth of the variants however. Whether this is done based on data accumulated
over playout settings or combat settings can be configured by changing the files
that the script loads.

This script also contains the sorting field variable which determines which field
is used to sort the graphs and this time also a variable called ascending which
determines whether the ordering is supposed to be ascending or descending (this
is due to the fact that, unlike the other metrics, time is supposed to be sorted in
descending order, since less time is better).

A.5 Position Generator

A simple Python program that generates random positions for a given number
of units of type battleship and destroyer around a given center. It is used to
create randomized battle settings. The number of battleships is stored in the
variable num of b and the number of destroyers in num of d. Variables centerQ
and centerR contain the coordinates of the center point. The coordinates system
used here is the axial coordinate system3. The variable div factor stores a value
by which the total number of units is supposed to be divided in the computation of
the coordinates. Setting this number to a higher value makes the positions move
closer to the center point. The positions are written out to the standard output in
the format ’ <Unit Id=”{unit type}” Q=”{q coordinate}” R=”{r coordinate}”
/>’. This is so that they can be copied to the xml files that contain battle settings
without any further processing.

A.6 Result Trimmer

Trims the output of the benchmarking program so that, for every benchmark,
only the names of the two variants, the data accumulated during the running of
the benchmark (the number of wins, symwins and the remaining hull for both
variants), the number of symdraws (these occur when both agents finish with the
same amount of hull in two symmetric battles) - if there were any - and the total

3https://www.redblobgames.com/grids/hexagons/#coordinates-axial [Accessed 15.07.2022]

61

benchmark time are left. It has a list of files that it is supposed to process which
is stored in the inputFiles variable. The complete path to every file is stored in
every iteration of the main for cycle in the input variable. The progam processes
these files one by one and outputs the results into a file, the path to which is
stored in the output variable. Note that the StreamWriter that is used to write
into the output file has the append flag set to true, which means that it will
append to the output file instead of overwriting it.

A.7 Time-Depth Cruncher

This program processes the files which contain data about execution time and
tree depth of the MCTS variants. It has a list of regexes that it stores in the
regex variable and uses these to select specific files. It then computes the mean
iteration time and tree depth from the data in those files, as well as their respective
standard errors, and stores them in csv files with one line for each MCTS variant.
The names of the MCTS variants are taken from the names of the folders in which
the files are stored.

The paths to the input and output files are entered directly into the commands
that create their respective writers and readers.

62

B Additional Data

This section contains tables with more detailed measurements than those pre-
sented in section 7. Every table contains measurements about one of the primary
metrics for individual pairs of MCTS variants. Unlike in section 7, the data
presented here is summed, not averaged.

63

wins (100 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 27 27 28 26 27 28 28 27 23
HP 9 X 20 25 19 19 20 19 19 13
QB 9 16 X 17 17 20 19 22 18 10
RB 8 11 19 X 14 18 18 19 14 12
Sig 10 17 19 22 X 17 16 19 18 13
SR 9 17 16 18 19 X 16 20 18 10
UCT 8 16 17 18 20 20 X 15 22 14
U-T 8 17 14 17 17 16 21 X 16 12
VOI 9 17 18 22 18 18 14 20 X 10
WP 13 23 26 24 23 26 22 24 26 X

wins (500 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 30 24 25 29 25 23 28 25 21
HP 6 X 19 19 23 18 20 20 18 14
QB 12 17 X 16 17 19 19 16 15 14
RB 11 17 20 X 14 17 14 16 16 14
Sig 7 13 19 22 X 16 23 16 15 12
SR 11 18 17 19 20 X 24 21 17 14
UCT 13 16 17 22 13 12 X 19 16 15
U-T 8 16 20 20 20 15 17 X 19 9
VOI 11 18 21 20 21 19 20 17 X 17
WP 15 22 22 22 24 22 21 27 19 X

wins (1000 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 26 29 29 29 27 28 31 28 23
HP 10 X 21 21 21 16 19 22 18 13
QB 7 15 X 17 18 15 17 17 12 12
RB 7 15 19 X 13 14 19 15 13 11
Sig 7 15 18 23 X 17 23 19 15 12
SR 9 20 21 22 19 X 21 21 18 16
UCT 8 17 19 17 13 15 X 19 14 11
U-T 5 14 19 21 17 15 17 X 16 12
VOI 8 18 24 23 21 18 22 20 X 13
WP 13 23 24 25 24 20 25 24 23 X

Table 1: The number of wins that every variant scored against every other variant
on every playout setting.

