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Abstract 
Snowmelt is a critical source of  water resources for ecosystems and communities 

surrounding the Sierra Nevada. Forest canopy controls critical mass and energy balance 

dynamics that can alter snowpack accumulation and ablation. In addition to changing climate 

dynamics that could shift the precipitation regimes of  this region, an increase in ecosystem 

disturbance (e.g., drought, wildfires) creates dynamic forest structures that have the ability to 

drastically alter the snowpack. Forest management aims at creating resilient ecosystems but is 

often less explicitly focused on retaining the snowpack as a crucial water reservoir. It is 

important to constrain how fine-scale forest structures impact snowpack accumulation and 

persistence to predict future dynamics and inform management. However, while broad-scale 

forest structure metrics have been studied extensively in relation to snowpack, less is known 

about how fine-scale forest structure impacts snowpack. Light detection and ranging (lidar) 

data provide the opportunity to understand these complex dynamics using high resolution, 

spatially distributed points that capture detailed forest structure and snow depth. We use 

lidar collected over the course of  multiple accumulation seasons both pre- and post-

disturbance in Sagehen Creek Basin in the central Sierra Nevada to investigate how 

snowpack accumulation is impacted by fine-scale forest structure metrics, like leaf  area index 

(LAI’) and the ratio of  gap width to average tree height (openness) in a 30-meter grid cell. In 

addition, we use a series of  measurements taken during the ablation season to understand 

how forest structures impact snow persistence. Through developing a refined space-for-

structure processing protocol, we show a delicate balance between the fraction of  forest 

cover (fVEG) and openness in an area that promotes snowpack accumulation and reduces 

ablation. In general, areas with lower fVEG (0.3) and smaller gaps (diameter/height ~0.1) 
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increase accumulation. However, decreasing gap sizes and increasing fVEG can also lead to 

more ablation, supporting climate-driven paradigms that predict more ablation under the 

canopy in regions like the Sierra Nevada. Pre- and post-disturbance analyses show 

inconsistent patterns because of  confounding accumulation and ablation dynamics at the 

date of  collection. Our processing protocol and space-for-structure analysis provide a 

unique opportunity to understand lidar-derived forest-snow dynamics in a way that is 

transferrable to areas with varying vegetation and climate regimes.  

Keywords: snow-hydrology, ecohydrology, forest disturbance, snow-vegetation 
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List of  Key Terms 
Disturbance – A forcing large enough to cause a state change that impacts Critical Zone 
function. Importantly, in the context of  the Sierra Nevada ecosystem, this term encompasses 
changes that occurred prior to Euro-American settlement (lightning ignited wildfire or 
indigenous burns) that reinforced resilience, changes that decrease resilience (high-intensity 
fires in overly dense forests), and changes due to management practices like thinning.  
 
Resilience – socio-ecological systems’ “…capacity to withstand and bounce back from 
disturbances and impacts, and—if  necessary—to learn and transform themselves while 
continuing or regaining the ability to provide essential functions, services, amenities, or 
qualities…” (Moser et al., 2009).  
 
SWE – snow water equivalent, or the amount of  water held within a snowpack (measured in 
depth) 
 
Critical Zone (CZ) – the region between the bedrock and treetops 
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1 Introduction 
Around one sixth of  the world’s population relies on snowmelt-derived water resources 

(Barnett et al., 2005). Warming-induced climate trends predict a future of  shifting climatic 

regimes resulting in increased precipitation variability (magnitude and form) and an overall 

decrease in snowpack accumulation and retention (Bales et al., 2006; Barnett et al., 2005; 

Huning & AghaKouchak, 2018; Li et al., 2017; Moser et al., 2009; North, 2012; Serreze et al., 

1999). The western U.S. is particularly vulnerable to these shifting dynamics because it has 

historically relied on snow in the higher, wetter elevations to support its water resource needs 

(Barnhart et al., 2016; Godsey et al., 2014; Harpold et al., 2017; Musselman et al., 2015). The 

Sierra Nevada mountains sit within a snow-dominated precipitation regime and feed over 

half  of  California’s water supply. Particularly in high-elevation systems, the snowpack serves 

as a natural water tower, driving evapotranspiration dynamics, dictating the timing of  peak 

soil moisture, and sustaining low streamflow into the dry summer months (Barnhart et al., 

2016; Cooper et al., 2020; Godsey et al., 2014; Hammond et al., 2019; Harpold, Molotch, et 

al., 2014; Li et al., 2017; Lundquist & Loheide, 2011). 

Climate is the primary control on the broad-scale precipitation patterns that drive 

snowpack accumulation and energy flux patterns that dictate ablation; however, terrain and 

vegetation serve as secondary controls and can buffer or enhance climate impacts on water 

resources. In some locations, the spatial variability in snowpack distribution can be explained 

by terrain characteristics. High-elevation, steep, northern-facing slopes in the Sierra Nevada 

typically both accumulate and retain more snow (Godsey et al., 2014; Jost et al., 2007; 

Mazzotti et al., 2019; Tennant et al., 2017; Varhola et al., 2010). 
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Forest-snow interactions have been of  historical interest in the Sierra Nevada. 

Records of  field-based studies extend to the early 20th century, showing a delicate balance 

between accumulation and ablation. Vegetation influences energy fluxes that control 

snowpack retention, shading the snowpack from shortwave radiation and emitting longwave 

radiation. Shortwave radiation typically dominates ablation energy fluxes in the Sierra 

Nevada, but longwave radiation from forest canopy can be important when solar irradiance 

is low, which depends on seasonality, local climate, and terrain (Broxton et al., 2021; 

Dickerson-Lange et al., 2021; Hubbart et al., 2015; Kostadinov et al., 2019; Lundquist et al., 

2013; Mazzotti et al., 2019; Safa et al., 2021; Zheng et al., 2019). In warmer regions, like the 

Sierra Nevada, with average winter temperatures ~-1°C and minimal wind redistribution, up 

to 60% of  precipitation can be intercepted and sublimated from the forest (Harpold, Guo, et 

al., 2014; Hubbart et al., 2015; Safa et al., 2021; Schneider et al., 2019; Zheng et al., 2019). 

Moreover, the interplay between mass and energy fluxes in the Sierra Nevada, where ablation 

primarily occurs earlier in the spring when solar irradiance is low, suggest that snow will 

ablate more quickly and disappear earlier under forest canopy locations compared to the 

open areas due to the dominance of  longwave radiation as an ablating force (over shortwave 

radiation) (Lundquist et al., 2013). Fine-scale accumulation and ablation patterns depend on 

tree-scale variability causing gaps (Lundquist et al., 2013; Safa et al., 2021), forest clumps, 

edges of  different vegetation density, and height (Broxton et al., 2015; Hubbart et al., 2015; 

Russell et al., 2021; Tennant et al., 2017). While these fine-scale forest structure metrics exert 

strong controls on snowpack distribution, studies commonly focus on binary canopy-open 

classifications or broad scale, poorly defined canopy density metrics to investigate forest-

snow interactions (Broxton et al., 2021; Harpold et al., 2020; Lundquist et al., 2013; Mazzotti 
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et al., 2019; Stevens, 2017; Varhola et al., 2010). Dynamic canopy conditions due to increased 

ecosystem disturbance (e.g., wildfire, beetle kill) add to the complexity of  these processes.  

A combination of  climate change and fire suppression has resulted in dry, overly 

dense forests vulnerable to unprecedented high-intensity disturbance. Today, activate forest 

management attempts to return systems to more heterogeneous states, reminiscent of  

historical resilient conditions, by introducing low-moderate severity disturbances (e.g., 

prescribed wildfire, thinning). Wildfires, for example, historically sculpted a mosaic of  forest 

structures that co-benefitted a myriad of  processes throughout the Critical Zone (CZ) by 

maintaining and creating diverse vegetation types (e.g. shrubs, wetlands, forests). This led to 

an increase in streamflow and resulted in wetter soils due to the reduction of  high-water use 

vegetation (e.g., Boisramé et al., 2019; Rakhmatulina et al., 2021; Stephens et al., 2021). In 

reference watersheds throughout the Sierra Nevada, efforts are underway to introduce low-

moderate severity fires and selective thinning back into the landscape in order to create 

forest conditions that promote ecosystem function similar to historical conditions (North, 

2012; Rakhmatulina et al., 2021; Stephens et al., 2021). These efforts are predicted to result 

in increasing hydrological outputs from impacted watersheds, including an increase in 

snowmelt magnitude (Boisramé et al., 2019; Stephens et al., 2021). However, tools to assess 

larger scale disturbance effects on snowpack accumulation and retention depend on specific 

vegetation structures, antecedent conditions, terrain, and the nature of  the disturbance itself  

(Bart et al., 2021; Du et al., 2016; Ellis et al., 2013; Harpold et al., 2020; Jost et al., 2007; 

Krogh et al., 2020; Xu et al., 2018).  

There is a knowledge gap regarding how vegetation (and vegetation disturbance) 

interacts with terrain to alter snowpack dynamics. Varhola et al. (2010), provides a good 
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example of  the current paradigm, and showed through a meta-analysis of  more than 30 

studies that accumulation generally increased as the fraction of  area covered by forests 

(fVEG) decreased, while ablation generally decreased as fVEG increased. However, their 

field-based method could not ascertain clear climate or terrain effects. Recent evidence 

shows that spatially distributed measurements can capture more nuanced vegetation impacts 

on snowpack than plot-scale field observations, highlighting that lower canopy is critical to 

radiation dynamics, edge effects are varied and can enhance or dampen vegetation-

accumulation signals, and interception efficiency is both important and hard to capture 

(Currier & Lundquist, 2018; Mazzotti et al., 2020; Musselman et al., 2012; Russell et al., 2021; 

Safa et al., 2021; Webster et al., 2020). The methodological framework used by Varhola et al. 

