
University of Nevada, Reno

Privacy Preserving Cyber Threat Intelligence Sharing Framework for
Encrypted Analytics.

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in

Computer Science and Engineering

by

Ignacio Astaburuaga

Dr. Shamik Sengupta - Thesis Advisor
August 2022

THE GRADUATE SCHOOL

We recommend that the thesis

prepared under our supervision by

Hntitled

be accepted in partial fulfillment of the

requirements for the degree of

$GYLVRU

CoPPLWWHH�0HPEHU

*UDGXDWH�6FKRRO�5HSUHVHQWDWLYH�

'DYLG�:��=HK��3K�'���'HDQ�

*UDGXDWH�6FKRRO�

Ignacio Astaburuaga

Privacy Preserving Cyber Threat Intelligence Sharing
Framework for Encrypted Analytics

MASTER OF SCIENCE

Shamik Sengupta, Ph.D.

Dave Feil-Seifer, Ph.D.

Hanif Livani, Ph.D.

August, 2022

i

Abstract

This research focuses on the creation of an encrypted Cyber Threat Intel-

ligence (CTI) sharing framework that supports encrypted data analytics with

privacy preservation. It aims to support analytical computation in a centralized

node without allowing that node to see any of the plain-text data.

To enable privacy preservation of the data and its users, we structured the

data into a graph structure that allows traversal over the encrypted data. We

used Ciphertext-Policy Attribute-Based Encryption (CPABE), Deterministic En-

cryption (DE), and Order Revealing Encryption(ORE) to ensure end-to-end en-

crypted sharing of Cyber threat data.

In this work we also cover CYBersecurity information EXchange with Privacy

(CYBEX-P) and CYBEX-P with Encrypted Analytics, the precursor projects on

which the framework is based.

Our research aims to solve one of the biggest problems that CTI sharing

has: securing the privacy of the data once it leaves the user’s premises. We

focus on eliminating attack surfaces present in centralized systems, that is, the

attack surface attackers had over the Backend and the surface the Backend has

against the system. We also focused on maintaining as many capabilities of a

CTI sharing platform, that is, CTI sharing and centralized analytics.

ii

Dedication

This thesis is dedicated to my family: They are my support structure that keeps

me going. My mother, who has sacrificed herself tremendously so our family

can flourish to the success we have now. My father, who has worked endlessly

to provide for the me and my family throughput the years. My brothers, for the

support and encouragement they have given me throughout the years.

iii

Acknowledgments

I wish to thank my advisor, Dr. Shamik Sengupta, and my friend, Tapadhir

Das, for their support throughout this process.

This material is based upon work supported by the National Science Foun-

dation (NSF) Grant No. 1739032.

iv

Table of Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Gap of current solutions . 3

1.3 Motivation . 5

1.4 Terminology . 6

1.4.1 Cyber Threat Intelligence . 6

1.4.2 Honeypot . 7

1.5 Content . 7

2 Related works 9

2.1 Related Work . 9

2.2 Requirements, assumptions & possible approaches 11

2.3 Challenges . 14

2.4 Privacy Preservation . 16

3 CYBEX-P with Privacy 19

3.1 Background on CYBEX-P . 20

3.2 CYBEX-P Encrypted Analytics . 24

3.3 Encryption Primitives . 26

3.3.1 Ciphertext-Policy Attribute-Based Encryption 27

v

3.3.2 Deterministic Encryption . 28

3.3.3 Order Revealing Encryption 30

3.3.4 Encryption Policies . 31

3.3.5 CPABE attributes . 33

3.3.6 Data Structure & Flow . 34

3.4 Capabilities & Data Input . 36

3.5 Obstacles with first implementations 37

3.6 Summary . 38

4 Encrypted Analytics Framework 40

4.1 Architecture . 40

4.1.1 Overview . 40

4.1.2 System layout & data flow . 42

4.1.3 Data Layout . 44

4.2 Data submission and aggregation . 47

4.3 Encryption usage . 53

4.3.1 Creating relationship information 62

4.3.2 Query Types . 63

4.4 Framework example . 65

5 Conclusion and Future Work 80

5.1 Conclusion & Future Work . 80

vi

List of Figures

3.1 System architecture of CYBEX-P along with the Data Flow [1]. . . . 22

3.2 Example encryption policy file, in YAML format. 32

4.1 System architecture, shows interaction paths. 41

4.2 Overview of basic interaction principles of the system. 41

4.3 Overview of data manipulation throughout the system modules . . 43

4.4 Interaction of system components and data. 44

4.5 Shows three main data types and how they are related to each

other. That is, sessions, events and attributes. 45

4.6 Shows the relationship encryption layer in blue and the data value

layer in green. Relationship information is encrypted with DE and

value data is encrypted with CPABE. 46

4.7 Example input data by user, represents a session to a server. It

contains all three levels of data, sessions, events and attributes. . . 65

4.8 Represents the unencrypted value data. 67

4.9 Represents the encrypted value data. 68

4.10Example of what data would look like after separating the data is

separated into its core components. 69

4.13Another example of input data to the system. This data would rep-

resent a network traffic log. 69

vii

4.17Results for querying all events related to the IP 78.220.235.199. . . 73

4.11Example of unencrypted structure of Session. The unique identi-

fier ID is generated based on the data and will Deterministically

Encrypted using system secrets. This however does not represent

the real order in which the system encrypt information, this is just

a visual way to demonstrate the grouping of data. 75

4.12Example of encrypted relationship information ready to be trans-

ferred to the Backend. 76

4.14Relationship layer of the network traffic example. This figure also

shows the information associated with each ID, in reality the value

data layer will not be send in plain text. 77

4.15Encrypted value data and relationship layers of the network traffic

example, ready to be submitted to the Backend. 78

4.16Example of encrypted value data layer, as stored in the Backed

after merging multiple submissions. 79

1

Chapter 1

Introduction

1.1 Introduction

Developing a strong cybersecurity posture is paramount to achieving higher

levels of security within an organization. Organizations should perform Cyber

Threat Intelligence (CTI) sharing to achieve said posture. Cyber Threat Intelli-

gence is information, data, and experience that can help level the playing field.

CTI can include system logs, network traffic, malware signatures, and reports

about the cyber world around us. Sharing allows organizations to learn and stay

current in the continuously evolving cyber battlefield. It allows organizations

to learn and identify current threats, leading to successfully defending from

attacks. Although it is widely known in the cybersecurity community that shar-

ing said information is highly beneficial for identifying and preventing threats,

sharing CTI has had little traction over the past few years. There are three

main reasons why companies choose not to share:

1. The risk associated with sharing data

2

2. There is no universal way of sharing said heterogeneous data, preventing

analytics, TAHOE aims to solve this problem [1]

3. Lack of features in CTI platforms

• Manual workflow

• No data aggregation to support analytics in the first place

Companies do not participate in such platforms because sharing has many

associated risks. For an information-sharing platform to be successful and have

an excellent user base, it has to maintain specific characteristics that outweigh

the possible downsides, such as maintaining the data safety, reliability, and

correctness for a large user base with lots of data ingestion. Most sharing plat-

forms have some missing components, reducing either the usability or security

of the data and privacy. For example, most only focus on the sharing data but

not the aggregation or analysis of said data; the input and output formats of

data are not standardized. In most cases, the security of the data in the sys-

tem and transit is inherently vulnerable due to bugs in the system. Sharing

sensitive information into an untrusted sharing platform becomes very risky for

companies as their information may or may not be handled correctly down the

pipeline.

Additionally, the data and its analytics are very appealing to malicious ac-

tors for an array of reasons. For example, learning about the internals of a

company, such as, possible active vulnerabilities. Most companies do not want

to share their data because it is simply too risky; existing solutions significantly

lack security features for protecting the data, the privacy of the data and the

companies. One of the main concerns for companies that do share is data pri-

vacy [2].

3

This research focuses on developing a framework that would allow end-users

more control over their data and their analytics by eliminating the exposure

of the data itself to everyone, while allowing authorized end-users to generate

meaningful unencrypted-equivalent analytics reports over the encrypted aggre-

gated data. Unencrypted-equivalent reports (analytical results) are generated

fully encrypted, and only if the end-user is authorized will he be able to trans-

late them to a meaningful plain text. The plain text version of the encrypted

report equates to a report generated in a traditional CTI sharing platform with

analytics, for example, CYBEX-P [1].

The objective of this framework is to achieve storage and processing of data

with end-to-end privacy. However, this work does not focus on data commu-

nication/transmission schemes (as the strength comes from the underlying en-

cryption schemes), focusing only on the underlying mechanism for encryption

and processing of data to achieve analytics as if the data were unencrypted.

1.2 Gap of current solutions

This research focuses on the gap in available CTI sharing and analytics so-

lutions with encryption. Furthermore, this research focuses on methods that

avoid using the processing party as a trusted and integral part of the system,

allowing for end-to-end encrypted CTI sharing and data analytics with access

control. We initially solved the privacy problems with encryption, as we worked

towards analytics we realized that doing analytics over the data at the central-

ized node was not possible. We ultimately worked around this limitation by

separating the data into two layers, a data relationship layer and a data encryp-

tion layer. More details explained in section 4.2.

4

Most CTI sharing platforms work by sending their data to the centralized

system, where it is processed and later analyzed. In this common scenario,

while it has security against hackers, the centralized systems can bypass any

security mechanisms as they have complete control over the sensitive infor-

mation. Ultimately privacy of the data lies in the trust that we have with that

centralized party, whether they are acting correctly and have no bugs or vul-

nerabilities. We propose a mechanism that allows the submitting users to have

complete control over their data before it leaves their premises, not allowing

any unauthorized party to view the data, including the centralized party.

Most research in this area focuses on developing CTI sharing platforms but

ultimately puts aside the dangers of having to trust a centralized party. This

research goes beyond current solutions and introduces the use of multiple en-

cryption primitives to achieve fully end-to-end CTI sharing. Our framework cuts

out the centralized party’s abilities to maliciously use the data while maintain-

ing the ability to aggregate and analyze data from multiple users. Our approach

gives users the ability to establish access control rules on their data, giving

them ultimate control over their shared information.

One of the main goals of this research was to establish a way to have the

same layout as a traditional CTI sharing platform, that is, users manually sub-

mit, query, and analyze the data. We automate all three steps in our improved

workflow while allowing users to manually/programmatically handle data if

needed. Our framework establishes a more automated workflow after the ini-

tial setup. Our improved workflow allows the framework to handle the machine

work, allowing security engineers to focus on what is important, analyzing and

interpreting the data to improve their organization’s security.

This research aims to establish a framework to overcome one of the main

5

reasons companies do not want to contribute their data and participate in CTI

sharing: the risks involved in sharing data. However, this research does not

focus on other aspects of CTI sharing like the number of users, quality of con-

tributions, attribute management, and key management.

Organizations choose not to participate in CTI sharing platforms because

platforms do not offer rich features; most platforms only offer data download.

Lack of features means that it is up to each user to download, store, aggregate,

and analyze the data, which requires storage, processing power, and knowl-

edge. For this reason, in this research, we work to address these three limita-

tions that organizations have and develop a framework that has a central node

that can aggregate, store, and analyze data, so users do not have to.

1.3 Motivation

Security breaches can have a devastating effects to companies and its users.

They often handle sensitive information, such as users’ names, Social Security

numbers, dates of birth, and contact information. Another example are compa-

nies’ trade secrets, like Google’s indexing algorithm. There are also consider-

ations related to operational processes; for example if a company’s inventory

system went offline, it would mean that the company would not be able to op-

erate. Another consideration is the aspect of liability that can come from a

breach settlement to costumers, each costumer could be entitled to money and

credit monitoring which can add up quickly depending on the number of cos-

tumers affected by a breach. This particularly affects businesses with a large

costumer base because they may not be able to pay the settlement leading to

bankruptcy. There are also physical security concerns related to cybersecurity,

6

some systems are connected with the physical world and can have catastrophic

effects on population, for example nuclear power plants, power grids, and water

plants. Generally, these cyberphysical systems have connections to the inter-

net, increasing their attack surface making them more vulnerable to external

attacks. One notable recent example, in 2021 a hacker gained access to a

Florida water treatment plant and changed the amount of chemicals that went

into the water treatment, essentially poisoning it. This example is not related

to CTI sharing but stresses why breaches should be minimised.

There are plenty of examples where CTI sharing could have prevented the

breaches. For example, the companies Baltimore, Marriott, Uber and Ticket-

master [3] all possess a common characteristic. Each of these major attacks

were seen somewhere else and organizations had poor intelligence ingestion

and adaptation to threats, which led to successful breaches. These could gen-

erally be prevented by having a mature cybersecurity posture that shares and

ingests CTI data.

CTI sharing does not automatically solve vulnerabilities or prevents attacks,

but it opens the channel for communication about threats. The sooner organiza-

tions can detect and share information about threats, the sooner organizations

can react and adapt to new attacks.

1.4 Terminology

1.4.1 Cyber Threat Intelligence

Cyber Threat Information is any information that can help an organization iden-

tify, assess, monitor, and respond to cyber threats. Cyber Threat Information

7

includes indicators of compromise; tactics, techniques, and procedures (TTPs)

used by threat actors; suggested actions to detect, contain, or prevent attacks;

and the findings from the analyses of incidents. Specific examples of cyber

threat information include indicators of compromise, system artifacts, TTPs,

security alerts, reports, and recommended security tool configurations [4, 5].

Most organizations often produce CTI to share internally. The problem with

only sharing internally is that the knowledge is significantly smaller and lim-

ited compared to external sharing. Internal sharing also means that CTI data

is created in silos and other organizations can not benefit from it, for example

if there is a hack in one company then other companies wouldn’t know what

works against that type of attack.

1.4.2 Honeypot

Honeypots are either a software that runs on a server or are the whole server.