64

symwins (100 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 12 17 17 12 18 18 17 18 12
HP 6 X 16 18 12 16 14 14 14 4
QB 1 2 X 6 6 9 5 7 5 0
RB 1 0 8 X 2 7 6 7 3 0
Sig 6 5 12 16 X 14 14 15 14 5
SR 0 2 5 7 4 X 6 9 6 0
UCT 0 4 6 7 4 7 X 5 6 3
U-T 1 4 4 6 3 4 9 X 5 2
VOI 0 4 13 15 4 12 12 13 X 2
WP 6 14 18 18 13 18 15 16 16 X

symwins (500 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 14 16 16 15 16 16 16 16 12
HP 4 X 15 15 15 18 17 17 15 4
QB 2 3 X 7 3 7 7 7 6 1
RB 2 3 8 X 2 7 7 6 4 1
Sig 3 2 15 16 X 14 16 15 13 1
SR 2 0 8 8 4 X 10 13 5 0
UCT 2 1 8 8 1 4 X 6 2 1
U-T 2 1 8 9 3 2 9 X 5 0
VOI 2 3 12 14 5 13 16 12 X 1
WP 6 14 17 17 17 18 17 18 17 X

symwins (1000 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 13 18 18 13 17 17 16 15 9
HP 5 X 16 17 14 15 15 18 16 1
QB 0 2 X 6 2 8 6 8 0 0
RB 0 1 9 X 2 4 11 5 4 0
Sig 5 4 16 16 X 15 17 15 11 1
SR 1 3 7 11 3 X 9 12 3 0
UCT 1 3 9 4 1 6 X 8 3 0
U-T 2 0 7 10 3 3 7 X 5 0
VOI 3 2 18 14 7 15 15 12 X 0
WP 9 17 18 18 17 18 18 18 18 X

Table 2: The number of symwins that every variant scored against every other
variant on every playout setting.

65

hull (100 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 2491.1 2936.0 2981.9 2682.4 3067.7 2992.1 3034.1 2936.4 2271.9
HP 420.5 X 1644.3 1703.0 1437.4 1581.4 1640.4 1441.5 1525.2 1136.5
QB 306.6 1120.6 X 1338.8 1177.2 1471.1 1490.7 1575.3 1384.1 1017.4
RB 288.8 1149.3 1401.0 X 1076.1 1379.7 1412.2 1324.3 1320.6 1007.2
Sig 408.9 1215.2 1530.3 1670.8 X 1554.1 1439.1 1535.2 1500.5 1125.3
SR 356.1 1129.3 1390.3 1399.4 1212.8 X 1436.5 1571.3 1469.2 1037.9
UCT 290.7 1068.8 1428.4 1546.7 1257.6 1412.4 X 1298.0 1520.9 1075.1
U-T 264.2 1154.7 1367.9 1380.6 1200.7 1325.8 1453.4 X 1344.7 1012.5
VOI 331.8 1172.2 1506.7 1533.3 1220.2 1550.6 1367.0 1502.2 X 1043.1
WP 521.0 1408.2 1999.0 1841.0 1656.3 1932.1 1759.5 1759.8 1806.1 X

hull (500 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 2563.7 2974.7 2988.1 3004.0 2984.1 2946.6 3018.2 3043.1 2252.4
HP 213.0 X 1629.9 1629.9 1708.4 1930.8 1893.2 1815.4 1668.3 1173.1
QB 103.4 1038.1 X 1260.0 1086.1 1434.3 1336.9 1355.5 1311.9 1030.7
RB 115.0 1038.1 1396.8 X 1060.7 1395.4 1255.0 1205.9 1320.1 1030.7
Sig 149.8 1237.8 1614.0 1735.0 X 1657.1 1807.2 1612.0 1434.6 1143.7
SR 123.2 1135.9 1587.3 1614.7 1277.4 X 1785.3 1727.1 1492.0 1091.1
UCT 86.9 1041.5 1331.8 1463.0 1060.3 1262.1 X 1334.2 1310.3 1064.1
U-T 113.0 1034.0 1327.7 1314.0 1122.7 1354.6 1290.0 X 1450.1 1035.6
VOI 197.1 1087.3 1691.2 1790.8 1291.9 1739.6 1735.2 1548.4 X 1111.4
WP 421.4 1570.1 1984.3 1984.3 2126.6 2155.5 2088.3 2023.8 1921.6 X

hull (1000 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 2778.6 3670.2 3670.2 3465.9 3800.4 3534.9 3641.1 3631.2 2452.4
HP 197.7 X 1893.9 2057.2 1751.9 1918.0 1942.0 2161.4 1781.3 1268.5
QB 35.9 1055.4 X 1240.2 1090.2 1440.8 1323.2 1270.1 1276.2 986.1
RB 35.9 1033.6 1397.6 X 1086.4 1327.6 1434.1 1268.6 1284.1 1001.0
Sig 215.7 1306.8 1647.4 1958.1 X 1758.0 1950.5 1688.2 1570.4 1187.6
SR 112.4 1112.2 1673.9 1737.7 1136.2 X 1872.4 1803.1 1684.7 1127.5
UCT 74.2 1028.8 1273.4 1255.7 1060.2 1398.1 X 1350.5 1393.2 989.8
U-T 60.5 1029.5 1321.2 1301.8 1065.6 1346.0 1306.6 X 1461.0 1032.0
VOI 189.9 1149.5 1972.4 1835.0 1154.0 1874.8 1887.6 1853.5 X 1015.9
WP 425.4 1851.5 2319.7 2447.0 2026.3 2198.6 2505.7 2401.3 2144.9 X