(2010), combined many field-observations, compared snow water equivalent (SWE) at 

control sites (of  varying scales) to reference sites (with either more or less vegetation) and 

remains a useful approach that could take advantage of  new spatially distributed data.  

Airborne light detection and ranging (lidar) has led to a data revolution that can help 

answer some of  the biggest questions about spatial (and temporal) trends in snow processes 

under the forests (Broxton et al., 2015; Deems et al., 2013; Painter et al., 2016). Lidar offers 

substantial advantages over other remote sensing tools because emitted light pulses can 

penetrate gaps in vegetation and create a spatially distributed ground surface model at a sub-

meter resolution and decimeter accuracy over extents greater than 100 km2 (Deems et al., 

2013; Hopkins et al., 2004; Krogh et al., 2020; Moeser et al., 2020; Painter et al., 2016). 

Previous studies have validated the reliability of  lidar as a tool to capture under-forest 

snowpack but has generally focused on resolving snow depth or snow-covered area instead 

of  SWE, which incorporates snow depth and density. SWE is more complicated to derive 
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and more valuable in terms of  hydrologic understanding (Broxton et al., 2015; Deems et al., 

2013; Harder et al., 2020; Hopkins et al., 2004; Hopkinson et al., 2010; P. B. Kirchner et al., 

2014; Kostadinov et al., 2019; Mazzotti et al., 2019; Painter et al., 2016; Safa et al., 2021; 

Tinkham et al., 2014). There are few consistent processing methods to resolve SWE from 

lidar-derived snow depth in dense forests because, while lidar can penetrate gaps in 

vegetation, the number of  returns is reduced due to interactions with vegetation, low 

branches can be confounded with the snow surface, and variable snow density adds spatial 

heterogeneity (both vertically throughout the snowpack and horizontally over the landscape). 

Moreover, large-scale processing of  dense point clouds is computationally intensive and 

requires expert knowledge of  vertical and lateral biases typical in these datasets (Deems et 

al., 2013; Kostadinov et al., 2019; Painter et al., 2016). Developing a consistent and open-

source tool to estimate the effects of  vegetation on SWE accumulation and ablation could 

improve our understanding of  processes and provide simple tools to forest managers.  

Taking advantage of  a unique set of  lidar datasets at Sagehen Creek Basin in the 

Sierra Nevada, California, we investigate how fine-scale forest structure metrics interact with 

terrain to control snowpack accumulation and retention. We follow the Varhola et al. (2010) 

reference-site framework to develop a “space-for-structure” (explained in more detail later) 

approach that estimates the bulk snow in a 30-m grid cell compared to reference (open or 

forested) 1-m pixels within that grid cell. Using this novel method for processing lidar 

datasets, we ask the following questions over the complex topography and heterogenous 

forest canopy of  the >20 km2 Sagehen Creek domain: 

1. How does the fraction of  vegetation in an area influence snow accumulation and 

ablation? 
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2. What role does terrain (elevation, aspect, and slope) play versus finer-scale vegetation 

structure (openness) on snow accumulation and ablation? 

3. Does pre- and post-disturbance lidar imply similar changes in snow accumulation to 

the space-for-structure approach, and what management recommendations can be 

drawn from those relationships? 

 
 We combine the Varhola et al. (2010) approach with Random Forest (RF) modeling 

to answer the first two research questions and take advantage of  three snow accumulation 

flights (2008, 2016, and 2022) and three flights over early and late-season ablation periods 

(March-April and April-May of  2016). We repeat these analyses, further refining the space-

for-structure approach, post-thinning in 2022 to answer question 3. A primary goal was to 

create a replicable, open-source workflow to process point clouds, targeting snow and 

canopy metrics. In this way, our work serves as an important proof-of-concept for a new 

method to improve our understanding of  snow-vegetation interactions and provide skillful 

estimates on the impacts of  forest disturbance. 
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2 Methods 

2.1 Study Site 

Sagehen Creek Basin (SCB), located in the eastern Sierra Nevada, spans 28 km2 and 

~1800-2650 meters in elevation. Our study domain is ~7 by 8 km, extending beyond the 

watershed (Figure 1). The Basin has a unique record of  research spanning 50+ years (J. 

Kirchner et al., 2005; Mast & Clow, 2000; North, 2012; Sagehen Project, 2013). SCB sits within 

the Sierran Steppe-Mixed Forest-Coniferous Forest-Alpine Meadow Province, and dominant 

vegetation types include Jeffrey Pine (P. jeffreyi), Lodgepole Pine (Pinus contorta), Ponderosa 

Pine (P. ponderosa), Red Fir (A. magnifica), Sugar Pine (P. lambertiana), Western White Pine (P. 

monticola), and White Fir (Abies concolor) (Mast & Clow, 2000). The Mediterranean climate in 

this region has warm, dry summers and cold, wet winters. Precipitation is dominated by 

snow (J. Kirchner et al., 2005; Mast & Clow, 2000; North, 2012; Trujillo & Molotch, 2014). 

There are three snow telemetry (SNOTEL) sites within or directly surrounding the basin, 

which measure depth and SWE using snow pillows. Median peak SWE ranges from 37 cm at 

the lowest SNOTEL site (Station Name: Independence Creek; Station ID: 540, Elevation 

1961 m) to 113 cm at the highest site (Station Name: Independence Lake, Station ID: 541, 

Elevation 2541 m). The mean winter temperature is -1°C (Serreze et al., 1999).  

The ecohydrology of  SCB has been shaped by a complicated history of  management 

– and mismanagement. Indigenous forest management (e.g., prescribed burns), primarily 

influenced by the presence of  the Washoe (Wá∙šiw) Tribe, promoted a heterogeneous 

ecosystem from ~1200 CE until the mid-19th century. Fire return intervals were around two 

years in the area during this time (Lindstom et al., 1999; Washoe Tribe, 2021). The onslaught 

of  Euro-American settlement led to a period of  timber harvesting until the early 20th century 
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and fire suppression thereafter when the U.S. Forest Service gained control over the 

watershed. This suppression resulted in dense, homogenous forests susceptible to high-

intensity disturbance (e.g. wildfire, drought) (Moser et al., 2009; North, 2012; Sagehen Project, 

2013; Vaillant & Stephens, 2009). The “Sagehen Fuels Reduction Project,” a collaborative 

effort aimed at restoring and enhancing ecological heterogeneity and resilience to wildfires, 

has had a significant impact on the landscape of  SCB. Fuel treatments, including prescribed 

burns and forest thinning, were implemented at target sites in the late 2010s (Figure 1). The 

goal of  these management initiatives was to restore ecosystem function and enhance species 

conservation. However, less is known about how treatments, or landscape disturbances, 

explicitly influence hydrological processes driven by snowmelt. As the Sagehen Project is 

meant to represent management that could be applied elsewhere, it is integral that all 

elements of  CZ response to disturbance are understood (Mast & Clow, 2000; North, 2012; 

Sagehen Project, 2013).  

2.2 Lidar Data and Processing 

Lidar is an active remote sensing tool that emits pulses of  light at near infrared 

wavelengths (typically 1064 nm). At the target scales for this study (individual tree to 

hillslope), data is collected using airborne instruments. Emitted pulses are reflected off  

objects and the lidar scanner calculates a distance from the source based on the return time 

of  the pulse. Lidar resolution is a function of  points per square-meter (See Table A4 for 

resolution specifications of  the data used in this study). Unlike other remote sensing tools 

which are limited to passive spectral reflectance signatures (like structure for motion) or are 

scattered by vegetation, lidar pulses can penetrate gaps in vegetation. While multiple returns 

can result in decreased return intensity, the instruments typically retrieve a high enough point 
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density (1.5-25 points/m2) to resolve fine scale forest structure and the snowpack surface 

(Deems et al., 2013; Gatziolis & Andersen, 2008; Hopkins et al., 2004; Tinkham et al., 2014; 

Webster et al., 2020; Zheng et al., 2019).  

A major limitation of  lidar data is the temporal resolution, and the cost of  acquisition 

can inhibit multiple flights. While April 1 SWE is typically assumed to represent peak SWE 

throughout the watershed, and targeted for lidar data acquisitions, SNOTEL data often 

reveal ablation at lower elevation sites (e.g., Figure 2). Therefore, early lidar flights can be 

valuable to investigate accumulation dynamics because ablation is less likely. However, 

climate variability complicates predicting the timing for peak SWE, and later flights can 

provide more useful information to stakeholders interested in the magnitude of  spring melt, 

water reservoir managers, for example.  

The study period was from 2008 to 2022, with specific dates of  inquiry driven by data 

availability. Later flights were impacted by significant ablation, particularly at lower elevations 

(Figure 2). Despite their temporal limitations, these data present a unique opportunity in two 

ways. Firstly, a series of  multi-temporal flights in 2016 captured both early and late season 

ablation, allowing us to take advantage of  spatially distributed SWE data (as opposed to 

snow-covered-area data products provided by other remote sensing sources) to investigate 

ablation dynamics. Secondly, pre- and post-disturbance data allowed us to directly interrogate 

the impacts of  specific forest management practices (thinning in 2017) on snowpack 

accumulation.  

