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Abstract

The frequency of extreme events (e.g., hurricanes, earthquakes, and floods) and

man-made attacks (cyber and physical attacks) has increased dramatically in re-

cent years. These events have severely impacted power systems ranging from long

outage times to major equipment (e.g., substations, transmission lines, and power

plants) destructions. Also, the massive integration of information and communica-

tion technology to power systems has evolved the power systems into what is known

as cyber-physical power systems (CPPSs). Although advanced technologies in the

cyber layer improve the operation and control of power systems, they introduce ad-

ditional vulnerabilities to power system performance. This has motivated studying

power system resilience evaluation and enhancements methods.

Power system resilience can be defined as “The ability of a system to prepare

for, absorb, adapt to, and recover from disruptive events” [1]. Assessing resilience

enhancement strategies requires further and deeper investigation because of several

reasons. First, enhancing the operational and planning resilience is a mathemati-

cally involved problem accompanied with many challenges related to modeling and

computation methods. The complexities of the problem increases in CPPSs due to

the large number and diverse behavior of system components. Second, a few studies

have given attention to the stochastic behavior of extreme events and their accompa-

nied impacts on the system resilience level yielding less realistic modeling and higher

resilience level. Also, the correlation between both cyber and physical layers within

the context of resilience enhancement require leveraging sophisticated modeling ap-

proaches which is still under investigation. Besides, the role of distributed energy



ii

resources in planning-based and operational-based resilience enhancements require

further investigation. This calls for developing enhancement strategies to improve

resilience of power grids against extreme events. This dissertation is divided into

four parts as follows.

Part I: Proactive strategies: utilizing the available system assets to prepare the

power system prior to the occurrence of an extreme event to maintain an acceptable

resilience level during a severe event. Various system generation and transmission

constraints as well as the spatiotemporal behavior of extreme events should be prop-

erly modeled for a feasible proactive enhancement plan. In this part, two proactive

strategies are proposed against weather-related extreme events and cyber-induced

failure events. First, a generation redispatch strategy is formulated to reduce the

amount of load curtailments in transmission systems against hurricanes and wild-

fires. Also, a defensive islanding strategy is studied to isolate vulnerable system

components to cyber failures in distribution systems.

Part II: Corrective strategies: remedial actions during an extreme event for im-

proved performance. The negative impacts of extreme weather events can be miti-

gated, reduced, or even eliminated through corrective strategies. However, the high

stochastic nature of resilience-based problem induces further complexities in model-

ing and providing feasible solutions. In this part, reinforcement learning approaches

are leveraged to develop a control-based environment for improved resilience. Three

corrective strategies are studied including distribution network reconfiguration, al-

locating and sizing of distributed energy resources, and dispatching reactive shunt

compensators.

Part III: Restorative strategies: retain the power service to curtailed loads in a

fast and efficient means after a diverse event. In this part, a resilience enhancement

strategy is formulated based on dispatching distributed generators for minimal load
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curtailments and improved restorative behavior.

Part IV: Uncertainty quantification: Impacts of uncertainties on modeling and so-

lution accuracy. Though there exist several sources of stochasticity in power systems,

this part focuses on random behavior of extreme weather events and the associated

impacts on system component failures. First, an assessment framework is studied

to evaluate the impacts of ice storms on transmission systems and an evaluation

method is developed to quantify the hurricane uncertainties for improved resilience.

Additionally, the role of unavailable renewable energy resources on improved system

resilience during extreme hurricane events is studied.

The methodologies and results provided in this dissertation can be useful for

system operators, utilities, and regulators towards enhancing resilience of CPPSs

against weather-related and cyber-related extreme events. The work presented in

this dissertation also provides potential pathways to leverage existing system assets

and resources integrated with recent advanced computational technologies to achieve

resilient CPPSs.
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Chapter 1

Introduction

1.1 Motivation

The frequency and impacts of severe events have increased dramatically in the

last decade yielding increased power outages and catastrophic economic losses [2, 3].

These extreme events are usually classified into weather-related and cyber-related

events. Each extreme event has distinct impacts on the performance of power systems

[4, 5] as well as the associated impacts on the society [6, 7, 8, 9, 10]. The motivation

for the work presented in this dissertation is explained as follows.

Weather-related Events. Annual economic losses due to extreme weather-

related outages in the United States have exceeded $20 billion [11]. During the last

seven years, the United States has been exposed to seven wildfires, eight droughts, 75

severe storms, 19 tropical cyclones, 16 floods, five winter storms, and one freeze event

with more than one billion-dollar anticipated costs [12]. In 2017, the costs of dam-

ages caused by hurricanes Harvey, Maria, and Irma are $142, $101, and $57 billion,

respectively. In 2018, a statistical analysis on wildfires over the period 2000–2016

has shown that wildfires cost utilities more than $700 million in parts of California’s

transmission and distribution systems [13]. The risk of severe wildfire has forced

electric utilities to cut off power to 800,000 customers in California, USA in 2019

[14]. The very recent hurricane Ida has caused damages and losses exceeding $75

billion over the course of three days. More than four million customers in Texas ex-
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perienced power outages with an outage time of more than 105 hours in some places

due to the Uri ice storm in February 2021 [15]. The recent Dixie wildfire in the

West coast of the U.S. has lasted for more than 60 days, burned almost one million

acres of land, and resulted in evacuation orders for thousands of families [16]. Also,

since the beginning of 2022, an extreme winter storm has caused power outages to

more than 400,000 customers for a few days in the Northeastern region of the United

States [17]. The societal and economic losses caused by severe weather events neces-

sitate building more resilient power grids and developing enhancement strategies to

mitigate, reduce, or even eliminate some of these impacts.

Cyber-related Events. The extensive integration of communication, compu-

tation, and control technologies into cyber-physical power systems (CPPSs) has in-

creased the vulnerabilities of CPPSs to cyberattacks [18, 19]. Though this integration

has enabled diverse applications of automation and control for enhanced performance

of CPPS, vulnerabilities of power systems to cyber failures and cyberattacks have in-

creased dramatically [20, 21]. Blackouts due to cyber-attacks and cyber-related issues

have also been increasing [22, 23]. For example, the cyberattack on the Ukrainian

power grid on December 2015 resulted in a blackout that affected 225,000 residents

[24, 25]. Recent (June 16, 2019) blackout in South America caused power outages

to more than 48 million customers [26]. The most recent power outage (August 3,

2019) in the capital of Indonesia caused the power outage to more than 10 million

customers [27]. In the United States, cyberattacks have successfully compromised

waste water systems, as seen in Oldsmar, Florida in February 2021 [28] and San

Francisco, California in January 2021 [29]. Though extreme weather events have

counted for the majority of power outages and losses, cyber-induced failures can also

result in catastrophic failures and blackouts given that a large part of the grid can

be impacted [30].
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Resilience Enhancement Strategies. Though several resilience enhancement

strategies have been studied, there still exist some challenges with proper system

and events modeling as well as associated uncertainties [31]. First, some generation

and transmission constraints are usually relaxed to reduce modeling complexities,

yielding higher resilience levels. In [32, 33], the impacts of load variations, system

preparedness level, event attack time (i.e., the instant at which an extreme event

hits the system), and future potential failures have been given less attention. More-

over, preparing power systems for potential N − k (i.e., k > 1) contingencies is an

important factor for enhancing power system resilience due to the fast sequential

probabilistic component failures. In [34], a procurement plan of black start units

has been studied assuring sufficient energy supply prior to events at minimal cost;

however, the spatiotemporal characteristics of extreme weather events have not been

considered. Also, the high penetration level of renewable energy resources (RESs)

has introduced significant uncertainties in the operation and control of power sys-

tems especially during extreme weather events. The 2021 Texas ice storm has raised

concerns about the capability and availability of RESs during extreme events [35]. In

short, ignoring the role of uncertainties result in over-estimated resilience levels. This

calls for developing resilience enhancement strategies that consider realistic system

and event models as well as operational constraints. Also, an uncertainty quantifica-

tion framework is crucial to assess the stochastic behavior of extreme weather events

and the associated impacts on system performance.

1.2 Power System Resilience

Definitions. The intergovernmental panel on climate change has defined power

system resilience in terms of anticipation, absorption, and quickly and efficiently re-

cover after hazardous events [36]. In [1], United States’ presidential policy directive–
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21 has defined resilience in terms of prepare, adapt, withstand, and recover rapidly

from disruptions. The disruption could be a natural threat or man-made misery

such as cyber-attacks. Electric Power Research Institute (EPRI) has defined power

system resilience in terms of three elements: prevention, recovery, and survivability

[37]. The U.S. National Infrastructure Advisory Council (NIAC) has defined power

system resilience as to prepare and plan, absorb, recover, and adapt to adverse events

[38]. North America Electric Reliability Corporation (NERC) has adopted the defi-

nition of NIAC in [39]. More definitions for power system resilience can be found in

[6, 40, 41, 42, 43].

Disturbance and System Response Curves. The concept of resilience through

a disturbance and impact resilience evaluation (DIRE) curve has been provided in

[44, 45] which is shown in Fig. 1.1. The DIRE curve illustrates the relative perfor-

mance of a system to optimal and minimum performance level (resilient thresholds)

that the system needs to maintain to be considered resilient. Several common terms

such as robustness, agility, adaptive capacity, adaptive insufficiency, resilience, and

brittleness have been presented in the DIRE curve. The DIRE curve provides tem-

poral demarcation as follows: ti is the disturbance starting instant; tBi indicates the

time at which the performance of the system falls below a minimum normalcy; tR

is the instant at which the system reaches a minimum performance level; tBf indi-

cates the time at which the performance of the system achieves minimum normalcy

again; and tf1 indicates the time at which the restoration processes start. In these

notations, i indicates the start of the event and f indicates the end of the event.

Also, it is worth mentioning here that the restoration processes could take a long

time (i.e., tf2 >> tf1). Also, a conceptual resilience curve has been developed in [46]

to define and quantify power system resilience. It shows the level of resilience as a

time-dependent function with respect to disaster event as shown in Fig. 1.2. A set of
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metrics have been proposed in [47, 48] based on the resilience curve. These metrics

are abbreviated as FLEP which stands for: how fast (F) and how low (L) resilience

drop in phase I (disturbance progress); how extensive (E) the post-disturbance de-

graded state is in phase II (post-disturbance degradation); and how promptly (P)

the network recovers in phase III (restorative). Accordingly, this work focuses on

studying the resilience of power systems covering the whole three main phases of

operational resilience including proactive, corrective, and restorative.
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Figure 1.1: DIRE Curve (i=initial, f=final)

1.3 Objectives

The main goal of the dissertation is to develop resilience enhancement strate-

gies for power grids. The proposed resilience enhancement strategies are classified

into proactive, corrective, and restorative strategies. The goal of the dissertation is

achieved via the following objectives:

• Develop various resilience enhancement strategies to improve the performance

of power grids prior to, during, and after the occurrence of an extreme event.
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• Determine several approaches to formulate, solve, and assess the proposed en-

hancement strategies including optimization techniques, reinforcement learning

(RL)-based techniques, simulation techniques, and statistical-based techniques.

• Develop uncertainty quantification models to evaluate the random behavior of

extreme events and renewable energy resources.

The main thesis can be stated as follows: Proper event- and time-based selection

and implementation of proactive, corrective, or restorative resilience enhancement

strategies will significantly improve the resilience the power supply.

1.4 Organization

The description and organization of each chapter is provided as follows.

Chapter 2 describes modeling of extreme weather events and the fragility be-

havior of system components against weather parameters. First, the spatiotemporal

characteristics of extreme weather events are explained including hurricane and ice
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storm events. A wind field model is used to simulate the propagation of a hurricane

event, and an ice storm model is provided to emulate a freezing-rain ice storm event.

Then, the concept of fragility model is explained to compute the failure probability

of different system components due to diverse weather parameters.

Chapter 3 explains two proactive resilience enhancement strategies, which are

proactive generation redispatch strategy and defensive islanding strategy. First, the

mathematical model of the proactive generation redispatch strategy is formulated

given generation and transmission constraints. Then, a Markov decision process

(MDP) is leveraged to formulate the proactive generation redispatch strategy con-

sidering the uncertain failure behavior of system components. Various test cases are

provided for validation. Moreover, the concept of defensive islanding as a resilience

enhancement strategy is explained. The defensive islanding approach is proposed

to reduce/mitigate the impacts of cyber-induced failures. Regarding cyber-induce

failures, a correlation mapping model between cyber components and power system

components is illustrated to simulate the propagation behavior of cyber-induced fail-

ures. The proposed clustering methodology aims to split the power grid into small

grids considering the components‘ fragility and the system operating conditions.

Chapter 4 focuses on corrective resilience enhancement strategies leveraging rein-

forcement learning approaches. First, a detailed explanation of actor-critic algorithms

is provided for a single and multi agent framework. Then, the proposed actor-critic

algorithms are used to formulate three corrective resilience enhancement strategies

including network reconfiguration, allocation of distributed energy resources (DERs),

and dispatching shunt compensators. In the network reconfiguration strategy, it is

required to control tie-switches and sectionalizers of a distribution feeder to improve

resilience due to multiple line outages. The second strategy aims to determine the

locations and sizes of DERs for enhanced resilience. The shunt dispatch strategy fo-
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cuses on determining required reactive power to be injected into transmission systems

to maintain the voltage levels within permissible range.

Chapter 5 provides a restorative strategy to improve resilience of distribution

power systems after extreme events. The proposed strategy dispatches available

distributed generators (DGs) due to multiple line failures of an islanded distribution

feeder. A multi-agent deep deterministic policy gradient model is trained to minimize

the amount of load curtailments. The proposed approach provides a preliminary

results as a potential future extension of this dissertation.

Chapter 6 describes the role of uncertainties in resilience assessment methods.

This chapter discusses the uncertainties associated with spatiotemporal characteris-

tics of extreme weather events, fragility failure behavior of system components, and

renewable energy unavailability. First, a resilience assessment framework is devel-

oped and used to quantify the stochasticity of ice storms on transmission system

components. Then, a probabilistic model is proposed to quantify the uncertainty of

hurricanes and their impacts on accuracy of the results. Proper probability distribu-

tion functions (PDFs) representing weather-related parameters are used to simulate

diverse ice storm and hurricane events. Finally, the role of unavailability of RESs is

evaluated for improved resilience performance.

Chapter 7 summarizes the main outcomes of the proposed resilience enhancement

strategies. It also discusses future work of the developed approaches.
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Chapter 2

Modeling of Extreme Events

Modeling of evolvements of extreme events and failure propagations is an impor-

tant factor to evaluate the resilience of power systems—extreme events are defined

in this dissertation as weather-related and cyber-induced events. Extreme weather

events have different models depending on the type and intensity of the given event.

For example, HAZUS (Hazards US) models are usually used to forecast hurricanes

and floods. Modeling of failure propagations due to simulated weather extreme events

is usually carried out using fragility curves. This chapter provides a brief illustration

on modeling of extreme weather events. First, a description of the spatiotemporal

propagation behavior characteristics is provided focusing mainly on hurricane and

ice storm events. Then, the failure fragility of system components due to weather

factors or cyber incidents is explained.

2.1 Introduction

Although power system resilience has been assumed to be related to High Impact

Low Probability (HILP) events, HILP events are no longer low probability events

[49]. Extreme weather events have catastrophic impacts on the society [6, 7, 8, 9, 10]

as well as on the resilience of power grids [4, 5]. Man-made events such as cyber-

attacks have also been considered as high impact events [50]. Each extreme event has

distinct impacts on the performance of power systems. For example, earthquakes,
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wind storms, and hurricanes usually result in the failure of underground cables,

transmission poles, and overhead transmission lines of power systems [51, 52, 53]. On

the other hand, cyber-related events impact the power grid through communication

channels and control centers [54]. A proper model is required for any extreme event

to identify its propagation and impact. Both probabilistic [55] and deterministic

[56] methods have been used to model weather-related events. Most of the studies

in the field of resilience rely either on historical data of extreme events [57, 58,

59, 60] or forecasting models provided by meteorological agencies to model extreme

events [61, 62]. The forecasting and historical weather data can be obtained from

different sources including the National Weather Service (NWS), National Oceanic

and Atmospheric Administration (NOAA) and Weather Research and Forecasting

(WRF) model [63].

Modeling of Weather-related Events. Several models have been proposed

in the existing work to model weather events. In [56], the Yang Meng wind field

model has been used to calculate the wind speed for a moving typhoon and deter-

mine the duration of the event. Satellite big data has been used to identify the path

of hurricane [52], whereas a tri-level scaled hourly historic wind profile during hurri-

cane events has been applied in [4]. One of the most widely used hurricane models

named HAZUS-MH2 has been developed to simulate a real hurricane event based on

historical records [60]. The HAZUS-MH model has been developed by the federal

emergency management agency (FEMA) to simulate flood scenarios based on his-

toric data [64] and to simulate typhoon scenarios for critical infrastructure resilience

assessment [57].

Though hurricane events have gained more interest compared to other extreme

weather event, other studies have proposed models for earthquakes, wildfires, and

floods. In [65], a model has been proposed based on the rate of spread, solar radia-
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tion, and radiative heat flux to model wildfire using historical data. A probabilistic

earthquake energy transfer model has been proposed based on auto regressive (AR)

estimation method in [66]. The proposed model can be used to estimate the peak

ground acceleration parameter based on three main variables: earthquake intensity

in Richter, the distance between the earthquake center and location of interest, and

the ground type. In [61], a flood model has been used which is based on rainfall

intensities using weather agencies’ prediction model. A forecasting model has been

used to estimate the ice thickness forecast error in [67]. An ice disaster model has

been proposed in [68] to calculate the rate of ice accretion based on five main param-

eters: rate of precipitation, the content of the liquid water, speed of the wind, path,

and moving speed.

Modeling of cyber-related Events. Cyber-attacks can severely impact the

resilience of power systems especially if they are planned based on prior reconnais-

sance missions. Although there have been no sufficient historical data to model

cyber-attacks, modeling of cyber layers and their interactions with physical layers

can capture the extent to which cyber-attacks can impact the functionality of power

systems. Cyber incidents can be classified as inefficiency in the communication,

distortion in information, malfunction in the device, leakage in secrecy, and mis-

configuration in applications. The main domains for cyber-attacks are application

software, communication network, and field devices. Cyber-attack approaches have

been reviewed focusing on illustrating several ways to create a cyber-attack event

[54]. To simulate a cyber-attack, the control systems of 50 generators have been

infected by a malware known as Erebos Trojan. A cyber vector represents the path

that an attacker takes to target specific cyber elements. The malware was able to

drive the generators to the overloading phase leading to the collapse of the system

[50, 54].
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Modeling of Impacts of Extreme Events. Most of the resilience-based stud-

ies have focused on modeling failure of system elements toward extreme weather

events. The HILP events are difficult to model due to their stochastic behavior and

lack of historical data [43, 59, 69]. The most well-known models to allocate failed

elements are the random outage method, scenario-based method, and fragility curves

[4, 31]. In random outage methods, several elements are selected randomly to be in

the down state without considering a forecasted event scenario or real-time event sce-

nario [70, 71, 72]. A scenario-based method implements either a historical real event

or a simulated event on a geographical map to determine the impacted points on a

real power system [71, 73, 74]. A fragility curve model has been used extensively to

calculate the probability of failure of system elements for a given event parameter such

as wind speed or earthquake ground acceleration [32, 41, 46, 48, 56, 66, 75, 76, 77].

A fragility curve provides a means to assess the impact of extreme events on

various system elements and determine their unavailability. At every simulation

instant, a forecasted weather profile is mapped to the fragility curve to obtain the

failure probabilities [78]. Several fragility curves have been studied in weather-related

resilience studies [56, 75, 79]. A seismic vulnerability assessment algorithm using four

fragility curves based on peak ground acceleration due to the earthquake has been

presented in [66]. A fragility curve model has been implemented in [48, 56] for

transmission lines and towers based on wind speeds. In [59, 80, 81, 82, 83, 84, 85],

a pre-developed fragility curve has been used for distribution poles and conductors.

A fragility model, developed by the Resilient electricity Networks for Great Britain

(RESNET), has been used to assess elements failure based on wind speed [4, 40]. A

flood-induced fragility model based on rainfall intensity has been used for a microgrid

proactive scheduling strategy in [61]. A detailed methodology has been studied in [86]

to estimate the probability of line failure based on wind force and maximum rated
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line perpendicular stress resistance. A log-normal fragility curve has been presented

in [86] to determine the probability of substation failures against wind storms. A

fragility model has been used in [32, 68, 87] to determine the failures of transmission

poles and lines against ice storms.

2.2 Spatiotemporal Propagation Characteristics

This section provides a description to models of extreme events. It explains the

wind field model and the ice storm model representing the propagation of a hurricane

and freezing rain storm, respectively.

2.2.1 Wind Field Model

Hurricanes are characterized by unique spatiotemporal properties that are gov-

erned by weather-related parameters such as wind speed, wind direction, and central

pressure difference, and geographically-related parameters such as landing site [88].

Various stochastic wind field models have been identified [89], however, Batts model

has been widely used [90]. In Batts model, hurricanes are assumed to vanish over

time as a result of the reduction of the pressure difference between the center and

the periphery of the hurricane. As a hurricane propagates, the pressure difference at

a certain time t can be found as follows,

∆P (t) = ∆P0 − 0.02 [1 + sin(ϕ− δ)]t, (2.1)

where ∆P (t) is the central pressure difference at time t, measured in inHg, ∆P0 is the

original central pressure difference before the hurricane lands, ϕ is the angle between

coastline and the due north direction, and δ is the angel between the due north

direction and the hurricane motion direction—the clockwise is positive. Accordingly,
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the maximum gradient wind speed is evaluated as follows,

vg(t) = K
√

∆P (t), (2.2)

whereK is a geographical location constant. The value ofK is measured inm/s/mm1/2

can be represented by a linear function that varies between 6.97 at latitude 23o N

to 6.93 at latitude 45o N [90]. Note that the value of ∆P (t) in (2.2) is measured in

mmHg. By multiplying (2.1) with a scaling factor of 0.75 to compensate for the the

unit type difference and substituting in (2.2), the maximum gradient wind speed is

computed as follows,

vg(t) = K
√

0.75∆P0 − 0.508 [1 + sin(ϕ− δ)]t, (2.3)

The total duration of the hurricane (T ) can be obtained when the ∆P (t) is equal to

zero yielding the following,

T = 1.476 ∆P0/ [1 + sin(ϕ− δ)], (2.4)

where T is measured in seconds.

The maximum wind speed of the hurricane at time t is evaluated as follows,

vrmax(t) = 0.865 vg(t) + 0.5 VT , (2.5)

where VT is the translational speed of the hurricane, measured in m/s.