Table 3: The amount of remaining hull that every variant scored against every
other variant on every playout setting.

66

damage (100 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 7706.5 7820.4 7838.2 7718.1 7770.9 7836.3 7862.8 7795.2 7606.0
HP 5635.9 X 7006.4 6977.7 6911.8 6997.7 7058.2 6972.3 6954.8 6718.8
QB 5191.0 6482.7 X 6726.0 6596.7 6736.7 6698.6 6759.1 6620.3 6128.0
RB 5145.1 6424.0 6788.2 X 6456.2 6727.6 6580.3 6746.4 6593.7 6286.0
Sig 5444.6 6689.6 6949.8 7050.9 X 6914.2 6869.4 6926.3 6906.8 6470.7
SR 5059.3 6545.6 6655.9 6747.3 6572.9 X 6714.6 6801.2 6576.4 6194.9
UCT 5134.9 6486.6 6636.3 6714.8 6687.9 6690.5 X 6673.6 6760.0 6367.5
U-T 5092.9 6685.5 6551.7 6802.7 6591.8 6555.7 6829.0 X 6624.8 6367.2
VOI 5190.6 6601.8 6742.9 6806.4 6626.5 6657.8 6606.1 6782.3 X 6320.9
WP 5855.1 6990.5 7109.6 7119.8 7001.7 7089.1 7051.9 7114.5 7083.9 X

damage (500 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 7914.0 8023.6 8012.0 7977.2 8003.8 8040.1 8014.0 7929.9 7705.6
HP 5563.3 X 7088.9 7088.9 6889.2 6991.1 7085.5 7093.0 7039.7 6556.9
QB 5152.3 6497.1 X 6730.2 6513.0 6539.7 6795.2 6799.3 6435.8 6142.7
RB 5138.9 6497.1 6867.0 X 6392.0 6512.3 6664.0 6813.0 6336.2 6142.7
Sig 5123.0 6418.6 7040.9 7066.3 X 6849.6 7066.7 7004.3 6835.1 6000.4
SR 5142.9 6196.2 6692.7 6731.6 6469.9 X 6864.9 6772.4 6387.4 5971.5
UCT 5180.4 6233.8 6790.1 6872.0 6319.8 6341.7 X 6837.0 6391.8 6038.7
U-T 5108.8 6311.6 6771.5 6921.1 6515.0 6399.9 6792.8 X 6578.6 6103.2
VOI 5083.9 6458.7 6815.1 6806.9 6692.4 6635.0 6816.7 6676.9 X 6205.4
WP 5874.6 6953.9 7096.3 7096.3 6983.3 7035.9 7062.9 7091.4 7015.6 X

damage (1000 playouts)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 7929.3 8091.1 8091.1 7911.3 8014.6 8052.8 8066.5 7937.1 7701.6
HP 5348.4 X 7071.6 7093.4 6820.2 7014.8 7098.2 7097.5 6977.5 6275.5
QB 4456.8 6233.1 X 6729.4 6479.6 6453.1 6853.6 6805.8 6154.6 5807.3
RB 4456.8 6069.8 6886.8 X 6168.9 6389.3 6871.3 6825.2 6292.0 5680.0
Sig 4661.1 6375.1 7036.8 7040.6 X 6990.8 7066.8 7061.4 6973.0 6100.7
SR 4326.6 6209.0 6686.2 6799.4 6369.0 X 6728.9 6781.0 6252.2 5928.4
UCT 4592.1 6185.0 6803.8 6692.9 6176.5 6254.6 X 6820.4 6239.4 5621.3
U-T 4485.9 5965.6 6856.9 6858.4 6438.8 6323.9 6776.5 X 6273.5 5725.7
VOI 4495.8 6345.7 6850.8 6842.9 6556.6 6442.3 6733.8 6666.0 X 5982.1
WP 5674.6 6858.5 7140.9 7126.0 6939.4 6999.5 7137.2 7095.0 7111.1 X

Table 4: The amount of damage dealt to the enemy that every variant scored
against every other variant on every playout setting.