Lidar data was sourced from the Airborne Snow Observatory (ASO) and the National 

Center for Airborne Laser Mapping (NCALM). Snow depth was calculated by differencing 

snow-on and snow-off  flights. Pre-disturbance, snow-off  lidar was flown by NCALM in the 
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summer of  2014 with an average point density of  8.93 pts/m2 (Guo, 2014). Pre-disturbance, 

snow-on lidar was flown in the early accumulation season of  2008 (on 02/10) by NCALM, 

with an average point density 4.9 pts/m2 and again in 2016 by ASO at peak SWE (3/26), 

early in the ablation season (4/17), and late in the ablation season (5/18) with average point 

densities ~2 pts/m2 (Dozier & Painter, 2004; Huntington, 2008). Post-disturbance, snow-off  

lidar was acquired by NCALM in the fall of  2020 (11/20) with an average point density of  

20.98 pts/m2 (Graup, 2021). Post-disturbance, snow-on lidar was also flown by NCALM. 

Though this flight was targeted to capture peak SWE in late March, early accumulation 

followed by a long period of  ablation shifted the ablation season ~10 days (Figure 2). The 

data was ultimately collected in the spring of  2022 (3/21) with an average point density of  

28 pts/m2 (Piske, 2022).  

Data processing was modified from the workflow of  Kostadinov et al., 2019 (See 

Appendix A for more details on processing) to optimize reproducibility and to enable 

analyses in diverse vegetation types. The 2014 data were used for all terrain calculations and 

snow-off  ground-truths both to maintain consistency, and because the 2020 flight was taken 

just after the first snowfall. While the 2020 data contains minimal snow accumulation, we 

used the 2014 flight to be conservative. The height above ground can be determined using a 

point to pixel subtraction, with the 2014 digital elevation model (DEM) as the ground 

reference. Vertical bias corrections were performed on the data depending on the availability 

of  ground-truth points. Because of  the relatively small elevation gradient, a single value is 

used to represent vertical bias across the landscape. We used this method as opposed to a 

traditional co-registration, which requires large enough snow-off  surfaces at various points 

across the landscape to account for the lower point density of  the snow-on data. In addition, 
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the 2016 flight contained the possibility for only two ground-truth points from the 

SNOTEL data (Deems et al., 2013).  

The 2008 data was compared to 13 total points, combining field-based snow depth 

observations and SNOTEL data (Huntington, 2008). The median lidar height above ground 

was extracted with a search radius of  three meters around each observation (Figure A2). The 

median of  the combined points was taken to calculate a final vertical bias across the 

watershed. This general process was repeated for the other flights with minor modifications. 

For the 2016 flights, the median pixel height above Highway 89 was taken to represent a 

consistent snow-off  surface. A DEM was created from the 2020 flight, and the 2014 DEM 

was used as the “truth”. There were more than 50 snow-depth field observations for the 

2022 flight, and the vertical bias was calculated similarly to the 2008 flight. The vertical 

biases between the flight and the ground-truth points were 0.03, 0.29, 0.35 0.44, 0.08, and 

0.048 meters for the 2008, 2016 (03/26, 04/17, 05/18), 2020, and 2022 flights respectively.  

Once the vertical bias was corrected, we classified the snow-off  vegetation using a 

refined classification logic (Table A1; Figure 3; Figure 4) to produce four canopy strata 

classes: open, short, understory, and tall. In addition, an open-reference class represents 

open areas with a 1 m buffer around the canopy to mitigate edge effects for our analyses 

Figure A3). Snow depth was calculated by taking the height above ground rasters and 

filtering based on the canopy strata classifications (Table A2; Figure 5). Snow density was 

determined using the SnowPALM model, which models compaction as a function of  albedo 

and density decay using values calibrated from SNOTEL sites (Broxton et al., 2015; see 

Equation 15). Where data was available, SnowPALM was validated against field and 

SNOTEL data (Huntington, 2008). In 2008, SnowPALM typically overpredicted density and 
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underpredicted snow depth. The median difference between SnowPALM and ground-truth 

density data was 0.02. We did not correct for this in our final SWE calculations. The model 

was run for each water year up until the flight dates. From depth and density, we calculated 

SWE, which was stored in both 1x1 m pixels and 30x30m grids.  

We chose several key terrain variables to characterize the landscape as proxies for the 

energy and mass-balance dynamics that control snowpack accumulation and ablation. 

Northness (cos(aspect) * sin(slope)) primarily represents solar radiation while eastness 

(sin(aspect) * sin(slope)) represents wind loading that alters mass redistribution. Elevation 

correlates with both precipitation and temperature (Figure 1).  

Forest structure metrics were chosen to be representative of  the wide range of  

classifications that are used in other studies (e.g., Krogh et al., 2020; Mazzotti et al., 2020; 

Russell et al., 2021; Safa et al., 2021; Saksa et al., 2017). See Table A3 for forest structure 

classification descriptions. Most of  the forest structure metrics were highly correlated 

(Figure A1). The fraction of  vegetation (fVEG), a modified leaf  area index (LAI’), and 

openness index are the metrics chosen to focus on for the remainder of  the analyses after 

preliminary experiments with the RF model. fVEG is a broad forest structure metric that 

indicates the portion of  a grid cell covered by pixels with maximum canopy height greater 

than three meters, impacting both the incoming radiation dynamics and interception (e.g., 

Mazzotti et al., 2019). LAI’ is an index, calculated using a combination of  a point density 

ratio and canopy height model (scaled to the maximum tree height), as a proxy for the total 

surface area of  the leaves or needles on the canopy, acting as a limiting factor for canopy 

interception. This metric is then scaled to the maximum forest height (Krogh et al., 2020). 

Openness represents gap dynamics influencing incoming solar radiation and breaks in 
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potential interception. This metric is a ratio of  the gap diameter (or twice the distance to 

nearest canopy) to the average forest height in a pixel. We took the natural log of  this 

variable so that negative values represent forest gap to average tree height ratios less than 

one and positive values represent forest gap to average tree height ratios greater than one 

(Ellis et al., 2013). 

Following the methodology of  Varhola et al. (2010), SWE was normalized based on a 

“reference” value using Equation 1 below. This was done to control for precipitation and 

terrain differences across the study domain.  

     ∆" = ("#$)
$ ∗ 100    (1) 

 

∆y represents the percent difference between the target pixel value (x) and a reference value 

(R). These percent change values were calculated for several inputs for our analyses. The 

general form of  Equation 1 was applied to both pre- and post-disturbance analyses. Pre-

disturbance, the goal was to determine how accumulation changed with increasing canopy 

cover. Open-reference areas were used as the reference sites. Post-disturbance, disturbed 

pixels were compared to undisturbed reference pixels (with higher fVEG).  

2.2.1 Space for Structure Analysis 

The space-for-structure approach aims to control for terrain and isolate secondary 

vegetation impacts on snow. The primary assumption associated with this method is that the 

dynamics dictated by the forest structure at one location are representative of  dynamics that 

would occur if  the structure at another location shifted towards the former. The space-for-

structure analysis was run on the pre-disturbance accumulation and ablation metrics.  
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For the accumulation flights, the average SWE of  all 1 m pixels within a 30m grid 

cell was taken to represent the target pixel SWE (x), and the average SWE of  the open-

reference 1 m pixels within a 30m grid cell was taken to represent the reference pixel SWE 

(R). The details of  the open-reference approach are explained in Appendix A and Figure A3 

and match the Varhola et al. framework. Low elevation areas (<2,100 m) were excluded from 

the 2016 and 2022 analyses due to ablation. The final metric is referred to as delta 

accumulation.  

To calculate ablation, we took the SWE loss between each ablation season raster to 

produce an early season (March-April) and late season (April-May) ablation metric at the 

pixel level. We limited early season ablation to lower elevations (<2,100 m) and late season 

ablation to higher elevations (>2,100 m). Because of  the limited temporal resolution of  

these data, if  a pixel value was zero, we could not be sure when that pixel ablated completely. 

Thus, we excluded all zero-pixels in addition to any pixel that experienced accumulation.  

 For the ablation flights, we modified Equation 1 to create a normalized difference 

ablation metric (delta ablation). 

 

∆" = '&"!#""'"!
(
(
∗ 100 −	'&"!#""'"!

(
)
∗ 100  (2) 

Where xi is initial SWE in the ablation period, xf is final SWE in the ablation period, t 

is total area and o is open-reference area. Here, we calculated the percent of  the total 

snowpack that ablated at the pixel level for all pixels and took the difference between the 

average total ablation in a 30m grid cell and the average open-reference ablation in a 30m 

grid cell. Thus, each side of  the equation was calculated at the 1 m pixel scale and aggregated 

to the 30m scale before differencing.  
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2.2.2 Pre-Post Disturbance Analysis 

The goal of  the pre-post disturbance analysis was to develop a methodology to 

determine disturbance impacts on localized SWE accumulation. Thus, high elevations, which 

did not experience disturbance during the study period (>2200 m), were excluded from the 

pixels active in this analysis.  

The search-algorithm analysis applied the space-for-structure approach to the post-

disturbance flight (2022); however, instead of  using an open-reference area as R, the goal 

was to identify undisturbed reference areas, typically with a higher fVEG than the thinned 

areas, to use as R. This method used a search function for each disturbed grid cell to identify 

undisturbed grid cells that were representative of  the terrain, vegetation structure, and SWE 

of  the disturbed grid cell prior to thinning. A Principal Component Analysis (PCA) was 

performed on the pre-disturbance data to determine reference areas using the prcomp 

package in R. Variables chosen to represent the target-reference pixel relationship were 

elevation, northness, eastness, fVEG, openness, and SWE from 03/26/2016. While an 

imperfect estimate, the 2016 SWE represents conditions closest to the 2022 SWE, allowing 

us to classify reference sites based on SWE relationships we would have expected without 

disturbance. The PCA resulted in four components, with the first three accounting for 

>80% of  the variances. Using the scores from the individuals, we took the sum of  squared 

distances (SSD) between the first three principal components between each disturbed grid 

cell and each undisturbed grid cell within a 660 m radius. Reference areas were identified 

using a minimum threshold SSD. For the pre-post disturbance analysis, the average 2022 

SWE in the reference pixel was used as R and the average SWE in the target disturbed pixel 

is used as x (Equation 1).  
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We expanded our analysis to investigate pre-post disturbance SWE differences using 

a direct comparison approach with a simple normalized difference metric representing delta 

accumulation (Equation 3). Delta accumulation was calculated as 

 ∆" = 	 % !"!#"$$$$$$& 	 − % !%!#%$$$$$$&     (3) 

where x represents the average SWE in a pixel, d represents disturbed grid cells (2022 

data), t represents the entire domain, and u represents undisturbed grid cells (2016 data). 