The wind speed of a certain location varies based on the relative position between

the determined location and the radius of maximum wind speed as follows,

vr(t) =

vrmax(t)d(t)/rmax(t), d(t) ≤ rmax(t)

vrmax(t)(rmax(t)/d(t))
0.6, d(t) > rmax(t)

(2.6)

where d(t) is the euclidean distance between a location and the center of the hurricane

at time t, measured in m, and rmax is the radius of maximum wind speed, which can

be calculated as follows [91, 92],

rmax(t) = exp(2.63− 5.086× 10−5(∆P (t))2 + 0.0395yh(t), (2.7)
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where yh(t) is the latitude of the center of the hurricane.

The distance between a specific geographical location and the hurricane center at

time t can be evaluated as follows,

d(t) =
√

[xd − xh(t)]2 + [yd − yh(t)]2, (2.8)

where xd and yd are the latitude and longitude coordinated of the component location,

respectively, and xc and yc are latitude and longitude coordinates of the center of the

hurricane at time t, respectively, which can be calculated as follows,

xh(t) = x0 + VT t sin(δ), (2.9)

yh(t) = y0 + VT t cos(δ), (2.10)

where x0 and y0 are the hurricane landing coordinates, respectively.

Fig. 2.1 displays the spatiotemporal characteristics of the hurricane across the

system. It shows the relative distance between the center of a hurricane and a specific

system component as the hurricane propagates.
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Figure 2.1: Wind field and ice storm propagation across power system components

The main parameters that affect the severity and propagation behavior of a hur-

ricane are original pressure difference ∆P0, translational speed VT , hurricane motion

direction δ, and landing site coordinates (x0, y0). Several hurricanes can be simulated

using different parameter values. PDFs governing the behavior of such parameters
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can be obtained via extensive statistical analysis using measured weather data at the

geographical location under study.

2.2.2 Ice Storm Model

The spatiotemporal characteristics of ice storms are governed by weather-related

parameters and geographical-related parameters [88]. Their parameters can be used

to identify the uncertainty behavior of an ice storm. Weather-related parameters

include, but not limited to, wind speed, translational speed, and ice precipitation

rate, whereas geographical-related parameters can be coordinates of the ice storm

landing site. System components may fail as a result of increased ice accumulation

and extended freezing temperature during an ice storm. In [93], a predicting model

to calculate the snow loads on transmission lines has been presented. A freezing rain

ice load model has been provided in [94]. The ice thickness on transmission lines and

towers is calculated based on a freezing rain ice model provided in [89].

The level of ice thickness differs based on the relative position between the center

of the ice storm and the component under study, which can be calculated as follows,

Rice(t) = (Nh/ρiπ)
√

(Piceρw)2 + (3.6Vw(t)W )2, (2.11)

where Rice(t) is the ice thickness on the component under study, measured in inch,

at time t, W is the liquid water content of rain-filled air (W = 0.067P 0.846
ice ), Vw(t)

is the wind speed (m/s) at the component under study at time t, Pice is the ice

precipitation rate at the component under study, ρi is the density of ice (0.9 g/cm3),

and ρw is the density of water (1.0 g/cm3).

Fig. 2.1 visualizes the propagation behavior of an ice storm crossing transmission

lines and towers. It also shows the importance of a component location with respect

to the ice storm propagation path. Since ice accumulation decreases radially as it
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gets farther from the center of an ice storm, components closer to the center of an ice

storm will experience high ice accumulation level. Also, the impact of an ice storm

on components lying outside the maximum impact radius will be very small and can

be neglected. The main weather-related and geographical-related parameters that

govern the behavior of an ice storm are ice precipitation rate, central pressure, trans-

lational speed, motion direction, wind speed, and landing site coordinates [88]. The

behavior of ice storms varies based on the values of these parameters. Extensive sta-

tistical analysis can be applied to determine proper PDF for each parameter through

recorded weather data at specified geographical locations.

2.3 Fragility Modeling

Transmission corridors are defined as sets of transmission line segments and trans-

mission poles that connect two buses. A single corridor is decomposed of segments

such that each segment comprises two corresponding towers and the part of trans-

mission line carried by them. Since transmission corridors can be relatively long, the

weather parameters of an extreme event change from one location to another along

the same corridor. In other words, the wind speed at the head of a transmission

corridor may hold different value than at the middle or the end of the corridor. Ad-

ditionally, wind speed varies at sequential time instants for a specific geographical

location.

2.3.1 Wind Speed Fragility

A fragility model from [89] is adopted to calculate the failure probability of each

transmission corridor based on the wind speed at specific time instants. By dividing

the total hurricane period (T ) into N time steps, a set of discrete time instants
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can be obtained. Also, transmission corridors are decomposed of M towers and L

line segments. The instantaneous failure rates of the transmission towers and line

segments can be calculated as follows,

λk,m(td) =


0, vk,m(td) ≤ vto

exp[γ(vk,m(td)− 2vto)], vto < vk,m(td) ≤ 2vto

1, vk,m(td) > 2vto

(2.12)

λk,n(td) = exp

{
11× vk,n(td)

vli
− 18

}
∆l, (2.13)

where td is discrete time instant, vk,m(td) is the wind speed, γ is the model coefficient

[89], vto is a threshold design wind speed of transmission tower, in this study 35m/s,

vk,n(td) is the wind speed at the midpoint of the nth line segment, vli is a threshold

design wind speed of line segment, and ∆l is the length of the line segment.

2.3.2 Ice Precipitation Fragility

A spatiotemporal fragility model from [89] is integrated with an ice storm model

adopted from [68] to calculate the cumulative failure probability of each transmission

corridor during the ice storm. The total ice storm duration period T can be divided

into N time steps with a shorter duration period ∆t, where component statuses can

be evaluated at discrete time instants. For a transmission corridor i, which is split

into L line segments through M towers, the failure rate λi,m of the mth tower of the

ith corridor at time tj can be evaluated as follows,

λi,m(tj) =



0, Ri,m(tj) ≤ Rto

e
[
0.6931(Ri,m(tj)−Rto)

4Rto
] − 1,Rto < Ri,m(tj) ≤ 5Rto

1, Ri,m(tj) > 5Rto

(2.14)
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where Ri,m(tj) is the ice thickness, and Rto is a threshold ice thickness design of

transmission tower (in this study 15 mm value is used).

The failure rate λi,n of the nth line segment of the ith transmission corridor at

time tj can be evaluated as follows,

λi,n(tj) = exp

{
11× Ri,n(tj)

Rli

− 18

}
∆l, (2.15)

where Ri,n(tj) is the ice thickness at the midpoint of the nth line segment, and Rli is

a threshold design ice thickness of line segment.

2.4 Failure Probability of System Components

The corresponding probability of failure of the transmission towers and line seg-

ments during the extreme event for a specific transmission corridor can be calculated

as follows,

Pk,m = 1− exp

{
−

N−1∑
d=0

λk,m(td)

(1− λk,m(td))
∆t

}
, (2.16)

Pk,n = 1− exp

{
−

N−1∑
d=0

λk,n∆t

}
. (2.17)

A whole transmission corridor will become out of service, if a single transmission

segment fails. In this study, the failure of components on the same corridor are as-

sumed independent. Therefore, the cumulative failure probability of the kth corridor

can be evaluated by combining (2.17) and (2.16) as follows,

Pk = 1−
M∏
1

(1− Pk,m)
L∏
1

(1− Pk,n). (2.18)
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Chapter 3

Proactive Strategies

Proactive resilience enhancement strategies focus mainly on utilizing the available

assets to prepare the power system prior to the occurrence of an extreme event to

maintain an acceptable resilience level during the event. Various dynamic system

constraints need to be considered for a feasible proactive enhancement plan such as

availability of generation units and transmission lines, load variations, operational

costs, generation ramping rates, and time-related constraints. Also, the spatiotem-

poral behavior of extreme event propagation should be modeled considering future

potential failures, event attack time, and duration of impact. In this chapter, we

propose two proactive strategies to enhance resilience of power systems prior to an

extreme event. First, a probabilistic proactive generation redispatch strategy is for-

mulated using MDP to minimize the amount of load curtailments and total opera-

tional costs. The proposed framework is studied for hurricane and wildfire events.

The efficiency of the generation redispatch approach is validated through several

case studies on IEEE 30-bus system. Moreover, a defensive islanding approach is

studied to enhance robustness of distribution systems against cyber-induced failures.

Defensive islanding aims to split a power system into smaller microgrids and iso-

late impacted parts of CPPS. The propagation behavior of cyber-induced failures

to power system components is illustrated. The proposed algorithm is tested on a

modified 33-node system integrated with DERs and cyber-related devices.
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3.1 Introduction

Various strategies have been proposed to improve the resilience of power systems

against extreme weather events. Such strategies have focused mainly on restoration

approaches such as mobile energy storage systems, network reconfiguration, and mi-

crogrid formation [52, 53]. Proactive and corrective resilience-based enhancement

strategies have not been sufficiently explored [95]. To reduce modeling complexities,

some generation and transmission constraints are usually relaxed, yielding higher

resilience levels [32, 33]. Impacts of load variations, system preparedness level, event

attack time, and future potential failures have been given less attention [2]. Since

extreme weather events may create sequential failures of system components, other

studies have considered the role of system operators in the decision making process

for improved resilience [32, 96]. The need of having a fast-acting decision tool to

optimize system operations during extreme events has increased dramatically [97].

Resilience Enhancement through Proactive Preparations. Several opera-

tional resilience enhancement strategies have been proposed. Maintenance planning

[31, 98, 99] and mobile energy storage allocation [4, 66, 73] strategies have been stud-

ied to prepare the system before an event. A decision-making framework based on

an analytical hierarchy process has been proposed in [100] to evaluate possible loca-

tions of solar panels and battery energy storage systems for multiple contingencies

to improve resilience of distribution systems and reduce operational costs. In [101],

a graph theory-based approach integrated with Choquet integral has been used to

quantify resilience enhancements and to maintain power supply to critical loads at

the distribution level. In [34], a procurement plan of black start units has been stud-

ied assuring sufficient energy supply prior to events at minimal cost; however, the

spatiotemporal characteristics of extreme weather events have not been considered.
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A proactive generation redispatch strategy has been proposed in [32] to reduce load

curtailments during hurricanes where operational costs and load variations are not

considered. An approach for generation redispatch during hurricanes has been pro-

posed in [33, 102], which takes into account event attack time, operational costs, and

generation level prior to the event. Though several resilience enhancement strategies

have been studied at the distribution level, developing resilience enhancement meth-

ods at the transmission level still requires further investigation [31]. The impacts

of sequential probabilistic component failures create stressed operating conditions

on the transmission system with the potential of cascading failures or blackouts.

Also, preparing power systems for potential N − k (i.e., k > 1) contingencies is an

important factor for enhancing power system resilience against extreme events.

Resilience Enhancement through Microgrid Formation. On the other

hand, several methods have been proposed to enhance the resilience of power systems

using islanding and microgrid formation strategies. A spectral clustering algorithm

has been employed to determine optimal network partitions under tight potential

N − k (i.e., k > 1) contingencies [103]. A risk-based defensive islanding approach

has been studied in [78] to reduce the impact of cascading failures on transmission

systems for enhanced resilience against hurricanes. In [104], a multi-layer constrained

clustering technique has been investigated to split a power system into islands while

minimizing power disruptions. Also, a clustering approach has been integrated with

frequency measurements of inverter-based resources to create microgrids based on

transient responses of RESs [105]. In [106], a resilience-based microgrid formation

framework has been proposed to enhance the restoration of critical loads in both

radial and meshed networks. Most of these studies have focused on transmission

level due their highly meshed topology. Despite the significant contributions of these

methods to enhance islanding strategies, impacts of cyber-induced failures on micro-
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grid formation of distribution systems require further investigation.

Resilience Enhancement against Wildfires. A few studies have proposed

several resilience enhancement strategies against wildfires [65, 107, 108, 109]. In [107],

the impact of wildfires on the optimal power flow solution of transmission system has

been studied based on propagation of flat fire surface toward a single transmission

line. In [108], a proactive dispatch algorithm of DGs has been proposed considering

uncertainties of wildfire progression and accompanied impacts on distribution line

ratings. A stochastic programming approach has been used in [65] to determine

the optimal utilization of RESs on the main feeder of a distribution system dur-

ing a wildfire given uncertainties of weather parameters. In [109], a resilience-based

enhancement strategy has been proposed to avoid spurious trip of inverter-based re-

sources and eliminate the risk of wildfires. A probabilistic decision process has been

proposed in [110] to improve resilience of power systems against wildfires; however,

the propagation rate of a wildfire has not been considered. Although several en-

hancement strategies against wildfires have been proposed, only a few have tested

the applicability of proactive generation redispatch considering probabilistic behavior

of component failures due to spatiotemporal characteristics of wildfires.

Resilience Enhancement against Cyber-induced Failures. The impact of

cyber-induced failures on the operational performance of CPPS has gained signifi-

cant interest. A CPPS model representing the IEEE 118-bus system integrated with

a communication network has been used to assess the impact of malware-induced

cyberattacks [111]. An exploration approach to identify the most vulnerable compo-

nents to malicious external attacks in nuclear power plants has been studied in [112].

A resilience-based mechanism to improve the recovery rate of communication links

impacted by a cyberattack has also been proposed in [113]. A defensive enhancement

scheme has been proposed in [114] to reduce the likelihood of cyber-induced failures



24

in waste water treatment systems. In [115], the impact of cyber-induced failures on

composite power system reliability has been investigated. Also, a CPPS model has

been proposed in [116] to capture the propagation of cyber-induced failures into dis-

tribution power systems for reliability evaluation. The role of cyber-induced failures

in islanding strategies is still underdeveloped. Also, most of these studies have fo-

cused on performance evaluation against cyber-induced failures rather than defensive

islanding of CPPS. Therefore, an islanding method that captures the correlation be-

tween physical operating conditions and cyber fragility behavior in CPPSs is required

for enhanced resilience.

The main contributions of this chapter are summarized as follows:

1. Develop and validate the efficiency of probabilistic proactive generation redis-

patch strategy to improve resilience of transmission systems against extreme

events, specifically hurricanes and wildfires.

2. Develop a defensive islanding methodology to split distribution CPPS into mi-

crogrids to mitigate the negative impacts of cyber-induced failures.

3.2 Proactive Generation Redispatch

This section describes the proposed generation redispatch strategy to enhance

resilience of transmission systems. First, it illustrates the impacts of propagation

of a wildfire and a hurricane on power system components. Then, it explains the

recursive MDP to formulate a probabilistic generation redispatch algorithm. Finally,

it provides implementation and test cases for hurricane and wildfire events.
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3.2.1 Impacts of Extreme Weather Events on System Com-

ponents

Impacts on the performance of power system vary according to the type of the

event and vulnerability and preparedness of the system. For example, earthquakes

have high impacts on underground cables whereas hurricanes result in failure of

transmission poles and lines [51]. For each extreme weather event, a proper model is

required to identify its propagation properties and spatiotemporal characteristics.

3.2.1.1 Impacts of Hurricanes

Intensities of hurricanes change temporally and geographically with their pro-

gression trajectories, which can be used to identify their spatiotemporal properties

[32]—various components in the system can be impacted at sequential time intervals.

Fig. 3.1 shows a scenario where two system components are on the trajectory of a

hurricane. At t2, component A is subjected to potential failure resulting in noticeable

disturbance in the system performance. Component B is expected to fail at t4 impos-

ing further impacts on system dynamics. Hurricanes are usually fast acting weather

events that might impact more than one component at the same instant resulting in

various system configurations. Also, it is usually difficult to restore failed elements

during the hurricane time especially if maintenance crew dispatching is a must for

the restoration process. In very severe hurricane conditions, maintenance of some

failed components might extend from a few hours to a few days [32]. Therefore, at

each time instant during the hurricane, the set of failed components will include the

possible failed components from previous time intervals.
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Figure 3.1: Two components on the trajectory of a hurricane

3.2.1.2 Impacts of Wildfires

Wildfires are characterized by the possibility to change path, to be completely

extinguished, or to have less intensity at any time instant [95]. Fig. 3.2 shows a

scenario where three system components (A, B, and C) are on the potential trajectory

of a wildfire at five time instants (t1 to t5). Also, the restoration time of failed

components is usually high due to the significant damage and destruction caused by

wildfires [65].

Figure 3.2: Three components on the trajectory of a wildfire

3.2.2 The Concept of Generation Redispatch

Failure of system components results in noticeable changes in the performance

of the power grid such as power flow between transmission lines, generators output
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level, and overall operating costs. When the number of failed elements increases, the

severity of the situation arises dramatically. In some cases, power grid can withstand

low impact failures but when it comes to fast sequential failure scenarios, some loads

must be curtailed to maintain more resilient operation. Moreover, during extreme

weather events, the priority should be given to the reduction of load curtailment

rather than operational costs. However, some existing strategies ignore the future

potential failures of system components. This leads to implementing a less resilient

strategy and increasing the negative consequences on the system performance. For

instant, if a generating unit is expected to be impacted by a hurricane at upcoming

future time, it is preferable to reduce the utilization of this unit before the extreme

weather event hits the system.

Proactive generation redispatch relies mainly on determining the optimal gener-

ation levels of each operating generator unit for a specific period of time given the

current and forecasted future system conditions. During normal operation, mini-

mum operating costs should be imposed whereas during abnormal conditions, load

curtailments and their associated costs should be minimized. Integrating the two

objectives for two different operation conditions (i.e., to minimize both generation

costs and load curtailment costs) requires consideration of several system constraints

and varying factors such as ramping rates, minimum up and down times, and fore-

casted event progression. For example, load demand at each time instant has a direct

role in generation output levels. Assurance of assets availability, such as generating

units and transmission lines, during and after an extreme weather event is a vital

constraint to maintain reliable operation of the system. On the other hand, restoring

the curtailed load in a fast, efficient, and economical way, enhances the overall oper-

ational resilience level of the system. Also, the power grid could be split into several

islanded microgrids where the generation level at each microgrid should be sufficient
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to supply all or most of its loads. Using generation redispatch, generator levels can

be adjusted to meet the goal of each islanded microgrid.

3.2.2.1 System States during Extreme Event

Various components in the system can be impacted at sequential time intervals

during an extreme weather event[32]. Fig. 3.3 shows a scenario where three system

components are on the trajectory of a hurricane. As a result, the power grid might

have different operating states at each time instant. A Markov state can be defined to

represent a unique system topology based on the available components. Total number

of Markov states is 2Nc,t where Nc,t is the total number of impacted components at

time t. Assuming that failed components are not recovered during the hurricane

period, the set of impacted components at time t lists the current and previously

impacted components. Fig. 3.3 describes the propagation of component failures

on Markov states during hurricane. So represents Markov state with no component

failure, whereas SABC denotes Markov state where all components are in failure

state. Utilizing Markov process to represent the behavior of power system from one

time instant to another requires evaluating transition probabilities from one state

to another. The transition probability from state Si,t to Si′,t+1 can be evaluated as

follows.

P (Si,t, Si′,t+1) =
∏

m∈ΩC,t+1

P (om,t, om,t+1), i ∈ ΩS,t, (3.1)

P (om,t, om,t+1) =



1 om,t = 0, om,t+1 = 0

0 om,t = 0, om,t+1 = 1

1− λm,t+1 om,t = 1, om,t+1 = 1

λm,t+1 om,t = 1, om,t+1 = 0

(3.2)
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Figure 3.3: Markov states on the trajectory of a hurricane

where ΩS,t is the set of all system states at a given time t; ΩC,t+1 is the set of all

impacted components at time t+1; λm,t+1 is the failure probability of component m

at time t+ 1; and om,t = 0 and om,t+1 are the statuses of the component m at times

t and t+ 1, respectively.

3.2.2.2 Recursive Markov Process

Uncertainties of component failures during extreme weather events impose ad-

ditional burden for system operators to determine the best decision, according to

current and future system states. Each decision impacts the overall performance

of the system during the entire period of an event. Since generation dispatch usu-

ally takes place in terms of minutes, a discrete-time MDP can be used to model

the whole process. The MDP determines the optimal action (decision) at each time

instant based on current system states as well as possible future states. The back-

ward induction method and the value iteration method [117] have been used to find

solution for each state in MDP. However, when time-dependent constraints corre-

lating Markov states at sequential time instants are considered, linear scalarization
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method can be used to transform the multi-objective optimization problem into a

single objective optimization problem [32].

Fig. 3.4 shows the progression behavior of an extreme event on system com-

ponents. Prior to the event, no failure state is observed. All Markov states are

encountered and their transition probabilities are calculated. At each time instant,

the optimization model takes into account all possible observable states. An action is

made and the system holds a new Markov state with a new set of observable states.

An action represents the supplied real power by operating generators. This process

is repeated for all time instants.
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Figure 3.4: (a) Markov states prior to the event, (b) Markov decision at t1, and (c)
Markov decision at t2.

3.2.3 Markov Decision Process Formulation

This section explains the formulation of the MDP-based optimization problem

to minimize the overall operating costs and load curtailments. Various system con-

straints and event spatiotemporal properties are considered in the proposed algo-

rithm.
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3.2.3.1 Objective Function

The optimal generation redispatch strategy for a specific system state Si,t at a

given time t is expressed as follows.

v∗t (Si,t) = min{vt(Si,t, Aa,t), a ∈ ΩA}, i ∈ ΩS,t, t ∈ ΩT , (3.3)

where Aa,t denotes a set of actions, i.e., generators output power; vt(Si,t, Aa,t) is the

expected overall cost for state Si,t under a specific action Aa,t; Ω
A represents the set

of all possible actions; ΩS,t is the set of all system states at a given time instant t;

and ΩT is the set of all time instants.

The value of each state in MDP can be evaluated as follows.

vt(Si,t, Aa,t) = Ct(Si,t, Aa,t) +
∑

i′∈ΩS
i,t+1

[P (Si,t, Si′,t+1) . vt+1(Si′,t+1, Aa′,t+1)]. (3.4)

In (3.4), {a, a′} ∈ ΩA, i ∈ ΩS,t, and {t, t + 1} ∈ ΩT where P (Si,t, Si′,t+1) is the

transition probability from state Si,t to all possible states in the proceeding time

instants; and Ct(Si,t, Aa,t) represents the immediate cost of state Si,t given action

Aa,t, which can be expressed as follows.

Ct(Si,t, Aa,t) = W1 . Ccu .
∑
n∈ΩN

Cun,t,i +W2[
∑
j∈ΩG

Cf (P
G
j,t,i)+Csu(T

ON
j,t,i )+Csd(T

OFF
j,t,i )],

(3.5)

where Cun,t,i represents the amount of load curtailment at node n; Ccu is the cost of

curtailed loads; Cf (P
G
j,t,i) is the fuel cost of generator j; ΩN represents the set of all

buses; ΩG represents the set of all generators; and Csu(T
ON
j,t,i ) and Csd(T

OFF
j,t,i ) are the

startup and shutdown cost of generator j, respectively.