They are nodes that look legitimate on the network but have no real business;

therefore, if someone interacts with it, they are most likely malicious. Their

goal is to detect and learn from attackers. Honeypots can be deployed within a

legitimate network in hopes to detect attacks within it. For the purposes of this

thesis we used honeypots to gather attack command sequences from attackers.

We then used the data to test our framework.

1.5 Content

The following chapters of this thesis are as follows: In Chapter 2 we discuss

related works, requirements, assumptions, and possible approaches to our pro-

posed framework detailed in Chapter 4. Chapter 3 introduces CYBEX-P, the

8

brother project that this thesis work aims to improve upon, the initial work done

to support the work described in Chapter 4. Chapter 3 also discusses early

work done with CYBEX-P with Privacy Preservation, the first implementation

and the algorithms used to support it. Chapter 4 introduces a new framework

that expands in the previously mentioned work. The new framework utilizes

similar primitives but achieves analytics. Lastly, conclusion and future work

are provided in the last chapter of this thesis.

9

Chapter 2

Related works

2.1 Related Work

In [6] the authors aim to solve the same problem our research solves, that is,

current CTI sharing platforms do not provide means to preserve privacy for the

users. However, in their research, they only try to mediate privacy preservation

agreements between parties. They do so by layering degrees of preservation

using predetermined actions/functions of preservation, for example, plain-text,

anonymity, sanitization, and homomorphic encryption. Their approach is to

determine the level of preservation needed by each party and adjust the data

privacy to that specific level. Our research completely differs from theirs in

the solution to a common problem; we achieve privacy by equipping users with

fine access control to preserve data privacy, which also includes the centralized

party, while at the same time enabling data analytics. Their research is related

to determining appropriate degrees of protection and applying actions to the

data. Depending on the actions applied to the data, its confidentiality may

10

still be at risk. Furthermore, their system does not allow analytics after their

protective actions are applied.

Chadwick et al. [7] expanded on the above framework for selecting appro-

priate levels of privacy preservation and applying different respective privacy

preservation mechanisms. Neither of which details any practical implementa-

tion details on preserving privacy while maintaining analytical power over the

data.

Most platforms work by having a centralized party gather data from mul-

tiple sources, making it available to its users. On some platforms, users can

contribute data. Then, other users can request all of the data within a certain

timestamp (which are generally not related to the data but to when the data

was submitted to the system). In systems where data is gathered from the pub-

lic domain, it tends to be of bad quality. Data from organizations tend to be

overly obfuscated/sanitized, making it significantly less helpful. Often, orga-

nizations generate quality CTI data; unfortunately, this data is commonly only

shared internally within the organization and not with other organizations.

To the best of our knowledge, there is no other platform or framework that

attempts to achieve usability, privacy, and analytics, all in a single CTI sharing

platform. Our framework is the first step in supporting all these functions.

Other research and platforms attempt to solve other problems, but not the

technical problem of the data sharing logistics for maintaining its privacy and

achieving analytics simultaneously. Because we aggregate data, we can achieve

rich features like analytics compared to platforms that only upload and down-

load information. Our framework allows the users to submit and aggregate

from multiple sources and analyze while preserving their privacy.

11

2.2 Requirements,

assumptions & possible approaches

In order to solve the problem of privacy, we have turned to encryption mech-

anisms. There are a few ways to apply off-the-shelf components to solve the

privacy issues with CTI sharing platforms. We first have to establish a few

system requirements:

• The system must have a similar flow to current CTI sharing platforms, or

better/simpler

• The system must be able to aggregate data from multiple sources and

• Generate reports based on aggregated data, essentially showing the po-

tential of diverse CTI data. For our purposes we focused in a similar ap-

proach to TAHOE [1] as it allows great flexibility in report generation

• Ingest heterogeneous data

• Allow user control over their submitted data, including reports

• Data must be safe from the centralized party and any other unauthorized

users, including at rest and in transit

Trusted parties use the system, and the data is assumed to be correct in

nature; however, this does not mean that users can not act maliciously and

share encrypted data.

We explored the following possible solutions to solve the privacy problem:

1. Encrypt all the pieces of data independently using CPABE. This approach

did not give us the flexibility that was required to achieve any meaningful

analytics. This specific approach is further discussed in the next chapter.

12

2. Add encryption layers to the database and implement everything as usual

but with an encrypted database. This approach does not allow flexibility in

encryption and decryption of the data as users would have to share keys.

The decentralized system would not be able to generate analytics reports

on a large amount of aggregated data if it does not give access to the data.

A possible solution to this problem is homomorphic encryption [8,9]. For

our purposes, homomorphic encryption does not work. This is because we

would not give the central party keys, which means that if we wanted to do

some filtering of the data for analytical purposes, the central party would

not be able to discern relevant results and would be forced to return the

calculation results of every possible permutation of the query with every

data in the system to the querying user, this could take multiple iterations

of back and forth and is also very expensive in data transmission, storage,

and computation for the user. Homomorphic encryption was not a feasible

solution for our requirements.

3. Use of an off-the-shelf graph database and encryption of the data and its

links. This approach did not work as modern graph DBMSs can not handle

queries over the whole data efficiently (further discussed in section 2.3).

4. Implement custom graph data structure, apply encryption to the data and

relations, and have full control over development and implementation.

This is the approach we took in this research. We started with MongoDB

as our NoSQL database of choice and implemented a graph structure de-

scribed in section 4.1.3. By implementing our own encrypted graph struc-

ture, it allows us to do efficient database queries while maintaining the

data privacy, allowing the generation of analytical reports at the central

party while giving the end-user full control of their data (at initial encryp-

13

tion time).

Off-the-shelf components are not suitable for solving the problem, and a

custom solution had to be implemented. We recognized that data had to be en-

crypted or placed in an equivalent encrypted format. In our research, we placed

data in an encrypted graph database allowing us to traverse it encrypted. We

implemented it in this manner so that the following is met:

1. The analytics agent can not learn about the plain-text data from the en-

crypted data

2. Be able to retrieve and calculate information (i.e. traverse the graph)

without knowing about the underlying data. The approach we used was

to use encryption for the relationship information that is:

• deterministic in nature to be able to retrieve the information by the

required user

• and random to avoid the analytics agent from learning any informa-

tion about the relationship data

The encryption primitive is further discussed in section 3.3.

3. Allows the analytics engine to query and filter the data without knowing

what it is or make sense of it

We formed the framework to incorporate the following requirements:

• There must be a centralized party. Single organizations are said to have

small computational power and would not like to join if they have to do

the work for computing analytics over the aggregated data. Therefore

the centralized party must be able to compute some results for the end

querying user.

14

• Data is said to be of known types and structures. This means that a con-

version layer must exist, later referred to as Collector-client

• Data is encrypted before leaving the premises

• Submitting users should have control over their data

– In our framework, the user has control when they submit their data

This system assumes that users only trust themselves and the parties they

allow to view their data. This is strictly enforced using encryption, which is

why this system heavily relies on a Key Management Service (KMS). The KMS

is said to be trusted. To use even the most basic features of the framework,

users must be enrolled with the KMS/system as they will need system encryp-

tion/decryption and system keys to operate. The system relies on the KMS and

assumes that the security comes from underlying encryption mechanisms.

2.3 Challenges

The work presented in this thesis is divided into two sections: the early sup-

porting works, chapter 3, and the successor framework in chapter 4.

In our early works, we design the platform to use direct encryption over each

piece of data so that the Backend could not compromise the privacy of the data.

Using encryption meant that we were trading usability for privacy. The biggest

challenge with using direct encryption was finding encryption primitives that

allowed comparability around the encrypted data that allowed us to create an-

alytical queries. It is widely known that homomorphic encryption can be used

to compute results with encrypted data, and in our system, we explored the use

of such encryption primitive. Homomorphic encryption is not suitable for our

15

purposes as the Backend will require decryption keys to use the results of the

encrypted computations for efficient analytical reports of the data. Using only

encryption mechanisms for CTI processing left us with a CTI sharing platform

that only shared. This problem lead us to rework the solution. Ultimately we

developed a system that uses a graph data structure to hold relationship data

with a separate value data layer. Queries were implemented by traversing the

graph of relationships formed by the encrypted CTI data.

In our early design, we explored two possible solutions to relationship traver-

sal. One was to use an unencrypted graph database and add an encryption

layer. The second solution was to use an encrypted graph database. Each

solution had its limitations; for the unencrypted database approach, we had

to create an encryption mechanism that allowed the comparison of encrypted

data. The encrypted approach limited the ability of the Backend system to do

analysis on the data. Some implementations only allowed calculations to be

done in a temporary decrypted state.

The first approach gave us the most flexibility without compromising se-

curity. The use of out-of-the-box graph database solutions like Neo4j did not

work. The most common use case and goal for off-the-shelve graph databases

is to find relationships between two nodes as fast as possible. They focus on

a minimal number of paths, such as finding the shortest path given two nodes.

Our problem can be modeled as finding all the possible related nodes from one

node to any other node while saving the paths, a problem that is not compatible

with graph databases’ objectives. Neo4j can not handle this task even with the

smallest amounts of data; it was not designed to find all possible paths. Even

other research related to encrypted graph traversal only focus on the shortest

path problem [10]. Our proposed solution is building a simple data structure

16

that allows fast traversal of the relations of the data. More on the proposed

database schema and how we solved this problem in section 4.1.3.

We also considered using an encrypted database and storing the data in a

graph structure. Popa et al. [11,12] developed an encrypted SQL-like encrypted

database. Their research addresses two main threats which we also have in

our system. The centralized Backend that runs the database and the possibility

of adversaries that could take control (fully or partially) over the system, the

database, and ultimately the data. However, this approach was not suitable for

our problem as the Backend has no way of interacting with the encrypted data;

only the end-users do; therefore, there is no centralized analysis generation.

This approach also does not protect the data from other users, as mixing access

control with this kind of database restriction always prevented analytics, so only

one or the other could exist in this configuration. Similar incompatibility would

happen with using encrypted graph databases [13–16] and encrypted no-SQL

databases [17].

2.4 Privacy Preservation

When we talk about privacy preservation, we mean that the organizations will

not be able to access data from one another and that we will protect against out-

siders, including the centralized Backend. This ensures that we have preserved

the privacy of the data. Another essential point to consider is the privacy of the

users themselves. We aim to protect both by implementing access control over

the data, users can submit pre-sanitized data to further protect themselves, but

it is highly discouraged as they have fine control over who can see their data.

Essentially, they have complete control over their privacy. The access control

17

is defined even before data is encrypted with CPABE on the user’s premises.

This guarantees that the access control can not be tampered with later on at

any point of the pipeline. This also means that if the user submitting the data

encrypts data with a policy where he does not have the suitable attributes to

decrypt it, he will not be able to access that data either.

We aim to achieve privacy preservation by relying on two mechanisms—the

implementation of access control and decryption attribute assignment. A robust

access control mechanism will ensure that the data is protected. The submitting

user will have to establish who is able to access data, regardless of how other

parties could gain access to the data, via the system or from an adversaries

point of view, stolen. Our framework assumes two significant points: the user

will be able to carefully select who can access their data in the access control

policies and that the access control attributes are correctly assigned.

We have assumed that our Key Management System (KMS) will act as a

trusted party that can vouch for everyone’s attributes. It is its job to verify ev-

ery single organization before joining. Each organization can further be broken

down into smaller groups or users that the KMS will also have to verify and

check attributes. Attribute checking is a crucial component for the system as

it is used to maintain data privacy via access control. Attribute checking, how-

ever, offloads the privacy problem to access control and attribute management.

The system’s users can be anyone who will submit or retrieve data to the

system. Generally speaking, in CTI sharing platforms, users are not encouraged

or allowed to only retrieve data from the system as it degrades the system’s

utility, as it is a function of quality data stored in it. In most platforms, users

must also submit meaningful data or pay for the data if they are only retrieving

it.

18

Our framework explicitly requires users to sign up with the system because

CPABE attributes need to be verified by the KMS for decryption purposes. In

terms of KMS and keys, organizations can further split up into subgroups. For

example, a single organization can sign up as a single entity that submits data

with hundreds of users who can query data; each independent user will get a

decryption/private key with their corresponding attributes.

19

Chapter 3

CYBEX-P with Privacy

In this chapter we will focus on the origin of the framework later described

in this thesis. The first platform that we researched and developed was named

Cybersecurity Information Exchange with Privacy (CYBEX-P). CYBEX-P had pri-

vacy as one of its main objectives, which is achieved through access control

oversight for everyone by having a centralized party manage access to the data.

As a parallel thread, we developed our initial implementation of a stripped down

version of CYBEX-P that focused on removing the access the centralized party

had over the data. We called this parallel project Encrypted Analytics (EA). This

chapter focuses on the Encrypted Analytics. Encrypted Analytics is the precur-

sor and foundation of the more advanced Encrypted Analytics Framework. We

will also discuss details and implementation of both Encrypted Analytics Frame-

work and its precursor, CYBEX-P Encrypted Analytics project.

20

3.1 Background on CYBEX-P

Cybersecurity Information Exchange with Privacy (CYBEX-P) is a platform that

we researched and developed intended to share CTI and analyze it to generate

insightful reports about the data while maintaining privacy of its users. Privacy

was achieved by having good separation of modules and strong nodes with high

security. We divided the platform into modules that lived inside of two zones.

Two zones meant that the non-secure zone could potentially be compromised

without compromising the security of the system. The whole system relies on

three assumptions: that the secure side of the system will not be compromised,

that the centralized Backend will not be malicious in any kind of way, and that

the system does not mind the Backend having access to the data.