67

wins (4 vs 4)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 9 9 9 9 10 8 9 9 7
HP 9 X 9 10 9 9 9 10 9 9
QB 9 9 X 9 10 9 9 9 9 9
RB 9 8 9 X 9 9 9 9 10 9
Sig 9 9 8 9 X 9 9 9 9 8
SR 8 9 9 9 9 X 9 8 9 8
UCT 10 9 9 9 9 9 X 9 9 9
U-T 9 8 9 9 9 10 9 X 9 8
VOI 9 9 9 8 9 9 9 9 X 8
WP 11 9 9 9 10 10 9 10 10 X

wins (8 vs 8)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 11 10 11 11 6 10 13 8 6
HP 7 X 9 12 13 6 12 10 7 4
QB 8 9 X 9 9 7 11 9 2 1
RB 7 6 9 X 6 5 12 6 3 2
Sig 7 5 9 12 X 6 14 11 6 3
SR 12 12 11 13 12 X 12 12 10 6
UCT 8 6 7 6 4 6 X 7 5 4
U-T 5 8 9 12 7 6 11 X 4 4
VOI 10 11 16 15 12 8 13 14 X 5
WP 12 14 17 16 15 12 14 14 13 X

wins (16 vs 16)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 18 15 16 18 16 15 16 16 17
HP 0 X 14 11 12 10 11 12 12 7
QB 3 4 X 8 11 9 10 10 7 6
RB 2 7 10 X 3 10 7 7 6 6
Sig 0 6 7 15 X 9 8 6 11 6
SR 2 8 9 8 9 X 9 14 8 3
UCT 3 7 8 11 10 9 X 10 9 6
U-T 2 6 8 11 12 4 8 X 9 3
VOI 2 6 11 12 7 10 9 9 X 9
WP 1 11 12 12 12 15 12 15 9 X

Table 5: The number of wins that every variant scored against every other variant
in the first three combat settings.

68

wins (32 vs 32)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 12 12 12 12 13 12 13 14 9
HP 6 X 10 12 8 9 8 10 11 7
QB 6 8 X 8 7 11 10 8 10 5
RB 6 6 10 X 7 10 6 9 8 8
Sig 6 10 11 11 X 8 11 10 9 7
SR 5 9 7 8 10 X 12 10 9 8
UCT 6 10 8 12 7 6 X 8 10 7
U-T 5 8 10 9 8 8 10 X 11 6
VOI 4 7 8 10 9 9 8 7 X 6
WP 9 11 13 10 11 10 11 12 12 X

wins (48 vs 48)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 15 16 16 17 16 17 18 16 13
HP 3 X 9 11 12 10 10 10 7 4
QB 2 9 X 7 6 9 6 10 8 6
RB 2 7 11 X 7 6 8 10 7 3
Sig 1 6 12 11 X 9 11 9 4 4
SR 2 8 9 12 9 X 10 9 8 6
UCT 1 8 12 10 7 8 X 10 10 5
U-T 0 8 8 8 9 9 8 X 9 3
VOI 2 11 10 11 14 10 8 9 X 3
WP 5 14 12 15 14 12 13 15 15 X

wins (64 vs 64)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 18 18 18 17 18 17 18 17 15
HP 0 X 9 9 9 9 9 9 9 9
QB 0 9 X 9 9 9 9 9 9 9
RB 0 9 9 X 9 9 9 9 9 9
Sig 1 9 9 9 X 9 9 9 9 9
SR 0 9 9 9 9 X 9 9 9 9
UCT 1 9 9 9 9 9 X 9 9 9
U-T 0 9 9 9 9 9 9 X 9 9
VOI 1 9 9 9 9 9 9 9 X 9
WP 3 9 9 9 9 9 9 9 9 X

Table 6: The number of wins that every variant scored against every other variant
in the second three combat settings.

69

symwins (4 vs 4)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 0 8 7 0 9 8 6 8 0
HP 9 X 9 9 3 9 9 9 9 4
QB 1 0 X 4 1 6 2 3 2 0
RB 2 0 5 X 0 5 7 4 7 0
Sig 9 4 8 9 X 9 9 9 9 4
SR 0 0 3 4 0 X 3 4 3 0
UCT 1 0 6 1 0 5 X 8 2 0
U-T 3 0 4 4 0 5 1 X 4 0
VOI 1 0 7 2 0 6 7 3 X 0
WP 9 5 9 9 5 9 9 9 9 X