3.2.3.2 Constraints

Several constraints are considered as follows.
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1. Power Balance: The power balance of system state Si,t at time t can be expressed

as follows. ∑
j∈ΩG

n

PG
j,t,i− (Ln,t,i − Cun,t,i) +

∑
n′∈ΩN

n

PL
n,n′,t,i = 0,∀n ∈ ΩN , (3.6)

where ΩG
n represents the set of generators connected to bus n; PG

j,t,i is the jth

generator real power at bus n; Ln,t,i is the amount of load in MW at bus n;

Cun,t,i is the amount of load curtailed at bus n; ΩN
n represents the set of all buses

connected to bus n; and PL
n,n′,t,i represents the power flow from bus n to bus n′ at

time t.

2. Transmission Flow Limits: The power flow through a specific line connected at

bus n of system state Si,t can be defined as follows.

Bn,n′ .(θn,t,i − θn′,t,i)− PL
n,n′,t,i ≤ PMax

n,n′,t,i ∀n ∈ ΩN , (3.7)

Bn,n′ .(θn,t,i − θn′,t,i)− PL
n,n′,t,i ≥ PMin

n,n′,t,i ∀n ∈ ΩN , (3.8)

where Bn,n′ represents the susceptance of the line connecting nodes n and n′; θn,t,i

and θn′,t,i are the voltage angles at buses n and n′, respectively; and PMax
n,n′,t,i and

PMin
n,n′,t,i are the maximum and minimum line flow ratings, respectively.

3. Load Curtailment Limits: For each Si,t during a hurricane, the amount of load

curtailment at each bus should be less than or equal the total amount of load at

the same bus as follows:

0 ≤ Cun,t,i ≤ Ln,t,i ∀n ∈ ΩN , ∀t ∈ ΩT . (3.9)

4. Ramping Rates of Generating Units: The ramping rates of each generator should

be satisfied as follows.

PG
j,t+1,i−PG

j,t,i′ ≤ (2−uj,t,i−uj,t+1,i′).P
G,Min
j +(1+uj,t,i−uj,t+1,i′).R

UP
j ∀i′ ∈ ΩS

i,t+1,

(3.10)
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PG
j,t,i−PG

j,t+1,i′ ≤ (2−uj,t,i−uj,t+1,i′).P
G,Min
j +(1−uj,t,i+uj,t+1,i′).R

DN
j ∀i′ ∈ ΩS

i,t+1,

(3.11)

where for the jth generator, PG
j,t+1,i′ is generated power in state Si′,t+1; uj,t,i and

uj,t+1,i′ are generator statuses at states Si,t and Si′,t+1, respectively; P
G,Min
j and

PG,Max
j are the minimum and maximum generation power; and RUP

j and RDN
j are

the up and down ramping rates, respectively.

5. Generators Minimum Up/Down Time: Since the proactive redispatch is time-

dependent, minimum up and down times for each generator should be satisfied as

follows.
t∑

t−UT+1

TONj,t,i ≤ uj,t,i′′ ∀t ∈ {UT, · · · , T}, (3.12)

t∑
t−DT+1

TOFFj,t,i ≤ 1− uj,t,i′′ ∀t ∈ {DT, · · · , T},

∀j ∈ ΩG, ∀i′′ ∈ ΩS
i,t+,

(3.13)

where TONj,t,i and TOFFj,t,i are the turn on/off signals of jth generator at state Si,t,

respectively; UT and DT are the minimum up/down times for same generator,

respectively; and ΩS
i,t+ is the set of all possible transition states starting at state

Si,t.

6. Power Limits of Generating Units: The generated power of each generator can be

as expressed as follows.

PG,Min
j .uj,t,i ≤ PG

j,t,i ≤ PG,Max
j .uj,t,i ∀j ∈ ΩG, (3.14)

where PG,Min
j and PG,Max

j are the lower and upper limits of jth generator, respec-

tively; and ΩG is the set of all generators.
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7. Generator Status: The status of each generator at state Si,t is represented by a

binary number as follows.

uj,t,i ∈ {0, 1}, ∀j ∈ ΩG, (3.15)

8. Voltage Angle Limits: Voltage angle at bus n at state Si,t can be expressed as

follows.

θMin
n ≤ θn,t,i ≤ θMax

n , ∀n ∈ ΩN , (3.16)

3.2.4 Implementation and Results for Hurricane Event

The proposed approach is applied on the IEEE 30-bus system. The MDP is for-

mulated using CPLEX solver integrated with MATLAB. The hurricane is assumed

to pass through the system as shown in Fig. 3.5 and to last for 25 minutes sampled

in set of 5 minutes. At each time instant, components may fail due to the spatiotem-

poral properties of the hurricane. The set of impacted components and their failure

probabilities are given in Table 3.1, using the approach given in [32].
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Figure 3.5: Hurricane propagation on IEEE 30-bus system
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Table 3.1: List of Impacted Components with their Probability of Failure for Hurri-
cane Event

Time Instant Component No. Description Failure Probability
t1 – – –

t2
C1 Line 15-23 0.25
C2 Line 18-19 0.22

t3 C4 Line 16-17 0.2

t4
C6 G6 0.08
C7 Line 4-6 0.18

t5

C8 G2 0.08
C9 Line 2-6 0.15
C10 Line 2-5 0.12

Several test cases are simulated to validate the accuracy and effectiveness of the

proposed method. The impact of load variations is considered by scaling the system

nominal load based on load demand profile obtained from [118] as shown in Fig.

3.6. The hurricane event is assumed to take place during load peak time to create

more severe circumstances. On the other hand, proper scaling weights are used to

prioritize the cost of load curtailment over the operational costs. Two simulation

cases are considered to assess the sensitivity between the initial generation level and

algorithm performance.

3.2.4.1 Predefined Initial Generation Level

In this case, initial generation levels are obtained by solving optimal power flow

under normal operating conditions. The calculated initial generation profile is inte-

grated into the optimization problem to determine the optimal generation redispatch

scenarios. Fig. 3.7 shows the optimal generation strategy for three scenarios com-

pared with the generation dispatch under normal operation conditions. The three

scenarios are selected as follows: (a) no component fail, (b) only transmission lines

fail, and (c) all components on the hurricane path fail. The overall cost of each redis-

patch strategy is evaluated and compared with normal operation cost as illustrated
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Figure 3.6: Load profile with hurricane landing time

in Fig. 3.9.

Figure 3.7: Optimal strategies under predefined initial generation level

It is noticeable that the MDP takes in consideration the potential future failures

of system components. Both G1 and G2 are ramping down in all studied redispatch

scenarios to shift the reliance of the system on the largest generation unit. Although

G3, G4, and G5 are ramping up to compensate for the reduction of generation from

G1 and G2 as well as achieve the increasing demand, the net ramp up/down of

all generators is not sufficient to supply all load demands resulting in some load

curtailments. On the other hand, G6 does not continue to ramp up for the whole
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period because the possibility to fail at t4. Although system components do not fail in

scenario (a), load is curtailed at earlier time instants to avoid much larger curtailment

in proceeding instants. Also scenario (b) describes the generation portfolio when

islanding occurs at t5 which shows further curtailment due to insufficient power for

each region. The total amount of load curtailment increases in scenario (c) due to the

loss of G2. The impact of the generation level prior to the event on the performance

of the redispatch strategy has been noted clearly in scenario (a) and (b). For instant,

if G2 was producing much less power, it would have behaved as G6 and shut down

earlier in time.

3.2.4.2 Unknown Initial Generation Level

Due to the sensitivity of generation redispatch and ramping to initial generation

levels, MDP algorithm is used to determine the optimal initial generation level as

well as the dispatch profile to reduce the amount of load curtailment. Fig. 3.8 shows

the optimal initial generation level and redispatch strategy for scenarios (b) and (c)

from the previous case. Also, the overall cost is compared with results of the previous

case as illustrated in Fig. 3.9.

The obtained generation dispatch strategies for scenario (b) and (c) are signif-

icantly different than previous results in many ways. All generation units are ini-

tialized to deliver 40% to 70% of their maximum capacity resulting in higher initial

generation of G3, G4, and G5. Also, the initial generation level of G2 has been

reduced to be able to completely shut down by reaching t5. The MDP algorithm

utilizes G2 as long as possible since it has lower overall operating costs than other

units. The obtained strategies for scenarios (b) and (c) are identical reflecting the

effectiveness of the MDP algorithm to consider future potential generation outage.

The ramping of G3, G4, and G5 is mainly due to increase in load demand. G6 reaches
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Figure 3.8: Optimal strategies under unknown initial generation level

a complete shutdown state at t3 before it is potentially impacted at t4. Although a

significant reduction in load curtailment profile is obtained, both scenarios encounter

small amount of load curtailment at the last time instant t5.

Fig. 3.9 describes the variation of cost values for all scenarios under various

constraints. Three feasible initial generation conditions are used to assess the perfor-

mance of the redispatch algorithm: (1) 40% to 70% of maximum generation capacity;

(2) 100% to 230% of minimum generation capacity; and (3) minimum to maximum

generation capacity. Condition (2) imposes more curtailment costs than condition

(1) and (3) because generators are initialized at low levels. When the initial genera-

tion level constraint is relaxed, the algorithm reaches very close total cost compared

to normal operation costs in case of scenario (a).

3.2.5 Implementation and Results for Wildfire Event

The proposed approach is applied to the IEEE 30-bus system for validation [119].

Generator data are provided in Table 3.2. In this study, the wildfire is assumed

to propagate across the system as shown in Fig. 3.10. Due to the spatiotemporal
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Figure 3.9: Cost analysis

characteristics of wildfires, system components may fail at each time instant. Table

3.3 lists the set of impacted components and their failure probabilities. Although the

propagation speed of a wildfire varies based on weather factors, fuel data (e.g., land

type), and wildfire data, the scope of this work is resilience enhancement strategy

under a given wildfire scenario. The impact of load variation is considered by scaling

the system nominal load using load demand profile obtained from [118] as shown in

Fig. 3.6.

Table 3.2: Generator Parameters

Unit
Cost ($) Time (min) Power (MW) Ramp

b Csu Csd UT DT Min Max (MW/hour)

G1 2.00 70 176 15 15 30 120 12.0

G2 1.75 74 187 15 15 35 140 12.0

G3 2.00 50 113 15 15 10 50 7.2

G4 3.25 110 267 15 15 5 30 6.0

G5 3.00 72 180 15 15 10 55 7.2

G6 3.00 40 113 15 15 15 40 6.0
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Figure 3.10: Wildfire propagation on IEEE 30-bus system

Table 3.3: List of Impacted Components with their Probability of Failure for Wildfire
Event

Time Instant Component No. Description Failure Probability

t1 – – –

t2 C1 Line 16-17 0.7

t3 C2 Line 4-6 0.4

t4 C3 Line 2-6 0.6

t5 C4 Line 2-5 0.3

t6
C5 G3 0.7

C6 Line 5-7 0.3

The performance and effectiveness of the proposed method are tested and vali-

dated through several test cases. To induce more severe circumstances, the wildfire

event is assumed to take place during the peak load period. The wildfire duration

for crossing the indicated lines is assumed to be 25 minutes sampled at 5 minute in-

tervals for the recursive discrete decision epochs. As previously mentioned, to ensure

that the algorithm prioritizes reducing load curtailments over operational costs, the

scaling weight of W1 is selected to be significantly higher than W2. In this work,
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W1 equals 100 and W2 is 1. The performance of the proposed algorithm is tested

through three simulation cases, which are: 1) corrective strategy, 2) immediate proac-

tive strategy, and 3) predictive proactive strategy. The impact of the propagation

rate of a wildfire is assessed to validate the effectiveness of the proposed algorithm

under diverse circumstances. Also, the impacts of different generator ramping rates

are studied to assess their role in resilience enhancement. The optimal generation

dispatch during normal operation (no wildfire) is computed and used for comparison.

3.2.5.1 Corrective Strategy

Since the system may experience actual failures during a wildfire, the generation

dispatch has to be readjusted to adapt to such failures and fulfill system generation

and transmission constraints. In this case, no redispatch is applied prior to the event

attack time; however, dispatching is applied at each time instant during the wildfire

event to fulfill the current system constraints. In other words, the decisions are made

to fulfill the current system constraints ignoring future impacts. This case is used

for comparison and validation of the proactive generation redispatch algorithm and

to highlight the importance of proactive resilience enhancement strategies.

Fig. 3.11(a) and Fig. 3.11(b) show the generation dispatch solution during normal

operation and corrective strategy, respectively. For Fig. 3.11(b), the amount of load

curtailment (dashed line) keeps growing throughout the wildfire duration for several

reasons. First, G3 (yellow line) ramps down to avoid any constraint violation starting

at 18:45 due to sequential failures of transmission lines 2–5 and 5–7. Also, the failures

of lines 2–5, 2–6, 4–6 and 16–17 impose stressful burden on the amount of transferable

power from G1, G2 and G6 to the load spots on the right side of the grid and results

in ramping down of G1 and G2. As a result, the generation profile of all units have

changed significantly. It is obvious that proactive strategies are required to improve
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the system performance and reduce the amount of load curtailments. Also, the

generation and transmission constraints impose further complexities which should

be considered during the enhancement strategy.

Figure 3.11: Optimal generation dispatch under (a) normal operation, (b) corrective
strategy, (c) immediate proactive strategy given no components fail during wildfire,
and (d) immediate proactive strategy given all potential components fail during wild-
fire

3.2.5.2 Immediate Proactive Strategy

In this case, the MDP algorithm proactively dispatches generators when a wildfire

occurs based on the predicted direction and speed of the wildfire and potential fail-

ures of system components. The formulated MDP considers all possible component

failures due to the wildfire, which were ignored in case 1. The initial generation levels

are obtained from the scheduled generation dispatch solution under normal operation

and integrated into the MDP to ensure that the optimization problem is initialized

with the proper system status prior to strategy implementation. Fig. 3.11(c) and Fig.

3.11(d) show the optimal generation dispatch for two scenarios: S1—no components

fail, and S2—all potential components fail, respectively.

In this case, generation profiles for all generators have changed significantly, as

shown in Fig. 3.11(c) and Fig. 3.11(d) compared to the corrective strategy case.

Considering the results in Fig. 3.11(c), high reliance on the right-side generators (G4
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and G5) compared to the left-side generators (G1 and G2) is observed during the

first few instants to avoid violating the ramping constraints of large generation units,

G1 and G2, which are highly utilized prior to the event due to their low operational

costs. A very fast ramping up behavior of G4 and G5 is observed to compensate for

the ramping down of G1 and G2 as well as increase in load demand. G3 supplies

high generation level at early instants utilizing its low operational costs; however,

it ramps down at 18:35 to prepare for possible shutdown at 18:50. This highlights

the capability of MDP to utilize low-operational cost generators. Since G6 has high

operational costs, it ramps down at 18:40 to reduce the operational costs during

severe situations. Generators G1 and G2 ramp up at 18:40 while G4 ramps down

at 18:45 to reduce the overall operational costs since no failure takes place. On the

other hand, G1 and G2 ramp up momentarily between 18:40 and 18:45 to utilize

their low-operational costs even with decreasing in load demand. As a result, MDP

utilizes low-operational cost generators as long as all generation and transmission

constraints are not violated.

For scenario S2 (Fig. 3.11(d)), the loss of G3 and islanding of bus 5 results in

non-avoidable curtailments at 18:50, yielding higher load curtailments compared to

S1. Although system components do not fail in S1 (Fig. 3.11(b)), load is curtailed

at earlier time instants to avoid much larger curtailments in proceeding instants.

From the results, the proposed MDP algorithm provides much less load curtailments

compared to the corrective strategy.

Our work shows that MDP selects the optimal generation redispatch at each

instant that ensures not only minimal load curtailments at the current instant but less

negative impacts on the following time instants. In other words, the load curtailment

profile for both scenarios is the same for all time instants till 18:45, which highlights

the capability of MDP to consider future impacts and mitigate the worst case scenario
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earlier in time. The proposed algorithm is able to reduce the total amount of load

curtailments more than 50%. Additionally, MDP prioritizes reducing amount of load

curtailments over operational costs in present and future instants.

3.2.5.3 Predictive Proactive Strategy

Similar to case 2, the proposed strategy utilizes MDP to proactively dispatch

generators given a predicted wildfire event. In other words, the optimal redispatch is

determined prior to the potential wildfire. The MDP algorithm is used to determine

the optimal initial generation level prior to the event so that if an event happens,

further load curtailments will be avoided. Fig. 3.12 compares generation profile for

S2 under immediate and predictive proactive strategies.

Figure 3.12: Optimal generation dispatch for S2 under (a) immediate proactive strat-
egy and (b) predictive proactive strategy

The impact of the generation level prior to the event on the performance of the

redispatch strategy is clearly noticed. The obtained generation dispatch profiles,

shown in Fig. 3.12(b), are significantly different compared to Fig. 3.12(a). In this

case, G2, G4 and G5 have higher initial generation levels than G1 compared to case

2. The full utilization of G4 and G5 earlier in time results in lower load curtailments
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at 18:40 and 18:45. MDP has prioritized G5 over G4 due to its lower operational

costs. Also, MDP has selected a higher initial generation level for G2 since it has the

lowest operational costs and highest generation capacity. Although G3 is expected

to fail at 18:50, it is optimally utilized prior to that instant due to its low operational

costs, which highlights the effectiveness of MDP to differentiate between low– and

high–operational cost generators. MDP provides a proactive resilience enhancement

approach to determine the proper allocation of sources prior to extreme weather

events and avoid large curtailments.

The total amount of load curtailment during the event duration (18:30 to 18:50) is

lower in Fig. 3.12(b) implying higher resilience level; however, both strategies show

same amount of load curtailments at 18:50. Deeper investigation shows that the

shared spots of load curtailment at 18:50 for both strategies are buses 8, 12, 14, 15,

29, and 30. Such curtailments are deemed non-avoidable due to either insufficient

generation supply or exceeding transmission capabilities. For instance, the load de-

mand at bus 8 at 18:50 of almost 37 MW—calculated by scaling the base load using

provided load profile—can be supplied through G4 and transferable power through

transmission lines connected to bus 8. If G4 has a capacity lower than the load

demand, the remaining load demand should be supplied through transferable power

over transmission lines; however, that might not be feasible if these lines are fully

occupied due to other load requirements. Regardless of the non-avoidable curtail-

ments, case 3 provides better resilience level represented by fewer load curtailments.

The obtained strategies reflect the effectiveness of the MDP algorithm to consider fu-

ture potential generation outages and transmission failures. Also, MDP can be used

to determine the most vulnerable spots due to extreme events and provide proper

proactive planning.

To show the significance of the proposed algorithm on the overall costs, Table 3.4
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describes the variation of cost values for S2. The operational cost is higher in case 3

than in case 2. The curtailment cost is less in case 3 compared to case 2. This implies

the capability of MDP to prioritize reducing load curtailment costs over operational

costs. Also, relaxing the initial generation level constraint results in less total cost.

The cost analysis can be used to determine optimal decisions taking into account the

energy market regulations during extreme weather events.

Table 3.4: Cost Analysis

Cost ($) Normal
operation

Proactive strategy

Immediate Predictive

(Case 2) (Case 3)

Operational 2562 2711 2751

Curtailments 0 17454 13447

Total 2562 20165 16199

3.2.5.4 Role of Wildfire Propagation Rate

Due to the large geographical distance between some components at the trans-

mission level, the sequential failure behavior might take several hours instead of a

few minutes [107]. In this case, the wildfire event is assumed to propagate across the

system in 5 hours. The decisions are made at the start of each hour. To create more

stressed operating conditions and show the importance of the proposed algorithm, a

few extra constraints are imposed. First, the wildfire is assumed to ignite prior to

peak load demand period. Each generator ramping rate (MW/hour) is assumed to

be 25% of maximum power capacity [120]. Line 4–12 replaces line 16–17 in the list of

potential components at t2 (Table 3.3) to create an islanding scenario and potential

isolation of the two largest generators.

Fig. 3.13 compares the immediate proactive strategy and the corrective strategy

with the normal operating conditions for a 5-hour wildfire event. The total amount
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of load curtailment is reduced dramatically by applying the proactive redispatch

strategy as noticed in Fig. 3.13(c) and 3.13(d). The islanding of buses 1, 2, 3,

and 4 due to wildfire shows insufficient generation capability, yielding non-avoidable

load curtailments. On the other hand, the MDP selects G2 over G1 in the proactive

strategy compared to the corrective strategy revealing the effectiveness of MDP to

consider low-cost generators. Fig. 3.11 and Fig. 3.13 confirm the capability of the

proposed algorithm to provide feasible solution and better resilience for fast and

slow-paced extreme weather events.

Figure 3.13: Optimal generation dispatch for slow wildfire event under (a) normal
operation, (b) corrective strategy, (c) immediate proactive strategy given no compo-
nents fail during wildfire, and (d) immediate proactive strategy given all potential
components fail during wildfire

3.2.5.5 Impacts of Ramping Rates

The MDP solution relies on many factors including the dynamic characteristics of

generators. Better resilience levels can be obtained through larger power capacity and

faster ramping performance. In this case, the role of ramping rates is assessed. Three

conditions are simulated: (a) nominal ramping rates, (b) 20% increase in ramping

rates, and (c) 50% increase in ramping rates. The generator capacity is assumed fixed

as provided in Table 3.2. For all simulated conditions, the initial generation levels

are obtained from the scheduled generation dispatch solution under normal system



48

operation, as shown in Fig. 3.11(a).

Fig. 3.14 shows the results for the two previously mentioned failure scenarios—

S1: no components fail, and S2: all potential components fail. It is obvious that

increasing the ramping rates results in a better performance represented in less load

curtailments in both scenarios from 18:35 to 18:45. During the severe failure sce-

nario (S2), increasing the ramping rate by 50% enables the system to eliminate the

avoidable curtailments of other cases and highlights the presence of non-avoidable

load curtailments at 18:50. By comparing Fig. 3.14(c) and Fig. 3.14(e) with Fig.

3.14(a), it is noticeable that even with no failure occurrence, having a faster ramping

provides the system with much faster response and proper immediate preparedness.

The generation profile of all generators varies based on ramping rates. Reliance

on generators with low operation cost such as G2 is noticed when the ramping ca-

pabilities increase. In Fig. 3.14(c) and Fig. 3.14(d), the generation profiles of G3,

G4, and G5 increase due to the need of high generation supply on the right side of

the grid. Fig. 3.14(e) and Fig. 3.14(f) show that G4 is utilized only when needed

due to its high operational costs. In other words, G4 ramps down at 18:40 to reduce

operational costs. In most cases, G1 ramps down due to its high cost compared

to G2—which is located in the same geographical vicinity—and transmission power

limitation of line 4-12. In short, increasing the ramping rates creates more flexible

system constraints achieving better resilient performance.