This approach allowed us to compare grid cell-grid cell SWE data. Positive values indicate 

the disturbed grid cell contains more snow than the same grid cell pre-disturbance. 

2.3 Random Forest (RF) Analysis 

A RF model was created using the Ranger package in R (Wright & Ziegler, 2017) to 

determine controls on snowpack accumulation and ablation. RF classifiers utilize a set of  

regression trees created using bagged samples from a training dataset. We chose to use a RF 

model because it is an ensemble classifier that can be used with multi-modal data and 

accounts for covariance in the input variables. 75% of  the samples were included in the 

training, or “in-bag” dataset for this study. The major input parameters that we altered were 

the number of  decision trees (Ntree) and the number of  variables to test at each “branch” 

(Mtry). Based on initial model runs, the error stabilized at ~300 trees, so for the rest of  our 

analyses, we set Ntree to 300. Mtry was set to 3 to increase model robustness and because 

computational power was not limited (Belgiu & Drăgu, 2016).  

We firstly performed RF analyses with ∆y determined from Equation 1 and Equation 

2 as the response variables. Predictor variables for the space-for-structure approach 

remained the same: elevation, northness, eastness, fVEG, openness, and LAI’. Accumulation 

rasters were run through the RF model using delta accumulation as the response variable 



 

 

17 

(∆y). This process was repeated for the ablation rasters using delta ablation as the response 

variable. For the pre-post disturbance analysis, all forest structure predictor variables were 

recalculated for the post-disturbance flight and only disturbed pixels were evaluated. In 

addition, the difference between fVEG in the disturbed and undisturbed reference areas 

(fVEG Disturbed – Reference) and the difference between fVEG pre- and post-disturbance 

(delta fVEG 2020-2014) were added as predictor variables.  

2.4 Decision Support Tool 

 Based on the results of  the RF models, we identified a series of  “response” 

thresholds based on slope changes in select predictor variable partial plots. These thresholds 

represent areas where thinning impacts snowpack response (specifically delta accumulation 

response) in either positive (more accumulation) or negative (less accumulation) ways. We 

incorporated the results into a simple decision support tool. The goal was to capture forest 

structure thresholds that could be used to target forest structures for thinning. Using the 

Sagehen Project as a natural experiment, we tested these thresholds against actual disturbed 

areas to evaluate the effectiveness of  thinning on snowpack resilience.   
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3 Results 

3.1 Spatial Patterns of  Snow and Forest Structure 

Forest structure metrics are highly correlated (Figure A1). LAI’, fVEG, and canopy 

density increase with elevation and northness. Openness shows the opposite trend, steadily 

decreasing with elevation and northness (Figure 6, Figure 7). Following expected terrain 

relationships, absolute SWE is greater at higher elevations on more northern-facing slopes in 

all three accumulation flights. Lower elevations have steady decreases in SWE in denser 

canopy, but as elevation increases, these relationships become less distinct (Figure 9, Figure 

A4). The relationships between SWE and terrain are nonlinear, in agreement with previous 

findings (e.g., Kirchner et al., 2014; Tennant et al., 2015; Varhola et al., 2010), and areas with 

lower SWE tend to be more variable in terms of  fVEG and northness, particularly at higher 

elevations (Figure 9). R-squared values for SWE-elevation regressions are 0.51, 0.68, and 

0.43 and slopes are 0.05, 0.19, and 0.09 for the 2008, 2016, and 2022 flights, respectively. R-

squared values for SWE-fVEG regressions are 0.12, 0.09, and 0.02 and slopes are -23, -58, 

and -12 for the 2008, 2016, and 2022 flights respectively. p <0.001 for all models (Figure A7). 

3.2 Space-for-Structure Approach 

A space for structure approach allows us to isolate the effects of  vegetation structure 

by analyzing differences within 30m grid cells that we assume experience homogeneous 

precipitation and terrain. We isolate both coarse (fVEG) and fine (LAI’, and openness) 

forest structures using lidar datasets. This approach is applied across three accumulation 

flights (2008, 2016, and 2022) and two ablation differences (March to April and April to May, 

2016).  
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3.2.1 Accumulation 

Delta accumulation patterns are in general agreement with data used in Varhola et al. 

(2010). With an increase in fVEG, delta accumulation decreases (becomes more negative), 

indicating that open areas accumulate more snow relative to overall pixel accumulation 

(Figure 10, Figure A5). Linear regressions of  delta accumulation and fVEG with the lidar 

plots show greater variability and shallower slopes (-0.23, -0.37, and -0.15 for the 2008, 2016, 

and 2022 accumulation flights respectively) than the data used in the meta-analysis (-0.37; 

Table 1; Figure 11).  

The RF models had varying levels of  skill. R-squared values were 0.72, 0.62, and 0.16 

for the 2008, 2016, and 2022 flights (Table 2). Forest structure metrics explained the greatest 

amount of  variance in the model (Figure 13). Partial plots reveal more detailed dynamics and 

predict delta accumulation values between -4% and -20% (e.g., Figure 14), importantly 

always predicting that open reference sites accumulate more snow than forested sites. 

Decreasing delta accumulation indicates that the discrepancy between open and total grid 

cell SWE is increasing. Full partial plots can be seen in Figure A8, Figure A9, and Figure 

A10. Here, we emphasize patterns consistent across select flights. For the 2008 and 2016 

flights, fVEG has the greatest importance on the RF models (Figure 13). There are distinct 

ranges of  influence where certain variables predict greater change in delta accumulation. 

fVEG values < 0.3 predict consistent ~-5% delta accumulation (Figure 14a). At fVEG 

values > 0.3, these patterns become more variable, and decrease steeply until fVEG ~0.6 

where the slope in the partial plot becomes shallower but continues to predict decreasing 

delta accumulation ~-15%. Qualitative thresholds can be observed for both LAI’ and 

openness as well (Figure 14b,c). Delta accumulation maintains a maximum ~-10% until 
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openness reaches -2.5. A sharp decrease in delta accumulation is predicted until a minimum 

threshold at ~-17% delta accumulation and an openness index of  0 (Figure 14b). LAI’ 

shows a steep decreasing trend from an LAI’ of  0, with delta accumulation ~-4% to an LAI’ 

of  0.2 and a delta accumulation minimum ~-11%. Northness and eastness showed 

inconsistent results with low importance and no clear trends across the flights. However, the 

2008 flight, which best captures accumulation at lower elevations, indicates that southern-

facing slopes experience a greater difference between open and under-canopy accumulation.  

Response zones were chosen to define predicted snowpack response to thinning 

based on the thresholds addressed above (Figure 20, Figure 21). Low response zones are 

expected to experience the least amount of  change post-thinning; high response zones are 

expected to benefit the most. Areas with lower absolute values of  delta accumulation areas 

(values that approach zero) are places where we would expect greater total accumulation. For 

example, absolute SWE decreases with fVEG (Figure A4), and because the most important 

predictor variables (as determined by the RF model) show negative values of  delta 

accumulation, grid cells where there is a greater difference (delta accumulation is more 

negative) have both higher fVEG and lower total SWE. Thus, as delta accumulation 

approaches zero, there is both lower fVEG and higher total SWE. Using these concepts, we 

identified high (fVEG>0.6 and openness<-2.5), low (fVEG<0.3 and openness>0), and 

moderate (all remaining) snowpack response areas. Low response areas are primarily at 

higher elevations, often in the steeper terrain, whereas high response areas tend to be in 

lower elevations and closer to the valley bottom. The classifications show clear differences in 

average delta accumulation from the space-for-structure approach of  ~0, -10, and -30% 

across low to moderate to high, respectively (Figure 21b). Low response areas accumulate 
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more absolute SWE (60cm – 40cm from the low-high response areas), indicating they would 

not benefit as much from thinning.   

3.2.2 Ablation 

Ablation patterns using our modified equation (Equation 2) are more straightforward 

to interpret than the Varhola et al. (2010) delta ablation metric, but they cannot be directly 

compared due to this difference. Both delta ablation metrics show weak increasing linear 

trends with fVEG with r-squared values of  0.12 and 0.35 for the March-April and April-May 

flights respectively (Figure 12). This indicates that an increase in fVEG leads to a greater 

total grid cell ablation relative to the open reference pixels.  

Elevation explains most of  the variance in the RF model for the early season 

ablation (March-April), followed by fVEG and LAI’ (RF r-squared of  0.52; Figure 15). Delta 

ablation increases as elevation, fVEG, and LAI’ increase. An increase in openness predicts a 

general decrease in delta ablation, indicating that sites with more openness show less 

discrepancy between ablation in the open and under the canopy. fVEG also controls late 

season ablation (April-May; Figure 16). fVEG and openness explain most of  the variance for 

late season ablation. Again, high-response regions emerge between ~-3-1 for openness and 

~0.25-0.9 for fVEG.  