We designed the CYBEX-P platform in modules. These modules live in dif-

ferent locations depending if the specific modules are trusted. The modules

will live in three different locations. The first is the organizations premise, the

other two are located in the CYBEX-P servers. The modules located in CYBEX-P

premises are divided into two more categories, the DMS and the secure inside

zones. These two zones worked in preserving privacy by moving all the mis-

sion critical privacy preservation to the secure side, for example, viewing data,

storing, aggregating, analyzing, and reporting about the data is all done by the

secure side of the Backend. In our CYBEX-P implementation, the segmentation

was also done in a physical manner, there were five servers that defines these

zones. One server was in the DMZ which hosted the systems API and web inter-

face, and the rest in the secure side: two database servers, one analytics/report

generating server, and one ingestion and aggregation server. We designed the

platform in two or more zones, with the secure zone being the important one.

The secure zone allows us to control the privacy of the data very strictly. Trust-

21

ing and ensuring this single point is secure implies the system is secure.

CYBEX-P can do data collection, analysis, privacy preservation, report/alert

generation. The functions are supported by the six software modules we devel-

oped: the Input, API, Frontend, Archive, Analytics, and Report modules. These

modules are composed of one or more sub-modules from Fig. 3.1.

22

Figure 3.1: System architecture of CYBEX-P along with the Data Flow [1].

23

The Input module is composed of Collectors. Collectors are responsible for

collecting data from users. One Collector unit is located in the web interface

of the CTI sharing platform. Collectors can also be deployed where necessary

like user premises. In our implementation of CYBEX-P, we deployed Collectors

in our in-house honeypots.

The Archive module is located in the secure side and it is in charge of de-

crypting raw data and preparing the raw data for conversion to TAHOE Raw

format, where it gets aggregated and stored in the main database. This step is

the hardest to achieve because data types are heterogeneous, the standardiza-

tion to TAHOE format allowed the system to work over any kind of data.

The Analytics module worked by converting TAHOE Raw data format to

proper TAHOE format. This translates to interpreting the data and extract-

ing proper meaning of it; the analytical modules will run against new data and

create new data from it. For example, data from our in-house honeypots came

from logs, these logs had connections to other events. This is where the mod-

ules will do actions like linking all the preexisting data, extract domains and

resolve IP addresses, and generate connections between other pieces of data.

The report module will take a user’s query and generate reports based on

their query, for example, given an Attribute, find all of the related events (up to

x degree) that happened between these dates.

The API is simply an interface for communicating between the DMZ and

the secure zones. As a security measure no connections are allowed to go

inside the secure side, all connections are outgoing from the secure side into

the DMZ. This asynchronous communication method was the hardest challenge

to implement as it limited functionality, all synchronous activities had to be

broken down into a reverse connection/communication or else they will impact

24

the security of the system.

The flow the data takes across CYBEX-P is as follows:

1. Collect Data from either:

• Public sources, ingested by Backend directly

• Private sources, submitted by each party

2. Archive data, preserve privacy temporarily until the data gets processed

3. Aggregate data & Preserve Privacy

4. Analyze data

5. Alert & Report

In combination to Zone separation, the security comes from processing and

manipulating data in the Secure Zone only. Anything that enters and leaves

the Secure zone is encrypted in some way. In conjunction to the separation

of zones and manipulation of data, privacy is preserved by identifying user’s

level of desired privacy preservation and strictly ensuring their data’s privacy

is ensured inside the secure zone by the Backend. It is paramount that the

Backend behaves correctly to ensure all these properties.

More information on the CYBEX-P project can be found in the main paper

[1], documentation can be found on the projects website [18], code can be found

on its GitHub [19], and more on the user interface [20,21].

3.2 CYBEX-P Encrypted Analytics

Initially, we explored and developed the CYBEX-P project in two threads. The

first thread focused on the creation of a CTI sharing platform that aimed to

25

solve many of the problems with cyber-threat information sharing, like usability,

aggregation, analysis, and privacy.

CYBEX-P intended to solve the privacy issue by anonymizing the data at in-

gestion time in the Backend. It did so by encrypting the data at the users’

premises using the Backend public key. When the data is ready to be ingested

for aggregation and analysis, it will get decrypted, stripped of ownership infor-

mation and aggregated. It could later be further analyzed by the many post-

processor modules CYBEX-P has. It maintains privacy by having one secure

module manipulate data and enforce privacy.

CYBEX-P focused on solving multiple of the issues that CTI sharing platforms

have and are reasons why organizations do not choose to join and share. The

most notable one is what is done with the data once it gets ingested into the

system. CYBEX-P maintained privacy by strictly enforcing Access Control Lists

(ACL). Users submitting the data have to maintain an ACL list of allowed or-

ganizations to view their data. Centralized privacy preservation was sufficient

to defend against misuse by enrolled members but it was not strong in regards

to defend against attacks inside the Backend. The Backend had complete ac-

cess to all the data. By extension, compromising the Backend means that the

attackers also have access to all the data, bypassing the privacy.

The second thread of the CYBEX-P research dealt with maintaining as many

capabilities of the main CYBEX-P project while keeping the data secure from

the Backend, that is, CTI sharing and analytics. In the following paragraphs we

will focus on discussing the second thread of research, CYBEX-P with Encrypted

Analytics, hereafter called Encrypted Analytics (EA).

Our first implementation of Encrypted Analytics (EA) started by trying to

mirror the goals of the main CYBEX-P project, share data and allow for analyt-

26

ics in the Backend, but with even stricter privacy measures. The main objective

for the EA research was to achieve CTI sharing while maintaining computa-

tional capabilities for report generation at the Backend. The goal level of pri-

vacy preservation for this project was to also eliminate both the attack surface

attackers had over the Backend and the surface the Backend had against the

system. In a nutshell, privacy means not giving unauthorized users access to

the system or data, including the system administrators and Backend.

The codebase for CYBEX-P with Encrypted Analytics is divided into modules.

Each module is to be located on each part of the system as seen in Figs. 4.1

and 4.2. That is, Collector modules are located in organizations’ premises,

Backend is located in the system servers, and Query-client is located at the

user’s premises. The KMS module is independent to the system. Data flow and

system architecture are identical for CYBEX-P with Encrypted Analytics and the

Encrypted Analytics Framework. Both are described in more detail in the next

chapter. The main distinction between EA and the Framework is how data is

stored.

3.3 Encryption Primitives

In this section we detail how each primitive is used and what they achieve.

These primitives apply to both the CYBEX-P with Encrypted Analytics and the

Encrypted Analytics Framework, which are both discussed throughout this the-

sis.

27

3.3.1 Ciphertext-Policy Attribute-Based Encryption

Ciphertext-Policy Attribute-Based Encryption (CPABE) is responsible for the en-

forcement of access control and granular data access over data fields. When a

user first inputs data into the system, the data will be separated into two lay-

ers, the data layer and the relationship layer. CPABE will be encrypting the data

layer. Each piece of data that leaves a user’s premise will be encrypted using

CPABE as per equation 3.1. Users submitting data have the ability to create en-

cryption policies POL for the encryption of Data, more on encryption policies in

section 3.3.4. In a nutshell, most data gets also encrypted with CPABE using the

systems public key PUBkey and an encryption policy POL. The encryption key

is said to be public to the system because it is used to encrypt the data, the key

is shared among all the encrypting users. The data can later be decrypted only

by private keys that meet the encryption policies requirements (determined at

encryption time), any key that does not meet the policy’s requirements will fail

at decrypting the data. Every user in the system has a unique CPABE key tied

to their organization’s attributes (not to be confused with Attributes from sec-

tion 4.1.3). Key generation is carried out at the KMS, where it will generate

two keys, the public key which can be used to encrypt, the master key which

in conjunction with the public will be used to create private keys, and lastly

private keys that will be created using the public and master keys as well as a

list of attributes that the key will be able to decrypt.

The decryption process can only be carried out of the private key decrypting

the encrypted cipher contains and satisfies all the attributes of the encryption

policy. Neither the key or the cipher can be modified to bypass this restriction

and its enforced by the encryption primitive. The math behind the primitive

ensures the access control and any decryption that does not meet the policy

28

will simply output garbage. Policies specify what attributes will be allowed to

decrypt the data and can also include AND, OR, and parenthesis () operators,

where attributes can be combined with these operator to make more complex

access policies. For example “REASERCH and ITOPS”, in this case a key would

have to have both attributes in order to decrypt data with this policy. Multiple

keys that partially satisfy the policy can not used to decrypt the data, even if

they collectively satisfy the policy.

C = CPABE_ENC(PUBkey, POL,Data) (3.1)

Exactly what CPABE policy is used for encryption is up to each organization.

As far as primitives go, every piece of data will be encrypted using Deterministic

Encryption and CPABE unless otherwise overwritten by the encryption policy,

that is describes in section 3.3.4.

3.3.2 Deterministic Encryption

Deterministic Encryption (DE) is used as a one way function for data, that is

tied to a specific deployment, much like a hash with a secret salt. The purpose

to use DE is that it allows the system to create indexable Identifiers (IDs) for

each piece of data without compromising the confidentiality of the data. DE

is used over hashes to ensure the ID generation is tied to this specific system

(prevent collisions with other deployments) and to prevent brute force attacks

on the data as it is encrypted using the system’s public DE key (public to system

users, not outsiders). This does not prevent insider brute force attacks as they

will have the encryption key.

We use a single symmetric encryption algorithm to achieve what we have

29

called Deterministic Encryption throughout this paper. Asymmetric encryption

is used to achieve one way functionality. When the key for the asymmetric algo-

rithm gets created, the private key is immediately discarded and overwritten in

memory by the KMS. Discarding the private key ensures that the one way func-

tionality is maintained throughout the lifetime of the public key. We assume

here is that our primitive is at least equally secure as the underlying encryp-

tion primitives, therefore using and choosing modern and secure encryption

primitives is key for this system to maintain those properties. We also rely on

the KMS’s trustworthiness for creating and immediately disposing the private

key. If both of these assumption are met we can confidently say this is a se-

cure algorithm. Enforcing these two properties are not beyond the focus of this

paper.

Value data is encrypted using both DE and CPABE, DE generated the unique

ID for each piece of data in the system for searching and retrieval purposes. IDs

are also used as a relationship pointers. CPABE is used to encrypt the value of

the data and are referenced using their unique IDs which allows for retrieval by

the querying parties. The encrypted IDs are only for retrieval and data lookup,

since IDs are encrypted in nature they protect the data. In the event that an

attacker were to get access to the database everything will be encrypted: the

IDs and the value data. It is only when the data is in the hands of an end

user with an appropriate CPABE private key that they will be able to decrypt

the value data layer if they possess the right attributes. The relationships are

simply inferred from the pointers and the decrypted data is arranged in the

same format.

30

3.3.3 Order Revealing Encryption

Order Revealing Encryption (ORE) is used to encrypt data by which the sub-

mitting users feel/desire their data should be filterable by. Usually submitting

users will setup their encryption policies to allow this additional piece of en-

crypted data to be generated for some of the attributes in their data. ORE

encryption can be used in any attribute that is integer based or that can be

converted into integer, this includes things like dates and time (not limited to).

The encryption process is determined by the Collector at ingestion time based

on the encryption policy that the organization has setup. If a an organization

recognizes that their data would benefit more users if it was filterable by time

for example, then they can enable ORE encryption over the Attribute, which

would allow other users to filter based on that. Equation 3.2 shows how the

data gets encrypted, C1 is generated at ingestion time by the Collector, C2 is

generated by the Query-client, and equations 3.3 are carried out by the Back-

end for data filtering. It is important to note that encrypting using the ORE

mechanism reduces the privacy of the data, making it subject to brute force

attacks by insiders.

C1 = ORE_ENC(PUBkey,Attrib)

C2 = ORE_ENC(PUBkey,Query)

(3.2)

31

C1 = C2

C1 > C2

C1 ≥ C2

C1 < C2

C1 ≤ C2

(3.3)

3.3.4 Encryption Policies

Encryption Policies determine how the data is going to be encrypted at a given

Collector. It allows for granular control over access of fields/attributes. A

CPABE policy is established prior to sending data. Policies only affect how

the data is encrypted, the data later leaves the premises and those policies are

ultimately enforced by encryption.

Encryption policies are written in terms of how the data will be encrypted.

Users have the ability to choose what data is going to be encrypted with fine

precision. The system uses regular expressions to match attribute labels. Reg-

ular expressions allows the user to match more than they know about their

data. For example, if they have a field that they may know about and would like

better control over but don’t necessarily know what the field could be named

(which is unlikely because they should know their data, out of scope), they can

use regular expression to encapsulate more matches with wildcards.

Policy matching is done according to the Collector’s configuration file (re-

ferred to as encryption policy in this paper), an example configuration can be

seen in Fig. 3.2. It specifies rules to match fields in each record. Each rule

has an associated CPABE policy that will be applied to the field if matching. If

32

no rule matches, the default policy is applied. One can use an exact match or

regex match for a field. Encryption is done field-wise. Aside from encryption

policy, the policy administrator must also specify what field will be indexed for

encrypted searching.

policy:
default:
If no other policy matches below
Then this CPABE policy will be used
abe_pol: "default_public"

index:
These two will match fields with to
create searchable encrypted fields
this will force better indexing
on fields (optimization)
exact:

- match: "ipv4"
- match: "ipv6"

regex:
- match: ".*src.*"

The following rules will match specific
fields if a field matched it will be
encrypted with the corresponding rule
exact:

- match: "event_id"
abe_pol: "itops AND ciso"

- match: "count"
abe_pol: "default_public AND research"

regex:
- match: ".*ssn.*"

remove: True
- match: ".*timestamp.*"

abe_pol: "itops"

Figure 3.2: Example encryption policy file, in YAML format.

If a user decides that they don’t care about certain data then they can let it

be encrypted using default policies. These default policies are still user defined

and they catch any piece of data not matched with fine control.