Table 3.5 shows the effect of various ramping rates on operational costs and cur-

tailment costs. In S1, the total costs with 20% ramp increase is almost half the total

costs for nominal case. The total costs in S1 with 50% ramp increase is $2600, which

is very close to normal operation condition of $2562. During severe situations, when

all potential components fail, increasing the ramping rates reduces the curtailment

costs dramatically but increases the operational costs slightly resulting in overall to-
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Figure 3.14: Optimal generation dispatch under varying ramping rates for S1: (a),
(c), and (e) and S2:(b), (d), and (f)

tal costs reduction. In brief, increasing the ramping rates results in reducing the

total costs between 25% to 67% among all scenarios.
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Table 3.5: Cost Analysis under Various Ramping Rates

Cost ($)
S1 S2

Nominal 20% 50% Nominal 20% 50%

Operat. 2573 2597 2600 2711 2735 2741

Curtail. 5347 1352 0 17454 13459 12107

Total 7920 3949 2600 20165 16193 14847

3.3 Defensive Islanding for CPPS

This section describes the proposed defensive islanding strategy to improve re-

silience of distribution systems against cyber-induced failures. First, it explains the

concept of resilience-based islanding. Then, it illustrates the hierarchical spectral

clustering approach to formulate the islanding scheme. Finally, it provides a few test

cases for validation.

3.3.1 Cyber-induced Failure Model

CPPSs are usually decomposed of a physical layer representing the power grid

and a cyber layer including communication and computation systems. According

to complex network theory, both physical and cyber layers can be represented as

graph networks [19]. A physical power system is represented by an undirected graph

GP = (NP , EP ), where NP is a set of vertices corresponds to buses or nodes in the

power system and EP is a set of edges referring to transmission line segments or

transformers. Following the same convention, the cyber layer can be represented as

an undirected graph GC = (NC , EC), where NC is a set of vertices that correspond

to communication routers and control centers in the cyber system and EC is a set of

edges representing the communication channels between the information nodes.

The coupling between the information equipment and power system components

shows the strong inter-dependency between the cyber and physical layers. In a con-
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ventional CPPS, the communication network is responsible for transferring measure-

ments from power system sensors and sending decision control signals to power system

actuators [19]. Various studies have been conducted to present a coupling model of

the physical and cyber layers [30, 116, 121]; however, such coupling differs based

on the system under study, the level of interaction among different layers, and the

scope of the study. This study focuses on propagating the impact of cyber-induced

failures into a power system. The presented coupling model between communication

and physical layers is adopted from [122] and summarized as follows. A node-switch

incidence matrix Ans ∈ RNP×NC that represents the communication channel between

a physical node and its terminal in the cyber layer can be constructed as follows.

ansi,j =


1, if node i is connected to switch j

0, otherwise

(3.17)

Also, a branch-switch incidence matrix Abs ∈ REP×NC describing the relationship

between a physical edge and its assigned communication router can be formulated

as follows.

absi,j =


1, if branch i is connected to switch j

0, otherwise

(3.18)

Finally, a switch-switch incidence matrix Ass ∈ RNC×NC can be used to describe

the existing communication topology, such as star, ring, or meshed, and can be

formed as follows.

assi,j =


1, if switch i is connected to switch j

0, otherwise

(3.19)
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3.3.2 Cyber Resilience-based Defensive Islanding

This section illustrates the proposed defensive islanding approach using graphical

clustering. Also, a few weighting functions are proposed to capture both the physical

and cyber features for proper clustering.

3.3.2.1 The Concept of Defensive Islanding

Defensive islanding aims to split a power system into smaller independent grids

and isolate the vulnerable components based on constrained clustering. The de-

fensive islanding approach provides a proactive strategy to exclude the vulnerable

system components for enhanced resilience operation. Existing islanding approaches

rely mainly on the topology and loading conditions of the physical electric power

system [78, 123]. However, the integration of communication and cyber components

introduces further challenges on clustering a CPPS [122]. For instance, during an

extreme weather event, the communication channels connecting the power system

components, such as circuit breakers, and tie-switches, to the main control center

can be compromised. Though power components can still operate reliably, the vul-

nerabilities introduced in the cyber layer to measure, monitor, and control power

systems will reduce the resilient operation.

Islanding is classified as a clustering problem within the context of graph theory

[78]. Clustering a graph network is the process of identifying the list of edges (trans-

mission lines) that can be disconnected to maintain minimal discrepancies among the

connecting vertices (buses) [123]. This is usually achieved via assessing the correla-

tion between vertices in a specific graph, and then, removing the edges having the

least correlation values. Various methods have been used to evaluate the correlation

within a graph network in terms of edge weights [103, 105, 124]. In electric power

system studies, the following edge weight functions have been used:
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1. Topology: Wi,j = 1, where (i, j) ∈ E

2. Admittance: Wi,j = Yi,j = 1/Zi,j where Zi,j is the line impedance between buses

i and j.

3. Power flow: Wi,j = (|Pi,j| + |Pj,i|)/2 where Pi,j is the real power flow from bus i

and bus j.

4. Optimal Power flow: Wi,j = (|P ∗
i,j|+ |P ∗

j,i|)/2 where P ∗
i,j is the real power flow from

bus i and bus j based on solving the optimal power flow problem.

3.3.2.2 Resilience-based Clustering

Different edge weight functions can be used to evaluate the characteristics and

properties of a specific graph. In power system graphical representation, the topology

weight function measures pure connectivity of a network whereas admittance weight

matrix reveals the strength of graph edges (electrical distances). Also, power flow

and optimal power flow weights are used to measure the loading level of transmis-

sion lines. However, these weight functions do not capture the fragility of system

components during an extreme event [123]. In resilience-based studies, edge weights

can be calculated based on the probability of failure of system components [84]. The

weight matrix can be represented as Wi,j = 1 − fi,j where fi,j is the failure prob-

ability of an edge connecting buses i and j, which can be computed using fragility

curve models [46]. Despite the capability to capture the vulnerability level of system

components, the resilience-based weight function does not account for the loadability

characteristics of system components.

A proper weight function that captures both the fragility and loadability features

of graph edges will provide a better clustering against severe events. Four weight

functions are proposed by integrating the steady-state solution of power flow and
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optimal power flow with the fragility behavior of power system components due to

cyber-induced failures, which are explained as follows.

1. Integrated power flow and component availability: Wi,j = ((|Pi,j| + |Pj,i|)/2)(1−

fi,j). Each element in the weight matrix corresponds to the multiplication of the

average power flow and the probability of success for the corresponding edge.

2. Integrated optimal power flow and component availability: Wi,j = ((|P ∗
i,j| +

|P ∗
j,i|)/2)(1 − fi,j). Each element in the weight matrix corresponds to the mul-

tiplication of the optimal real power flow and the probability of success for the

corresponding edge.

3. Integrated normalized power flow and component unavailability: Wi,j = ((|P̂i,j|+

|P̂j,i|)/2)(fi,j), where P̂ is the normalized power flow between i and j.

4. Integrated normalized optimal power flow and component unavailability: Wi,j =

((|P̂ ∗
i,j|+ |P̂ ∗

j,i|)/2)(fi,j), where P̂ ∗ is the normalized optimal power flow between i

and j.

The normalized power flow values are selected to map the loadability level of

transmission lines on a scale from zero to one—higher values imply higher load-

ability. Also, this ensures that same priority is given to both probability of failure

(fragility feature) and power flow (loadability feature), since both reside within the

same range. The probability of failure of a physical component can be computed

using the probability of failure of the corresponding communication link as described
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in [122] and summarized as follows.

fi,j =



fnsi,j , if node channel assigned to edge(i,j) fails

f si,j, if switch connected to edge(i,j) fails

f bsi,j, if branch channel assigned to edge(i,j) fails

0, otherwise

(3.20)

3.3.3 Spectral Clustering for Defensive Islanding

This section explains hierarchical spectral clustering method to create defensive

islands. Also, it provides a brief description of the clustering evaluation criteria

including minimal amount of load curtailment and radiality constraints.

3.3.3.1 Hierarchical Spectral Clustering

The concept of hierarchical spectral clustering has been introduced in [123] for

transmission power systems and in [124] for distribution systems. The general idea is

to split a graph network into K sub-graphs. First, the normalized Laplacian matrix

Ln representing a specific graph is evaluated using (3.21).

Ln = I −D−1/2WD−1/2, (3.21)

where I is identity matrix,W is the edge weight matrix, and D is the diagonal degree

matrix, which can be calculated as follows.

Dj,j =
N∑
i=1

Wj,i. (3.22)

The formulated Laplacian matrix is used to determine the first K eigenvectors

corresponding to the smallest eigenvalues. The extracted eigenvectors represent the

coordinates of the graph vertices in RK . Once theK coordinate vectors are computed,

the edge distance between each graph vertex, i ∈ N and all k ∈ K vertices is
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computed. A specific vertex i will be assigned to cluster k based on the minimum

euclidean distance. In other words, the minimum distance over a path between i and

k is used to allocate graph vertices into a specific cluster. Detailed illustration of the

presented method can be found in [123].

3.3.3.2 Clustering Evaluation Criteria

Various methods have been used to assess the performance of the clustering tech-

niques [125]. The evaluation criteria vary based on the system being assessed, the

size of the graph, and the required objectives. In this study, two criteria are selected

to evaluate the validity and efficiency of the calculated clusters, which are:

(1) The minimal amount of load curtailment: is an index that can be used to evaluate

the level of resilience enhancement. The critical load curtailment can capture the

severity of the multiple line outages due to a cyber-induced failure and is directly

affected by the topology and locations of DERs in a distribution system. The total

load curtailment in a distribution network can be expressed as follows.

LCtot =
N∑
i=1

∆Pi, (3.23)

where ∆Pi is the load curtailment at node i, and N is the total number of nodes in

the system.

(2) Radiality requirements: should be satisfied in distribution systems to align with

the existing protection coordination schemes and voltage regulation fundamentals.

Each cluster (microgrid) is represented by sub-graph Gk = (Nk, Ek), where Nk is a

set of nodes (or vertices) and Ek is a set of edges (or branches) in the sub-graph

or cluster. A node-branch incidence matrix A can be constructed using (3.24) for

each cluster, such that A ∈ Rn×e, where n = |Nk| denotes the number of nodes and

e = |Ek| denotes the number of edges of a particular cluster. Radiality constraint is
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satisfied if matrix A is a full rank matrix.

ai,j =


+1, if branch j starts at node i

−1, if branch j ends at node i

0, otherwise

(3.24)

3.3.3.3 Integrated Algorithm

Algorithm 1 provides the process of defensive islanding to split a distribution

system into smaller microgrids considering the role of cyber-induced failures. First,

the system physical and cyber graphs are defined. Then, a cyber-induced failure

scenario is generated randomly and its impact on the physical power system is eval-

uated. Hierarchical clustering is used for each clustering strategy to determine list

of new smaller microgrids. The amount of load curtailment and radiality rank are

computed for comparison and validation.

Algorithm 1: Overview of Defensive Islanding Considering Cyber-induced
Failures
Input: Define physical layer graph (GP ), cyber layer graph (GC), number of

clusters (K), and clustering strategies (S)
Generate a cyber failure scenario
Solve the power flow and optimal power flow
Propagate the cyber-induced failure to the physical layer using (3.17), (3.18),
and (3.19)
Evaluate the probability of failure of power components using (3.20)
for s← 1 to S do

Compute the weight matrix W
Calculate the Laplacian matrix Ln
Evaluate the eigenvectors K
Obtain clusters using hierarchical spectral methodology
Remove lines (edges) to split the system into islands
Calculate the minimal amount of load curtailment and radiality rank

Output: Defensive islands and their corresponding load curtailment and
radiality rank
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3.3.4 Implementation and Results

The proposed approach is applied on a modified version of the 33-node distri-

bution feeder for validation. The defensive islanding framework is formulated using

hierarchical spectral clustering integrated with resilience-based weighting functions.

A CPPS representing a modified version of the 33-node distribution feeder [126,

127] is formed as shown in Fig. 3.15. Each power system node and transmission line

is assigned to a specific communication switch as provided in Table 3.6. Detailed

explanation of the CPPS model has been provided in section 3.3.1. These routers

are responsible for receiving measurement signals and sending control signals to the

assigned physical components. All communication switches are connected to the

main control center. A compromised router implies potential failure of all commu-

nication signals to the assigned physical components. Though the communication

topology plays a vital role in addressing the correlation between cyber failures, this

study focuses on the impact of cyber-induced failures on the performance of power

system components. To create independent microgrids, eight DERs are connected

to the distribution feeder at arbitrarily chosen locations as shown in Fig. 3.15. The

maximum power capacity of each DER is 500 kW. The proposed algorithm takes

into consideration the DER locations in assigning proper islands. In this work, it

is required to determine proper islands based on predefined system resources and

characteristics.

The proposed clustering approach relies mainly on the probability of failure of

cyber failures during extreme events. Due to the lack of information regarding the

failure behavior of cyber and communication components, studies have adopted a

scaling approach to compensate for the elevated extreme fragility conditions during

severe conditions [59, 128]. In this work, the failure rate and repair time of the cyber

components are adopted from [121, 122]. The failure rate of the cyber components
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Figure 3.15: CPPS schematic diagram of a modified 33-node distribution feeder

Table 3.6: Assigned Physical Components to Communication Switches

Switch Assigned nodes Assigned lines

SW1 1,2,3,4 1,2,3,14,18,22

SW2 5,6,7,8,9 5,6,7,8,9,25,33,34

SW3 10,11,12,13,14 10,11,12,13,14,35

SW4 15,16,17,18 15,16,17,36

SW5 26,27,28,29 26,27,28,29,37

SW6 30,31,32,33 30,31,32

SW7 19,20,21,22 19,20,21

SW8 23,24,25 23,24

are scaled by a factor of four; whereas, the repair time is doubled from [59, 127].

Several test cases are conducted to validate the effectiveness of the proposed ap-

proach to provide defensive islanding for enhanced resilience. First, the proposed

algorithm is tested for a predefined failure scenario to ensure the robustness of the

obtained islands. In this case, we have used eight strategies for clustering the dis-

tribution system as shown in Table 3.7. Two criteria are used for comparison: the

minimal amount of load curtailment and the radiality constraints. A clustering strat-

egy resulting in small of amount of load curtailment and satisfied radiality constraints

is preferred. In the second case, the robustness of the proposed algorithm against

diverse cyber-related failure scenarios is validated. Finally, the third case provides
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a deeper analysis on the trade-off between sizes of clusters and efficiency of the pro-

posed algorithm.

Table 3.7: Clustering Strategies

Index Weight matrix

S1 Admittance

S2 Power flow

S3 Optimal power flow

S4 Resilience-based

S5 Integrated power flow and component availability

S6 Integrated optimal power flow and component availability

S7 Integrated power flow and component unavailability

S8 Integrated optimal power flow and component unavailability

3.3.4.1 Algorithm Validation

In this case, a predefined cyber-induced failure is simulated. The impact of the cy-

ber failure is propagated to the physical system using the coupling matrices described

in section 3.3.1. The communication router SW7 is assumed to be compromised re-

sulting in a severe potential physical failure of 3 line segments and 4 load nodes. The

probability of failure of physical components is computed based on the conditional

probability failure of a connected cyber link, as explained in section 3.3.3.1. For valid

comparison, all clustering strategies are set to split the distribution feeder into four

independent islands.

Fig. 3.16 shows the clusters obtained for each strategy represented by different

colors. The number of nodes in each cluster varies from one strategy to another.

For instance, S2 and S5 have two islands each composed of a single node (7 and 19)

which undermines these strategies to provide less resilient microgrids. In other words,

nodes 7 and 19 could have been connected to nearby nodes yielding enhanced resilient

topology. Strategies S7 and S8 provide very similar clustering solutions; however, the
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difference relies in the capability of S8 to capture the whole generation benefits of

the existing DERs. In S4, the clusters are formed based on the resilience level of

system components. This results in islands that do not follow radiality constraints

and ignore system operating conditions such as cluster C1 including node 7 and 20.

Figure 3.16: Clusters using different strategies

Table 3.8 shows the amount of load curtailment (LC) and degree of radiality

(R) of all clusters obtained by different strategies. The R value reflects the number

of clusters satisfying radiality constraints within a specific clustering strategy. It is

obvious that the proposed strategies (S7 and S8) result in least amount of load cur-

tailment relative to other clustering strategies with only 13% of the system nominal

load to be curtailed. In general, using steady-state value of admittance matrix (S1)

and power flow solution (S2) is not sufficient for proper clustering, specifically during

severe conditions. Also, using resilience-based clustering (S4) solely results in much

higher curtailment as it ignores the loadability behavior of distribution line segments.

Though S3 provides acceptable results compared to S5 and S6, the obtained solution

relies on the performance of the system prior to a cyber-induced failure ignoring the
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fragility behavior of each system component. On the other hand, the effectiveness of

the proposed algorithm to provide clusters satisfying radiality constraints has been

confirmed through values of R. Both S7 and S8 show that all obtained clusters satisfy

the radial topology configuration of a distribution system. Also, it is noticeable that

S2, S4, and S5 do not usually maintain radial topology in the formed islands.

Table 3.8: Load Curtailment and Radiality Rank of Clustering Strategies

S1 S2 S3 S4 S5 S6 S7 S8

LC (MW) 1.635 1.545 1.125 1.755 1.545 1.125 0.910 0.470

LC (%) 44 42 30 47 42 30 25 13

R 3 2 3 2 2 3 4 4

3.3.4.2 Assessing Stochastic Behavior of Cyber-induced Failures

The solution of the proposed strategy will vary based on the cyber-induced failure

scenario. In this case, the efficiency of the proposed clustering approach is validated

under different cyber failure scenarios. A total of 10,000 cyber failure scenarios, with

diverse impact level, are randomly generated and simulated. The amount of load

curtailment and radiality rank are computed for each failure scenario. All clustering

strategies are required to split the system into four independent islands.

Table 3.9 summarizes the main statistical parameters including the average, the

standard deviation, the minimum value, and the maximum value of the load curtail-

ment and radiality rank for all the clustering strategies. Strategies S1, S2, and S3

provide the same amount of load curtailment regardless the simulated cyber failure

scenario because these strategies rely mainly on the steady-state constant system

characteristics and power flow in the system. Based on the load curtailment, S8

shows the least average load curtailments which confirms its effectiveness to cluster

the distribution system into islands considering both the loadability of distribution

lines and the vulnerability of system components. Also, S6 and S7 provide accept-



63

able values compared to basic clustering strategies (S1, S2, and S3). As previously

noted, the resilience-based clustering does not usually provide the best solution given

diverse system operational conditions. The wide spectrum of load curtailment value

realized in S7 and S8 ensures the capability of the proposed algorithm to capture the

stochastic behavior of cyber failures. From the radiality prospective, it is noticeable

that the average value of radiality rank of S7 and S8 exceeds three implying the ten-

dency of the proposed strategies to maintain radiality constraints. Though S1, S2,

and S3 provide more robust results, one out the four clusters will always fail to satisfy

the radiality constraints. In S8, 32% of the simulated cases satisfy the radiality con-

straints. In general, the proposed clustering strategies outperform other strategies

providing a clustering methodology that reduces the impact of cyber-induced failures

on the performance of the power system.

Table 3.9: Assessment of Clustering Strategies considering Cyber-failure Uncertain-
ties

S1 S2 S3 S4 S5 S6 S7 S8

LC(MW)

mean 1.635 1.545 1.125 1.468 1.492 1.106 1.025 0.863

st. dev. 0.0 0.0 0.0 0.246 0.180 0.166 0.377 0.398

min 1.635 1.545 1.125 0.175 0.210 0.060 0.0 0.0

max 1.635 1.545 1.125 1.935 1.935 1.935 2.195 2.015

R

mean 3.0 3.0 3.0 2.988 3.001 3.000 3.189 3.303

st. dev. 0.0 0.0 0.0 0.108 0.028 0.025 0.459 0.495

min 3 3 3 2 3 2 2 2

max 3 3 3 3 3 4 4 4

3.3.4.3 Trade-off between Efficiency and Number of Clusters

In this case, the effectiveness of the proposed clustering strategies to capture

the impact of cyber-induced failures to create defensive islands is assessed based

on the number of clusters. The same previously generated 10,000 cyber-induced
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failure scenarios are simulated for different number of clusters. The average load

curtailment and the radiality rank are recorded for each specific number of clusters.

Three strategies are selected for comparison including S3, S7, and S8.

Fig. 3.17 shows the average value of both the load curtailment and the radiality

rank. It is noticeable that the amount of load curtailment increases with the increase

in the number of clusters. This reveals the importance of installing more DERs

for better performance; however, the scope of this work is comparing the clustering

strategies based on predefined energy resources. Strategy S8 outperforms S3 when

having up to five clusters resulting in a better clustering strategy that encounters the

cyber-induced failure. In case of six clusters formation, both S3 and S8 have very

similar values of average load curtailment. Also, the performance of S7 decreases as

the number of cluster increases which can be inferred from the increase in amount of

load curtailment relative to other strategies. Using the radiality rank criterion, the

performance of the selected strategies is almost the same for small number of clusters.

The higher the radiality rank is, the better the clustering strategy will be for a fixed

number of clusters. Strategy S8 outperforms S3 and S7 for the studied number of

clusters. The performance of the proposed strategies is significantly impacted by

the number DERs, the size of the system being analyzed, and the system physical

characteristics. In general, the proposed strategies can be used to create defensive

islands that capture the impact of cyber-induced failures into power systems.