3.3 Pre-Post Disturbance Approach 

Clear patterns are not present between the delta accumulation metric and delta 

fVEG (disturbed – reference) using the searching algorithm (Figure A14). Despite the fact 

the search algorithm was able to identify at least one reference grid cell for almost every 

disturbed grid cell in our study domain (Figure A13), it did not provide easily interpreted 

results (Figure A15). The RF model was not as skillful as the overall space-for-structure 
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analyses (r-squared of  0.2, Table 3) and elevation showed the greatest importance on the 

model (Figure 17). Partial plots for the highest-importance variables (elevation, delta fVEG 

disturbed – reference areas, and delta fVEG 2020-2014) are inconsistent (Figure A15). With 

an increase in elevation and northness, the difference approaches 0 from -20% and -50% 

delta accumulation respectively (Figure A15). The delta fVEG (disturbed – reference) partial 

plot predicts that the difference between disturbed and reference sites increases (becomes 

more negative) as the delta fVEG (disturbed – reference) increases, indicating that 

undisturbed reference sites with more vegetation compared to the disturbed sites accumulate 

more snow (Figure A16).  

The direct comparison approach was run on the entire domain as well as the isolated 

disturbed areas, and in either case delta accumulation was predicted primarily by elevation. 

The remainder of  these results refer to the isolated disturbed analysis. The direct 

comparison approach increased the skill of  the RF model (r-squared 0.40, Table 3). Terrain 

remained the most important metric (elevation, Figure 19). On average the RF model 

predicted positive delta accumulation values over the range of  input variables (Figure A16). 

While the RF model predicts the that the difference between the disturbed and undisturbed 

delta accumulation decreases with elevation (from 30% to 0%), qualitative observations 

across the domain indicate the opposite (Figure 18). Delta accumulation peaks at 28% at an 

fVEG of  ~0.65. Delta fVEG  (2020 – 2014) predicts a negative trend in delta accumulation 

(with increasing delta fVEG), reaching a maximum around -65% delta fVEG at a delta 

accumulation of  35%.  
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4 Discussion 
Snowpack accumulation and ablation in forests is fundamental to predicting water 

supplies and forest health in the Sierra Nevada (Barnhart et al., 2016; Godsey et al., 2014; 

Hammond et al., 2019; Harpold, Molotch, et al., 2014; Li et al., 2017). Sagehen Creek Basin 

is an example a heavily forested watershed where the snowpack is highly influence by 

vegetation (e.g., Kostadinov et al., 2019; Safa et al., 2021) that is undergoing forest 

treatments to reduce fire risk. However, few tools exist to quantify snowpack’s response to 

vegetation, especially in complex terrain, motivating the development of  the space-for-

structure approach applied here. Our new method allows us to develop simple predictive 

relationships between forest structure and snow dynamics, which lay the groundwork for 

expanded analyses and management applications. 

4.1 Comparison to the Varhola et al. (2010) Framework 

We observe that accumulation shows a decreasing relationship with fVEG using our 

space-for-structure approach, matching the approach of  Varhola et al. (2010). Using 2008 

and 2016 flights that best approximate maximum accumulation, we find linear slopes of   

-0.23 and -0.37 delta accumulation/fVEG (Figure A7, r-squared of  0.72 and 0.62, 

respectively). These slopes are similar, though generally less than that from Varhola et al. 

(2010) of  -0.37. We see more clear relationships in February 2008 but a lower slope, 

potentially due to the lack of  ablation as compared to March 2016 (Figure 11). There was a 

much lower slope in March 2022, when ablation was substantial at lower elevations. 

Tradeoffs between accumulation and ablation processes are discussed in Section 4.2. In 

general, the correspondence between 2008 and 2016 support the space-for-structure 

approach and the resulting process inferences. In addition to reproducing the SWE versus 
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forest cover linear relationships by Varhola et al. (2010), we also use a random forest (RF) 

model to demonstrate the importance of  the fraction of  vegetation in a grid cell (fVEG), 

which accounts for the most variation in two of  the accumulation models. The RF results 

support the weaker effects of  fVEG on SWE in 2008 versus 2016 (Figure 14) and hint at a 

much lower slope (less effects on snow) when forest cover is below ~30%. The much lower 

slopes in the RF partial plots (~0.1 % delta accumulation /% fVEG) and higher r-squared 

values as compared to the linear relationships, suggest that other factors may contribute 

besides fVEG.   

We apply a similar open reference site (space-for-structure) approach to quantify the 

effects of  disturbance using pre- and post-disturbance lidar flights but find more noisy 

results in 2022. A simple normalized difference approach (Figure 18) shows the importance 

of  elevation on post-disturbance snowpack, consistent with the RF analysis (Figure 17). This 

elevation signal may be due to a combination of  snowfall and ablation distribution causing 

more snow loss at lower elevations in 2022 as compared to 2016 (Figure 2). The lack of  

signal from delta fVEG (2020 – 2014) in the RF analysis makes it difficult to draw 

conclusions from these results. However, among only disturbed areas (Figure A16), there is a 

clearer signal supporting our hypothesis that predicts that as a disturbed site loses more 

vegetation, there will be more snow in the disturbed site relative to the same pixel in 2016 

(Figure A16). In this case SWE is maximized at ~65% vegetation loss with 30% greater 

SWE in the disturbed site. The search algorithm analysis (Figure A15) did not support our 

hypothesis and predicted more snow in reference areas. Because we hypothesize (and 

observed through field validation) that snow disappears under the canopy before open 

spaces, both pre-post methods employed here could be weakened by areas with no snow 
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under canopy, which was widespread in 2022. Differences in snowfall distribution, 

confounding ablation effects of  accumulation, and challenges quantifying changes in forest 

cover increase the appeal of  a space-for-structure approach over the pre-post methods used 

in this study.  

Our space-for-structure approach predicts greater ablation with increasing fVEG, 

opposite of  the relationships found by Varhola et al. (2010) and Krogh et al. (2020) but 

consistent with process-based studies in warmer climates (Kostadinov et al., 2019; Lundquist 

et al., 2013; Safa et al., 2021). These studies find that in warmer climates, a combination of  

the timing of  the ablation season (April-May, when solar irradiance is relatively low) and 

higher temperatures results in “warm” trees that emit enough longwave radiation to 

dominate energy fluxes that control ablation. We find average ablation slopes of  0.8 and 0.6 

(% delta ablation/fVEG) for the March-April and April-May period (r-squared of  0.51 and 

0.55, Figure 12). Partial plots in the RF model also show positive slopes with fVEG but 

indicate that there is little effect of  canopy when fVEG is below ~30% (Figure 16). Ablation 

rates calculated between two lidar flights are fundamentally different than season-long 

ablation metrics used by Varhola et al. (2010). In particular, the lidar-based ablation metrics 

are subject to differences in precipitation amount, cold content, energy inputs, and other 

factors that are highly spatially variable. We attempted to mitigate some of  these issues using 

early season (lower elevation) and late season (higher elevation) ablation windows and 

controlling for initial SWE in each case. However, issues remain in our approach that could 

be improved. For example, including snow disappearance date (with modeling or optical 

remote sensing, for example) would allow us to calculate rate of  ablation spatially and help 

solve some of  the temporal issues requiring normalization. Despite these issues, multi-
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temporal lidar datasets offer the potential for ablation calculations that have previously not 

been possible. 

4.2 Role of  Finer-Scale Forest Structure and Terrain on Snow Dynamics 

Our space-for-structure approach suggests that coarse and fine-scale forest structure 

are important predictors of  snow accumulation, explaining more variation in accumulation 

patterns in dense forests than terrain features like elevation, slope, and aspect. The predictor 

importance from the RF model (e.g., Figure 13) show that fVEG, LAI’, and openness are 

more important than terrain metrics (elevation, northness, and eastness) for predicting our 

delta accumulation metric, demonstrating the value of  the open reference site approach. The 

partial plots from the RF model (Figure 14) consistently show a non-linear effect on 

accumulation from LAI’ and openness, as compared to a more linear relation with fVEG. 

Overall, the results imply that vegetation has the largest role in reducing snow accumulation 

when fVEG is high (>0.6), openness is high (vegetation height<=canopy gap diameter), and 

LAI’ is high (>0.25). Importantly, this indicates that a canopy gap to vegetation height ratio 

<1 optimizes accumulation, in general support of  earlier studies that predicted gap 

influences are maximized when shading from nearby canopy is high and canopy gap to 

forest height ratios are <1 (Anderson, 1956; Musselman et al., 2015). Conversely, partial 

plots for terrain effects on accumulation and ablation are weaker with more mixed slopes 

across flights (Figure 14). From the 2008 partial plots, our results match Krogh et al. (2020) 

who modeled that lower-elevation, south-facing slopes experienced post-thinning increases 

in accumulation. Both 2016 and 2008 accumulation suggest lower elevations as potentially 

more responsive to thinning (discussed more in Section 4.3). The dominance of  vegetation 

features in our prediction of  snow accumulation compared to previous lidar analyses (e.g., 
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Safa et al., 2021; Tennant et al., 2015) is because of  the open reference approach and 

improved snow density modeling allowing us to calculate SWE (rather than snow depth).  

Snow ablation analyses also point to the importance of  fine-scale forest structure 

despite our space-for-structure approach not effectively accounting for different energy 

environments. Our method shows promise, but lacks important energy balance factors, like 

increased solar irradiance later in the melt season or differences in snowpack cold content, 

that make interpreting our results more challenging. Because of  differences in energy 

environments, elevation ranks high in terms of  importance (Figure 15), but fVEG, openness, 

and LAI’ are more important during the early ablation estimate. Both early and late season 

ablation estimates indicate a balance between fVEG (lowest ablation <~50%) and openness 

(lowest ablation ≥~1:1 gap width: tree height) to promote retention (Figure 16). The 

importance of  openness in the accumulation and ablation analysis suggests that forest 

thinning that reduces fVEG and openness will increase accumulation and but forest thinning 

that increases openness will decrease ablation, potentially increasing snow retention in open 

areas.  