symwins (8 vs 8)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 3 7 8 4 6 7 7 5 0
HP 6 X 7 8 7 6 8 6 4 0
QB 2 2 X 5 1 4 7 4 1 0
RB 1 1 4 X 1 3 6 4 0 0
Sig 5 2 8 8 X 4 8 8 5 1
SR 3 3 5 6 5 X 6 8 4 0
UCT 2 1 2 3 1 3 X 1 1 1
U-T 2 3 5 5 1 1 8 X 2 1
VOI 4 5 8 9 4 5 8 7 X 0
WP 9 9 9 9 8 9 8 8 9 X

symwins (16 vs 16)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 9 9 9 9 9 9 9 9 9
HP 0 X 8 7 8 9 6 9 8 3
QB 0 1 X 3 4 5 3 5 2 1
RB 0 2 5 X 0 3 4 3 2 1
Sig 0 1 5 9 X 6 6 4 8 1
SR 0 0 4 6 3 X 5 9 3 0
UCT 0 3 6 5 3 4 X 5 3 3
U-T 0 0 4 6 5 0 4 X 4 0
VOI 0 1 7 7 1 6 6 5 X 3
WP 0 6 8 8 8 9 6 9 6 X

Table 7: The number of symwins that every variant scored against every other
variant in the first three combat settings.

70

symwins (32 vs 32)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 9 9 9 9 9 9 9 9 6
HP 0 X 8 9 7 9 7 9 9 1
QB 0 1 X 3 1 5 5 5 3 0
RB 0 0 6 X 0 3 4 5 1 0
Sig 0 2 8 9 X 7 9 9 9 0
SR 0 0 4 6 2 X 8 7 1 0
UCT 0 2 4 5 0 1 X 2 1 0
U-T 0 0 4 4 0 2 7 X 2 1
VOI 0 0 6 8 0 8 8 7 X 0
WP 3 8 9 9 9 9 9 8 9 X

symwins (48 vs 48)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 9 9 9 9 9 9 9 9 9
HP 0 X 6 8 8 8 7 7 6 1
QB 0 3 X 4 2 4 1 5 3 0
RB 0 1 5 X 1 4 3 2 1 0
Sig 0 1 7 8 X 8 8 6 2 0
SR 0 1 4 4 1 X 3 6 3 0
UCT 0 2 5 5 1 4 X 3 4 0
U-T 0 2 2 6 3 1 5 X 3 0
VOI 0 3 6 8 7 6 5 6 X 0
WP 0 8 9 9 9 9 9 9 9 X

symwins (64 vs 64)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 9 9 9 9 9 9 9 9 9
HP 0 X 9 9 8 8 9 9 9 0
QB 0 0 X 0 2 0 0 0 0 0
RB 0 0 0 X 4 0 0 0 0 0
Sig 0 1 7 5 X 9 7 9 5 1
SR 0 1 0 0 0 X 0 0 0 0
UCT 0 0 0 0 1 0 X 0 0 0
U-T 0 0 0 0 0 0 0 X 0 0
VOI 0 0 9 9 4 9 9 9 X 0
WP 0 9 9 9 8 9 9 9 9 X

Table 8: The number of symwins that every variant scored against every other
variant in the second three combat settings.

71

hull (4 vs 4)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 113.4 180.8 193.3 101.0 361.2 263.4 245.2 302.1 68.3
HP 292.2 X 363.5 382.5 180.5 386.7 358.1 360.9 352.8 188.2
QB 103.2 30.4 X 230.1 30.0 278.0 243.5 262.2 276.7 54.2
RB 103.0 29.7 227.4 X 44.7 301.7 268.1 162.4 312.9 78.8
Sig 279.0 183.7 317.5 332.4 X 384.1 358.5 358.9 325.6 173.0
SR 151.3 54.9 210.8 188.3 58.7 X 249.5 223.3 319.5 89.9
UCT 80.7 28.6 307.9 203.9 21.5 305.3 X 251.2 270.4 71.0
U-T 72.4 26.1 261.4 201.6 36.5 310.3 150.3 X 279.3 40.9
VOI 173.0 49.4 312.7 196.8 48.5 345.8 276.6 230.9 X 41.6
WP 302.8 230.5 365.4 352.6 217.0 368.2 365.7 349.7 335.4 X

hull (8 vs 8)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 145.6 297.0 358.0 156.0 207.1 290.6 488.9 247.9 29.4
HP 200.3 X 303.6 497.0 360.8 279.8 613.8 535.4 226.5 83.4
QB 58.7 40.4 X 126.7 43.6 151.4 206.7 100.7 18.4 0.5
RB 65.2 13.9 202.7 X 20.3 89.2 213.7 88.8 41.7 6.7
Sig 184.8 97.3 322.3 482.7 X 188.5 463.9 415.8 188.5 19.5
SR 168.4 105.3 363.7 418.7 161.7 X 581.6 534.8 244.6 50.1
UCT 74.3 10.6 75.5 145.0 16.9 56.5 X 58.7 61.5 19.5
U-T 78.7 42.4 110.8 119.5 41.1 122.1 211.8 X 53.9 45.2
VOI 254.9 131.8 485.2 461.6 176.5 325.3 534.9 446.0 X 46.0
WP 523.3 379.6 829.8 828.3 564.0 594.2 848.2 645.8 563.5 X