3.4 Conclusion

In this chapter, two proactive strategies have been proposed; proactive generation

redispatch strategy and resilience-based defensive islanding strategy. The generation

redispatch strategy was implemented on a transmission system under both hurricane

and wildfire events. The proposed method minimizes the amount of load curtailment
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Figure 3.17: Efficiency vs. cluster sizes

as well as system operational costs. The optimization problem was formulated a

MDP including generation and transmission constraints. The results showed that

generation redispatch strategy enhances the operational resilience of power grids. It

also showed the effectiveness of the algorithm to reduce the overall costs via proac-

tive redispatch. The proposed method has shown the capability to consider current

and potential failures of system components regardless the event type. The proposed

approach provides a sequential decision process for system operators to improve re-

silience of power grids given specific available assets. On the other hand, the defensive

islanding strategy was implemented and tested on a distribution CPPS to enhance

the resilience against cyber-induced failures. The proposed framework reduces the

amount of load curtailment by splitting the system into smaller microgrid taking into

account the system operational conditions and the components vulnerabilities. The

results showed the effectiveness of the proposed clustering strategies to provide a list

of islands considering operating conditions of the system, the available generation

resources, and the probability of failure of system components. Also, the robust-

ness of the proposed framework against diverse cyber-induced failures was validated.
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The proposed algorithm provides the system operators with a proactive resilience

enhancement strategy to create defensive islands prior to an extreme or disruptive

event.
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Chapter 4

Corrective Strategies

Corrective resilience enhancement strategies aim to control power system compo-

nents during an extreme event for improved performance. The negative impacts of

extreme weather events can be mitigated, reduced, or even eliminated through cor-

rective strategies. However, the high stochastic nature of resilience-based problem

induces further complexities in modeling and providing feasible solutions. Also, it is

required to provide fast and efficient decisions during a severe event for noticeable

improvements. In this chapter, three corrective strategies are developed including

network reconfiguration, sizing and locating of DERs, and dispatching shunt re-

actors. This chapter leverages reinforcement learning approaches to formulate the

control-based decision process of each strategy. In the network reconfiguration, it

is required to determine the set of tie-switches or lines to be reconnected based on

occurring severe failure scenario. The second strategy focuses on determining the

most convenient locations and sizes of DERs in an islanded distribution feeder upon

multiple line failures. Finally, the shunt dispatching strategy provides a methodology

to improve the voltage profile of transmission systems under severe events. The pro-

posed strategies are tested and validated on standard distribution and transmission

systems.
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4.1 Introduction

Numerous corrective power system resilience enhancement methods have been

proposed from different standpoints.Fast and efficient restoration of lost loads due to

extreme events is one of the most important attributes to achieve resilient operation

of power systems and reduce their economic and community impact [52, 53]. This

can be achieved via microgrid formation [129], network reconfiguration [130], and

utilization of DERs [105]. Also, existing resilience enhancement approaches give less

attention to dispatch shunts to maintain voltage magnitudes within the standard

limits during extreme weather events [131].

Resilience Enhancement through Network Reconfiguration. Resilience

enhancement strategies have been proposed to provide emergency responses through

switching topology [132], using energy storage devices [133], re-dispatching loads

[134], and forming networked microgrid [135]. A spectral clustering algorithm has

been employed to determine optimal network partitions under tight potential N − k

(i.e., k > 1) contingencies [103]. A risk-based defensive islanding approach has been

studied in [78] to reduce the impact of cascading failures on transmission systems due

to extreme events. Resilience-based microgrid formation frameworks have been pro-

posed to enhance the restoration of critical loads in both radial and meshed networks

[106]. An evolutionary algorithm approach has been proposed in [136] to restore lost

loads via dispatching tie-switches in distribution feeders. In [137], a heuristic ap-

proach integrated with a fuzzy multi-objective function has been proposed to deter-

mine the sequence of line energizing for enhanced restoration. A mixed-integer linear

programming optimization-based formulation has been used to retain critical loads

through microgrid formation after an extreme event [138]. Most of these studies have

leveraged analytical and heuristic-based techniques for enhanced resilience. Despite
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the significant contributions of these methods, their efficacy depends mainly on the

accuracy of the system models and degree of approximations.

Resilience Enhancement through Leveraging DERs. In [62], a mixed-

integer linear programming (MILP)-based method has been proposed to enhance

power system resilience through re-dispatching generators, re-configuring network

topology, and shedding loads. Moreover, several preventive action-based strategies

such as a multi-sensor prediction-based wide-area monitoring and control [139], a

linear-programming-based optimal siting and sizing of energy storage devices [66],

a Monte-Carlo simulation (MC)-based proactive unit commitment framework [140],

and an MC-based crew preposition and network reconfiguration technique [141] have

been proposed to enhance power system resilience. In [142], we have developed

a proactive generation redispatch strategy to improve the resilience of distribution

power systems against hurricanes. Also, a sequential proactive strategy has been

studied in [32] for enhanced resilience. In [53], a proactive microgrid management

strategy to control existing DGs has been provided. Additionally, an MILP-based

generation re-dispatch strategy has been proposed in [67] to enhance power system

resilience during ice storms. These methods rely mainly on analytical and optimiza-

tion techniques, which impose scalability challenges due to the increased modeling

and computational complexities. Also, the capabilities of RL-based approaches to

overcome the aforementioned constraints are still under investigation.

Resilience Enhancement through Dispatching Reactive Shunt Compen-

sators. An algorithm for enhancing the resilience of a multi-microgrid system via

dispatching of unused capacitor banks has been proposed in [143]. A model free

Q-learning-based voltage control algorithm has been introduced in [144] to provide

optimal control settings for the constrained load flow problem. In [145], a Q-learning-

based distributed voltage control method has been proposed to optimally dispatch
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reactive power. A two-time scale voltage control algorithm that uses deep Q-network

to determine optimal capacitor configuration in slow time scale has been proposed

in [146]. In [147], optimal tap setting policy for voltage regulation transformers has

been determined using a DRL algorithm. These methods are effective to provide

control actions without accurate system knowledge to maintain voltage constraints

under N − 1 contingency. Also, most of these RL models are trained to provide a

single type of corrective control action.

Resilience Enhancement Leveraging RL-based Techniques. Reinforce-

ment learning approaches have been used to provide a fast-acting control algorithm

for high-dimension stochastic optimization problems [148]. Several deep reinforce-

ment learning methods have been proposed to improve resilience of electric power

systems [149]. A soft actor-critic algorithm could potentially improve voltage stabil-

ity of transmission systems during a hurricane based on dispatching shunt resources

[150]. In [151], a DRL-based protection scheme has been used to improve the oper-

ational efficiency of microgrids integrated with market participation constraints. An

optimal rescheduling strategy has been used to train RL networks for improved re-

silience during hurricanes [152]. RL-based optimal control algorithms have been used

to improve the operational performance of microgrids after a disaster [153]. Authors

of [154] have developed a DRL method that provides real-time operation decisions

to optimally dispatch DERs installed at specific locations for restoring power to cus-

tomers after sudden outages. RL-based approaches provide a pathway to overcome

some of the challenges of analytical and population-based search methods. In ad-

dition, learning-driven models have the capability to apply lessons from experiences

during online operations [155]. Also, RL-based methods can be easily integrated into

online decision making process once fully trained and implemented.

The main contributions of this chapter are summarized as follows:
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1. Develop and validate the efficiency of distribution network reconfiguration (DNR)

strategy for enhanced operational resilience.

2. Develop a multi-agent DRL algorithm to determine the optimal locations and

sizes of DERs to improve distribution system resilience during an extreme event.

3. Develop a mitigation strategy to dispatch reactive power reactors for enhanced

voltage profile of transmission systems due to extreme weather event.

4.2 Reinforcement Learning Approaches

RL-based approaches rely mainly on estimating optimal value functions and dis-

covering the optimal policy for a given problem environment. Various methods have

been used to estimate the value functions including dynamic programming and back-

ward induction methods [117]. RL involves a repetitive sequential MDP from a

sample of states, actions, and rewards. The Markov game comprises an uncertain

environment where an agent makes an action to maximize cumulative reward. The

state representing a specific condition of the environment changes based on the ex-

ecuted action. In some problems where the action space is significantly large or the

problem environment is highly non-linear, temporal difference approaches have been

used to overcome these challenges [156] including Q-learning, deep Q-networks, and

actor-critic algorithms.

In Actor-Critic algorithms (ACAs), a single or multi-agent framework is formu-

lated as a Markov game where it is required to maximize the discounted returns of

the agents. The ACA is composed of an actor network and a critic network. The

former is trained to determine the proper actions whereas the latter is trained to

determine the optimal policy upon which the actor makes proper actions. A policy

is defined to be the mapping process from the environment state to the action space.
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The goal of each agent is to find a policy that maximizes its total rewards.

4.2.1 Single Agent Actor-Critic Algorithm

A single agent has one actor network to provide appropriate actions with a policy

that can be expressed as follows.

αt ∼ πξ(αt|Ot), (4.1)

where Ot is the state vector at time t, αt is the provided action by the actor-network,

ξ is the parameter for policy, and πξ(αt|Ot) is an unbounded Gaussian policy. In case

of continuous action space, a squashing function needs to be applied on πξ(αt|Ot) to

bound actions of the agent to a finite value.

In each iteration, the policy is updated to maximize the expected return of an

agent in the fundamental ACA model. A value function, Vψ(Ot), is used to measure

the value for a policy and expressed as follows.

Vψ(Ot) =E
αt∼πξ

[Qθ(st, αt)] , (4.2)

where ψ represents parameter of the value function network, θ represents parameter

for the Q value function, αt is the action provided by an actor network, st is a set

for system states, and Qθ(st, αt) is a critic policy evaluation function, which can be

calculated as follows.

Qθ(st, αt) = r(st, αt) + βEst+1∼p[Vψ(ot+1)], (4.3)

with β ∈ [0, 1] a discount factor and ψ an average of the weights for the value network.

The expression provided in (4.4) is used to minimize the residual squared error

of a soft Bellman function to train value functions of the actor network.

Jv(ψ) = Est
[
1

2
(Vψ(Ot)−Qθ(st, αt))

2

]
. (4.4)

The gradient of (4.4) to sample actions from the current policy is determined as
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follows.

∇̂ψJv(ψ) = ∇ψVψ(Ot) [Vψ(Ot)−Qθ(st, αt)] . (4.5)

To update the Q-parameters of the basic actor, the following expression can be

used.

JQθ
(θ) = E(st,αt)

[
1

2

(
Qθ(st, αt)− Q̂(st, αt)

)2
]
. (4.6)

The value of Q-function (4.6) is optimized as follows:

∇̂θJQθ
(θ) = ∇θQθ(st, αt)

[
Qθ(st, αt)− Q̂(st, αt)

]
. (4.7)

The policy needs to be updated in each iteration to maximize the rewards.

4.2.2 Multi-Agent Soft Actor-Critic Algorithm

Each agent in a multi-agent soft actor critic (MASAC) framework has one actor

network to provide actions, which is developed using a squashed Gaussian distribution

function [150]. The policy of the actor network to provide actions is expressed as

follows:

αcit ∼ πξci(α
ci
t |Oi

t), (4.8)

where i represents the ith agent of the multi-agent framework, Oi
t is the observation

vector of the ith agent at time t, αcit is the provided action by the actor-network

of the ith agent, ξci is the parameter for policy of the ith agent, and πξci(α
ci
t |oit) is

an unbounded Gaussian policy of the ith agent. A squashing function needs to be

applied on πξci(α
ci
t |oit) to bound actions of the ith agent to a finite value.

In the fundamental MASAC, the policy is updated in each iteration to maximize

the expected return and entropy (randomness measure of the policy). Following

the same convention, policies of the proposed algorithm are also updated in each

iteration. A value function, V ci
ψi(Oi

t), which is used to measure the soft value for
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policy of the ith agent can be expressed as follows:

V ci
ψi(Oi

t) = E
αci
t ∼πξci

[
Qθ(st, α

ci
t , α

−ci
t )−αci log

(
πξci(α

ci
t |Oi

t)
)]

, (4.9)

where ψi represents parameter of the value function network for the ith agent, θ

represents parameter for the Q value function, Qθ(st, α
ci
t , α

−ci
t ) is a critic or centralized

policy evaluation function for all the actors, α−ci
t is the action provided by actors of

agents except agent i, αci represents a parameter to determine the relative importance

between reward and entropy of the ith agent, and st is a set for system states.

The expression provided in (4.10) is used to minimize the residual squared error

of a soft Bellman function to train value functions of the actors.

J civ (ψ
i) = Escit ∼D

[
1

2
V ci
ψi(Oi

t)−
[
Qθ(st, α

ci
t , α

−ci
t ) −αci log

(
πξci(α

ci
t |Oi

t)
)]2]

, (4.10)

where D is a replay buffer to store experiences of the actors.

The gradient of (4.10) using an unbiased estimator is determined as follows to

sample actions from the current policy:

∇̂ψiJ civ (ψ
i) = ∇ψiV ci

ψi(Oi
t)
(
V ci
ψi(Oi

t)−Qθ(st, α
ci
t , α

−ci
t ) +αci log

(
πξci(α

ci
t |Oi

t)
))

.

(4.11)

In this work, we have modified the expression for training the soft-Q parameters

of the basic actor given in [157], which can be expressed as follows:

J ciQθ
(θi) = E(scit ,α

ci
t )∼D

[
1

2

(
Qθ(st, α

ci
t , α

−ci
t ) −Q̂(st, αcit , α−ci

t )
)2
]
, (4.12)

where

Q̂(st, α
ci
t , α

−ci
t ) = r(st, α

ci
t , α

−ci
t ) + βEst+1∼p[V

ci
ψ̄i(o

i
t+1)] (4.13)

with β ∈ [0, 1] a discount factor and ψ̄i an average of the weights for the value

network of ith agent.
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The value of Q-function (4.12) is optimized as follows:

∇̂θiJ
ci
Qθ
(θi) = ∇θiQθ(st, α

ci
t , α

−ci
t )

(
Qθ(st, α

ci
t , α

−ci
t )− r(st, αcit , α−ci

t )− βV ci
ψ̄i(o

i
t+1)

)2

.

(4.14)

The policy needs to be updated in each iteration to maximize the rewards for

improving the policy. The authors of [157] have directed the policy update toward

exponential of new soft Q-function as they intended to track the policy update. Also,

the potential policies are restricted to a parameterized distribution (i.e., Gaussian)

family. Following the same convention, we have updated the expression for policy

update of basic SAC algorithm for the proposed algorithm as follows:

πnewξci = argminDKL

(
πξci(.|Oi

t)
∣∣∣∣∣∣Qθ(st, .)

Zθ(st)

)
, (4.15)

where Zθ(st) is an intractable partition function that does not contribute to the

gradient with respect to the new policy.

The policy πξci(.|Oi
t) is parameterized for action setting using the policy network of

agent i with parameter ξci. Finally, the expected KL-divergence of (4.15) is multiplied

by αci and then minimized, ignoring Zθ(st) to train the policy parameters of agent i

as follows:

J ciπξci (ξ
ci) = Escit ∼D

[
Eαci

t ∼πξci
[
αci log

(
πξci(α

ci
t |Oi

t)
)
−Qθ(st, α

ci
t , α

−ci
t )

]]
. (4.16)

Although several options are available to minimize the objective function J ciπξci (ξ
ci),

the authors of [158] have applied the reparameterization trick to achieve target den-

sity (the Q-function). The modified expression to reparameterize the policy of agent

i is as follows:

αcit = fξci(ϵ
ci
t ; o

i
t), (4.17)

where ϵcit is a noise vector that uses a spherical Gaussian distribution.
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Thus, the new policy objective for agent i is as follows:

J ciπξci (ξ
ci) = Escit ∼D, ϵ

ci
t ∼ N

[
αci log

(
πξci(fξci(ϵ

ci
t ; o

i
t)|Oi

t)
)

−Qθ(st, fξci(ϵ
ci
t ; o

i
t), fϕ−ci(ϵ−cit ; s−it ))

]
, (4.18)

where f−ci
ϕ (ϵ−cit ; s−it ) is the parameterized policies of other actors.

In [159], the authors have provided a detailed formulation of an alternative ap-

proach to obtain the temperature parameter learning objective function, which is

not strictly relevant to this work. However, we modify their temperature objective

function for the actors of each agent of the proposed framework as follows:

J ci(αci) = Eαci
t
∼ πξci

[
−αci

(
log

(
πξci(α

ci
t |Oi

t

)
+ H̄

)]
, (4.19)

where H̄ is an equivalent constant vector of the hyper-parameter to represent target

entropy. Equation (4.19) cannot be minimized directly due to the expectation op-

erator. Therefore, it is minimized using a MC estimator after sampling experiences

from a replay buffer based on the procedure from [159]. In the proposed multi-agent

algorithm, two soft Q-networks for all agents are trained and then the minimum value

among the outputs of the two Q-networks is used in the objective function of (4.19)

to combat state-value overestimation [160].

4.3 Distribution Network Reconfiguration

This section proposes a RL-based approach to control tie-switches of distribution

circuits to enhance the operational resilience of power systems due to an extreme

event. The proposed algorithm is developed leveraging distribution network reconfig-

uration strategy to reduce/eliminate the amount of load curtailment. A single-agent

ACA is used to train a RL-based model under multiple line outages in a distribution

system. An MDP is used to formulate the sequential iterative learning process for

the agent. An action implies connecting tie-switches to modify the system topology,
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while a system state provides information about the system operating conditions and

availability of system components. A reward function is used to assess the goodness

of the executed action. A proper action should satisfy the traverse constraint and

radiality constraint of the distribution system. The sequential MDP is repeated for

numerous failure scenarios till the agent is fully-trained. The trained ACA provides

a set of tie-switches to be reconnected for enhanced resilient operation after an ex-

treme event. The proposed algorithm provides a corrective and restorative resilience

enhancement strategy that can be adopted for real-time applications. The ACA is

tested on the 33-node distribution feeder for validation.

A distribution power system can be represented as an undirected graph GP =

(NP , EP ), where NP is a set of vertices corresponding to buses or nodes in the power

system and EP is a set of edges referring to distribution line segments, transformers,

sectionalizing switches, and tie-switches [19]. Changing the status of sectionalizing

switches and tie-switches provides different topologies of a distribution feeder. For

enhanced resilience, minimal amount of load curtailment should be achieved. Also,

node traversing constraint and radiality constraint should be fulfilled for feasible

operation of distribution system.

• Traversing Constraint: In the absence of DERs, only the main substation can

supply energy to load nodes. There should be at least one path from the source

node to each load node. In other words, all system nodes should be connected

together without the existence of islanded nodes.

• Radiality Constraint: Radiality requirements should be satisfied in distribu-

tion systems to align with the existing protection coordination schemes and

voltage regulation fundamentals. A node-branch incidence matrix A can be

constructed using (4.20) for a distribution network, such that A ∈ Rn×e, where

n = |Nk| denotes the number of nodes and e = |Ek| denotes the number of
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edges. Radiality constraint is satisfied if matrix A is a full rank matrix.

ai,j =


+1, if branch j starts at node i

−1, if branch j ends at node i

0, otherwise

(4.20)

4.3.1 Problem Environment

This section formulates the DNR problem as a MDP representing the ACA ap-

proach. The MDP is a sequential process where a reward value is calculated based on

a specific action to change the problem environment from one state to another. The

better the action, the higher the reward. The states, the actions, and the rewards

are formulated as follows.

4.3.1.1 States

The state set describes the system conditions and the required information to

fully observe the system characteristics. In this study, a vector of on/off status of

network branches including both distribution lines and tie-switches is taken as the

state. For a system with Nl distribution lines and Ns tie-switches, the state of length

(Nl+Ns) is formulated as follows.

si =


1, if line is connected

0, if line is not connected

,∀i ∈ Nl +Ns (4.21)

4.3.1.2 Action

In the proposed problem, a discrete action representing changing the status of a

specific tie-switch is considered as an action. A vector of on/off status of network
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tie-switches is fed into the problem environment. The action vector is formulated as

follows.

aj =


1, if tie-switch is connected

0, if tie-switch is not connected

,∀j ∈ Ns (4.22)

4.3.1.3 Reward

A proper reward value, rt, should be defined to assess the effectiveness of the

actions. An agent is encouraged to determine the best set of tie-switches to be

turned on for a specific failure scenario. A discrete reward function is formulated

where a value of −1 is given for each wrong action and a value of 10 when reaching

a feasible solution. The total reward at time step t is computed as follows.

Rt =


10, if all constraints are satisfied

−1, if any constraint is violated

(4.23)

4.3.2 Training and Execution Algorithms

The proposed ACA agent is trained to determine the set of tie-switches to be

connected for improved resilience. The agent is subjected to different failure scenarios

from a list of potential failures. For each failure scenario, the agent takes an action

and a reward is calculated. The process is repeated till the ACA converges. The

training and testing procedure for the ACA are summarized in Algorithm 2 and

Algorithm 3 as follows.

4.3.3 Implementation and Results

The proposed approach is applied on the 33-node distribution feeder for valida-

tion. The proposed ACA model is formulated to control tie-switches of the distribu-
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Algorithm 2: Training of the ACA Framework

1: Define hyper-parameters of ACA
2: for episode = 1 to Mtrain do
3: Create failure scenario
4: Reset the environment to default settings
5: while Constraints not fulfilled and step < N do
6: Generate an action (set of connected tie-switches) using the actor network
7: Evaluate the value of the current state using the critic network
8: Execute the action on the environment
9: Compute the reward value
10: Observe the new state
11: Check terminal condition, reset the environment if terminal reached
12: Update the weights of the actor network
13: Update the weights of the critic network
14: end while
15: end for

Algorithm 3: Testing of the ACA Framework

1: for episode = 1 to Mtest do
2: Create failure scenario
3: Reset the environment to default settings
4: Generate an action using the actor network
5: Execute the action on the environment
6: Count success if terminal condition is fulfilled
7: end for

tion feeder for enhanced resilience leveraging DNR approach.

4.3.3.1 System under Study

The 33-node distribution test system is a radial distribution system with 33 nodes,

32 branches, and 5 tie-lines (37 branches) with total system load of 3.72 MW [161].

The proposed algorithm is implemented on the original system to validate the effec-

tiveness of the proposed algorithm to adapt to existing system characteristics. A list

of vulnerable lines and tie-switches is summarized in Table 4.1 and highlighted in

Fig. 4.1.

The proposed ACA model is trained for three cases based on the number of failed
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Table 4.1: List of Vulnerable Lines and Tie-switches

Tie-Switch Connecting nodes Vulnerable lines Connecting nodes

SW1 21-8 L1 3-23

SW2 9-15 L2 5-6

SW3 12-22 L3 21-22

SW4 18-33 L4 10-11

SW5 25-29 L5 29-30
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Figure 4.1: Schematic diagram of the 33-node distribution feeder with list of potential
impact locations

lines, as follows: (a) Case C1: single line failure, (b) Case C2: two line failures,

and (c) Case C3: randomly selected failures between one and four. The training is

performed for 30,000 episodes with a maximum of ten iterations per episode. Also, a

stopping criterion is adopted to terminate the training process if the average reward

value exceeds a specific threshold for 100 consecutive episodes. This is due to the

high step impact from one episode to another causing potential instability in the

ACA networks [150]. The hyper-parameter settings of the actor and critic networks

of the proposed framework are shown in Table 4.2.

4.3.3.2 Training ACA-DNR Model

In each training episode, the system is initialized with a random state representing

the status of all the system lines. A set of failed lines is selected randomly from
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Table 4.2: Hyper-parameter Settings of the ACA-DNR Model

Hyper-parameters Values

Number of hidden layers 3

No. of neurons in hidden layers 100, 100, 100

Learning rate 10−3

Reward discount factor 0.99

Activation function of output layer Sigmoid

Activation function of hidden layers ReLU

Optimizer Adam

the set of vulnerable lines. An action is generated using the actor network and a

corresponding value is computed using the critic network for the given system state.

A reward value is calculated based on the obtained new system state. The process

is repeated for all aforementioned cases. For evaluation, the running mean of the

episodic rewards and the number of iterations per episode are calculated using a

window of 100 episodes.