Our results begin to unravel the role of  coarse and fine-scale forest structure metrics 

on snow accumulation and ablation in ways that match process understanding being made 

with fine-scale forest modeling and field observations. In particular, we show that despite the 

importance of  a coarse (simpler) fVEG metric based only on tree spatial coverage, we find 

that metrics that account for vertical point density (LAI’) and horizontal and vertical 

information (openness) can provide substantial additional information. It’s worth noting that 

these metrics are highly correlated across the full domain (Figure A1), but their correlation 

within individual elevation bands (Figure 6) is more mixed due to differences in forest 
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species, terrain, land use history, and other unaccounted factors. fVEG is the most important 

vegetation factor compared to openness and LAI’, varies more linearly, is easier to estimate, 

and matches the Varhola et al. (2010) framework. Importantly, however, Varhola et al. (2010) 

emphasized the inconsistencies between forest structure metrics across studies. We 

experimented with several forest structure metrics based on height and point density to 

account for these inconsistencies, and narrowed our metrics based on preliminary RF runs 

and knowledge about specific density metrics that have been found to be important in this 

region (Krogh et al., 2020; Safa et al., 2021). The potential versatility in chosen metrics would 

allow different configuration of  our RF modeling approach in future studies.  

4.3 Management applications and future research directions  

Our results indicate that while simple linear models capture broad patterns of  forest-

snow interactions, thresholds at which specific forest structure metrics become more or less 

important can help refine the management of  forests similar to SCB. We developed a 

decision support tool for SCB (Figure 21) using clear thresholds in fVEG and openness 

(Figure 20, Figure 14) to define high, moderate, and low response of  SWE to thinning. 

These variables represent the interplay between coarse and fine-scale forest structure in ways 

that are more distinct than LAI’ (Figure 14). We find less negative delta accumulation and 

more absolute SWE in the low response areas (Figure 20) suggesting that our threshold 

method has successfully identified areas where snow accumulation would not be likely to 

increase if  the forest was thinned. These areas account for a small portion (~7%) of  the 

total domain, suggesting that forest thinning has the potential to increase snow in 

widespread areas of  SCB. The Sagehen Project was developed with extensive ecosystem 

considerations, focused on wildlife and fire, leading to a variety of  thinning and restoration 
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techniques being applied to the SCB (Figure 1). Overall, 29% of  the treated areas as part of  

the Sagehen Project were high response areas and 27% were moderate response. While the 

resilience of  snowmelt-derived water resources was not an explicit priority for the Sagehen 

Project, we observe potential co-benefits to managing towards ecosystem resilience of  

wildlife and fire for snow accumulation and retention in this area of  the central Sierra 

Nevada. Our decision support tool for SCB could be expanded to other areas with similar 

snow-on and snow-off  datasets. The decision support tool offers both a retrospective means 

to assess restoration effectiveness (as done in this study) as well as a tool for proactive 

planning efforts.  

Several key efforts could help advance our method and increase its impact in future 

management and research applications. A more robust method for determining vegetation 

thresholds might divide the domain by forest and vegetation ecotones. For example, the 1.5 

meter threshold for short vegetation and understory classifications could be refined using 

vegetation maps to determine shrub and grass height as well as understory height. 

Incorporating canopy type into these analyses would also improve management implications. 

Future work may wish to take a similar approach with refined forest structure metrics in the 

RF model, such as those that incorporate edginess metrics derived with aspect (Broxton et 

al., 2021; Currier et al., 2019; Mazzotti et al., 2019, 2020). In addition, these results could be 

impacted by pixel bias because there are typically more returns (and, thus pixels) in open 

areas (See Appendix A for more details). Our processing method attempts to mitigate data 

losses due to conflation with canopy, but there are opportunities for improvement within the 

workflow. The analyses could be improved with increased point density in the snow-on 

flights that better resolve near and under canopy snowpack. While the point density was high 
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in 2022, the pre- and post-disturbance analysis was complicated by the timing of  the snow-

on flight. With a future of  less certain snowpack accumulation trends, data collection may 

have to account for earlier peak SWE to ensure ablation signals are mitigated.  

Overall, the space-for-structure approach we developed here accounts for local 

variation in precipitation and energy budgets in ways that allows new insights into snow-

vegetation interactions and has potential for transferability to other sites. We observe 

consistency across years with varying antecedent conditions (pre-disturbance), with larger 

differences in delta accumulation in 2016 reflecting potential ablation signals that accentuate 

larger SWE values in open areas. Because this framework allows for the isolation of  fine-

scale forest structure metrics and can be used on multi-temporal data, it presents a unique 

opportunity to understand broad-scale dynamics across climate regimes using consistent 

methodology, similar to Safa et al., 2021. Ablation signals are a potential new source of  

information, but also present challenges to developing methods to correct for differences in 

energy budgets with temporally distributed data that could capture changes in solar 

irradiance, for example. We expect expansion and improvement on this method that take 

advantage of  the open-source, consistent data processing approaches (including those 

presented in this study) and newly available lidar datasets. 

  



 

 

31 

5 Conclusion 
Scientists have been working to constrain the impacts of  forests on snow for over 50 

years and there are efforts that go all the way from continuous modeling at fine scales to 

disturbance analyses at watershed scales. This project contributes to a growing body of  work 

that seeks to understand how forest and snowpack interact in disturbance-impacted 

landscapes. We present new methods for processing high-resolution, spatially-distributed 

lidar data that have the ability to enhance classifications of  fine-scale forest structure metrics 

in relation to snowpack. 

An increase in remote sensing data has caused a revolution with lidar, which has the 

ability shift our scientific paradigm, but we have to be able to get the data into a consistent 

format and analyze it in consistent ways. It is also critical that we integrate natural and 

climate-caused variability into our studies, utilizing an integrated approach to studying 

complex systems. Our space-for-structure analyses support previous findings about open 

versus under-canopy snowpack and more specific coarse-scale forest structure metrics 

(fVEG) while expanding to identify thresholds in critical fine-scale forest structure metrics 

(openness) that can be utilized to determine whether management practices integrate 

hydrological benefits. The decision support tool created here has potential to allow managers 

to use these critical structure thresholds to determine how comprehensive resilience 

classifications are. For example, decreasing fVEG from 0.6 to 0.3 has drastic impacts on how 

much snow accumulated in the open space in a grid cell relative to the rest of  the cell.  

 Ablation dynamics and pre-post disturbance analyses have presented even more 

challenges, driven by temporal limitations of  lidar. Rapid disturbance and restoration 
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projects are actively altering our forests, and an increase in multi-temporal lidar datasets 

could drastically improve our ability to better constrain these metrics.  

This project contributes to a growing body of  work that seeks to understand how 

forest and snowpack interact in disturbance impacted landscapes. We present new methods 

for processing high-resolution, spatially-distributed lidar data that have the ability to enhance 

classifications of  fine-scale forest structure metrics in relation to snowpack.  
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Tables 
Table 1: Linear Regressions, Delta Snowpack Accumulation/Ablation vs. Fraction of  

Vegetation 

Date P-Value R-Squared Residual Std. 
Error 

Slope 

02/10/2008 <0.001 0.63 4.1 -0.23 
03/26/2016* <0.001 0.31 11.6 -0.34 
03/26/2016 <0.001 0.23 15.4 -0.37 
03/21/2022* <0.001 0.058 12.8 -0.15 
03/21/2022 <0.001 0.016 13.5 -0.084 
March-April 0.01 0.13 10.4 0.17 
April-May <0.001 0.34 3.52 0.13 

Note: *Elevations limited to >2100m 
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Table 2. Random Forest Model Results, Space for Structure Analysis  

Date OOB R-
Squared 

OOB MSE 

02/10/2008 0.72 12.21 
03/26/2016* 0.62 73.28 
03/21/2022* 0.16 157.44 
March-April 0.51 63.88 
April-May 0.72 73.28 

Note: *Elevations limited to >2100m 
OOB – out of bag, MSE – mean squared error.  
Response variables are delta accumulation and delta ablation. Predictor variables include elevation. 
fVEG, LAI’, openness, eastness, and northness.  
  



 

 

46 

Table 3. Random Forest Model Post Disturbance Analysis  

Date OOB R-Squared OOB MSE 
Ref. Search 0.20 919 
Dir. Compare 
(all) 

0.71 0.02 

Dir. Compare 
(disturbed) 

0.42 0.02 

Note: *Elevations limited to >2100m 
OOB – out of bag, MSE – mean squared error.  
Response variable is delta accumulation. Predictor variables include elevation. fVEG, LAI’, delta 
fVEG (2020-2014), delta fVEG (disturbed-reference)openness, eastness, and northness 
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Figures 

 

Figure 1. Sagehen Creek Basin, located in the northeastern Sierra Nevada. The area of interest (black 
outline) shows the study domain given available lidar and modeled density. a. The elevation profile 

spans ~1800 to 2600 meters, increasing to the southwest (with hillshade). b. Northness shows steep 
slopes to the southwest. c. The thinning project summary shows proposed thinning boundaries 

overlaying a canopy height model, which align well with the fVEG difference between the pre- and 
post-disturbance flights (d).  
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Figure 2. SNOTEL SWE values against flight dates (vertical lines) for the three snow-on years, a. 