33

Every piece of data will be encrypted using DE for indexing as it creates data

IDs. Data by default will be encrypted using CPABE using the organization’s

default CPABE policy if the data does not directly match any other encryption

policy. If the data does match a policy, the Collector will use that policy for

CPABE instead. This means that data that is not explicitly tagged for removal

will be encrypted using default settings. This means that the Collector will usu-

ally send the data to the Backend encrypted by DE and CPABE. These default

settings are set by each submitting organization.

When specifying that a data is accessible by certain organizational attributes,

the policy will establish what decrypting attributes will have access to a par-

ticular label. For example, consider the label “source_IP” with CPABE policy

“RESEARCH or ITOPS”. The person querying must be either “RESEARCH” or

“ITOPS” to decrypt that field. CPABE policies are done in a field-by-field man-

ner.

Data can also be marked for removal, which means that the Collector will

make sure to not send said data to the Backend. This feature is useful if data is

too sensitive to be sent, or the data is not useful so it is removed.

3.3.5 CPABE attributes

Access control attributes are labels used by the Ciphertext-Policy Attribute-

Based Encryption (CPABE). These attributes are the basis of the access control

mechanism; they are used to specify what and who can decrypt the data (field-

wise). Encryption policy acts like boolean logic, where a user either possesses

all of the required attributes or not (in their private CPABE key) to decrypt

the data. Access control attributes can range from trivial things like company

names, to groups or collections names, to broad of attributes. For example,

34

Google can have attributes like SearchEngine, Google and more specific group-

s/users can have attributes like Research, IT, CISO, etc.

For access control to work properly, both the encryption policy’s attributes

and the attributes in the private key need to match; therefore, it is important

that attribute distribution and usage is done consistently. It is paramount that

attribute creation and usage is standardized. The KMS is responsible for cre-

ating these attributes; therefore, a mechanism to keep track of assigned at-

tributes is key to successfully decrypting data. Without knowing what attributes

are available in the system it is not possible to make the data useful to any of

the users, as using an incorrect attribute or non-existent attribute will result

on inaccessible data. In our framework, implementation of the KMS provides

users with a list of current attributes in the system to address this issue. Since

access control uses CPABE we can encrypt data using non-existing attributes

that may later be assigned. This will temporarily create inaccessible data, at

least until the attributes used to encrypt the data are assigned to someone.

3.3.6 Data Structure & Flow

The data, as previously mentioned, flows from the Collector to the Backend, and

later on to the user. Starting at the Collector, the data will be encrypted field by

field using DE and CPABE using the encryption policies set by the organization

submitting the data.

The main distinction between CYBEX-P with Encrypted Analytics and En-

crypted Analytics Framework is the data structure that is used to store the

data, as seen in algorithms 1, 2 and algorithms in Chapter 4. In EA the data

gets separated field by field, encrypted using the encryption policy set by the

user, and also encrypted using Deterministic Encryption. Data then gets bun-

35

dled into its respective Events and Sessions, where it can later be retrieved by

the Backend by searching in the database for Events or Sessions with a specific

DE cipher. Results could be Attributes/Events/Sessions. Once data is gathered

by the Backend, it is up to the querying party to try to decrypt the rest of the

fields in the results as they are subject to the CPABE set by the submitting

organization. As each data will be encrypted by different organizations, there

is no need to do deduplication, as the CPABE data will always result in differ-

ent encrypted outputs. Events and Sessions are always assumed to be unique.

Therefore this system does not deduplicate data, as there is nothing to dedupli-

cate by nature. In the Framework, the architecture and data flow are the same

as EA. However, the data structure for data is a graph of relationships layered

with an encrypted data layer. More on this structure in the next chapter.

Algorithm 1 Data encryption & storage algorithm overview, CYBEX-P En-
crypted Analytics

Input: Raw data
Output: Encrypted Data
1: Collect new data
2: Separate each new bundle/Event/Session of incoming data to its simplest

components
3: for all Att in components/Attributes do
4: Encrypt Attribute with DE
5: Encrypt Attribute using CPABE
6: if Attribute == type(int) AND ORE in Policy(Att) then
7: Encrypt Attribute using ORE
8: end if
9: end for

10: Discard plain-text data
11: Combine all of the encrypted data into a single unit
12: Send data for data storage to Backend
13: Backend will append bundle to database

36

Algorithm 2 Data query algorithm, CYBEX-P Encrypted Analytics

Input: Encrypted query
Output: Decrypted Data
1: Encrypt query’s Attribute using DE
2: if Integer Filtering desired then
3: Encrypt integer/time ranges using ORE
4: end if
5: Send encrypted value to Backend
6: Backend searches for all records that contain enc(Att)
7: if Integer Filtering desired then
8: Backend filters results using ORE comparison
9: end if

10: Return results to user
11: User’s Query-client will attempt to decrypt records if able using CPABE
12: Reconstitute record bundles

3.4 Capabilities & Data Input

CYBEX-P with Encrypted Analytics is capable of preserving privacy by fully en-

crypting the data. It uses multiple encryption primitives to store the data. Each

encryption primitive adds a new layer of usability to the data, allowing for sim-

ple functionality. The first functionality that this project achieves is that it can

ingest heterogeneous data, store with privacy preservation mechanisms, and

retrieval of the data. Retrieval of the data can also be done with queries over

the data.

In the implementation of our first CYBEX-P Encrypted Analytics project, our

system had a relaxed input type. The data was encrypted field by field and

stored as a bundle. That is, a whole event will be dissected into Attributes, each

attribute will get encrypted, and then all of the Attributes of that event will get

stored together in a single unit. This meant that looking for an attribute, the

Backend will search for all bundles of data containing the encrypted Attribute.

Any DBMS supports this kind of query, which made it very efficient. Looking

for a particular attribute in the database yields whole bundles of data, and not

37

how they are related to one another or other pieces of data. We achieved simple

lookup queries on any specific attribute, count of specific Attribute/Events/Ses-

sions queries, and integer filtering queries. Time and integer/float range filter-

ing queries can also be stacked with any other query.

These queries allowed us to produce a complete CTI sharing platform with

privacy preservation even on its core. EA, however, could not do any more

advanced analytics on the data, only lookups. As far as data ingestion goes,

CYBEX-P Encrypted Analytics can ingest any type of data. For example, it sup-

ports some of the data types NIST recognizes as CTI, indicators of compromise,

system artifacts, Tactics, Techniques, and Procedures (TTPs), security alerts,

reports, and recommended security tool configurations [4,5].

This however is not true for the EA framework, the EA framework only sup-

ports certain types of data. It supports all the basic queries EA support and

new relational queries. The new relational queries are based on a graph data

structure which represents relationship information. Due to this data structure

relational queries are only supported if ingesting information with such rela-

tionships. Encrypted Analytics frameworks also supports data aggregation and

which enables data fusion across a variety of heterogeneous and unstructured

data sources.

3.5 Obstacles with first implementations

CYBEX-P had big assumptions about the security of the system, the Secure zone

had to be secure else the privacy guarantee fell apart. We addressed that by

implementing a platform that did not rely on the Backend for data privacy. EA

used encryption primitives that where carefully selected to add more usability

38

to the system, but it was not enough, it only achieved basic queries over the

data as the encryption restricted what calculations the Backend could do. The

data structure was very simple and could be completely handled by the DBMS.

This also means that the data can also be decentralized. The encryption and

data structure made it extremely hard to do any meaningful analytics, resulting

in a platform for sharing the data with some analytics like counts, searches, and

integer filtering. For this reason is that a redesign of the system was in need.

3.6 Summary

CYBEX-P is complex in its design, as it operated in the very principle that there

is a trusted side and an unstructured side. Everything in the unstructured side

could be compromised and the data will still be safe. This separation by data

handling assumes the trusted side is secure. If we challenge this assumption

we see that the privacy of the model is compromised.

It is important to note that in reality, this centralize party has access to all

the data and controls all of it, whether the mechanisms for privacy are working

as intended are up to this centralized party, and any malfunction or malicious

behavior could and will compromise the security of the system. This also means

that there is a single point of failure for security. Access to the Secure zone

means access to all the data, violating privacy for all the users and data.

We aimed to solve this problem by introducing strict Access Control mea-

sures enforced by encryption at ingestion time. This however made it very diffi-

cult to produce complex analytical insights of the data at the Backend. Further

information about the CYBEX-P Encrypted Analytics project, implementation,

code, and documentation can be on its official website [22].

39

In CYBEX-P, data maintained a reference to the ACL list. With the ACL,

when data is queried, data would only be returned to the querying user if they

had access to the data. All of this happens at query time, meaning ACLs and

data submission could be edited/ingested at different times. In contrast to the

Encrypted Analytics framework in 4, the framework uses a similar mechanism

to maintain privacy, that is, access control. However, access control is enforced

by encryption at submission time and can not be modified later. As data is no

longer in plain text, the Backend can not decrypt it. This furthers the strength

of privacy by rendering the data unusable to outsiders.

In combination with the previously mentioned work, we developed a new

Encrypted Analytics Framework that enables privacy preserving CTI sharing

with encrypted analytics. The framework address all the aforementioned issues

by introducing a graph data structure to store some of the information.

The new framework borrowed most of the structure from the EA project

and sub-components, where most constraints remained the same. The major

and only difference is how the data is stored. Storing the data in a different

structure changed how we conducted analytics, achieving something that to our

knowledge has not been done before. The following chapter will reintroduce the

components that make up the framework, how data flows from component to

component, how the data achieves its core functionality of aggregating data to

support encrypted analytics and lastly a guided example on how the data would

get processed on a live deployment.

40

Chapter 4

Encrypted Analytics Framework

4.1 Architecture

4.1.1 Overview

In the project model, no party trusts the underlying transportation and central

storage mediums. This project assumes that the Key Distribution Service (KMS)

is a trusted entity that sharers can rely on to verify and adequately assign at-

tributes to new platform members.

The system has four parts as shown in Fig. 4.1 which correspond to the

actions of each module in Fig. 4.2.

Collector

The Collector is in charge of encrypting the data with the encryption policy set

by the organization that wants to share the data. The Collector module itself

has two parts, the encryption module and the Collector-client which gather

41

Figure 4.1: System architecture, shows interaction paths.

Figure 4.2: Overview of basic interaction principles of the system.

data from user endpoints. The encryption module encrypts any data sent to it

by one or more gatherers and ships it over encrypted to the Backend server for

aggregation and storage.

Backend

The Backend/API/DB collects the encrypted data and stores it into a database.

When a user queries the Backend using an encrypted version of the query, the

Backend returns applicable encrypted data using encryption primitives related

to both value data encryption and relationship encryption layers.

42

Query Client

The Query-client handles queries from a user. The Query-client handles all tasks

necessary to carry out a query: the encryption of the query, the API call, possi-

ble encrypted analytics (client-side analytics), and data decryption if possible.

The user querying will only be able to decrypt data that the original encrypting

user desired; this is enforced at encryption time with CPABE policies.

Key Management System (KMS)

The KMS handles key creation for new system members, attribute assignment,

and key distribution. New keys are generated based on a user’s/organization’s

attributes.

The KMS is used by the Collector to get the public keys when encrypting, by

the administrator when setting up the Collector’s policy to determine available

attributes, and by the Query-client to get private keys for decryption purposes.

The KMS server is not needed at run-time if keys are preloaded and stored

locally by each module.

4.1.2 System layout & data flow

In Fig. 4.3 we see the flow of information from end-user contributors to end-

users that query for data. In a nutshell users gather their data, convert it to a

standardized format, encrypt it and send it over to the Backend; the Backend

then stores the data and aggregates it. Users can later request the data from

the Backend, where it gets analyzed based on queries made. Once it reaches

its end-user, it can be decrypted if decryption policies allow it.

In Fig. 4.1 we see the system layout. It is composed of a single Backend,

43

Figure 4.3: Overview of data manipulation throughout the system modules

a single KMS and multiple Collectors and Query-clients. Each organization is

allowed to have multiple Collectors to suit their encryption needs. The system

was designed this way for data safety, later described in section 4.3. Organiza-

tions can also have more than one Query-client.

In our framework we have a single Backend, responsible for data storage

and retrieval, users can send or request encrypted data to and from. In this

paper, Organization/users are broken down into their two action components,

submission and retrieval of data, as seen in Figs. 4.1 and 4.4. For the sake of

simplicity, Figs. 4.1 and 4.4 only show a single Collector and a single Query-

client, they can belong to a single organization or separate organizations. Keep

in mind that this framework supports multiple users with multiple Collections

and Query-clients.

It is important to note that data gathering and data encryption (as depicted

in Figs. 4.1,4.2, 4.3, 4.4) are done in conjunction by a single entity/organiza-

44

Figure 4.4: Interaction of system components and data.

tion as they are coupled to a specific organization’s needs. On the other hand

data, data submission is not limited to a single organization; multiple organiza-

tions can submit and contribute. In other words, data gathering and encryption

(policies, not algorithms) are subject to each organization. Data submission can

be done by any of the participating organizations. A single organization is not

responsible for all data encryption, each independent submitting organization

is.

4.1.3 Data Layout

The data is divided into three types of data, which later get converted into two

encrypted layers. These three layers include session, events, and attributes.

Figure 4.5 shows the relationship between these three data types. Sessions

are made up of events, events are made up of attributes. Attributes are made

up of labels and data. The two encryption layers are the relationship layer

45

which is made up of the relationship between sessions and events (links specif-

ically), and the data value layer, which is the encrypted data of the attributes

and events. Figure 4.5 gets converted into Fig. 4.6. The relational data gets

encrypted with one way deterministic encryption (DE), while Attributes get en-

crypted with Ciphertext-Policy Attribute-Based Encryption(CPABE), both later

described in section 3.3. In Fig. 4.6 components unique identifiers (ID), gener-

ated by the one way deterministic encryption algorithm (DE), are represented

by the arrows/links (ID of the Attribute or Event, destination of arrow). IDs are

also stored with the attributes for direct retrieval of encrypted data, and inside

relational data which is further described in section 4.2.