Fig. 4.2 and Fig. 4.3 show the running mean and number of iterations per episode

for cases C1 and C2. The average reward value increases as the number of training

episodes increases, as anticipated. The average reward value reaches the saturation

level in less than 1,500 episodes in C1 yielding the effectiveness of the proposed

algorithm to turn on a proper tie-switch to maintain system constraints. In C2, the

average reward reaches saturation around 5,000 episodes. This is due to the existence

of more than one possible action for a specific failure scenario. For instance, failure

of L4 (nodes 10-11) and L5 (nodes 29-30) can be mitigated by turning on either SW4

and SW2 (nodes 18-33 and 9-15) or SW4 and SW3 (nodes 18-33 and 12-22). On the

other hand, the number of iterations per episode decreases as the ACA networks are

trained. As the average value of iterations per episode reaches one, the trained ACA

is capable of determining the set of tie-switches that maintain radiality constraints
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and eliminate the amount of load curtailments within one decision iteration.

Figure 4.2: Reward and iterations per episode for C1

Figure 4.3: Reward and iterations per episode for C2

Fig. 4.4 shows the running mean and number of iterations per episode for cases

C3. The average reward converges in around 12,000 episodes. The proposed ACA

has the capability to learn and make proper decisions as more training episodes are

executed. In C3, the average reward converges in a much slower rate due to the high

variability in the environment behavior. In other words, for a specific failure scenario,

more than one set of tie-switches is considered a feasible solution. Also, the random
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failure scenario generation creates further challenges to train the ACA networks.

Figure 4.4: Reward and iterations per episode for C3

4.3.3.3 Testing ACA-DNR Model

To validate the efficiency of the trained models, a total of 1000 failure scenarios

are tested for each case. For each episode, the model is required to provide a feasible

set of tie-switches to reconfigure the distribution feeder for enhanced resilience. A

successful decision is counted if the provided decision is a proper solution. The

success rate is shown for all cases as summarized in Table 4.3.

Table 4.3: Efficiency Percentage of Trained ACA models

Case C1 C2 C3

Success rate 99.7 % 96 % 93.5 %

The trained ACA models are capable of providing a proper reconfiguration of

the 33-node feeder with relatively high success rate. Though the efficiency rate

can be improved through various modifications of the ACA networks and hyper-

parameters tuning procedure, this study focuses on the capability of the proposed

ACA to reconfigure a given distribution system under a specific failure scenario. It is
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worth noting that all trained ACA models are able to achieve 100% accuracy when

two iterations of decisions are allowed. In other words, if the maximum number of

iterations per episode is two, a 100% success rate is achieved.

4.3.3.4 Validation of ACA-DNR Model

In this case, a failure scenario is provided to visualize the impact on network

reconfiguration using the ACA model. Lines L2 and L4 are selected to fail resulting

in two islands as shown in Fig. 4.5.
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Figure 4.5: IEEE 33-node topology due to failure of L3 and L4

The trained ACA provides two possible network reconfigurations, as shown in

Fig. 4.6 and Fig. 4.7, respectively. It is worth noting that both solutions satisfy the

traversing constraint—no islands, and radiality constraint—no circulating loops. In

Fig. 4.6, both SW3 and SW4 are connected, whereas switches SW3 and SW5 are

connected in Fig. 4.7. Though other possible feasible reconfigurations might exist,

the ACA selects the decision based on their corresponding probability of success. In

other words, connecting SW1 and SW3 will result in feasible reconfiguration solutions.

However, this decision is associated with less probability value within the trained

ACA model.
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Figure 4.6: First possible network reconfiguration due to failure of L3 and L4
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Figure 4.7: Second possible network reconfiguration due to failure of L3 and L4

4.4 Allocation and Sizing of Distributed Energy

Resources

This section proposes RL-based approach to allocate DGs to enhance the opera-

tional resilience of distribution power systems. The proposed algorithm is developed

based on dispatching movable DGs to reduce the amount of load curtailments. It also

considers proper sizing of DGs to avoid additional operational costs. An MASAC

model is formulated to control generation dispatch under single or multiple line out-

age conditions. In the proposed method, the power grid is split into various regions

where each region is assigned to an agent. An MDP is formulated to train the

MASAC model. A reward scheme is developed to learn the agent for better decision

making. The algorithm is trained using a hurricane fragility model of transmission
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lines. The trained algorithm provides a set of corrective control actions to reduce

the amount of load curtailments and to maintain sizes of DGs within a permissible

range. The proposed algorithm is tested on the IEEE 33-node distribution feeder for

validation.

4.4.1 Problem Environment

An MDP is used to formulate the problem where a system state represents specific

system conditions. A transition to another state is due to taking certain actions yield-

ing a reward that can be defined as a function of desired outcome. The components

of the formulated MDP are defined below.

4.4.1.1 State

The state set describes the system conditions and the required information to

fully observe the system characteristics. The state set is defined as:

st =
{
Gl
i, G

s
i , G

r
i , Ln, Cun, uj

}
,∀n ∈ ΩN , ∀i ∈ ΩG ∀j ∈ ΩB, (4.24)

where Gl
i is the DG location, Gs

i the DG size, Gr
i the DG generation reserve, Ln the

real power load, Cun the curtailed load, uj the line status, ΩN the set of system

nodes, ΩG the set of DGs, and ΩB the set of lines.

4.4.1.2 Action

In the proposed problem, a discrete and a continuous action needs to be taken by

each agent. The discrete action signifies the location of the DG whereas the contin-

uous action represents the size of the DG. For each agent, the action is represented

as follows:

αit =
{
Gl
i, G

s
i

}
, (4.25)
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where αit represents the action specifying the size and location of DG for the ith

agents and Gl
i and G

s
i are the location and size of the ith agent, respectively,

4.4.1.3 Reward

A proper reward value, rt, should be defined to assess the effectiveness of the

actions. Each agent is encouraged to reduce the amount of load curtailment and

to maintain enough generation reserve during contingencies. Generally, the reward

value increases as the amount of load curtailment decreases. Also, the reward value

increases as the amount of generation reserve exceeds a specific threshold. The reward

rt for taking a specific action is calculated as:

rt = −Ccu .
∑
n∈ΩN

Cun − Cr .
∑
i∈ΩG

Gr
i , (4.26)

where Ccu is the cost of load curtailments, Cun the load curtailment at bus n, ΩN

the set of all buses, and Cr the cost of additional generation reserve.

To obtain the amount of load curtailment, an AC optimal power flow (OPF) is

formulated and solved by setting the sizes and locations DGs equal to the action

taken by each agent. The amount of generation reserve is the difference between the

sizes of DGs as determined by the agents and the obtained sizes from solving the AC

OPF problem after including 25% generation reserve.

4.4.2 Training and Execution Algorithms

The power grid is divided into several regions based on the electrical distance

between components such that each region is controlled by one agent. Each agent is

responsible for determining the location and size of a DG unit to supply loads within
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its region. To train all agents, a replay buffer is used as follows:

D←
(
st, o

i
t, α

i
t, rt, st+1, o

i
t+1, α

i
t+1

)
. (4.27)

The training and testing steps for the multi-agent framework are summarized in

Algorithm 4 and Algorithm 5. For a generated failure scenario, each agent determines

location and size of DG. All DGs are integrated into the system topology and the

optimal power flow is solved. The amount of load curtailment and generation reserve

are computed for the reward function. If a terminal condition is not reached, new

actions are taken by each agents till maximum number of iterations is reached. The

process is repeated for diverse failure scenarios to trains the NN models.

Algorithm 4: Training of the Multi-agent Framework

1: for episode = 1 to M do
2: Create failure scenario from list of potential components
3: Reset the environment to default settings
4: Solve AC OPF to determine oti and st of each agent
5: while load curtailed, additional reserve and step < N do
6: Evaluate actions, αit for agent i
7: Execute actions αit using AC OPF environment (e.g., Pandapower)
8: Observe st+1, rt, and d to check terminal conditions.
9: Store (state, action, and reward) in Di

10: If st+1 is terminal, reset the environment
11: Update weights of the policies using (4.18)
12: Update the Q-function parameters of local and target networks of each

agent using (4.14)
13: Update temperature of actor-networks using (4.19)
14: Update target networks weights of each agent using

Q̄m ← τQm + (1− τ)Q̄,where, m ∈ {1, 2} and m≪ 1
15: end while
16: end for

4.4.3 Implementation and Results

The proposed approach is applied on the IEEE 33-bus distribution feeder. Several

failure scenarios are created using the hurricane fragility model provided in section
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Algorithm 5: Testing of the Multi-agent Framework

1: for episode = 1 to M do
2: Create failure scenario using fragility curve
3: Reset the environment to default settings
4: while load curtailed, additional reserve and step < N do
5: Evaluate actions, αit for each agent
6: Execute actions αit using power flow solver
7: Observe st+1, rt, and d to validate terminal conditions
8: end while
9: end for

2.3.1. The vulnerable lines are (1-2), (2-3), (5-6), (9-10), (15-16), (21-22), (26-27),

and (31-32), as shown in Fig. 4.1. To create a more severe condition, the connection

to the main feeder is disconnected with the result being the system acting as an

islanded microgrid. Also, the impact of load variation is considered by scaling the

system nominal load using load demand profile obtained from [118]. The power grid

is split into 6 regions. An agent is assigned to each region as shown in Table 4.4.

Each DG is assumed to have maximum capacity of 2 MW.

Table 4.4: Assigned Nodes to each agent

Agent Nodes

A1 1, 2, 3, 4, 5, 6

A2 7, 8, 9, 10, 11

A3 12, 13, 14, 15, 16

A4 17, 18, 19, 20, 21, 22

A5 23, 24, 25, 26, 27, 28

A6 29, 30, 31, 32, 33

The proposed algorithm is implemented for a fixed number of episodes (failure

scenarios). A total of 10, 000 episodes are used for training. The cumulative reward

for each episode is plotted as shown in Fig. 4.8. The learning rate of the agents

is improved as more scenarios are simulated. Also, the algorithm explores more

situations providing the agents with more experience. Reward values reaching zero
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Figure 4.8: Reward and iterations per episode performance

value after 5,000 episodes implies significant amount of load curtailments and learning

experience. As reward value approaches zero, the amount of load curtailment is

reduced and the capacity of DGs is within permissible limits. On the other hand,

the average number of iterations decreases dramatically after 5,000 episodes reaching

a value of five iterations per episodes. This shows the capability of the proposed

algorithm to determine an optimal solution in five trials.

To visualize the internal learning behavior, the actor and critic losses of all agents

are plotted, as shown in Fig. 4.9. It is worth noting that training episode differs from

running episodes since training the model is executed every ten episode after having

enough scenarios in the memory buffer. The actor losses of A3, A4, and A5 converge

faster than A1 and A2. All agents converge to almost zero losses after 14,000 training

episodes. On the other hand, the critic losses show much faster converging rate. All

agents provide pre-mature convergence after 5,000 training episodes. The sudden

improved learning behavior of A1 at 5,000 training episode and A2 at 8,000 training

episode instant is reflected in the critic losses curve.

The results showed that the proposed approach could provide proper decisions

to maintain reliable operation of an islanded distribution feeder during impacts of
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Figure 4.9: Actor and critic losses of each agent

hurricane. The trained algorithm is capable of determining feasible sizes and locations

of DGs for enhanced resilience. The proposed algorithm can be extended to include

other resources such as load shedding, network reconfiguration, and energy storage

for further improvements.

4.5 Dispatching Reactive Power Compensators

This section proposes a DRL-based approach to enhance power system resilience

against hurricanes. The proposed method is developed based on dispatching of reac-

tive power compensators, and thereby preserving bus voltages within the acceptable

limits in case of single or multiple line outages. A MASAC algorithm is used to

develop a DRL-based framework to control the reactive power output of shunt com-

pensators. In the proposed method, power systems are divided into regions, where

each region represents an agent. The algorithm is trained using historical data and

fragility curves of transmission lines against windstorms. The trained algorithm is

then used to provide corrective control actions when a power system is impacted by

a hurricane. The proposed algorithm is tested on the IEEE 30-bus system.
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4.5.1 Problem Environment

Various parameters can be used to represent system states [162, 163, 164]; how-

ever, for reactive power control studies, voltage magnitudes have been widely used.

In this study, voltage states are divided into three zones as shown in Table 4.5.

Table 4.5: Reward Value based on Voltage Levels

Operation Zone V t
k rtk

Normal [Vref , V
ub]

V ub − V t
k

V ub − Vref
Normal [V lb, Vref ]

V t
k − V lb

Vref − V lb

Violation [V ub, 1.25]
V t
k − Vref

Vref − 1.25

Violation [0.8, V lb]
Vref − V t

k

0.8− Vref
Diverge [0.0, 0.8] −5

Diverge [1.25,∞] −5

Each agent is assumed to observe and control voltage profile of the assigned re-

gion. Voltage magnitudes are readjusted based on the reactive power output of shunt

compensators as well as their locations. The two control variables are continuously

updated within their predefined range limits.

A proper reward value, Rt
k, should be defined to assess the effectiveness of the

actions. Each agent is encouraged to reduce the deviation of voltage magnitudes

during contingencies from a predefined reference value, Vref = 1.0 p.u. Rewards could

be classified based on voltage operating limits as described in Table 4.5. Generally,

the reward value increases as the voltage deviation decreases. If the value of all bus

voltages remain in normal or violation zones after dispatching shunts, then the total

reward is calculated using (4.28); otherwise, a relatively large penalty is assigned.
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rt =
Nb∑
k=1

Rt
k/N

b. (4.28)

4.5.2 Training and Execution Algorithms

The power grid is divided into several regions based on the electrical distance

between components such that each region is controlled by one agent. The number

of regions (agents) varies according to system sizes. The set of bus voltages in each

region during a contingency is regulated within the acceptable voltage limits. The

set of control actions for each agent, i, can be expressed as follows.

αcit =


πϕci(α

ci
t |oit), if | Λit |> 0

acit−1, if | Λit |= 0

(4.29)

where | Λit | represents the number of violated bus voltages in the ith region; and αcit

represents the action specifying the amount and locations of dispatch shunts for the

ith agent.

To train all agents, a replay buffer is used as follows.

D←
(
st, o

i
t, α

ci
t , α

−ci
t , rt, st+1, o

i
t+1, α

ci
t+1, α

−ci
t+1

)
. (4.30)

The training and testing steps for the multi-agent framework are summarized in

Algorithm 4 and Algorithm 5.

4.5.3 Implementation and Results

The proposed approach is applied on a modified IEEE 30-bus system [165]. A

windstorm is assumed to pass through the system as shown in Fig. 4.10. For assess-

ment purpose, we assume that five shunt compensators are located at buses 3, 7, 11,

18, and 27 of the IEEE-30 bus system. Each shunt has a reactive power capacity of

13 MVAr. To validate the accuracy and effectiveness of the proposed method, the
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Figure 4.10: IEEE 30-bus system under hurricane impact

following procedures are implemented sequentially. First, several failure scenarios are

created using windstorm modeling approach provided in section 2.3.1 for the defined

windstorm in Fig. 4.10. To capture wide range of failure scenarios, wind speed is

assumed to be within 15–51 m/s. For each failure scenario, power flow solution is

obtained. Algorithm 4 is used for training the multi-agent framework. In this case,

action represents size of shunt compensators.

4.5.3.1 Training

The proposed algorithm is implemented for a fixed number of episodes (failure

scenarios). The number of iterations and corresponding rewards for each episode are

plotted as shown in Fig. 4.11a and Fig. 4.11b, respectively. It is obvious that as the

algorithm explores more scenarios, the action time decreases and the reward value

increases. The learning rate of agents is enhanced based on previous experiences to
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(a) (b)

Figure 4.11: (a) Required number of iterations (b) Amount of rewards of training
episodes for the IEEE-30 bus system

avoid bad actions. From Fig. 4.11a and Fig. 4.11b, we can see that the ability of

agents to resolve the impacts of windstorms on voltage constraints advances very

quickly after 15000 episodes and noticeable increase happens in the reward values.

For further details, Fig. 4.12a shows the losses for the critics that fluctuate at the

beginning of episodes’ period, and finally converge to equilibrium solutions. For

accuracy validation, the trained agents are tested using a set of failure scenarios

included in testing data. Fig. 4.12b shows the number of iterations and reward

values, respectively, for testing data. The trained agents are able to determine proper

actions to control shunt compensators within one iteration with maximum reward

value for testing scenarios. Thus, the proposed multi-agent framework is trained to

provide actions to control shunts reactive power output.

4.5.3.2 Testing and Validation

Finally, the trained agent is used to check its effectiveness on improving power sys-

tem resilience against several windstorms. The performance of the agent for 9 unique
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(a) (b)

Figure 4.12: (a) Losses of critics during training and (b) Number of iterations and
amount of rewards for testing episodes

line failure scenarios among these windstorms is given in Table 4.6. It can be seen

that the trained agent can maintain voltage stability with and without the trained

agent violates for 2 and 6 scenarios, respectively. Thus, the proposed algorithm can

enhance the resilience of the power system through controlling shunt reactive power

output. Also, from Table 4.6, we can see that the trained agent cannot maintain the

voltage stability for scenarios 9 and 10. This happens due to the fact that the shunts

alone cannot maintain voltage magnitudes within limits.

4.6 Conclusion

In this chapter, three corrective strategies have been studied: distribution network

reconfiguration, allocation and sizing of DERs, and dispatching reactive power com-

pensators. RL approaches have been leveraged to train the proposed control-based

corrective enhancement models. Single-agent and multi-agent frameworks were de-

veloped based on the problem under study. In the DNR strategy, the results showed
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Table 4.6: Resilience Enhancement using the Trained Agents

S/L Tripped Voltage Violations (Bus No.)

No. Lines Without Agent With Agent

1 2–5 None None

2 1–3, 2–6, 2–5 5, 6, 7, 8 None

3 2–6, 2–5, 2–4 5, 6, 7, 8, 28 None

4 2–5, 2–4 7 None

5 2–5, 1–3, 2–4 7, 8 None

6 2–6, 2–5, 1–3, 2–4 None None

7 2–4, 3–4, 2–5, 1–3 None None

8 1–3, 2–5, 3–4, 2–6 All All

9 2–6, 3–4, 2–5, 2–4, 1–3 All All

the effectiveness of the proposed ACA to determine the set of tie-switches that allow

feasible network reconfiguration maintaining traverse and radiality constraints. The

trained ACA was tested against single, double, and multiple line failure scenarios

and showed accuracy of almost 97%. The proposed algorithm provides the system

operators with a fast-acting algorithm to restore curtailed loads in distribution net-

works during and after an extreme event. The results of the allocation and sizing

DERs strategy showed its capability to determine feasible sizes and locations of DGs

for enhanced resilience of an islanded distribution feeder during extreme events. The

proposed MASAC was trained against multiple line outages and showed accuracy of

almost 95%. Moreover, a MASAC framework has been studied to dispatch reactive

power compensators for enhanced voltage profile due to extreme events. The results

showed that the proposed approach could maintain voltage magnitudes at system

buses within the standard limits for most of the cases. Voltage magnitudes in some

cases could not be maintained within the limits, which is not surprising. Since shunts

alone cannot maintain voltage magnitudes within limits in some cases, the proposed

approach can be extended (or integrated with existing algorithms) to include other
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resources such as generation dispatch, load shedding, and reconfiguration. Also,

the scalability of the proposed methods to large-scale problems still require further

investigation.
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Chapter 5

Restorative Strategies

The main goal of restorative resilience enhancement strategies is to retain the

power service to curtailed loads in a fast and efficient means. This chapter provides

a preliminary analysis on improving the restoration behavior of distribution power

systems via DER dispatching. Though restoration of curtailed loads can take place

during or after an extreme event, this work aims to study restoration techniques re-

gardless their execution time. In this chapter, a multi-agent DRL framework is devel-

oped such that each agent controls a specific DG. Deep Deterministic Policy Gradient

(DDPG) approach is adopted to create and train the developed DRL model. The

proposed algorithm is tested on a modified version of the IEEE 33-node distribution

feeder with arbitrarily allocated DGs.

5.1 Introduction

Several studies have been conducted to develop fast and efficient resilience-based

restorative strategy. Authors of [154] have developed a RL-based controller to make

fast real-time decisions to dispatch DERs during a hurricane. The proposed frame-

work has shown promising results to outperform classic optimization approaches in

terms of operation costs and computation time. A multi-agent DRL approach has

been developed in [153] to optimize the control operation of a microgrid after a

disaster. In [166], a priority-weighted optimal load restoration technique has been
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developed to improve restoration resilience of distribution systems. A DRL-based

model-free method has been leveraged to improve load restoration with high pene-

tration of wind energy in [167]. Authors of [168] has provided a two-stage restoration

strategy of islanded microgrids using DRL methods. Also, a Q-learning algorithm

has been used to generate the sequential order of repairing damaged components

and update the network topology for enhanced restoration [169]. Since RL-based

methods can be easily integrated into online decision-making process, they can learn

from experiences during online operations [155]. The diverse learning methods have

pushed toward deeper investigation of DRL methods in controlling and dispatching

DERs for enhanced resilience after an extreme event.

The main contribution of this chapter is:

1. Develop and validate the efficiency of a multi-agent DRL framework to dispatch

DGs due to extreme failure scenario in distribution power systems.

5.2 Multi-Agent Deep Deterministic Policy Gra-

dient Approach

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is an

improved version of the DDPG algorithm for multi-task applications. In a multi-

agent system, the agents are not only affected by the environment, but also by other

agents where the critic is augmented with extra information about the policies of

other agents. The return of a single agent in the multi-agent system is related to

both its own actions and the actions of other agents. Markov games are often used to

describe multi-agent systems. In MADDPG, a Markov game for N agents is defined

by a set of states (S) describing the possible configurations of all agents, actions (a),

and observations (o) for each agent. The control law for each agent with a Gaussian
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noise N can be expressed as follows.

ati = πi
(
oti|θπi

)
+ N(0 , σti) , (5.1)

where θ
(π)
i is the weights of actor for agent i, and σti is a parameter for exploration.

The discount accumulate reward of the ith Actor is as follows.