2008, b. 2016, and c. 2022. Orange = Independence Lake SNOTEL Site (541), Black = 
Independence Camp SNOTEL Site (539), Blue = Independence Creek SNOTEL Site (540). 
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Figure 3. Example image displaying the lidar snow-on classification with an example subsection of a 
lidar grid cell. The bottom colorbar aligns with the correct canopy cover class as classified from the 
height strata (dark blue = open, light blue = short canopy, dark green = tall canopy, light green = 
understory). The black boxes indicates that the area above would be removed from the analysis, 
either because there are points between 1.5-3 m or because the snow is not >0.3 m above the 

vegetation surface. (not to scale) 
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Figure 4. Vegetation classification output comparing Kostadinov et al. (2019) (a. and b.) and our 

refined classification (c. and d.). While the original classification includes only tall (dark green) and 
open (dark blue) vegetation classes (a. and b.), the refined classification includes short and understory 

classes, allowing us to include shorter vegetation types if the snow depth is ≥ 0.3 m above the 
vegetation (c. and d.).  
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Figure 5. Snow-depth comparison between Kostadinov et al. (2019) (a. and b.) and our results (c. and 
d.) for the 04/17/2016 flight highlighting the advantages of the refined classification. Our refined 

classification approach increases the number of valid pixels by including short and understory pixels 
as potentially valid, if calculated snow depth is ≥0.3 meters above the vegetation. 
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Snow and Vegetation on the Landscape 

 
Figure 6. Spatial distribution of pre-disturbance forest structure metrics across the area of interest, 

colored by northness. Higher elevations see more sense canopy on northern-facing slopes.  
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Figure 7. Spatial distribution of post-disturbance forest structure metrics across the area of interest, 
colored by northness. Compared to the pre-disturbance metrics, openness increases and fVEG, 

canopy density, and LAI’ increase at lower elevation, more southern-facing slopes.  
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Figure 8. The relative percentage of total area taken up by each elevation bin showing that 
disturbance primarily occurred below 2400 meters. 
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Figure 9. The spatial distribution of SWE across the domain shows greater SWE on higher elevations 
and more northern-facing slopes.  
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Delta SWE and Delta Ablation on the Landscape 

 

Figure 10. The spatial distribution of delta Accumulation across the domain shows a more drastic 
difference at lower elevations on more northnern-facing slopes. 
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Figure 11. Delta accumulation against fVEG for the a. NCALM flight from 02/10/2008. b. ASO 
flight from 03/26/2016 c. NCALM flight from 03/21/2022. Lidar points are colored by density with 

darker blue = greater point density. Black points show the Varhola et al. (2010) data. 
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Figure 12. Normalized delta ablation against fVEG for both early (a) and late (b) season ablation 
show a weak positive relationship, with the differences between forested and open sites increasing 

(becoming more positive) with increasing vegetation.  



 

 

59 

 

Figure 13. Combined importance plots for the RF model to predict delta accumulation, scaled to the 
maximum importance factor. The three flights show similar importance trends with fVEG, LAI’, and 

openness emerging as the most important predictor variables.  
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Figure 14. Select partial plots from delta accumulation RF model results showing similar trends in 
three forest structure metrics: a. fVEG, b. openness, and c. LAI’. Delta accumulation becomes more 

negative with and increased in all three canopy cover metrics.  
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Figure 15. Combined importance plots for the normalized delta ablation RF model, scaled to the 
maximum importance factor. The results show that early season ablation (March-April) is controlled 

by elevation and fVEG while later season ablation is controlled by openness and fVEG.  
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Figure 16. Select partial plots from delta ablation RF model results showing similar trends fVEG (a) 
and openness (b)  
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Figure 17. Importance plot for the pre- and post-disturbance RF model using the search algorithm 
analysis, scaled to the maximum importance factor.  

 

Figure 18. The spatial distribution of the direct-comparison delta-SWE metric across the domain 
shows higher delta SWE overall in lower elevations, indicating more snow in 2022 relative to 2016. 

In areas with prominent disturbance (<2,200 m) delta SWE is less in disturbed areas relative to 
undisturbed areas at the lowest elevations, but delta SWE is greater in disturbed areas relative to 

undisturbed areas as elevation increases. See Equation 3 for details on delta SWE. 
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Figure 19. Combined importance plots for the pre-and post-disturbance RF model using the direct 
comparison analysis, scaled to the maximum importance factor.  
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Figure 20. Annotated partial plots showing the response area determination. Higher pre-disturbance 
fVEG areas are identified as high response areas because thinning would lead to a drastic increase 

(positive response) in delta accumulation whereas lower pre-disturbance Openness areas are 
identified as high response because thinning would lead to a drastic decrease (negative response) in 

delta accumulation.  
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 Figure 21. Predicted response classes based on the RF results. Shading show
s areas that are predicted to experience a low

 (light purpl e), m
oderate, 

or high (dark purple) response to treatm
ent. a. The spatial distribution of these m

aps  on top of actual treatm
ents, show

n both as planned treatm
ent 

outline (dotted black line) and the delta fV
E

G
 raster. b. Snow

 accum
ulation dynam

ics across all three flights and predicted response classes.  

a. b. 
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Appendix A 

Lidar Processing  

All NCALM flights can be found on OpenTopography 

(https://portal.opentopography.org/datasets). ASO flight data was supplied directly from 

the vendor. The ASO flight data is pre-processed using the Riegl RiPROCESS software and 

the NCALM data is pre-processed using the TerraSolid software 

(https://terrasolid.com/products/terrascan/). Once pre-processed, point clouds are 

provided, which is where the processing for this project began.  

After retiling the data into 1000x1000 m tiles (with a 50 m buffer) and renaming to 

match consistent naming structures, the first step in pre-processing was to reproject all data 

into a consistent vertical datum. NASA’s VDATUM software was used for this process. All 

data was reprojected into the NAD83 horizontal and NAD83 vertical coordinate reference 

system (epoch 2010; EPSG: 6339). The data were then pre-processed to exclude slopes >30˚ 

(Tinkham et al., 2014)and all water bodies were removed (based on delineations from 

the National Hydrography Dataset, https://nhd.usgs. gov/).  

Point-cloud processing was performed in Python using PDAL (Butler et al., 2020). 

DEMs were created using PDAL’s rasterization filter, which applies the specified function 

(e.g., mean) to all points within a specified search radius. DEMs were created using a search 

radius of  1 meter with a window size of  3 m to give us a wall-to-wall product. All other 

rasters were created using the default. Height above ground was determined using a point-

raster differencing.  

For vertical bias corrections, a search radius was determined by investigating data 

distribution around a coordinate to determine which radius was the most representative of  
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surrounding snow depth (Figure A2). A radius of  3 was chosen to maximize representative 

points while minimizing computation time.  

Height strata were calculated from the corrected point-clouds, with slight 

modifications from Kostadinov et al., 2019 (See Table A1). The refined classifications 

allowed us to broaden the search for snow-covered pixels beyond tall forests into shorter 

canopy, which has found to influence radiative transfer models and energy balance under the 

canopy (Figure 5) (Webster et al., 2020). Open pixels were defined only using the presence 

of  returns within uncertainty of  ground (+/- 0.15 m). This number is based on previous 

values cited in the literature and confirmed using the variance around bias-corrected values 

(the 5th-95th percentile range) (Kostadinov et al., 2019). Tall vegetation was classified as only 

pixels containing tall forests without low branches or underlying vegetation. Understory 

encompasses low-lying branches or underlying vegetation beneath treetops. It cannot 

represent a medium sized tree, for example. Short vegetation contains low-lying returns with 

no overhead canopy. In addition, an open-reference pixel is classified as an open pixel at least 

one meter from the nearest canopy-classified (tall or understory) pixel (Figure A3).  

All final vegetation classifications were created using a series of  raster calculations 

using the GDAL library (GDAL/OGR contributors, 2020). From the lidar files, we extracted 

the number of  returns in each height strata in Table A1. The rasterized product was used to 

create logical rasters representing the different conditions in Table A1.  

For example, to classify pixels as open, we started with a raster that contained the 

number of  returns (counts or NOR) between -0.15-0.15 m. A logical raster was created, 

representing whether a pixel can be passed to the next filtering step for the open 
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classification. This raster has values of  1 (True) for pixels that contain returns between -0.15-

0.15 m and a value of  0 for pixel that do not (False). 

Example: Understory pixel classification 

1. Vegetation height strata rasters [each pixel = NOR] 
a. NOR [-0.15-0.15) 
b. NOR [0.15-1.5) 
c. NOR [1.5-3)  
d. NOR [3:)  

1. Intermediate logical rasters [each pixel = binary, 1-True, 0-False] 
a. NOR [-0.15-0.15) >= 0 
b. NOR [0.15-1.5) > 0 
c. NOR [1.5-3) == 0  
d. NOR [3:) > 0  

1. Final logical raster [each pixel = binary 1-Understory, 0-NaN] 
a. a*b*c*d above 

 

For understory and short pixels, it is necessary to also extract the height of  the 

vegetation for further filtering. Simply multiply the final logical rasters from above with a 

CHM created using only points <= 1.5 m.  

 Canopy structure metrics were primarily created from raster products using GDAL; 

however, the CHM was calculated from the raw point clouds using the maximum value in 

each pixel, and TAOs were created from the lidR package (Dalponte & Coomes, 2016; J. 

Roussel & Auty, n.d.; J.-R. Roussel et al., 2020).  

 Snow depth was calculated over the pixels filtered into the four vegetation height 

strata (tall, understory, short, open). Based on maximum depth heights from the recorded 

SNOTEL record, 5 meters was chosen as the maximum snow depth in the open areas. Due 

to the 3-meter cutoff  for tall vegetation, 3 meters was chosen as the maximums now depth 

under the canopy. Short and understory pixels were classified as snow if  the calculated depth 
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was at least 0.3 meters above the vegetation surface. This value was chosen as a conservative 

estimated based on a +/- 0.15m vertical uncertainty in the of  the lidar data.  