Figure 4.5: Shows three main data types and how they are related to each
other. That is, sessions, events and attributes.

Attributes

The most common piece of data is attributes, they are simple label-value pairs

that represent something. For example, an IP address can be represented as

the label IP and value 1.1.1.1. Attributes do not contain more information aside

from their label and value. For example, 1.1.1.1 is the IP address of Cloudflare’s

DNS server but this particular information is not represented by an attribute,

possibly represented by a higher piece of data like an event or session. In our

46

Figure 4.6: Shows the relationship encryption layer in blue and the data value
layer in green. Relationship information is encrypted with DE and value data is
encrypted with CPABE.

database, Attributes are stored as pairs of labels and values. They do not store

which events they are related to; Events and Sessions store what attributes

they have a relationship with. This allows for data deduplication as multiple

events can be related to the same attribute, and also decouples attribute values

from Events and Session which will later allow us to create two new encryption

layers, later described in section 4.2.

Events

Events represent something that has happened. This is not to be confused with

sessions. Events only represent a single happening, for example a file down-

load or a user login. Each event is described by one or more attributes. For

our purposes there is a requirement that each event has at least one attribute

describing the event type. Event’s attributes describe or give more information

about the event itself. For example, an event of type login may contain a times-

tamp and an source IP, a download event may have foreign server IP, filename,

file. Events are not to be confused with sessions.

47

Sessions

Sessions describe what events are connected in a series of events. For example

a user may have logged in, ran a command to check for root and then tried

downloading a file before finally trying to logout. Sessions are just a collection

of Events.

The data is assumed to have relational information when it is submitted by

the users. Relational data is what a session is and it is key that it is known

before submission. This does not mean that we must know how an event from

a particular session is related to a session/event form another user, but instead

that in a particular session we know that some events are related to each other.

This relational information is usually automatically generated by the software

logging the data. In the event that data does not inherently contain such re-

lationships in the specified format, the Collector-client should be developed to

convert data on-the-fly before sending it over to a Collector for encryption, as

shown in Fig. 4.4. Collectors have a specified input data format and Collector-

clients should adhere to said format; in our implementation that format is JSON.

4.2 Data submission and aggregation

Submission of data starts at each organization. Each organization determines

the importance of the data/data fields they are sharing. With that information,

they create an encryption policy. The organizations write the encryption pol-

icy in terms of the fields and their respective encryption policy, i.e., fields and

attributes that can decrypt the said fields. The decryption of information is

enforced using attribute based encryption (CPABE), not to be confused with At-

tributes from our data types. Encryption attributes refer to characteristics or

48

groups an organization belongs/represents, for example an organization may

be part of RESEARCH and DEVELOPMENT, but may not be represented by

FARMING, these attributes are determined by the KMS at enrollment time.

In section 4.1.1 we describe the data flow between certain subsystems, in

section 4.1.2 we describe how the data is generated, formatted, encrypted, ag-

gregated. The Collector is responsible for structuring the data for encryption

before the data gets appended into the encrypted database by the Backend.

The Collector will first convert the data into a standardized format according to

it’s structure and meaning. Here, we assume that the data is in a standardized

structure, as shown in Fig. 4.5 and that, in this case, the Collector knows ex-

actly how to extract that structural/relational meaning. This assumption is crit-

ical for doing data encrypted data analytics at the processing Backend. Once

the Collector has standardised the data into the particular data format, e.g. as

seen on Fig. 4.10[D1], the Collector can start processing the semantics of the

data to create a graph structure.

The encryption procedure uses multiple encryption primitives, later described

in section 3.3. One can use unique encrypted reproducible IDs for each piece of

data to create the relationship information. This information can be created by

the Collector software at ingestion time and can later be recreated in a similar

fashion to retrieve data in the direct query procedure. The process for doing

related query is more involved. The following paragraphs will go over how the

value data and relationship encryption layers are formed.

This relationship information is stored encrypted (not double encrypted, the

generation of IDs is already encrypted) in a graph database in graph format.

This allows operations like graph traversal allowing for analytical questions to

be asked about the data, which is what this framework intends to support.

49

In the following paragraphs we will separate relationship/links from the

value data encryption scheme, we will be using Fig. 4.7 as an example. Ul-

timately, one can use any graph traversal algorithm to traverse the encrypted

data, achieving advanced queries over the data without knowing the data or the

relationships between them. We will later include another piece of data in Fig.

4.13 to demonstrate the data traversal algorithm, aggregation, and querying.

Each piece of data is converted to two major critical pieces of data. The

first data that is created is in the node/link format as seen in Fig. 4.11, i.e. it’s

unique ID, to be able to link things into a graph. The second piece of data is the

encrypted data itself, for the end user to decrypt. In this system we can have

multiple users input similar data.

We handle similar data in the following format: node data will only be create

once per piece of unique data, this means that graph traversal information will

not be duplicated.

The data (data value) and relationship information (node data or graph data)

work on two different layers, which are decoupled. This allows us to encrypt

them in completely different encryption mechanisms. The real values of the

data and field name data can be encrypted using mechanisms like CPABE which

grants us access control capabilities. The relationship data is encrypted using

irreversible (one way) Deterministic Encryption (DE) encryption that uses the

system’s encryption secret, therefore deterministic but only for valid system

users for their particular system deployment.

The real value of the data is encrypted based on user’s desired encryption

policy. If we have the scenario where two users submit the same IP for exam-

ple, it will result in only one data node being created and two pieces of value

encrypted data. Node data and encrypted value data are completely indepen-

50

dent from relational data (data ID), and it is not necessary to know the real or

encrypted value (CPABE encrypted) of the data to traverse the relationships in

the graph. This makes it possible to traverse the graph/relationships without

knowing the data.

Information in the value data layer is encrypted using CPABE with an en-

cryption policy that is up to the submitting party to decide. This also means

that leaves are encrypted with different encryption keys. If two entities submit

the same value data it will result in one unique Identifier (ID) with two value

data leaves. Relational information will be able to relate to said ID. Later in

the retrieval process, querying users will be able to pull either data form the

database using that specific ID, depending on their decryption capabilities (or-

ganization attributes), i.e. whether they are allowed or not.

With a single pass (traversal search) of the database we can establish multi-

directional information leaf to event and event to leaf, without knowing what

the leafs are. We can fully traverse multiple levels of the relationships to an-

swer many analytic queries. Our two layer solves the problem of excessive

processing times from off the shelf graph databases, they are not able to obtain

all possible relationships and all their paths in a useful timely manner, they are

not design with this problem in hand, they are designed to find a single shortest

path.

By using only one-way deterministic encryption for the relationship graph

creation and full value data encryption mechanism (actual encryption described

in section 4.3), we can achieve a full range of relational queries by simply

traversing the graph. This comes with a caveat, information can be learned

by the analytics engine. For example lets say link1 is usually related to link2,

a malicious entity will not be able to know to what they point to (what is the

51

original value of the data, that is, the leaf) but will be able to know that both

obfuscated links may be related or possibly of interest. As previously stated,

link IDs are derived from the data itself and are directional towards the leaves

from events. The value data and any information relating the link is safe, the

encrypted links themselves are not. In our framework we don’t see this as

a trade-off between data usability and privacy. Further research needs to be

conducted on whether relationships between encrypted links without knowing

what they point to can lead to information leak.

In the current state of the research, we concluded that by including access

control mechanisms it is not possible for the Backend to conclude any tangible

statements about the data. We will use a high level example to demonstrate.

For example in the malicious context of machines, if we, in plain text ask

about the data for the relationship about the probability of a given machine to

be malicious based on the IP address location (for example China). Without

having direct access to the leaf (IP, location, malicious rating) of the graph it

is not possible to calculate the statistic. Using the same example, if we asked

how many machines located in China are malicious versus not (ie probability

of being malicious give the location is China) without using China or Malicious

context, we can not convert China and Malicious to their corresponding iden-

tifiers. The graph database stored their identifiers which for the sake of this

example we will call ID1 and ID2, we are still able to evaluate the probability

of ID2 given ID1. In our framework we are redacting the data by encrypting

it with CPABE to control who has access to the original data, in this case the

value of the encrypted data that ID1 and ID2 point to (China, malicious). This

is essentially the gist of the two layers of data, node/relationship data and data

value. This also grants options like allowing users to retrieve queries like prob-

52

ability of ID2 given ID1, but not probability of malicious given the location is

China. Users with the correct CPABE access will be able to decrypt the data

layer into the latter but not authorized users will only be able to see the former.

The user querying will be able to know what ID1 and ID2 are as they are

the ones that generate the deterministic IDs for the query by encrypting the

query values malicious and China in this example. It is important to note that

this example is only one type of query, other queries may return other types

of output. Regardless of the output style, all data is returned and only made

available in an encrypted format. For example, if we ask in what context does

a certain thing (ID3) happen?, this query could be equivalent to finding all the

related neighbors and paths on the graph. This query will return all related

paths associated with ID3. Extracting further meaning from “in what context

does ID3 happen” will not make any sense unless we can decrypt what ID3

points to, which is subject to the encryption policy of the submitting parties.

Query traversal is done the following way. A user can encrypt the data to

find its link ID which can then be passed to the encryption analytics engine.

The encrypted analytics engine will then traverse the graph and collect the

appropriate results for the user. This includes things like related queries or any

other query. Then the user can also download all the appropriate encrypted

value data for that particular query and if able to decrypt the data. As stated

above, the user querying knows the base parameters for the query, he will

at least know them about the encrypted information, but nothing more. Any

other information will be secured by access control, any further meaning will

be subject to CPABE encryption policies.

The encrypted analysed engine will do a graph traversal on the encrypted

data using the encrypted value passed by the user querying. Some partial ana-

53

lytics can still be done at the analytics engine as explained in previous sections.

The user may be able to decrypt results even further into plain text. Only at the

fully decrypted stage the data will be in its most meaningful state.

4.3 Encryption usage

This section details the procedures that each module carries out and what en-

cryption primitives they use to achieve the overall goal of the system as detailed

in sections 1.1, 4.1.1, 4.2. Further on encryption primitives in section 3.3.

Collector client

Algorithm 3 explains the flow of data from collection point to delivery. They

collect data from a data generation node, where each Client is specialized to

conform to each data retrieval method and input data format. Collector-clients

are the only modules that are specialized to their input data structure, other

modules are generic in the sense that the code stays the same regardless of the

data, where others it’s the configuration that changes. Each Collector-client’s

implementation will vary from data to data, with the common goal to collect

data from a single node, standardized it (as specified in Fig. 4.5), and prepare

it’s format and structure for encryption. Then it transfers the information to

a Collector unit. Collector-clients are made to be reused if they ingest the

same data (format and semantics), meaning the same implementation can be

deployed across multiple data generating nodes.

54

Algorithm 3 Algorithm for Collector-client logic

Input: Raw data
Output: Standardized data
1: Collect new data
2: Build relationships if not explicitly present
3: Convert to Collector’s input format
4: Pass data to previously selected Collector

Collector

It will ingest data as it arrives and encrypt it. There could be many Collectors

units configured within an organizations premises. Each Collector can only

carry one encryption policy, therefore Collector-clients will be configured to

send data to a specified Collector, this is to prevent sensitive information from

being incorrectly encrypted and sent outside of the premise. The design solves

the problem by reducing the chance of error by creating a pipeline that will

always see the same kind of attributes where a policy is made specifically for

that data, more is discussed about policy in section 3.3.4. For example, there

could be a single Collector encrypting server connection logs, where data can

come from two nodes with different formats but the data is similar. Collector-

clients will help with the format conversion and Collectors will do its only job,

ensuring that the records are properly encrypted before leaving the premise.

One would not want to send for example web server logs to this Collector, as

it is only properly configured to match connection logs. The default policy for

unknown attributes in a record is to submit with maximum restrictions on the

data. This should prevent usage of the data while allowing for generic analytics

using the encrypted relational data without using the value data. The Collector

will act according to algorithm 4.

55

Algorithm 4 Algorithm for Collector logic

Input: Standardized data
Output: Encrypted data
1: On startup validate configuration
2: if Keys not preloaded then
3: Retrieve system and private keys from KMS
4: end if
5: Perform key testing
6: loop
7: Get data d from Collector-client
8: Extract all attributes A from data
9: for all attributes a in A do

10: Encrypt a based on encryption policy
11: Generate unique Deterministic Encryption (ID) of a
12: end for
13: Build event objects E and session objects S
14: for all event e and session s in E ∪ S do
15: Generate unique Deterministic Encryption (ID)
16: end for
17: Remove traces of unencrypted data from memory
18: Send objects, attributes and any extra encrypted values as per policy to

the Backend
19: end loop

56

KMS

The KMS does not handle any data; it’s only job is to generate system, public

and private keys for users to use. It’s logic is described in algorithm 5. It

will only distribute to keys to legitimate members of the system. System keys

are only used for encrypting data with coarse access control, meaning only

holders of the system keys will be able to query the system without being able

to decrypt the data, allowing for generic system queries. Public and private

keys are used to encrypt the data with granular control over direct access to

the data. Algorithm 5 is described in terms of the query the user will make,

but in reality the Query-client will request keys from the KMS and not pass the

query to the KMS.

In reality there are major assumptions that have to be followed for this sys-

tem to be secure. The underlying security of the system comes from the encryp-

tion mechanisms used and proper key management, the KMS must be able to

securely generate, store, and distribute keys. This include things like picking

cryptographically secure keys. The KMS must also correctly verify new users

as well as authenticate current users before distributing their updated keys.

Users can have the option to store their keys, removing the need to con-

stantly contact the KMS for keys, this also means that if a user was given new

attributes they will have to fetch the new key from the KMS. This research is

did not explore key management. Things like key revocation and re-generation

were not considered.