Ji = Eµi Ri , Ri =

[ T∑
t=1

(γt−1 rti)

]
, (5.2)

where µi is the policy network of the ith Actor, γ is a discount factor, rti is the reward

obtained time step t in an episode, T is the time horizon. Updating actor using the

sampled policy gradient of the (5.2) is given by

∇θµi
Ji ≈

1

S

S∑
j=1

∇θµi
µi (o

j
i )∇ai Q

µ
i (x

j, aj) |aji=µi(oji ), (5.3)

where Q is the action-value function, xj is state, and S is the sample number of

a random mini-batch. oji and aji are the observation and action of the ith Actor,

∇i = 1, 2, . . . , N , respectively. A Critic’s primary task is to predict the discount

accumulate reward based on the current observations and actions of all Actors. The

i critic can be updated minimizing the following loss function

L(θQi ) =
1

S

∑
j

(yj −Qµ
i (x

j, aj))2, (5.4)

yj = rji + γ Qµ′

i (x
′j, a′j)|a′k=µ′k(o′jk ) ,

a′ji ∈ a′j, o
′j
i ∈ x′j,

(5.5)

xj =
[
oj1, o

j
2, . . . , o

j
N

]
, aj =

[
aj1, a

j
2, . . . , a

j
N

]
, (5.6)

x′j =
[
o′j1 , o

′j
2 , . . . , o

′j
N

]
, a′j =

[
a′j1 , a

′j
2 , . . . , a

′j
N

]
, (5.7)

θ′i ← τθi + (1− τ)θ′i, (5.8)
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Figure 5.1: (a) A general actor critic framework (the green path shows the difference
of soft actor critic framework with entropy term) and (b) The proposed MADDPG
framework.

where (.)′ donates to the target for Q′ and µ′ and next for a′ and o′. θ
(.)
i shows the

weight of parameter. (5.8) can be used to softly update target network parameters

(Q′ and µ′) for each agent i that τ is a control parameter for updating the target

networks.

The SAC algorithm is an off-policy maximum entropy actor-critic algorithm. The

main difference of SAC and AC is the introduction of the entropy of the actor outputs

during the training phase that is showed in Fig. 5.1.b.

Fig. 5.1.a shows the complete MADDPG framework with soft update and random

noise.

To train all agents, a replay buffer is used as follows:

D←
(
st, o

i
t, αt, rt, st+1, ot+1, αt+1, d

)
. (5.9)
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5.3 The Proposed MADDPG Dispatch Algorithm

This section describes the proposed RL-based approach to dispatch DERs for

resilience enhancement of distribution systems. First, it describes the MADDPG-

dispatch environment and then it explains the algorithm training the testing proce-

dure.

5.3.1 MADDPG Dispatch Environment

An MDP is used to formulate the problem where a system state represents specific

system conditions. A transition to another state is due to taking certain actions

yielding a reward that can be defined as a function of desired outcome. For a multi-

agent framework, a system state is decomposed into observations equal to the number

of agents. The components of the formulated MDP are defined below.

5.3.1.1 States

A system state is defined to be the set of parameters that can be used to describe

the system conditions and it includes required information to observe the system

characteristics under specific circumstances. The state set is defined as:

st = {Gs
i ,∆G

m
i , uj, o

n
i } ∀n ∈ ΩN , ∀i ∈ ΩG ∀j ∈ ΩB, (5.10)

where Gs
i is the DG power, ∆Gm

i is the DG power mismatch, uj is the line status,

oi is the set of connected nodes to the ith agent, ΩN the set of system nodes, ΩG the

set of DGs, and ΩB the set of lines.

5.3.1.2 Actions

It is required to determine the power supply of each DG to minimize the amount

of power balance mismatch. In other words, the amount of power supplied by DGs
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shall be equal to the load demand within a specific grid. In the proposed problem, a

continuous action representing the DG real power needs to be taken by each agent,

which is represented as follows,

αit = {Gs
i} , (5.11)

where αit represents the action taken by the ith agent.

5.3.1.3 Rewards

A proper reward value, rit, should be defined to assess the effectiveness of the

taken actions. Each agent is responsible for controlling the power supply of a specific

DG through reducing/eliminating the amount of load curtailment after an extreme

event. This can be achieved by minimizing the amount of power balance mismatch—

given enough generation resources are available. The reward value increases as the

absolute power mismatch approaches zero value. Due to multiple line failures, a

system can split into one or more microgrids, M . Therefore, the set of DGs in a

specific microgrid should supply enough generation for minimal power mismatch.

The reward rit for taking a specific action is calculated as:

rit = Gs
i −

[ ∑
n∈ΩN

m

Ln
]
/Nm

G , (5.12)

where Ln is the load demand of nth node, Nm
G is the number of DGs in the mth

microgrid, and ΩN
m is the set of all connected nodes in the mth microgrid.

5.3.2 Training and Execution Algorithms

The training and testing/execution steps for the multi-agent framework are sum-

marized in Algorithm 6 and Algorithm 7. Each agent is assigned to a a specific

DG unit. A failure scenario is generated using multiple line outages. An action is
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determined by each agent representing the amount of power generation by the corre-

sponding DG. Power mismatch is calculated as reward for each agent. The process

is repeated for diverse failure scenarios till the MADDPG converges.

Algorithm 6: Training of the MADDPG-dispatch Framework

1: for Episode = 1 to Etrain do
2: Create failure scenario
3: Reset the environment to default settings
4: Extract observations of all agents (ot) using current state (st)
5: while Constraints not fulfilled and step < N do
6: for i = 1 to Nagents do
7: Generate an action (αit) using (5.1)
8: end for
9: Append all actions
10: Execute action (αt) on the environment
11: Obtain new state (st+1), new observations (ot+1), reward (rt), and terminal

conditions (d).
12: Store (st, ot, αt, rt, st+1, ot+1, d) in Di using (5.9)
13: if size(Memory) ≥ batch size then
14: Randomly select minibatch
15: Update weights of the policies using (5.3)
16: Update the Q-function parameters of each agent using (5.4)
17: Update temperature of networks using (5.8)
18: Update target network weights of each agent using (5.8)
19: else if d is true then
20: Reset the environment
21: end if
22: end while
23: end for

5.4 Implementation and Results

The proposed approach is applied on the 33-node distribution feeder for valida-

tion. The proposed MADDPG model is formulated to dispatch DERs connected to

distribution feeder for enhanced resilience after an extreme weather events.
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Algorithm 7: Testing of the MADDPG-dispatch Framework

1: for episode = 1 to Etest do
2: Create failure scenario
3: Reset the environment to default settings
4: for i = 1 to Nagents do
5: Generate an action (αit) using actor network
6: end for
7: Execute action (αt) on the environment
8: Observe st+1, rt, and d.
9: end for

5.4.1 System under Study

The 33-node distribution test system is a radial distribution system with 33 nodes

and 32 branches with a total system load of 3.72 MW [161]. Five DGs are connected

to the feeder at arbitrarily chosen locations as shown in Fig. 5.2, where each DG

is represented by a single agent. Although the locations of DGs play a vital role

to improve the resilience of the system, this work focuses on leveraging RL-based

approaches to control predefined DERs after an extreme event. The list of vulnerable

lines include (2-19), (3-23), (6-26), (29-30), and (10-11), as shown in Fig. 5.2. To

induce further operating conditions, the connection to the main feeder is disconnected

with the result being the system acting as an islanded microgrid. The failure of any

vulnerable line results in splitting the main feeder into smaller microgrids operating.

The list of all possible microgrids is summarized in Table 5.1 with their corresponding

load demand.

5.4.2 Training

The proposed MADDPG algorithm is implemented for a fixed number of episodes

(failure scenarios). A total of 20,000 episodes are used for training with a maximum

of 20 iterations per episode. In each failure scenario, single or multiple lines are
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Figure 5.2: IEEE 33-bus distribution feeder

Table 5.1: List of Potential Microgrids

Index Connecting nodes Power (KW)

S1 23, 24, 25 930

S2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 855

S3 19, 20, 21, 22 360

S4 11, 12, 13, 14, 15, 16, 17, 18 555

S5 26, 27, 28, 28, 29 400

S6 30, 31, 32, 33 620

selected from the vulnerable lines to be disconnected. The hyper-parameter settings

of the actor and critic networks of the proposed framework for the modeled 33-node

system are shown in Table 5.2. The recursive MDP process provided in algorithm 6 is

used to train the MADDPG model. For evaluation, the running mean of the episodic

rewards and the number of iterations per episode are calculated using a window of

100 episodes.

Fig. 5.3 shows the running mean and number of iterations per episode for the

MADDPG model. The average reward value increases as the number of training

episodes increases, as anticipated. The average reward value reaches a saturation

level in less than 8,000 episodes. At 5,000 episodes, a rapid increase in the reward

value is noticed. This is due the decentralized structure of the MADDPG where



109

Table 5.2: Hyper-parameter Settings of the MADDPG Model

Hyper-parameter Value

Number of hidden layers 3

No. of neurons in hidden layers 64

Learning rate 10−3

Learning episodes every 10

Temperature rate (τ) 0.01

Reward discount factor 0.99

Batch size 512

Activation function of output layer Sigmoid

Activation function of hidden layers ReLU

Optimizer Adam

each agent is trained independently. Also, the random selection of mini-batch plays

a vital role to provide a set of scenarios where exploratory feature is achieved. On

the other hand, the average number of iterations decreases dramatically after 5,000

episodes reaching a value of five iterations per episodes. This shows the capability of

the proposed algorithm to determine an optimal solution in five trials.

Figure 5.3: Rewards and iterations per episode

To visualize the internal learning behavior the MADDPG, the actor and critic

losses of all agents are plotted, as shown in Fig. 5.4. It is worth noting that training
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episode differs from running episodes since training the model is executed every ten

episode after having enough scenarios in the memory buffer. The actor losses of A1,

A4, and A5 converge faster than A2 and A3. Also, A3 takes more time to learn due

to the unique location of DER3 in the middle of distribution feeder where it has

more possible island connections. For instance, DER3 is responsible to supply S5

only in case lines (29-30) and (6-26) fail; however, DER3 and DER4 will supply S5

and S6 if only line (6-26) fails. All agents converge to almost zero losses after 14,000

training episodes. On the other hand, the critic losses show much faster converging

rate. All agents provide pre-mature convergence after 5,000 training episodes. The

sudden improved learning behavior of A2 and A3 at 9,000 training episode instant is

reflected in the critic losses curve.

Figure 5.4: Actor and critic losses for each agent

5.4.3 Testing and Validation

To validate the efficiency of the trained models, a total of 1,000 failure scenar-

ios are tested. Algorithm 7 is used to test the proposed dispatch algorithm. For

each episode, the model is required to provide the required power supply by each

available DER in the system. The trained model achieves 99.1% success rate of all
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the simulated cases. A successful decision is counted if the power supply mismatch

of each DER does not exceed 15 KW. To validate the accuracy of the calculated

DER powers for the successful cases, the average power mismatch is 8.5 KW. For

non-successful cases, the average power mismatch is 22 KW. This implies that the

non-successful cases have relatively close values to the predefined threshold. Further

tuning of MADDPG hyper-parameters can results in enhanced accuracy.

The MADDPG is trained to determine the power supply of each DG to avoid load

shedding. Table 5.3 provides the resulting outcome of the trained MADDPG model

for ten failure scenarios. It is worth nothing that the proposed algorithm computes

the power supply based on the number of connected DGs in each microgrid. In

other words, the required load demand of each microgrid is divided equally on the

connected DGs within the same grid. In F1, two microgrids are formed such that

the first one includes S5 and S6 with total demand of 915 KW and the second one

includes the rest of the feeder with total demand of 2805 KW. The total supplied

power by DG3 and DG4 for the first microgrid is 922 KW; whereas, other DGs

have total supply of 2784 KW. This shows the capability of the trained algorithm

to provide relatively close values from the first trial. The same behavior is observed

in F2, F3, F4, and F5. In case of two line fail, the distribution feeder is split into

three smaller microgrids. Each set of DGs have a total power supply equals to the

load demand of their corresponding microgrid. For instance, F8 shows that DG1 and

DG5 supply S1, S2 and S4; DG2 supplies S3; and DG3 and DG4 supply S5 and S6;

respectively. With three line failures, the operating conditions become more severe

and higher power supply might be required from each independent DG. For example,

DG1 and DG3 have supply higher power compared to DG2 in F10 since they are

connected to S1, S2, and S5 forming the majority of the distribution feeder load. In

general, the proposed algorithm shows the capability to dispatch DGs against very
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severe situations under single and multiple line failures.

Table 5.3: DG Dispatch for Selected Failure Scenarios

Index
Impacted DER power (KW)

lines 1 2 3 4 5

One

F1 6-26 919 933 459 463 932

F2 2-19 832 358 831 848 840

F3 3-23 922 698 689 702 699

F4 29-30 764 774 771 625 772

F5 10-11 791 795 783 799 558

Two
F6 2-19, 10-11 935 358 941 928 555

F7 3-23, 29-30 930 722 720 613 724

F8 2-19, 6-26 1218 364 460 453 1222

Three
F9 3-23, 29-30, 10-11 931 809 807 615 554

F10 29-30, 2-19, 10-11 1092 358 1088 615 552

5.5 Conclusion

This chapter has studied a multi-agent reinforcement learning approach to en-

hance the operational resilience of islanded distribution systems after an extreme

event. The proposed method computes the required power supply of DGs to main-

tain a minimal amount of load curtailments. The results showed that the trained

MADDPG model could provide proper decisions to maintain reliable operation of

an islanded power grid under additional multiple line failures. The trained model

showed an accuracy exceeding 99%. The proposed method provides a corrective

and restorative strategy to enhance resilience of distribution systems leveraging the

capabilities of reinforcement learning techniques. An extension of this work will in-

clude the integration of network reconfiguration strategies and role of energy storage

systems for further improvements.
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Chapter 6

Resilience Assessment Approaches

considering Uncertainties

Uncertainty quantification for resilience-based studies has become a key factor

for proper system modeling and solution efficiency. Uncertainties in extreme weather

events can be classified into spatiotemporal uncertainties and fragility uncertain-

ties, which capture the impacts of extreme events on failure of system components.

Also, the deployment of RESs and their stochastic behavior during extreme weather

events alleviates several concerns regarding induced variability on power system per-

formance. This chapter focuses on uncertainties of extreme weather events and RESs

in resilience assessment studies. First, an evaluation framework is developed to assess

the resilience of transmission systems against ice storms. Also, the uncertainties of

hurricanes on transmission system components are assessed for improved resilience

performance. Finally, the role of unavailability of RESs during extreme events is eval-

uated taking into account system operational constraints. The proposed frameworks

are studied on IEEE 30-bus transmission system.

6.1 Introduction

Resilience assessment methods focus on quantifying the severe impacts of ex-

treme events on the performance of power systems [2, 170, 171, 172]. Uncertainties
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in operational resilience-based studies include weather and load forecast errors, and

system components monitoring errors [173]. Risk-based security assessment frame-

works have been studied for malicious attacks [174], market prices [175], and RESs

[176]. Resilience assessment approaches vary based on the type of extreme weather

events due to the difference in the spatiotemporal characteristics of these events.

Resilience Assessment considering Uncertainties of Ice Storms. The im-

pact of freezing ice storms on operational performance of power grids has gained

significant interest. In [177], a model based on geographically moving winds and

freezing precipitation has been developed to assess the reliability of transmission

networks during ice storms. A numerical model to forecast icing precipitation accre-

tion on overhead line conductors considering wind speed, ambient temperature, and

ice precipitation rate has been developed in [178]. The probability of failure of trans-

mission lines and towers has been calculated using the copula functions integrated

with the extreme value theory in [179]. In [180], a radial ice thickness model has

been used to estimate the ice thickness using a modified Ramer precipitation-type

algorithm and weather research and forecasting model. A probabilistic assessment

model for weather induced loads on overhead transmission lines has been developed

in [181]. In [182], a socioeconomic and ecological impact assessment approach has

been conducted for the great Chinese 2008 ice storm. In [183], a reliability evaluation

method to study the communication network of power systems during ice storms has

been formulated. Although these methods highlight the importance of considering

the impacts of ice storms on system operation, quantifying uncertainties of ice storms

is an important factor for long-term planning purposes.

Resilience Assessment considering Uncertainties of Hurricanes. A sta-

tistical evaluation framework has been developed in [184] to assess flooding impact

on power system restoration after a hurricane event. In [89], a probabilistic resilience
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assessment method has been used to evaluate the long-term impact of typhoons

from the system and the component perspectives. A data-driven approach has been

studied in [59] assessing the uncertainties in loads, renewable generation, and market

prices during extreme events. In [185], a probabilistic hurricane resiliency assessment

framework has been provided of an active distribution system. Also, a non-simulation

based method has been developed to assess resilience uncertainties of distribution

systems [186]. Most of these methods have considered either the spatiotemporal

uncertainties or the fragility uncertainties independently without comprehensively

considering both uncertainties due to the complicated modeling. Although other

methods have considered spatiotemporal assessment, the role of these uncertain-

ties on resilience enhancement strategy adopting fragility uncertainties has not been

deeply investigated.

Resilience Assessment considering Uncertainties RESs. The high pene-

tration level of RESs has introduced significant uncertainties in the operation and

control of power systems especially during extreme weather events. Assessing the

impacts RESs on power system response to extreme events has become a key factor

for modern power operation especially for resilience-based studies. Authors of [65]

have proposed a stochastic programming approach to determine the optimal utiliza-

tion of RESs when the main feeder in a distribution system is impacted by a wildfire.

In [143], a two stage optimization function has been solved to minimize the costs for

both dispatchable and non-dispatchable renewable generating units, and load curtail-

ment of microgrids. The role of RESs to provide voltage support for resilience-based

autonomous microgrid formation after disturbances has been studied in [9, 135]. The

time-varying demand and renewable energy levels have been integrated into a prob-

abilistic extreme event model to quantify the resilience level for planning purpose in

[187]. Although several studies have focused on the role of RESs to improve resilience
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in distribution systems, only a few studies have focused on transmission systems [2].

Also, the 2021 Texas ice storm has raised concerns about the capability and availabil-

ity of RESs during extreme events [35]; and hence, the impacts of RESs on resilience

of transmission systems require further investigation.

The main contributions of this chapter are summarized as follows:

1. Develop an uncertainty quantification approach to quantify the stochasticity of

ice storms on transmission system resilience.

2. Conduct statistical analysis of uncertainties of hurricane behaviors (long-term)

and impacts (short-term) on system components for enhanced resilience.

3. Assess the role of unavailability of RESs during hurricane events for resilience

enhancement.

6.2 Resilience of Power Systems to Ice storms

This section proposes a resilience assessment method to quantify impacts of ice

storms on the overall performance of transmission power systems. First, an ice

storm spatiotemporal model is developed to determine the propagation behavior and

severity of ice storms. A fragility model is implemented to calculate the probability

of failure of each component in the path of an ice storm at sequential time instants.

Then, an extensive statistical analysis is conducted to determine the weather-related

characteristics of the geographical location under study such as wind speed, wind

direction, and ice precipitation rate. A combinatorial enumeration method is used

to simulate various ice storm scenarios with diverse spatiotemporal characteristics.

During each simulated ice storm, the worst failure scenario is obtained and used to

calculate the total amount of load curtailment at each time instant. The resilience

level of the system is evaluated based on the total amount of load curtailment and the
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probability of occurrence of ice storms. The proposed method is validated through

a mapped IEEE 30-bus system on the Northeastern region of USA.

6.2.1 Resilience Quantification Framework

This section illustrates the resilience quantification framework of transmission

systems during ice storms. First, it describes a resilience index based on system

degradation performance. Then, it explains a statistical approach to assess the re-

silience due to uncertainties of ice storms.

6.2.1.1 Resilience Index

A quantitative index, R, is used to quantify the resilience level of the system,

specifically in the planning phase. Previous studies have used the resilience triangle

and the resilience trapezoidal curves for evaluation [2], where the resilience level

of system, denoted by Q, is defined to be the normalized area of the performance

degradation index during the period of an event [89]. As the performance of system

degrades, the resilience of the system also degrades resulting in a high resilience index.

Such method captures the resilience of the system for one event scenario; however, the

transmission system may be impacted by various events that have diverse behavior

and severity. A modified resilience index can be evaluated as follows,

R =
∑
s∈S

PsQs, (6.1)

where S is the set of all possible ice storms, Ps is the probability of the sth ice storm,

and Qs is the worst amount of degradation in system performance. In this work,

the value of Qs is represented by the total amount of load curtailment during an ice

storm.
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6.2.1.2 Combinatorial Enumeration Method

The combinatorial enumeration method has been widely used to quantify uncer-

tainties of various random variables on a certain process given predefined PDF for

each random variable [89]. The combinatorial enumeration method is implemented

in the probabilistic ice storm model to simulate various potential ice storms. For

a given scenario, the failure probability of transmission corridors can be calculated

using the spatiotemporal fragility model presented in section 2.3.2 and section 2.4.

Each ice storm parameter is governed by a well-known PDF. In the combinatorial

enumeration method, each PDF is divided into several equal portions. An ice storm

scenario can be generated by enumerating a selection of specific segmented interval.

For example, the original PDF of wind speed is divided into C equal portions and a

segmented interval Ci. For a specific ice storm scenario s, the wind speed probability

can be obtained as follows,

Pr(Vw,s) =

∫ Vw,s+Ci/2

Vw,s−Ci/2

f(Vw)dVw, (6.2)

where Pr() is the probability of each parameter and C is the length of each portion.

By following the same convention, the probability of each parameter can be cal-

culated. Thus, for a specific ice storm scenario s, its occurrence probability can be

evaluated as follows,

Ps = Pr(H0,s)Pr(Ps)Pr(VT,s)Pr(Vw,s)Pr(δs)Pr(x0,s, y0,s), (6.3)

Under a simulated ice storm, the cumulative failure probability of each corridor

can be evaluated using the spatiotemporal fragility model. The sequential failure of

system components is injected into a DC optimal power flow to determine the amount

of load curtailment. The detailed algorithm to evaluate the resilience of transmission

system against ice storms is provided in Algorithm 8.
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Algorithm 8: Resilience Assessment Methodology Considering Ice Storm
Uncertainties
Input: Weather-related data for key parameters including, wind speed, wind

direction, precipitation rate, central pressure difference, translational
speed, and landing location

Compute the PDF for each key parameter
Divide the the PDFs into fixed number of segments
Define the total number of ice storm scenarios S
for s← 1 to S do

Generate random value for each key parameter
Calculate probability of each parameter using their PDF
Evaluate the probability of occurrence of the ice storm scenario Ps
Inject the random values into the ice storm model to simulate its
propagation behavior
for t← 1 to T do

Determine set of potential components to fail
Use fragility model to evaluate the probability of failure for each
component
Determine the failed components
Run DC optimal power flow
Calculate amount of load curtailment

Sum up total energy not supplied for the whole ice storm duration Qs

Evaluate the system resilience index using the obtained Ps and Qs for each s
Output: System resilience index

6.2.2 Implementation and Results

The resilience assessment framework is formulated using the proposed ice storm

model and fragility model. The proposed approach is applied on the IEEE 30-bus

system mapped on the Northeastern region of USA as shown in Fig. 6.1. The

distance between two consecutive transmission towers is assumed to be 500 meters.

The Northeastern side of USA is selected since it is one of the most impacted regions

by ice storms [188].
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Figure 6.1: The mapped IEEE 30-bus system on Northeastern region of the USA

6.2.2.1 Ice Storm Parameters

Since weather parameters vary based on geographical location, statistical analysis

is conducted on the Northeastern region of USA to determine the proper PDF for

each parameter. Ice storm events in the Northeastern region can be found in [189].