Data and Analysis Errors  

See Table A4 for a detailed overview of  instrumentation and horizontal and vertical 

accuracies of  each lidar dataset. Error is governed by several sources including acquisition 

instrumentation (e.g., inertial measurement unit (IMU) and global positioning systems (GPS) 

calibrations), terrain, and vegetation. See Deems et al., 2013 for more details. Lidar strength 

is weakened as it interacts with canopy, decreasing the number of  returns that reach the 

ground. Previous work has shown that there is more variability in under canopy returns, in 

addition to less GPS accuracy (Deems et al., 2013; Hopkins et al., 2004; Tinkham et al., 

2014). Kostadinov et al. (2019) showed that there was no detectable SWE bias when 

increasing grid size due to point density losses under the canopy for the 2016 data. These 

data are particularly vulnerable to data sparsity bias because of  the low point density. The 

two snow-on NCALM flights have greater point density, so these impacts would be expected 

to decrease. We attempted to account for these biases using a weighting parameter in the RF 

analysis but found no difference in the model skill or defined importance. This parameter 

should be investigated further in the future to better account for data sparsity bias.  

In addition, the RF model itself  can be impacted by dimensionality and spatial 

autocorrelation. We did not perform filtering to reduce the number of  non-relevant features 

in our analyses (Belgiu & Drăgu, 2016). A sensitivity analysis was performed on each RF 

model (e.g., Figure A17) to confirm model skill.  

  



 

 

71 

Figures and Tables 

Table A1: Refined Vegetation Classification Logic 

Strata 
Intervals 

Number of  
returns 

∈ [-0.15,0.15) m 

Number of  
returns 

∈ [0.15,1.5) m 

Number of  
returns 
∈ [1.5,3) m 

Number of  
returns 

∈ [3.00, +∞) m 

Open ∈ (0, +∞) 0 0 0 

Tall Veg ∈ [0, +∞) 0 0 ∈ (0, +∞) 

Short Veg ∈ [0, +∞) ∈ (0, +∞) 0 0 

Understory ∈ [0, +∞) ∈ (0, +∞) 0 ∈ (0, +∞) 

Note: Short vegetation includes shrub/grass etc. found in the open, understory includes low 
branches/shrubs/grasses/etc. found under taller canopy. Modified from Kostadinov et al., 
2019 (Supplement Figs. S1 and S2). 
 

Table A2: Refined Snow Classification Logic 

Snow-on pixel classified as: Snow No snow 

Snow-off  open pixel 
NO short veg 

Snow-on HAG 
∈ [0.15, 5.00] m 

Snow-on HAG 
∈ [-0.30, 0.15) m 

Snow-off  open pixel 
YES short veg 

Snow-on HAG 
∈ [x, 5.00] m 

Snow-on HAG 
∈ [-0.30, 0.15) m 

Snow-off  tall canopy pixel 
NO understory 

Snow-on HAG 
∈ [0.15, 3.00) m 

Snow-on HAG 
∈ [-0.30, 0.15) m 

Snow-off  tall canopy pixel 
YES understory 

Snow-on HAG 
∈ [x, 3) m 

 

Snow-on HAG 
∈ [-0.30, 0.15) m 

 

Note: HAG – height above ground; x – snow-off  HAG +0.3. 
Short vegetation includes shrub/grass etc. found in the open, understory includes low 
branches/shrubs/grasses/etc. found under taller canopy. Modified from Kostadinov et al., 
2019 (Supplement Figs. S1 and S2).  
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Table A3: Canopy Structure Metrics 

Canopy Cover Metric Calculation Source 

Canopy Density (CD) 

 
!"#$%&	()	*%+"&,-	 > 	3#	
0(+12	!"#$%&	()	*%+"&,-  

 

 
Krogh et al., 2020 

Fraction of Vegetation 
(fVEG) 

30m product only 

 
31,(45	ℎ%78ℎ+	(:ℎ%&%	31,(45	ℎ%78ℎ+ > 3	#)

8&7<	3%22	1&%1	(900	##)  

 

Also called canopy 
cover fraction; 

Mazzotti et al., 2019, 
2020 

Tree Approximate Object 
(TAO) local maxima filtering 

Dalponte & Coomes, 
2016 

LAI’ 

 
31,(45	<%,-7+5	(?@) ∗ 31,(45	ℎ%78ℎ+

max +&%%	ℎ%78ℎ+  

 

 
Krogh et al., 2020 

Distance to Nearest 
Canopy (DNC) 

Minimum distance from pixel (center) to nearest 
canopy pixel (center) 

Currier & Lundquist, 
2018; Mazzotti et al., 

2019 

Openness Index 

 

log	(
<7-+1,3%	+(	,%1&%-+	31,(45	(@!?)	∗ 2
1I8. +&%%	144&(K7#1+%	($L%3+	ℎ%78ℎ+ ) 

 
openness < 0 = gap width : canopy height < 1 
openness > 0 = gap width : canopy height > 1 

 

 
 

Ellis et al., 2013; 
Musselman et al., 2015 

Open-Reference Class Distance to nearest canopy with 1-m buffer around 
canopy 

Currier & Lundquist, 
2018 
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Table A4: Summary of Lidar Specifications 

 NCALM 20081 NCALM 20142 ASO 20163 NCALM 20204 NCALM 20225 

Equipment Optech 
GEMINI 
Airborne Laser 
Terrain Mapper 
(ALTM) 
(06SEN195) 

Optech 
GEMINI 
Airborne Laser 
Terrain Mapper 
(ALTM) 
(06SEN195) 

Riegl 
Q1560 

Optech Titan 
(14SEN340) 

RIEGL VQ-
580 II 
(H2225798) 

Horizontal 
Accuracy 

1/11,000 x 
altitude; 
±1-sigma 

1/5,500 x 
altitude (m 
AGL);  
±1-sigma 

 1/7,500 × 
altitude;  
±1-sigma 

<= 5 cm 

Vertical Accuracy 5 - 10 cm 
typical; 
±1-sigma 

5 - 35 cm 
typical; 
±1-sigma 

5 – 30 cm < 5 - 10 cm 
typical; 
±1-sigma 

<= 10 cm 

Pulse Rate 
Frequency 

33 - 
167 kHz 

33 - 167 kHz 100-800 
kHz 

100 kHz 600 kH 

Laser Wavelength 1047 
nanometers 

1064 
nanometers 

1064 
nanometers 

1064 
nanometers 
(multi-
wavelength) 

NIR 

Scan Angle 0 to 25°; 
increments of 
±1 degree 

0 – 50°; in 
increments of 
±1degree 

0 – 60° ± 30° ±37.5° 

Scan Frequency Variable to  
100 Hz 

0 – 70 Hz  26 Hz LPS: 200/s 

Beam Divergence Dual 
Divergence  
0.25 mrad or 
0.80 mrad 

Dual 
Divergence  
0.25 mrad (1/e) 
or  
0.80 mrad (1/e) 

<= 0.25 
mrad 

Dual Divergence  
0.35 mrad (1/e) 
or  
0.70 mrad (1/e 

0.25 mrad 

Notes: Data sources include Huntington, 2008 (1), Guo, 2014 (2), Painter et al., 2016 (3), Graup, 2021(4), and 
Piske, 2022 (5) 
  



 

 

74 

 
Figure A1. Correlation matrix of terrain and vegetation variables showing that vegetation density 

metrics, including fVEG, LAI’, and Canopy Density are highly correlated. X’s represent non-
significant correlations. 

 
Figure A2. Example vertical bias corrections using different search radii (R) around the ground 

observation. Red lines show the ground point observation. Black lines show the median values of 
lidar points within each search radius. The median difference between the black and red lines with a 

3-m search radius was used for the vertical bias correction. 



 

 

75 

 

Figure A3. Visual representation of the open-reference pixel classification. Light blue areas indicate 
pixels that were classified as open-reference. Underlying dark blue shows the extent of the regular 

open pixels. Green shows canopy or understory. Grey areas represent no-data pixels. 
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Figure A4. The distribution of SWE across the domain shows increased SWE with increasing 

elevations but decreasing fVEG, with more varied low-elevation trends post-disturbance. 
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Figure A5. The spatial distribution of delta Accumulation across the domain shows a more drastic 
difference at lower elevations with increasing fVEG.  
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Figure A6. The spatial distribution of disturbance on the study domain. Disturbance increases with 
an increase in delta fVEG. Higher disturbance classes occur at lower elevations on both north-and 

south-facing slopes. 



 

 

79 

 
Figure A7. Linear regression results of terrain variables at the grid-scale including elevation and 

fraction of vegetation (fVEG) and snow water equivalent (SWE). 
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Figure A8. Partial plots for the delta accumulation space-for-structure RF model for the 02/10/2008 
lidar flight.  
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Figure A9. Partial plots for the delta accumulation space-for-structure RF model for the 03/26/2016 
lidar flight. 
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Figure A10. Partial plots for the delta accumulation space-for-structure RF model for the 
03/21/2022 lidar flight. 
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Figure A11. Partial plots for the normalize delta ablation space-for-structure RF model for the early 
season (March-April) analysis. 
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Figure A12. Partial plots for the normalize delta ablation space-for-structure RF model for the early 
season (April-May) analysis. 
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Figure A13. Reference pixel count using the search algorithm approach showing that most disturbed 
pixels had at least one reference pixel, up to a maximum of 30.  

 

Figure A14. Results from the search algorithm displaying unclear relationships between the disturbed 
and reference pixels as fVEG increases in the disturbed pixel.  
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Figure A15. Partial plots for the normalize delta accumulation pre- and post-disturbance RF model 
using the search algorithm analysis. 
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Figure A16. Partial plots for the normalize delta accumulation pre- and post-disturbance RF model 
using the direct comparison analysis (only disturbed areas). 



 

 

88 

 

Figure A17. Example sensitivity analysis of the space-for-structure RF model predicting delta 
accumulation on 02/10/2008.  

 