Centralized Backend

The centralized Backend is responsible for ingesting encrypted data, storing it,

and later retrieval of said data. The analytics is mostly done by the centralized

57

Algorithm 5 Algorithm for KMS logic

1: On startup validate local configuration
2: if First startup then
3: Generate random numbers for public keys initialization
4: Generate public DE, ORE and CPABE system keys (public to legitimate

users)
5: end if
6: loop
7: for all New users do
8: Generate CPABE private key
9: end for

10: for all Users wanting to encrypt do
11: Send DE, ORE and CPABE system keys
12: end for
13: for all Users wanting to query do
14: if Coarse query then
15: Send DE system key only back to user
16: else if Fine query then
17: Send system DE key and corresponding CPABE private key to user
18: end if
19: if Query also is range filtered then
20: Send ORE key to user
21: end if
22: end for
23: end loop

58

Backend, also referred to as analytics engine in this paper. The Backend will

first ingest the data it receives and store it depending on the type of data it is,

that is, if its an attribute, relationship. The storage procedure is described in

algorithm 6.

Algorithm 6 Algorithm for Backend ingestion logic

Input: Encrypted data
1: for all Items received do
2: if Is relationship then
3: Store relationship into database
4: else if Is attribute then
5: Lookup attribute in database using ID
6: if ID exists in database then
7: Append encrypted value to ID in database
8: else
9: Insert encrypted value into database using ID

10: end if
11: end if
12: end for

The storage of the data is straight forward as the graph generation is done at

encryption time by the Collectors. This allows for the data from multiple users

to be aggregated and later analysed. The relationship data is simply stored in

the Backend for later usage, as they link to attribute data. Attribute data on

the other hand, has two fields, the unique attribute identifier and the value.

The unique identifier is made from the original attribute label and the data,

which is then encrypted using DE with system keys for a one-way encryption

process. The data itself is encrypted using the policies desired by the encrypt-

ing user. When two independent users encrypt/submit the same attributes into

the system, they both generate the same unique identifier for that attribute,

but generate completely different encrypted value for the data of that partic-

ular attribute. For this reason is that the backend will store both the unique

identifier for that particular data and multiple encrypted values for that data.

59

It is worth noting that the unique identifier is tied to the value of that data, for

example is there are two IP addresses then even though they are both IPs they

will yield different unique identifiers, but if they are that same type of IP and

same value then they will generate same identifiers, the resulting encrypted

value will be different (as they are encrypted by different policies). This allows

for querying users to be able to reach to this attribute easily (either by direct

or relational queries) and for them to be able to decrypt any of the possible en-

crypted values. For example, if company A and B had submit the same piece of

data, company A denies access to company C, company B grants access to com-

pany C. Regardless of value encryption company C can still traverse the tree

to search around the encrypted data (as it uses the relationship database, with-

out knowing its meaning), and in this case since there are multiple encrypted

results, and company B explicitly granted access to that data, company C can

still decrypt it.

The Backend is also responsible for data analytics and filtering. Relation-

ship information is stored in two layers, this means that relationship/relative

queries can be accomplished in a single query to the database. The Backend is

responsible for implementing analytics. In our research we focused in achiev-

ing supporting analytics and not the analytics themselves, we provide a sample

analytics like relational searches, described in section 4.4. The logic behind the

query/analytics is described in algorithm 7.

60

Algorithm 7 Algorithm for Backend query logic

Input: Query: Item ID, query parameters
Output: Encrypted data, results
1: loop
2: Receive unique ID from Query-client
3: if Direct query lookup then
4: Lookup ID in database
5: Append returned items to results set
6: else if Analytics query then
7: Run graph traversal algorithm on relationships
8: Perform other analytics
9: Append resulting items to results set

10: end if
11: if Time based or integer filtering desired then
12: Filter results set based on ORE parameters
13: end if
14: Return results
15:

16: end loop

We assume that sessions are unique, even if two sessions are identical they

will differ in time and therefore are not completely unique, for that reason is

that we simply add the session/relationship data to our graph database and not

deduplicate it.

An assumption here is that this framework protects the data against missuse

of the information, not the availability of the data. There are other mechanisms

that deal with enforcing data availability. Essentially, the frameworks assume

that the Backend will not be a sinkhole and will not tamper with the generated

results. Result tampering in this case would mean to include more or less en-

crypted data to the results, not editing data as it would not be possible by the

Backend. We consider this to be out of scope.

61

Query client

The Query-client will preform similar operations as the Collector but to the

query data. It will grab the user’s query, which will usually start at an attribute.

It will apply DE encryption algorithm using the system’s public keys and will

pass the encrypted result along with what kind of query the user wants to the

Backend. It will handle all encryption and decryption for the user. Query-client

logic showed in algorithm 8.

Algorithm 8 Algorithm for Query-client logic

Input: Query: plaintext, query parameters
Output: Decrypted data, results
1: Get query from user
2: Encrypt query value with DE system keys
3: if Time or integer filtering query then
4: Encrypt filter integer with ORE system keys
5: end if
6: Send encrypted values and query parameters to Backend
7: Wait for results from Backend
8: if Direct query then
9: Decrypt all data with CPABE private key

10: else if Advanced query then
11: Read graph results
12: Request value data for pertinent IDs in graph
13: Decrypt value data using CPABE private key, if access is permitted
14: Reconstruct graph
15: end if
16: Interpret results
17: Convert to user readable(or machine) format
18: Return results to user

ID generation & Queries

The unique identifiers that are used across the system to index and search data

are DE encrypted. The ID is generated by encrypting the SHA256 hash of con-

catenating the data type and value data (equation4.1). This ensures that it will

62

be unique in the system regardless of what kind of data is being inputted. This

approach however does requires the Collector to know what kind of data it is;

this does not mean that it need to know which data type it is. The Query-client

can simply generate the ID based on the information passed in the query and

by inferring type by looking at the type of query. Query-client and the Backend

can simply use these IDs as if they where the real data without knowing what

the data is.

dat = concat(data_type, data_value)

DIGEST = SHA256(dat)

ID = DE_ENC(PUBkey,DIGEST)

(4.1)

4.3.1 Creating relationship information

The relationship algorithm is very simple. This is because one of our main as-

sumption, the data inputted to the system has to have the relational information

built into it or generated at collection time. This is at the Collector-client stage;

therefore, the process for building the relationships is out of scope. However

the system still needs to encrypt the relationships. To do that the Collector

creates a graph of the data, which then processes to create IDs for every re-

lationship, this is done so using the data where it points to, then collects the

information in a single node in the database. These nodes are defined as fol-

lows: Event nodes hold pointers to its Attributes and Sessions hold pointers to

its Events and Attributes. Since IDs are generated using the same procedure

by every user in the system, aggregation is inherently done. Therefore the only

step needed to aggregate data is for the data to live in the same database.

63

Using graphs will allows us to store the relational information about the

data. Unique identifiers for the data will allows us to standardize the data

retrieval process and also allows us to traverse the relational information.

4.3.2 Query Types

We have differentiated two categories of queries. Exact queries that search for

items on the database by directly accessing an item using its ID and returning

it. For example, if a user has an IP address, he can search for all events that

this item is a part of, i.e. directly related. This includes things like attribute

counting and statistics about the data, where a simple lookup of the data is

enough to retrieve the desired information.

On the other hand, there is relational queries that leverage the graph struc-

ture to find related event based on related information. In Figs. 4.5 and 4.6 we

see that data that has one common piece of information gets linked up in the

Backend. Relational queries help support analytical queries over the data and

it was the main goal of this research, supporting said queries. This group of

queries include queries like, given an Attribute find all the related events/ses-

sion that this particular Attribute is related to (Fig. 4.6 for example), or even

queries like find how two items are related. The usefulness of this type of

queries comes from the fact that multiple users submit data and that the data

is aggregated automatically, exposing never seen before relationship between

common data. This becomes useful when looking at CTI that may not be useful

when separate but very useful when connected. In the case of our framework

aside from having the benefits of a CTI sharing platform that aggregates the

data it also has the benefits of the same analytical queries in an privacy pre-

serving manner.

64

Data in our framework is structured in two layers, the data value layer which

supports direct type queries and the relationship layer which in conjunction

with the data layer support the relational type queries.

We can further differentiate queries in two other categories, coarse access

and fine access queries. Coarse access queries do not require access the value

data layer, which means there are more generic queries. Fine access queries

are subject to the CPABE polices as they decrypt the data value layers.

Aside from these types of queries, we can filter data using Order Revealing

Encryption at the Backend. The user sends an ORE encrypted vale or values to

the Backend in conjunction to the query parameters, and the Backend can filter

results based on those ORE encrypted value(s). This is only supported on value

data that has the ORE encrypted layer, therefore using this feature will result

on only searching data with the ORE layer. The Backend can be configured to

be inclusive or exclusive of the data that is missing the ORE layer, for example

if we look at data between today and tomorrow, the system will return data

between to those timestamps, with the option enabled to include data that does

not have the ORE layer, the Backend will also send data that does not have the

ORE layer that also meets the query criteria. This ORE-less data can later be

further filtered out at the Query-client if value data is decryptable, this however

comes at the cost of data transfer, space, and time. ORE benefits the Query-

clients as the filtering is done at the Backend, which is one of the assumptions

this project was built upon, the fact that clients will not have enough resources

to do processing themselves.

65

4.4 Framework example

In this section we will demonstrate the framework through a guided example.

The examples in this section are fabricated to demonstrate the analytical capa-

bilities of the framework. To demonstrate that the framework can in aggregate

and search over data we will replicate simplified data from a local server. In

Fig. 4.7 shows a sample of a chain of events carried out in a server.

Consider the session data in Fig. 4.7:

{
"type": "session",
"events": [

{"type": "Login",
"IP": "78.220.235.199"},
{"type": "File Download",
"command": "wget example.com/virus.exe",
"file_name": "virus.exe"},
{"type": "Command execution",
"command": "./virus.exe"}

]
}

Figure 4.7: Example input data by user, represents a session to a server. It
contains all three levels of data, sessions, events and attributes.

it is generated directly from a data generating node. Depending on the node

configuration the node can send it directly to a Collector-client or the Client can

copy it from a specified location. Once the Collector-client gets a hold of new

data it will enforce structure and basic requirements like whether relationships

are clearly identifiable. In this example the requirements are met, so the Client

passes the data along to the Collector.

The Collector, in this example, is configured to run with the configuration

shown in Fig. 3.2. The data in Fig. 4.7 is separated into three groups of

components, attributes, events and sessions as shown in Fig. 4.10. In this

66

particular piece of data we only have one session with multiple events and

multiple attributes. The Collector will first take all the attributes and encrypt

them using DE, this will generate unique IDs for each piece of data, then it will

take the value data of the attributes and match each specific rule to each label

for those pieces of data and determine what CPABE policy should be applied.

Once the CPABE policy is determined it will encrypt the attributes using their

respective policies, as seen in Figs. 4.8 and 4.9. In this case, the labels type,

IP, command, and file_name are going to be encrypted using the default policy

as they did not explicitly matched any of the rules. The default CPABE policy

for this particular configuration is default_public, meaning anyone holding a

CPABE private key with in this system with that attribute will be able to decrypt

those attributes. In the event that a rule would match a policy then it would be

encrypted using that instead. It is important to note that encrypting does not

require to have special attributes assigned in the private CPABE key, this is

because only the private key is used in the encryption process. Any attribute

can be assigned as an CPABE encryption policy, whether any user possesses

those attributes or not.

After encrypting the value data layer it will, for each Event grab the IDs for

every Attribute in it and create a pseudo object with all of the IDs in it. Then it

will create another pseudo object for the session and add all of the Attributes’

IDs and Event IDs into that object, This can be seen in Fig. 4.11, the plain text

value data was kept in the structure to show the relationships between the IDs

and Events/Session, however this would not be included in the end result and

the resulting data would look like Fig. 4.12.

After encryption, the Collector will send the data to the Backend where it

is stored. All the encrypted value data is stored in one database and all the

67

{
"data_type": "attribute",
"type": "Login"

}
{
"data_type": "attribute",
"IP": "78.220.235.199"

}
{
"data_type": "attribute",
"type": "File Download"

}
{
"data_type": "attribute",
"command": "wget example.com/virus.exe"

}
{
"data_type": "attribute",
"file_name": "virus.exe"

}
{
"data_type": "attribute",
"type": "Command execution"

}
{
"data_type": "attribute",
"command": "./virus.exe"

}

Figure 4.8: Represents the unencrypted value data.

relationship data (for example Fig. 4.12) in another database.

Now lets consider another piece of data (Fig. 4.13) that is submitted by an-

other node. This particular data comes from one of their firewalls and contains

related information to the data in Fig. 4.7. This network log data will get con-

verted into data shown in Fig. 4.14 via the same steps as the previously shown

data but with a different encryption policy. Then the data shown in Fig. 4.15

is sent to the Backend. This data simply gets appended to the database, no

68

{
"data_type": "attribute", "uniq_id": 2458,
"cpabe_enc": [0x19...741]

}
{
"data_type": "attribute", "uniq_id": 1335,
"cpabe_enc": [0x43...092]

}
{
"data_type": "attribute", "uniq_id": 8720,
"cpabe_enc": [0x92...342]

}
{
"data_type": "attribute", "uniq_id": 6181,
"cpabe_enc": [0x16...493]

}
{
"data_type": "attribute", "uniq_id": 1428,
"cpabe_enc": [0x56...398]

}
{
"data_type": "attribute", "uniq_id": 2098,
"cpabe_enc": [0x29...282]

}
{
"data_type": "attribute", "uniq_id": 7952,
"cpabe_enc": [0x01...906]

}

Figure 4.9: Represents the encrypted value data.

queries or processing necessary as it is already in the graph format.