hull (16 vs 16)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 653.5 1194.5 1196.2 1257.8 1288.6 1180.3 1163.3 1132.1 492.3
HP 0.0 X 539.6 356.7 335.5 471.1 418.8 403.2 480.3 164.0
QB 31.6 23.5 X 156.3 98.7 260.1 269.3 243.2 105.7 40.9
RB 24.2 41.2 235.6 X 6.5 208.9 184.8 110.0 139.0 38.4
Sig 0.0 69.8 257.0 605.3 X 378.1 235.7 168.0 379.6 118.4
SR 13.8 42.7 288.8 230.8 66.9 X 332.6 448.5 318.3 75.3
UCT 48.0 46.5 191.3 295.0 76.3 196.2 X 195.7 260.0 44.2
U-T 42.7 13.9 83.9 203.9 80.0 27.1 123.5 X 268.6 1.8
VOI 27.5 59.9 354.3 383.0 68.8 391.9 297.9 345.7 X 69.1
WP 1.1 313.5 559.7 541.2 552.7 710.4 490.9 509.3 347.2 X

Table 9: The amount of remaining hull that every variant scored against every
other variant in the first three combat settings.

72

hull (32 vs 32)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 598.6 1116.6 1115.0 1040.6 1149.2 999.7 991.0 1166.8 559.7
HP 299.5 X 512.6 575.3 460.2 569.3 553.5 600.9 549.2 194.4
QB 250.8 21.0 X 75.5 15.1 286.4 115.4 158.3 200.7 13.1
RB 245.7 12.0 136.8 X 32.1 169.5 158.1 165.3 174.8 12.2
Sig 283.9 194.1 412.4 415.2 X 463.3 505.0 431.2 377.3 149.8
SR 237.7 96.1 398.6 408.0 109.5 X 530.9 438.0 272.3 93.3
UCT 243.4 25.7 73.1 184.1 16.2 122.3 X 188.6 266.7 42.6
U-T 243.9 16.3 144.5 141.2 43.8 211.9 239.5 X 282.1 41.7
VOI 240.0 58.2 449.3 513.3 101.8 482.1 522.8 485.4 X 56.5
WP 374.6 448.5 707.1 688.3 631.5 742.6 763.5 788.8 788.5 X

hull (48 vs 48)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 2284.8 2547.5 2556.7 2456.9 2615.7 2533.3 2584.9 2569.6 2020.9
HP 39.2 X 339.3 469.1 472.3 613.8 421.9 408.4 281.4 66.1
QB 1.6 102.1 X 140.9 67.8 260.8 206.4 327.0 286.1 30.2
RB 1.6 106.9 283.4 X 15.0 223.9 167.1 162.8 171.8 22.4
Sig 22.7 199.6 373.0 418.8 X 445.7 524.2 352.0 149.9 70.2
SR 20.5 63.5 280.1 396.5 146.3 X 290.1 347.4 406.6 41.5
UCT 3.3 41.8 276.3 327.9 150.6 282.8 X 179.0 281.2 34.1
U-T 0.0 121.0 306.7 220.7 110.7 245.5 215.4 X 287.3 45.5
VOI 13.3 120.5 459.3 494.9 188.5 510.4 248.1 286.6 X 57.7
WP 125.7 453.3 731.5 752.4 744.5 761.3 775.7 781.8 753.4 X

hull (64 vs 64)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 4037.5 4244.5 4221.0 4140.0 4230.4 4206.3 4220.1 4192.2 3806.1
HP 0.0 X 3109.5 3109.5 3088.4 3109.5 3109.5 3109.5 3084.6 2882.0
QB 0.0 2996.7 X 3109.5 3098.3 3109.5 3109.5 3109.5 3084.6 2895.3
RB 0.0 3017.3 3109.5 X 3104.6 3109.5 3109.5 3109.5 3084.6 2880.4
Sig 4.0 3015.3 3109.5 3109.5 X 3109.5 3109.5 3109.5 3084.6 2925.7
SR 0.0 3014.9 3109.5 3109.5 3083.3 X 3109.5 3109.5 3084.6 2906.4
UCT 2.1 2985.9 3109.5 3109.5 3096.6 3109.5 X 3109.5 3084.6 2917.6
U-T 0.0 2998.5 3109.5 3109.5 3076.9 3109.5 3109.5 X 3084.6 2905.0
VOI 10.1 2989.2 3109.5 3109.5 3082.0 3109.5 3109.5 3109.5 X 2899.5
WP 40.3 3004.4 3109.5 3109.5 3099.5 3109.5 3109.5 3109.5 3084.6 X

Table 10: The amount of remaining hull that every variant scored against every
other variant in the second three combat settings.