69

{
"type": "session"

}
{

"type": "event"
}
{

"type": "Login",
"IP": "78.220.235.199"

}
{

"type": "File Download",
"command": "wget example.com/virus.exe",
"file_name": "virus.exe"

}
{

"type": "Command execution",
"command": "./virus.exe"

}

Figure 4.10: Example of what data would look like after separating the data is
separated into its core components.

{
"type": "session",
"events": [

{"type": "File Download",
"IP": "78.220.235.199",
"file_name": "virus.exe"},
{"type": "Connection established",
"IP": "78.220.235.199"},
{"type": "File Upload",
"IP": "78.220.235.199",
"file_name": "database.sql"}

]
}

Figure 4.13: Another example of input data to the system. This data would
represent a network traffic log.

The Backend now has now appended both relationship data from both sub-

70

missions from Figs. 4.12 and 4.15. The value data layers are merged, this

is done by searching for all the submitted value data IDs in the database and

checking if they exist, in the case of the first data submission in our example,

all of them do not exist so the Backend simply adds the values to the database.

The second submission of value data is looked up, where the fields that have

previously been added will be appended to previously submitted IDs and the

ones that have not been seen before are just added, this results in the data

shown in Fig. 4.16.

The value data in the Backend can be accessed using its unique identifier.

The decryption process will involve checking each piece of data is decryptable

or not by given a set of attributes. Checking for decryptability is not com-

putationally expensive, as the binary data has the attributes required to be

decrypted in plain text, meaning the check can be checked by anyone. The

attributes being stored with the encrypted data is not a risk, as attributes are

just labels and the KMS can solve this problem by using a random sequence

of characters to represent each attribute/characteristic. There are two ways to

check the data, each approach has benefits and risks. The first approach is to

download the data to the user and have the Query-client compare it, it is not

computationally expensive but it will make the query take longer as more data

needs to be downloaded and temporarily stored by the user. The second ap-

proach is for the Query-client to pass along what attributes the key holder has,

and have the Backend return data that meets the query and the decryptability

criteria, this however reveals the attributes of the key-holder. If sharing the at-

tributes of their organization is not important then it is not a privacy violation.

Ultimately the decision is up to the querying user/organization.

It is important to note that any of the actions in the framework are com-

71

pletely asynchronous and can happen at anytime. In this paper and this exam-

ple we walk through the possible actions in the same flow the data would take

but in reality there will be many users interacting with the system at once.

Now the data there exists data in the Backend, we can perform queries. We

will first describe the procedure for exact type queries. We will be searching

for information relating to a specific IP, 78.220.235.199 in our case. We will

first demonstrate how the system would handle this case. Every request starts

by getting the query value from the user and then generating the unique iden-

tifier by using the deterministic encryption algorithm. The ID generation step

requires a specific data type, in our specific example this is Attribute since the

IP is an Attribute. The algorithm will produce the ID 1335. Note that the value

is deterministic for the encryption key, a different key will produce a different

value.

If we wanted to find out all the events that contain this IP, we would send

the ID and our request. The Backend will then proceed to search the database

for all Events containing that IP, the query would look as follows: {“data_type":

“event", “refs": 1335}. For this particular example, this query will result in

returning all the data in our relationship database. The database query returns

only the relationships, which are sent back to the Query-client for interpre-

tation. This is the point where each query differentiates from each other, for

example, if we ask about the number of related events, the results are are not di-

rectly from the database back to the user, the Backend will instead count (done

by the DBMS) and return a single number to the user. If we ask for the data

itself then the relationship resulting graph and the corresponding encrypted

value data is sent back to the user. The Query-client can then reconstruct the

result buy decrypting the data. As mentioned earlier, there may be multiple

72

encrypted value data ciphers (CPABE) for a single piece of data, the user can

decide whether to carry out the encrypted value data filtering in the Backend

or in the Query-client, regardless of the choice, the Client will then proceed

to decrypt the value data and link it up according to the graph showing the

relational information. After this reconstruction step the result data is ready

displayed to the user. In this example, six events are reconstructed as shown

in Fig. 4.17. In this we assume that the querying user is allowed to decrypt the

data as per access control policies, meaning has the right decrypting attributes

in his CPABE key. If the user did not have all the right attributes in his CPABE

key then he may not be able to conclude in to the same results.

Generally, asking the right query is key to getting good results. In this par-

ticular example, the results for the related query may not be that useful on their

own and follow up queries may be needed to conclude an investigation. As an

investigator we may realize that databse.sql is the name of a database file and

it is tied to a file upload and somehow it is related to the IP. We now move to

the related queries.

73

"events": [
{"type": "Login",
"IP": "78.220.235.199"},
{"type": "File Download",
"command": "wget example.com/virus.exe",
"file_name": "virus.exe"},
{"type": "Command execution",
"command": "./virus.exe"},
{"type": "File Download",
"IP": "78.220.235.199",
"file_name": "virus.exe"},
{"type": "Connection established",
"IP": "78.220.235.199"},
{"type": "File Upload",
"IP": "78.220.235.199",
"file_name": "database.sql"}

]

Figure 4.17: Results for querying all events related to the IP 78.220.235.199.

We may want to know exactly is the file related to the IP. If we remember,

we have two records, one is a log of the actions taken on a server, the other

is a firewall log. To continue our investigation we will use the name of the file

databse.sql. We can do a related query to find all the paths from the file name

to the IP. The initial procedure is always the same, the Query-client will take the

value and generate its unique ID (2765 in this case). Then we send our request

to the Backend along with the ID of the IP and the ID of the file. The Backend

then will conduct a query on the database for all the sessions related to file. The

Backend then applies a graph traversal algorithm to find all the paths from the

file name ID to the IP ID. The Backend will then return the relationship paths.

In reality multiple path can be returned and is up to the investigator to interpret

the results. In this particular example we will see that there will see multiple

paths within the same session and another that will link the upload event to the

firewall log event. Depending on the parameters of the query, the Backend will

74

return the paths, the related session and events (as in the relationship graph),

and the encrypted value data. All of of this information will allow the Query-

client to reconstruct the results by decrypting the data which is subject to the

access control policies.

This was a very basic example on how the graph can be traversed to find

information from the relationships. The analytics engine in the Backend can

be programmed with even more advanced queries. The graph is constructed

in a way that most queries can be resoled in one to two queries to the rela-

tionship database, one query to the value data database, and depending on the

query a graph traversal. We can even asks queries relating more than one de-

gree of search, in this case the degree of relation desired desired in a query is

proportionally tied to the number of queries made to the database.

It is important to note that this example is small and only works with a very

small data set, in reality results could be inherently large depending on the

query, results can be human readable but are designed to be interpreted or

filtered by machines.

75

{ "data_type": "session", "uniq_id": 8500,
"refs": [6245,2268,7511]}

{ "data_type": "event", "uniq_id": 6245,
"refs": [2458,1335]}

{ "data_type": "event", "uniq_id": 2268,
"refs": [8720,6181,1428]}

{ "data_type": "event", "uniq_id": 7511
"refs": [2098,7952]}

{ "data_type": "attribute", "uniq_id": 2458,
"type": "Login"}

{ "data_type": "attribute", "uniq_id": 1335,
"IP": "78.220.235.199"}

{ "data_type": "attribute", "uniq_id": 8720,
"type": "File Download"}

{ "data_type": "attribute", "uniq_id": 6181,
"command": "wget example.com/virus.exe"}

{ "data_type": "attribute", "uniq_id": 1428,
"file_name": "virus.exe"}

{ "data_type": "attribute", "uniq_id": 2098,
"type": "Command execution"}

{ "data_type": "attribute", "uniq_id": 7952,
"command": "./virus.exe"}

Figure 4.11: Example of unencrypted structure of Session. The unique iden-
tifier ID is generated based on the data and will Deterministically Encrypted
using system secrets. This however does not represent the real order in which
the system encrypt information, this is just a visual way to demonstrate the
grouping of data.

76

{
"data_type": "session", "uniq_id": 8500,
"refs": [6245,2268,7511]

}
{
"data_type": "event", "uniq_id": 6245,
"refs": [2458,1335]

}
{
"data_type": "event", "uniq_id": 2268,
"refs": [8720,6181,1428]

}
{
"data_type": "event", "uniq_id": 7511
"refs": [2098,7952]

}
{
"data_type": "attribute", "uniq_id": 2458

}
{
"data_type": "attribute", "uniq_id": 1335

}
{
"data_type": "attribute", "uniq_id": 8720

}
{
"data_type": "attribute", "uniq_id": 6181

}
{
"data_type": "attribute", "uniq_id": 1428

}
{
"data_type": "attribute", "uniq_id": 2098

}
{
"data_type": "attribute", "uniq_id": 7952

}

Figure 4.12: Example of encrypted relationship information ready to be trans-
ferred to the Backend.

77

{
"data_type": "session", "uniq_id": 46547,
"refs": [65356,23982,93723]

}
{
"data_type": "event", "uniq_id": 65356,
"refs": [8720,1428,1335]

}
{
"data_type": "event", "uniq_id": 23982,
"refs": [943,1335]

}
{
"data_type": "event", "uniq_id": 93723
"refs": [3575,1335,2765]

}
{
"data_type": "attribute", "uniq_id": 1335,
"IP": "78.220.235.199"

}
{
"data_type": "attribute", "uniq_id": 8720,
"type": "File Download"

}
{
"data_type": "attribute", "uniq_id": 1428,
"file_name": "virus.exe"

}
{
"data_type": "attribute", "uniq_id": 943,
"type": "Connection established"

}
{
"data_type": "attribute", "uniq_id": 2765,
"file_name": "database.sql"

}
{
"data_type": "attribute", "uniq_id": 3575,
"type": "File Upload"

}

Figure 4.14: Relationship layer of the network traffic example. This figure also
shows the information associated with each ID, in reality the value data layer
will not be send in plain text.

78

Encrypted Relationship data layer
{
"data_type": "session", "uniq_id": 46547,
"refs": [65356,23982,93723]

}
{
"data_type": "event", "uniq_id": 65356,
"refs": [8720,1428,1335]

}
{
"data_type": "event", "uniq_id": 23982,
"refs": [943,1335]

}
{
"data_type": "event", "uniq_id": 93723
"refs": [3575,1335,2765]

}
Encrypted value data layer
{
"data_type": "attribute", "uniq_id": 1335,
"cpabe_enc": [0x83...462]

}
{
"data_type": "attribute", "uniq_id": 8720,
"cpabe_enc": [0x38...638]

}
{
"data_type": "attribute", "uniq_id": 1428,
"cpabe_enc": [0x43...398]

}
{
"data_type": "attribute", "uniq_id": 943,
"cpabe_enc": [0x19...582]

}
{
"data_type": "attribute", "uniq_id": 2765,
"cpabe_enc": [0x84...954]

}
{
"data_type": "attribute", "uniq_id": 3575,
"cpabe_enc": [0x02...573]

}

Figure 4.15: Encrypted value data and relationship layers of the network traffic
example, ready to be submitted to the Backend.

79

{
"data_type": "attribute", "uniq_id": 1335,
"cpabe_enc": [0x43...092, 0x83...462]

}
{
"data_type": "attribute", "uniq_id": 8720,
"cpabe_enc": [0x92...342, 0x38...638]

}
{
"data_type": "attribute", "uniq_id": 1428,
"cpabe_enc": [0x56...398, 0x43...398]

}
{
"data_type": "attribute", "uniq_id": 2458,
"cpabe_enc": [0x19...741]

}
{
"data_type": "attribute", "uniq_id": 6181,
"cpabe_enc": [0x16...493]

}
{
"data_type": "attribute", "uniq_id": 2098,
"cpabe_enc": [0x29...282]

}
{
"data_type": "attribute", "uniq_id": 7952,
"cpabe_enc": [0x01...906]

}
{
"data_type": "attribute", "uniq_id": 943,
"cpabe_enc": [0x19...582]

}
{
"data_type": "attribute", "uniq_id": 2765,
"cpabe_enc": [0x84...954]

}
{
"data_type": "attribute", "uniq_id": 3575,
"cpabe_enc": [0x02...573]

}

Figure 4.16: Example of encrypted value data layer, as stored in the Backed
after merging multiple submissions.

80

Chapter 5

Conclusion and Future Work

5.1 Conclusion & Future Work

We have create a framework for Cyber Threat Intelligence sharing to support

for encrypted analytics while preserving integrity and confidentiality of the data

from external attackers. In our model we assumed that parties did not want to

or did not have the computation power to carry out analytics on their premises;

therefore, these calculations are done in the centralized Backend. In our model

we established the Backend as a completely untrusted entity and should only

be able to calculate analytics without seeing details about the data. The Back-

end is considered to be an outsider of the system, with the privilege to access

encrypted data for analytical computations. We achieve security against the

centralized party and any other foreign entities by separating the data into two

mayor types, the value data layer and the relationships. This allowed us to

treat each layer independently to apply different encryption methods to each

layer. We explored alternative solutions, but none could provide all the flexi-

81

bility needed to achieve analytic on the centralized Backend while maintaining

the data secure. The degree on which our system can do data analytics is de-

termined by the level of access control placed on the data itself, and each user

experience will differ from others as submitting parties can specify who can see

what part of their data.

We have defined and implemented a framework for working with encrypted

CTI. As far as the kind of queries the framework can answer, we have imple-

mented all of the exact queries/searches, counts, integer/time range filtering,

access control, and some basic related queries of degree one. The framework

can answer questions like finding similar attack chains, relating indicators of

compromise to other events in the system, finding out how these related events

are actually related.

This work takes steps the first steps in the field towards encrypted privacy

preserving Cyber Threat Information sharing platform for preserving privacy

against the central processing entity and other external attackers. Loosely this

framework allows to the usage of encrypted data as if it was plain-text, there

are many queries and data analysis that is possible that we did not cover in

this research. Access control and data analytics are the two main requirements

from our CTI sharing framework, which made it difficult to implement queries.