73

damage (4 vs 4)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 274.8 463.8 464.0 288.0 415.7 486.3 494.6 394.0 264.2
HP 453.6 X 536.6 537.3 383.3 512.1 538.4 540.9 517.6 336.5
QB 386.2 203.5 X 339.6 249.5 356.2 259.1 305.6 254.3 201.6
RB 373.7 184.5 336.9 X 234.6 378.7 363.1 365.4 370.2 214.4
Sig 466.0 386.5 537.0 522.3 X 508.3 545.5 530.5 518.5 350.0
SR 205.8 180.3 289.0 265.3 182.9 X 261.7 256.7 221.2 198.8
UCT 303.6 208.9 323.5 298.9 208.5 317.5 X 416.7 290.4 201.3
U-T 321.8 206.1 304.8 404.6 208.1 343.7 315.8 X 336.1 217.3
VOI 264.9 214.2 290.3 254.1 241.4 247.5 296.6 287.7 X 231.6
WP 498.7 378.8 512.8 488.2 394.0 477.1 496.0 526.1 525.4 X

damage (8 vs 8)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 933.7 1075.3 1068.8 949.2 965.6 1059.7 1055.3 879.1 610.7
HP 988.4 X 1093.6 1120.1 1036.7 1028.7 1123.4 1091.6 1002.2 754.4
QB 837.0 830.4 X 931.3 811.7 770.3 1058.5 1023.2 648.8 304.2
RB 776.0 637.0 1007.3 X 651.3 715.3 989.0 1014.5 672.4 305.7
Sig 978.0 773.2 1090.4 1113.7 X 972.3 1117.1 1092.9 957.5 570.0
SR 926.9 854.2 982.6 1044.8 945.5 X 1077.5 1011.9 808.7 539.8
UCT 843.4 520.2 927.3 920.3 670.1 552.4 X 922.2 599.1 285.8
U-T 645.1 598.6 1033.3 1045.2 718.2 599.2 1075.3 X 688.0 488.2
VOI 886.1 907.5 1115.6 1092.3 945.5 889.4 1072.5 1080.1 X 570.5
WP 1104.6 1050.6 1133.5 1127.3 1114.5 1083.9 1114.5 1088.8 1088.0 X

damage (16 vs 16)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 2268.0 2236.4 2243.8 2268.0 2254.2 2220.0 2225.3 2240.5 2266.9
HP 1614.5 X 2244.5 2226.8 2198.2 2225.3 2221.5 2254.1 2208.1 1954.5
QB 1073.5 1728.4 X 2032.4 2011.0 1979.2 2076.7 2184.1 1913.7 1708.3
RB 1071.8 1911.3 2111.7 X 1662.7 2037.2 1973.0 2064.1 1885.0 1726.8
Sig 1010.2 1932.5 2169.3 2261.5 X 2201.1 2191.7 2188.0 2199.2 1715.3
SR 979.4 1796.9 2007.9 2059.1 1889.9 X 2071.8 2240.9 1876.1 1557.6
UCT 1087.7 1849.2 1998.7 2083.2 2032.3 1935.4 X 2144.5 1970.1 1777.1
U-T 1104.7 1864.8 2024.8 2158.0 2100.0 1819.5 2072.3 X 1922.3 1758.7
VOI 1135.9 1787.7 2162.3 2129.0 1888.4 1949.7 2008.0 1999.4 X 1920.8
WP 1775.7 2104.0 2227.1 2229.6 2149.6 2192.7 2223.8 2266.2 2198.9 X

Table 11: The amount of damage dealt to the enemy that every variant scored
against every other variant in the first three combat settings.

74

damage (32 vs 32)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 4236.5 4285.2 4290.3 4252.1 4298.3 4292.6 4292.1 4296.0 4161.4
HP 3937.4 X 4515.0 4524.0 4341.9 4439.9 4510.3 4519.7 4477.8 4087.5
QB 3419.4 4023.4 X 4399.2 4123.6 4137.4 4462.9 4391.5 4086.7 3828.9
RB 3421.0 3960.7 4460.5 X 4120.8 4128.0 4351.9 4394.8 4022.7 3847.7
Sig 3495.4 4075.8 4520.9 4503.9 X 4426.5 4519.8 4492.2 4434.2 3904.5
SR 3386.8 3966.7 4249.6 4366.5 4072.7 X 4413.7 4324.1 4053.9 3793.4
UCT 3536.3 3982.5 4420.6 4377.9 4031.0 4005.1 X 4296.5 4013.2 3772.5
U-T 3545.0 3935.1 4377.7 4370.7 4104.8 4098.0 4347.4 X 4050.6 3747.2
VOI 3369.2 3986.8 4335.3 4361.2 4158.7 4263.7 4269.3 4253.9 X 3747.5
WP 3976.3 4341.6 4522.9 4523.8 4386.2 4442.7 4493.4 4494.3 4479.5 X