Ultimately, each new query has to be split into core steps where they get im-

plemented carefully and then separated for each module (Collector, Backend,

Query client).

Relationship data itself is derived from the data using one way deterministic

encryption, and it is considered safe from preying eyes. Value data is encrypted

using CPABE and it allows access control over the data. The combination of the

two layers allows for simple queries like counts and direct lookups, and more

82

advances queries like relational question about the data, for example give an

IP, how many Sessions have similar characteristics as the parent event of this

attribute, and how are they related. In the future we would like to dig deeper

into the data and create new analytical queries using this framework.

Future work includes key revocation and re-encryption in the event of revo-

cation. This research only focuses on the usage of such technologies to achieve

analytics on encrypted data for CTI sharing purposes. There are many research

works out there detailing revocation and re-encryption mechanisms for the en-

cryption primitives, our focus would be on how to apply these mechanisms with-

out compromising the data at re-encyption time.

We have also, found possible shortcoming with the framework. Since the

relationship data is made in a way that allows encrypted traversal over the

graph, an adversary can theoretically learn something from traversing it. One

of the questions that we did not answer in this research was if an adversary

has something to learn from this specific relationship layer. The data itself is

encrypted and it is safe because it is not used for graph traversal. The question

arises, does an adversary have enough information to infer any new piece of

information? For example if analytics agent learns that probability of redacted2

given redacted1, without knowing what the encrypted labels/IDs mean or point

to?

We also identified possible points of failure of the system. Just like any

one-way function where the attacker has direct access to the function, our DE

function is susceptible to insider attacks, as they will have the key (Backend

does not have keys). This allows the possibility initiating brute force attacks

on the data. This would work by encrypting possible data using the DE func-

tions with the system key and comparing the output to encrypted value(s), if

83

the encrypted values match then it means the inputs are the same, essentially

revealing what the original data was. This of course will entirely depend on the

input space of the data, for example if we are talking about IP addresses versus

a big binary file, the IP is clearly at a disadvantage. Future work will look into

the feasibility of such attacks by insiders as it has the potential to violate the

privacy against other system users.

Further research has to be conducted into analysing CipherPath [23] algo-

rithms which allows to find shortest paths between to nodes in an encrypted

graph. This however, only covers shortest paths, and for similar reasons to

Neo4j and other graph DBMSs, they only try to find shortest paths in a timely

manner, leaving all possible paths running extremely inefficiently.

We have also identified that our framework supports parallel calculation and

storage. Since data can live anywhere there is high calculation and storage ca-

pabilities, the data can be duplicated into multiple locations. These locations

can act as mirrors and can reduce loads on a single server. This also by exten-

sion means that the data can be stored decentralized and calculated elsewhere,

this however does not mean it will be suitable for things like blockchain or

smart contracts, as the price for using such systems will completely outweigh

the benefit as computing in blockchain is very expensive.

One completely yet to be explored avenue is the decentralized storage. The

only reason for the centralization is for analytical computations, someone has to

do it, in our framework we assume that someone will take on that responsibility,

but in reality it could be anyone. Choosing the centralized party to compute the

calculations for the tree traversal and of the data lookups also poses a problem

that we did not explore, the fact that this party could attack the data at some

points: At submission, the Backend can blackhole the data and delete it, it

84

could also choose to return other encrypted records not corresponding to a

users query, even blackhole queries. For this reason, it is important to choose

a trusted Backend administrator or have the Backend have something at stake

for fulfilling the Backend roles. Decentralization could mean faster query times

as more data and computational mirrors are closer and available, and problems

related to Backend could be mitigated.

85

Bibliography

[1] F. Sadique, I. Astaburuaga, R. Kaul, S. Sengupta, S. Badsha, J. Schnebly,

A. Cassell, J. Springer, N. Latourrette, and S. M. Dascalu, “Cybersecurity

information exchange with privacy (CYBEX-P) and TAHOE - A cyberthreat

language,” CoRR, vol. abs/2106.01632, 2021. [Online]. Available:

https://arxiv.org/abs/2106.01632

[2] D. Shackleford, “Who’s using cyberthreat intelligence and how?”

2015. [Online]. Available: https://cdn-cybersecurity.att.com/docs/

SANS-Cyber-Threat-Intelligence-Survey-2015.pdf

[3] “How famous cyber security breaches could have been pre-

vented.” [Online]. Available: https://studyonline.ecu.edu.au/blog/

how-famous-cyber-security-breaches-could-have-been-prevented

[4] C. Johnson, M. Badger, D. Waltermire, J. Snyder, and C. Skorupka, “Guide

to cyber threat information sharing,” Oct 2016. [Online]. Available:

https://csrc.nist.gov/publications/detail/sp/800-150/final

[5] C. S. Johnson, L. Feldman, and G. A. Witte, “Cyber threat intelligence and

information sharing,” May 2017. [Online]. Available: https://www.nist.

gov/publications/cyber-threat-intelligence-and-information-sharing

https://arxiv.org/abs/2106.01632
https://cdn-cybersecurity.att.com/docs/SANS-Cyber-Threat-Intelligence-Survey-2015.pdf
https://cdn-cybersecurity.att.com/docs/SANS-Cyber-Threat-Intelligence-Survey-2015.pdf
https://studyonline.ecu.edu.au/blog/how-famous-cyber-security-breaches-could-have-been-prevented
https://studyonline.ecu.edu.au/blog/how-famous-cyber-security-breaches-could-have-been-prevented
https://csrc.nist.gov/publications/detail/sp/800-150/final
https://www.nist.gov/publications/cyber-threat-intelligence-and-information-sharing
https://www.nist.gov/publications/cyber-threat-intelligence-and-information-sharing

86

[6] W. Fan, J. Ziembicka, R. de Lemos, D. Chadwick, F. Di Cerbo, A. Sajjad, X.-

S. Wang, and I. Herwono, “Enabling privacy-preserving sharing of cyber

threat information in the cloud,” in 2019 6th IEEE International Confer-

ence on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE

International Conference on Edge Computing and Scalable Cloud (Edge-

Com), June 2019, pp. 74–80.

[7] D. W. Chadwick, W. Fan, G. Costantino, R. de Lemos, F. Di

Cerbo, I. Herwono, M. Manea, P. Mori, A. Sajjad, and X.-S.

Wang, “A cloud-edge based data security architecture for sharing

and analysing cyber threat information,” Future Generation Computer

Systems, vol. 102, pp. 710–722, 2020. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0167739X19300895

[8] C. Dengler, “Homomorphic encryption,” Ph.D. dissertation, Universitat

Heidelberg.

[9] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in

Proceedings of the Forty-First Annual ACM Symposium on Theory

of Computing, ser. STOC ’09. New York, NY, USA: Association

for Computing Machinery, 2009, p. 169–178. [Online]. Available:

https://doi.org/10.1145/1536414.1536440

[10] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “Grecs: Graph encryption

for approximate shortest distance queries,” in Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, ser.

CCS ’15. New York, NY, USA: Association for Computing Machinery, 2015,

p. 504–517. [Online]. Available: https://doi.org/10.1145/2810103.2813672

https://www.sciencedirect.com/science/article/pii/S0167739X19300895
https://www.sciencedirect.com/science/article/pii/S0167739X19300895
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/2810103.2813672

87

[11] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,

“Cryptdb: Protecting confidentiality with encrypted query processing,”

in Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles, ser. SOSP ’11. New York, NY, USA: Association

for Computing Machinery, 2011, p. 85–100. [Online]. Available:

https://doi.org/10.1145/2043556.2043566

[12] R. A. Popa, N. Zeldovich, and H. Balakrishnan, “Guidelines for using the

cryptdb system securely,” IACR Cryptology ePrint Archive, vol. 2015, p.

979, 2015. [Online]. Available: https://eprint.iacr.org/2015/979

[13] N. Aburawi., A. Lisitsa., and F. Coenen., “Querying encrypted graph

databases,” in Proceedings of the 4th International Conference on Infor-

mation Systems Security and Privacy - ICISSP,, INSTICC. SciTePress,

2018, pp. 447–451.

[14] N. N. Aburawi, “Cryptdb mechanism on graph databases,” Ph.D. disserta-

tion, University of Liverpool, 2020.

[15] N. Aburawi, F. Coenen, and A. Lisitsa, “Traversal-aware encryption

adjustment for graph databases,” in Proceedings of the 7th International

Conference on Data Science, Technology and Applications, ser.

DATA 2018. Setubal, PRT: SCITEPRESS - Science and Technology

Publications, Lda, 2018, p. 381–387. [Online]. Available: https:

//doi.org/10.5220/0006916403810387

[16] P. Xie and E. P. Xing, “Cryptgraph: Privacy preserving graph analytics on

encrypted graph,” CoRR, vol. abs/1409.5021, 2014. [Online]. Available:

http://arxiv.org/abs/1409.5021

https://doi.org/10.1145/2043556.2043566
https://eprint.iacr.org/2015/979
https://doi.org/10.5220/0006916403810387
https://doi.org/10.5220/0006916403810387
http://arxiv.org/abs/1409.5021

88

[17] M.-H. Shih and J. M. Chang, “Design and analysis of high performance

crypt-nosql,” in 2017 IEEE Conference on Dependable and Secure Com-

puting, Aug 2017, pp. 52–59.

[18] F. Sadique, I. Astaburuaga, and A. Cassell, “Cybex-p project site.”

[Online]. Available: https://cybex.cse.unr.edu/

[19] “Cybex-p github.” [Online]. Available: https://github.com/CYBEX-P

[20] A. Cassell, T. Das, Z. Black, F. Sadique, J. Schnebly, S. Dascalu, S. Sen-

gupta, and J. Springer, “Sharing is caring: Optimized threat visualization

for a cybersecurity data sharing platform,” in 2021 IEEE 20th Interna-

tional Symposium on Network Computing and Applications (NCA), 2021,

pp. 1–8.

[21] A. Cassell, “Navigating cyberthreat intelligence with cybex-p:

Dashboard design and user experience,” Ph.D. dissertation, Uni-

versity of Nevada, Reno, 2021, copyright - Database copyright

ProQuest LLC; ProQuest does not claim copyright in the indi-

vidual underlying works; Last updated - 2021-09-15. [Online].

Available: https://unr.idm.oclc.org/login?url=https://www.proquest.com/

dissertations-theses/navigating-cyberthreat-intelligence-with-cybex-p/

docview/2563493096/se-2?accountid=452

[22] I. Astaburuaga, “Cybex-p encrypted analytics.” [Online]. Available:

https://cybex.cse.unr.edu/docs/encrypted-analytics/

[23] G. Bramm. and J. Schütte., “cipherpath: Efficient traversals over homo-

morphically encrypted paths,” in Proceedings of the 17th International

https://cybex.cse.unr.edu/
https://github.com/CYBEX-P
https://unr.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/navigating-cyberthreat-intelligence-with-cybex-p/docview/2563493096/se-2?accountid=452
https://unr.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/navigating-cyberthreat-intelligence-with-cybex-p/docview/2563493096/se-2?accountid=452
https://unr.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/navigating-cyberthreat-intelligence-with-cybex-p/docview/2563493096/se-2?accountid=452
https://cybex.cse.unr.edu/docs/encrypted-analytics/

89

Joint Conference on e-Business and Telecommunications - SECRYPT,, IN-

STICC. SciTePress, 2020, pp. 271–278.

[24] S. Lai, X. Yuan, S.-F. Sun, J. K. Liu, Y. Liu, and D. Liu, “Graphse²:

An encrypted graph database for privacy-preserving social search,”

in Proceedings of the 2019 ACM Asia Conference on Computer and

Communications Security, ser. Asia CCS ’19. New York, NY, USA:

Association for Computing Machinery, 2019, p. 41–54. [Online]. Available:

https://doi.org/10.1145/3321705.3329803

[25] H. T. Lee, S. Ling, J. H. Seo, H. Wang, and T.-Y. Youn, “Public

key encryption with equality test in the standard model,” Information

Sciences, vol. 516, pp. 89–108, 2020. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0020025516322290

[26] E. Charles, M. Samuel, N. Roger, and O. Daniel, “System and method of

data collection, processing, analysis, and annotation for monitoring cyber-

threats and the notification thereof to subscribers,” Mar 2002.

[27] H. Sudo, K. Nuida, and K. Shimizu, “An efficient private evaluation of a

decision graph,” in Information Security and Cryptology – ICISC 2018,

K. Lee, Ed. Cham: Springer International Publishing, 2019, pp. 143–160.

[28] S. Kulkarni, “Cryptographic algorithm using data structure using c con-

cepts for better security,” in 2015 International Conference on Pervasive

Computing (ICPC), Jan 2015, pp. 1–3.

https://doi.org/10.1145/3321705.3329803
https://www.sciencedirect.com/science/article/pii/S0020025516322290
https://www.sciencedirect.com/science/article/pii/S0020025516322290

	Introduction
	Introduction
	Gap of current solutions
	Motivation
	Terminology
	Cyber Threat Intelligence
	Honeypot

	Content

	Related works
	Related Work
	Requirements, assumptions & possible approaches
	Challenges
	Privacy Preservation

	CYBEX-P with Privacy
	Background on CYBEX-P
	CYBEX-P Encrypted Analytics
	Encryption Primitives
	Ciphertext-Policy Attribute-Based Encryption
	Deterministic Encryption
	Order Revealing Encryption
	Encryption Policies
	CPABE attributes
	Data Structure & Flow

	Capabilities & Data Input
	Obstacles with first implementations
	Summary

	Encrypted Analytics Framework
	Architecture
	Overview
	System layout & data flow
	Data Layout

	Data submission and aggregation
	Encryption usage
	Creating relationship information
	Query Types

	Framework example

	Conclusion and Future Work
	Conclusion & Future Work