damage (48 vs 48)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 6764.8 6802.4 6802.4 6781.3 6783.5 6800.7 6804.0 6790.7 6678.3
HP 4519.2 X 6701.9 6697.1 6604.4 6740.5 6762.2 6683.0 6683.5 6350.7
QB 4256.5 6464.7 X 6520.6 6431.0 6523.9 6527.7 6497.3 6344.7 6072.5
RB 4247.3 6334.9 6663.1 X 6385.2 6407.5 6476.1 6583.3 6309.1 6051.6
Sig 4347.1 6331.7 6736.2 6789.0 X 6657.7 6653.4 6693.3 6615.5 6059.5
SR 4188.3 6190.2 6543.2 6580.1 6358.3 X 6521.2 6558.5 6293.6 6042.7
UCT 4270.7 6382.1 6597.6 6636.9 6279.8 6513.9 X 6588.6 6555.9 6028.3
U-T 4219.1 6395.6 6477.0 6641.2 6452.0 6456.6 6625.0 X 6517.4 6022.2
VOI 4234.4 6522.6 6517.9 6632.2 6654.1 6397.4 6522.8 6516.7 X 6050.6
WP 4783.1 6737.9 6773.8 6781.6 6733.8 6762.5 6769.9 6758.5 6746.3 X

damage (64 vs 64)
FAP HP QB RB Sig SR UCT U-T VOI WP

FAP X 9072.0 9072.0 9072.0 9068.0 9072.0 9069.9 9072.0 9061.9 9031.7
HP 5034.5 X 6075.3 6054.7 6056.7 6057.1 6086.1 6073.5 6082.8 6067.6
QB 4827.5 5962.5 X 5962.5 5962.5 5962.5 5962.5 5962.5 5962.5 5962.5
RB 4851.0 5962.5 5962.5 X 5962.5 5962.5 5962.5 5962.5 5962.5 5962.5
Sig 4932.0 5983.6 5973.7 5967.4 X 5988.7 5975.4 5995.1 5990.0 5972.5
SR 4841.6 5962.5 5962.5 5962.5 5962.5 X 5962.5 5962.5 5962.5 5962.5
UCT 4865.7 5962.5 5962.5 5962.5 5962.5 5962.5 X 5962.5 5962.5 5962.5
U-T 4851.9 5962.5 5962.5 5962.5 5962.5 5962.5 5962.5 X 5962.5 5962.5
VOI 4879.8 5987.4 5987.4 5987.4 5987.4 5987.4 5987.4 5987.4 X 5987.4
WP 5265.9 6190.0 6176.7 6191.6 6146.3 6165.6 6154.4 6167.0 6172.5 X

Table 12: The amount of damage dealt to the enemy that every variant scored
against every other variant in the second three combat settings.

75

	Introduction
	Related Work
	MCTS
	Game tree
	Monte Carlo methods
	Multi-Armed Bandit
	Algorithm
	Selection
	Expansion
	Simulation
	Backpropagation

	Pros and Cons

	Children of the Galaxy
	4X Games
	Gameplay
	Combat
	Branching factor

	Script-based search
	No-Overkill-Attack-Value (NOKAV)
	Kiter

	MCTS Variants
	UCT uct
	SR+CR MCTS sr+cr
	VOI-aware MCTS sr+cr
	UCB1-Tuned MCTS ucb1
	Sigmoid MCTS sigmoid
	Relative Bonus MCTS rqbonus
	Qualitative Bonus MCTS rqbonus
	MCTS_HP pavel
	FAP MCTS fap
	WP MCTS

	Experiments
	Setup
	Definitions
	Test design
	Experiment Design
	Experiment Specification

	Abbreviations
	Results
	Playout Analysis
	Combat Analysis

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	User Documentation
	Data and Files
	XML Manager
	makeai
	makebmrk
	makebmrks
	makebset
	makebsets
	delete
	change
	sethome
	setscripts
	quit
	help

	CSV Cruncher
	Data Visualizer
	battledata1.py
	battledata2.py
	battlerankings.py
	common_functions.py
	playoutdata.py
	playoutrankings.py
	timedepthdata.py

	Position Generator
	Result Trimmer
	Time-Depth Cruncher

	Additional Data