Wind speed and direction data are extracted from [190] and ice precipitation rate

data is extracted from [191]. Other parameters are assumed to have predefined PDFs.

Landing location is assumed to follow a uniform distribution function, latitude, y ∈

[34◦, 45◦]N and longitude, x ∈ [90◦, 70◦]W , central pressure difference is assumed to

have a uniform distribution function, H0 ∈ [1.5, 3] hPa, and translational speed is

assumed to follow a uniform distribution function, VT ∈ [0, 15] m/s. Although these

parameters may have different distribution functions, the main scope of this work is

the resilience evaluation rather than the statistical behavior of such parameters. Also,

the scarcity and accessibility of data play a vital role to determine PDFs. A summary

of PDF for wind speed, wind direction, and ice precipitation rate is summarized in

Table 6.1.
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Table 6.1: Parameters of Distributions for Ice Storm Parameters

Key parameter PDF Type Parameters

Ice precipitation Lognormal µ= 3.66 inc/hour, σ = 20.78

Wind speed Lognormal µ= 2.668 m/sec, σ = 0.5185

Wind direction Binormal
µ1= -73.3, µ2= -7.2

σ = 22.6, σ = 70.35, α = 0.5

6.2.2.2 Single Ice Storm Scenario

A single ice storm scenario is simulated on the mapped system as shown in Fig. 6.2

to visualize the propagation of an ice storm through system corridors. The simulated

ice storm propagates from South East to North West of the system where multiple

transmission corridors are expected to fail. The central pressure difference is 1.5 hPa,

the wind speed is 15 m/s, the translational speed is 1 m/s, the precipitation rate is

35 mm/hour, the landing site is 37◦N/72◦W, and the ice storm duration is 48 hours.

Figure 6.2: Ice storm scenario mapped on the IEEE 30-bus system

The list of impacted corridors and their time of failure is provided in Table 6.2.

The total amount of energy not supplied during the whole ice storm is 1136 MWh
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with maximum load curtailment of 48.4 MW. Although some components may fail

earlier in time, load curtailment does not take place till the third failure. Also, ice

accumulation is larger at the center of the ice storm, and hence, components closer

to the center are more vulnerable.

Table 6.2: Impact of Single Ice Storm Scenario

Time (Hour) 17 18 23 24 25 26 27 28

Curt. (MW) 0 0 0 16.5 19.7 37.2 46.2 48.4

From bus 23 24 6 4 6 15 10 21 16 12 19 10

To bus 24 25 8 6 28 23 21 22 17 13 20 20

6.2.2.3 System Resilience Level

The obtained and predefined PDF of each key parameter are integrated into

the probabilistic ice storm model to calculate the probability of occurrence of each

simulated scenario using the combinatorial enumeration method. The PDF of each

key parameter is divided into 100 equal segments and a total number of simulation

cases are set to 10,000. Each ice storm scenario is assumed to last for 24 hours period.

For validation, the process is repeated twice with different ice storm scenarios.

Out of all the simulated scenarios, 2,021 scenarios result in load curtailment in the

first case compared to 2,015 in the second case. The calculated resilience index for

the two cases are 81.454 MWh/event and 81.44 MWh/event. The obtained values

are relatively close assuring the effectiveness of the proposed approach to capture

uncertainties of ice storms. For further assessment, the frequency of failure and total

outage duration of each transmission corridor is obtained as shown in Table 6.3.

The results of both cases are relatively close which confirms the effectiveness of

the proposed algorithm to quantify the stochastic behavior of ice storms on system

resilience. Although the frequency of impact and duration of outage vary from one

corridor to another, the outage duration per outage occurrence is almost the same
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Table 6.3: Outage Analysis of Transmission Corridors

Corridor Case 1 Case 2

From To Freq. Duration Hour/occ Freq. Duration Hour/occ
1 2 347 6642 19.141 349 6661 19.086
1 3 298 5742 19.268 300 5775 19.250
2 4 485 9857 20.324 488 9883 20.252
3 4 285 5757 20.200 286 5761 20.143
2 5 976 20185 20.681 979 20171 20.604
2 6 897 18862 21.028 899 18868 20.988
4 6 673 14169 21.053 679 14138 20.822
5 7 299 6116 20.455 296 6104 20.622
6 7 762 15867 20.823 764 15811 20.695
6 8 1366 28484 20.852 1366 28523 20.881
6 9 218 4558 20.908 218 4548 20.862
6 10 355 7410 20.873 355 7438 20.952
9 11 234 4775 20.406 234 4771 20.389
9 10 460 9680 21.043 461 9660 20.954
4 12 431 8533 19.798 425 8491 19.979
12 13 445 9178 20.625 444 9156 20.622
12 14 839 17195 20.495 840 17208 20.486
12 15 861 17578 20.416 859 17561 20.444
12 16 639 12967 20.293 640 12963 20.255
14 15 137 2765 20.182 137 2786 20.336
16 17 581 12192 20.985 581 12202 21.002
15 18 186 3748 20.151 186 3764 20.237
18 19 179 3624 20.246 182 3659 20.104
19 20 207 4261 20.585 208 4266 20.510
10 20 496 10234 20.633 497 10248 20.620
10 17 528 10864 20.576 526 10855 20.637
10 21 566 11765 20.786 564 11807 20.934
10 22 507 10566 20.840 509 10612 20.849
21 22 191 3894 20.387 190 3868 20.358
15 23 1226 25622 20.899 1230 25694 20.889
22 24 527 10970 20.816 531 10940 20.603
23 24 1091 22715 20.820 1090 22708 20.833
24 25 883 18377 20.812 880 18375 20.881
25 26 337 6620 19.644 328 6624 20.195
25 27 684 14299 20.905 682 14242 20.883
28 27 155 3120 20.129 155 3104 20.026
27 29 165 3395 20.576 165 3359 20.358
27 30 183 3684 20.131 180 3691 20.506
29 30 130 2640 20.308 130 2656 20.431
8 28 1145 23729 20.724 1140 23651 20.746
6 28 382 7902 20.686 384 7888 20.542
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for many components. Some corridors are impacted more than 10% of ice storm

scenarios such as 6-8, 23-24, 15-23, and 8-28, yielding longer outage duration. Such

corridors should have a higher priority in resilience planning enhancements.

6.3 Quantifying Spatiotemporal and Fragility Un-

certainties of Hurricanes

This section proposes a framework for resilience assessment to quantify uncertain-

ties of hurricanes on the resilience of transmission systems. The previously described

proactive generation redispatch strategy has been adopted for enhanced operational

resilience against hurricanes. Fragility curve models are applied to determine proba-

bilities of system component failures based on the wind speed value along the path of

a hurricane. The optimal generation dispatch is obtained for a predefined hurricane

scenario taking into consideration current and future potential failures. Then, vari-

ous hurricane scenarios are generated based on varying weather parameters including

central pressure difference, wind speed, wind direction, and landing site. Each pa-

rameter is represented by a PDF that can be calculated using historical weather data.

A robustness factor is introduced and used to determine the list of failed components

for each hurricane. Finally, a shortened set of hurricanes is extracted based on the

number of failed components. For each selected hurricane, the proactive generation

redispatch strategy is applied and the amount, location, and instant of load curtail-

ment are recorded. The overall system performance is evaluated and the resilience

level is quantified. The proposed approach is demonstrated on the IEEE 30-bus

system. Fig. 6.3 shows an illustrative framework of the proposed methodology.
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Figure 6.3: Uncertainty quantification research framework of hurricanes

6.3.1 Implementation Procedure

This section describes the combinatorial enumeration method to simulate various

hurricanes. It also introduces the robustness factor approach to discretize the output

of the fragility model. Then, it shows the overall integration algorithm.

6.3.1.1 Quantifying Uncertainties

Combinatorial enumeration methods can be used to enumerate values based on

predefined PDFs. They have been utilized to quantify uncertainties associated with

random variables on a given process [89]. In order to simulate many potential hur-

ricane, the probabilistic wind field model applies the combinatorial enumeration

method. A PDF defining each geographical- and weather-related parameter is di-

vided into several equal portion. To generate a hurricane scenario, combinatorial

enumeration method is applied to enumerate through selection of specific segmented

interval. Once a hurricane is simulated, failure probabilities of transmission corridors

are computed using the fragility model discussed in section 2.3.1.



126

6.3.1.2 Robustness Factor

The output of a fragility model is a probability of failure which is a continuous

value between 0 and 1. These values are important to calculate the transition prob-

ability from one state to another in the MDP. However, many components will have

infinitesimal failure probabilities that can be neglected. In this work, a robustness

factor, α, is introduced to act as a threshold such that any component with failure

probability exceeding this threshold will be considered in shutdown/failure status. In

other words, the robustness factor is used as a filtration phase to select components

with higher probability of failures and will have a value between 0 and 1. On the

other hand, the robustness factor can be used as an assessment threshold to quantify

the resilience level of a system. For instance, a system with robustness value of 0.1

implies very weak resilient system; whereas, a robustness factor of 0.9 reveals high

resilience level.

6.3.1.3 Integrated Algorithm

Algorithm 9 provides the quantification process of hurricane uncertainties on the

proactive generation redispatch strategy.

6.3.2 Case Studies and Results

This section provides accuracy validation of the proposed framework to quan-

tify spatiotemporal and fragility uncertainties of hurricanes on transmission system.

First, the stochastic impact of hurricanes on system components is assessed. Then,

the impact of hurricane uncertainties on the proactive generation redispatch is eval-

uated.
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Algorithm 9: Overview of Resilience Enhancement Strategy Considering
Hurricane Uncertainties
Input: Total number of hurricane scenarios (H) and PDF for key

parameters including central pressure difference, hurricane
translational speed, hurricane direction, and landing-site coordinates

Determine the total number of hurricane scenarios H
for h← 1 to H do

Generate random numbers for key parameters using their PDFs
Use the generated values to create a hurricane scenario h
Simulate the generated hurricane using the wind field model
for t← 1 to T do

Calculate failure probabilities of transmission corridors using the
fragility model
Determine the failed components based on robustness factor
Update the list of Markov states
Calculate the transition probabilities

Solve MDP proactive generation redispatch
Compute the amount of load curtailment and operational costs
Calculate the average amount of load curtailments for all Markov states

Evaluate the overall system resilience level
Output: System resilience assessment level

6.3.2.1 Data Description

The proposed approach is applied on the IEEE 30-bus system [119]. Generator

and other system data can be found in [192]. The behavior of load demand is inte-

grated into system operating conditions by scaling nominal load using the load profile

obtained from [118].

Weather parameters are different for each geographical location. In this work,

the Northeastern region of USA is considered. Statistical analysis is conducted on

data obtained from [188, 189, 190] to determine proper PDFs for the central pressure,

wind speed, and hurricane directions (Table 6.4). The landing location of a hurricane

is assumed to follow a uniform PDF, latitude, y ∈ [34◦, 45◦]N and longitude, x ∈

[90◦, 70◦]W . Although PDFs representing these parameters may change based on

diverse factors, this work focuses on evaluating the stochastic impacts of hurricanes
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on the proposed proactive generation redispatch algorithm and the overall system

resilience. In other words, the proposed algorithm can be utilized given any defined

PDFs.

Table 6.4: Parameters of Distributions for Windstorm Parameters

Key parameter PDF Type Parameters

Central pressure Lognormal µ= 2.901 hPa, σ = 0.6274

Translational speed Lognormal µ= 2.668 m/s, σ = 0.5185

Hurricane direction Binormal
µ1= -73.3, µ2= -7.2

σ = 22.6, σ = 70.35, α = 0.5

Although hurricanes can take place at any time during the day, in this study, it

is assumed to happen during peak load demand period to impose very tight opera-

tional conditions of the power system. The total duration of a hurricane varies based

on weather parameters governing its spatiotemporal behavior and boundaries of ge-

ographical area under study. The hurricane is assumed to cross the system under

study in 25 minutes sampled in a set of 5 minutes [33, 193]. Components may fail at

any instant due to their fragility to spatiotemporal properties of hurricanes.

6.3.2.2 Assessing Stochastic Behavior of Hurricanes

In this case, the stochastic behavior of hurricanes on the power grid is quantified

on a mapped version of the IEEE 30-bus system on the Northeastern region of the

USA. A total of 10,000 hurricanes are simulated by randomly selecting a defined set

of key parameters, which are given in Table 6.4. PDFs of key parameters are divided

into 10 equal segments. The robustness factor approach is used to determine the

failed components from the list of potential impacts during a hurricane. The process

is repeated for varying robustness factors.

The stochastic behavior of hurricanes and accompanied potential failures on sys-

tem components are analyzed. A failure scenario is defined to be a scenario where
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at least one component fails. Since transmission systems are designed to operate

reliably on N − 1 or even N − 2 contingency, the number of failure scenarios with

less than three failed components are filtered out. For the system under study, hav-

ing more than 10 failed components will probably result in blackout of the whole

system; and hence, such failure scenarios are excluded. In brief, the failure scenarios

are classified into three main categories based on the number of failed components

as follows: (1) at least one component fails; (2) at least 3 components fail; and (3)

between 3 and 10 components fail.

Fig. 6.4 (a) shows the frequency of failure scenarios based on varying robustness

factor. As the robustness factor increases, the number of failure scenarios decreases.

Although the N − 2 contingency provides the system with better preparedness char-

acteristics, this might not be sufficient during extreme weather events. The number

of failure scenarios can be easily determined given a defined robustness level. It is

obvious that even with robustness level of 0.5, there is almost 150 failure scenarios

with three to nine failed components, which implies the severity of hurricane events

on power grids.

Fig. 6.4 (b) shows the conditional probability of occurrence of failure scenarios.

The conditional probability of category 2 and category 3 is computed given a failure

scenario takes place. On average, 75% of failure scenarios will encounter at least

three failed components, of which almost 40% will encounter less than 10 failed

components. The probability of having failure scenarios with more than three failed

components decreases with increasing robustness level; however, the probability of a

failure scenario having three to nine failed components increases with the robustness

level. In other words, even with a very robust system, significant number of system

components will be impacted during a hurricane event.

Table 6.5 shows the outage frequency of the most impacted transmission lines in
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Figure 6.4: Relationship between robustness factor and (a) number of failure scenar-
ios; and (b) probability of occurrence

the IEEE 30-bus system at different robustness levels. It is obvious that at higher

robustness levels, less number of outages is noticed. Higher robustness levels imply

higher strength of system components to withstand failure against severe weather

events. This helps system planners to identify components of potential upgrades and

improvements.

Table 6.5: Outage Frequency of Transmission lines at different Robustness Factor

Corridor Robustness Factor

From To 0.01 0.05 0.1 0.2 0.4 0.6 0.8 0.95
2 5 5529 2845 2167 1508 964 646 443 262
2 6 4517 2368 1797 1211 732 471 336 223
6 8 4091 2159 1623 1175 697 468 333 236
12 14 4436 2361 1803 1193 709 513 347 213
12 15 4441 2384 1792 1205 724 513 347 214
15 23 3988 2116 1618 1111 668 444 303 222
23 24 3844 2029 1527 1031 605 456 321 232
24 25 3459 1828 1355 884 490 371 285 204
8 28 3353 1758 1325 921 563 392 274 210

To show the sequential failure impact of a hurricane event of system components,

the average number of failed components at each time instant is computed for all
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simulated hurricanes resulting in component failures. Fig. 6.5 shows the average

number of failed components at each time instant for a varying robustness factor.

The failure rate of system components decreases as the event propagates in time.

This might change from one geographical location to another or from one hurricane

event to another; however, the spatiotemporal characteristics of hurricane events

impose a unique timely-bounded sequential failure behavior that require rapid and

dynamic resilience enhancement strategy.

Figure 6.5: Average failures per time instant at different robustness factor

6.3.2.3 Impacts of Hurricanes’ Stochasticity on Proactive Redispatch

The performance of the proposed proactive generation redispatch strategy will

change based on the hurricane event. In this case, the overall performance of the

proposed proactive generation algorithm is assessed based on different hurricanes. A

robustness factor of 0.5 is selected yielding 126 hurricanes with 3-9 failed components.

The attack time is the same for all hurricanes to ensure that the system is subjected

to the same operating conditions and constraints.

The MDP is formulated for the 126 hurricanes resulting in 29 solved scenarios



132

and 97 non-solved scenarios. Table 6.6 shows the relationship between the number

of solved scenarios and the number of failed components. The reasons behind having

a large number of non-solved scenarios are the very-tight operational constraints

and large number of failed components causing dimensionality problem. It is clear

that the MDP is capable of providing solutions for scenarios with less than 5 failed

components. As the number of failed components increases, the search space increases

dramatically yielding a dimensionality problem. Some cases with less than 5 failed

components were not solved because of the very tight operational constraints used in

the problem formulation. Since the hurricane is assumed to take place at the peak

load, this creates more stressed operating conditions.

Table 6.6: Scenario Solution Status Vs Number of Failed Components

No. Failed Comp. 3 4 5 6 7 8 9

Solved 10 8 3 2 5 1 0

Non-solved 12 18 16 15 22 7 7

Fig. 6.6 shows relationship between the cumulative amounts of load curtailments

for each scenario. Except for five scenarios, the total amount of load curtailment is

less than 20 MW. Most of the scenarios encounter load curtailments during t3 and

t4, based on the length of the yellow and purple colors in Fig. 6.6, implying higher

withstand resilience index. Scenarios 26 and 27 have very high load curtailment at t6

due to either islanding some parts of the power grid or occurrence of large number of

failed components at same time. For instance, six components are subjected to failure

at t5 in scenario 26. Additionally, a reduction in the amount of load curtailment

between two consecutive instants implies the capability of the proposed MDP to

rapidly recover curtailed load. For instance, scenario 16 has large load curtailments

at t4 relative to t5 and t6. Same behavior is noticed in scenarios 2, 6, 13, 14, 20, 24,

and 25.
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Figure 6.6: Load curtailment for solved scenarios

To summarize, Table 6.7 shows the load curtailment behavior of the solved cases

at each time instant. On average, the amount of load curtailment is relatively small

compared to the total system nominal load of 189.2 MW. Since the hurricane events

take place during peak load during which the load demand is approximately 1.5 times

the nominal load, it can be implied that the average load curtailment is significantly

small. It is difficult to determine the trend behavior of the load curtailment due

to the uncertain impact of each hurricane scenario on the system performance. The

load curtailment shows reduction from t4 to t5 implying the efficiency of the proactive

generation redispatch to compensate for the lost lines and retain some curtailed loads.

Table 6.7: Load Curtailment Analysis

t1 t2 t3 t4 t5 t6

Min 0.0 0.0 0.0 0.0 0.0 0.0

Max 6.64 13.41 16.87 21.26 10.74 72.32

Sum 6.64 44.25 71.13 83.77 56.47 130.76

Avg 0.23 1.53 2.45 2.89 1.95 4.51

Fig. 6.7 visualizes the relationship between the amount of load curtailments and

location of curtailments. Buses 8, 18, 19, 21, and 30 show higher load curtailment

profile at most of the time instants compared to other buses. In particular, bus 8
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shows the highest load curtailment for a few reasons such as: it is connected to the

largest load spot, there isn’t enough generation resources connected to that bus in

case of islanding, and flow limits of the transmission lines connecting that bus with the

rest of the system are low. Although buses 18, 19, 21, and 30 have not been impacted

frequently as shown in Table 6.5, load curtailments occur due to tight transmission

constraints. This analysis can be used to assess the level of vulnerability of system

buses to hurricane impacts and direct specific planning-based resilience enhancement

approaches towards these vulnerable buses.

Figure 6.7: Average load curtailment for each bus

6.4 Role of RESs in Generation Redispatch

This section proposes a proactive generation redispatch strategy to enhance the

operational resilience of power grids during hurricanes considering the role of RESs.

Due to the spatiotemporal propagation characteristics of hurricanes, the status of

each component in the power grid might vary, which can be classified into three

main stages: prior, during, and after the event. The proposed strategy takes into

consideration varying conditions of system components as well as the variability and
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intermittency of RESs. A mixed integer linear programming optimization problem is

formulated to minimize the overall operating cost and amount of load curtailments.

System generation and transmission constraints have been considered including power

balance, transmission limits, load curtailment limits, generation limits (e.g., power

output limits, ramping rates, and up/down times), and generator statuses. The

proposed approach leverages the proactive generation redispatch strategy explained

in section 3.2.2. However, the probabilistic transition behavior of system components

has not been considered. This work focuses mainly on the unavailability of RESs

during an extreme events. The proposed strategy provides a mitigation strategy to

reduce the negative impacts of RESs on system resilience during a hurricane. The

proposed method is tested on a modified version of the IEEE 30-bus system for

validation.

6.4.1 Problem Settings

The proposed approach is applied on modified versions of the IEEE 30-bus system.

The CPLEX solver is integrated with MATLAB environment to solve the MILP

optimization problem. This section describes the system under study and simulated

hurricane scenarios.

6.4.1.1 Modified IEEE 30-bus System

To accommodate the role of RESs in the proposed strategy, solar and wind energy

sources are added to the IEEE 30-bus system. G5 is replaced by a solar power plant

with total power capacity of 25 MW, whereas G6 is replaced by a wind power plant

with maximum capacity of 30 MW. The parameters of both solar and wind energy

are obtained from [89]. The curves of solar and wind power, shown in Fig. 6.8, are

calculated based on historical data from [194]. Generators data are provided in Table
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6.8. The generators ramping rate (MW/hour) is assumed to be 10% of the maximum

power capacity. All generators are assumed to have minimum up/down time of 15

minutes. The impact of load variation is considered using 5 minute intervals load

demand obtained from [118] as shown in Fig. 6.9.

Figure 6.8: Solar and wind real power output

Table 6.8: Generator Parameters of IEEE 30-bus System

Unit
Cost ($) Power (MW)

b Csu Csd Pmin Pmax

G1 1.75 70 176 30 120

G2 2 70 176 35 140

G3 2 70 176 10 50

G4 2.25 70 176 5 30

G5 0.75 0 0 10 25

G6 0.75 0 0 15 30
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Figure 6.9: Load scaling profile

6.4.1.2 Hurricane Scenario

In this work, a hurricane scenario is assumed to propagate across the IEEE 30-bus

system as shown in Fig. 6.10. The total duration of the hurricane is assumed to be

25 minutes. The hurricane period is sampled in sets of 5 minutes to discretize their

propagation behavior. The set of failed components at each time instant is provided

in Table 6.9 based on the trajectory of the hurricane using the approach proposed in

[32, 89].

6.4.2 Validation of the Proposed Algorithm

The performance of the redispatch strategy relies on numerous factors such as the

hurricane impact time, the severity of the hurricane, the preparedness strategy exe-

cution time, the duration of the event, and the scale of the system. In this work, two

factors are considered: the hurricane impact time and the strategy execution time.
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Figure 6.10: Hurricane propagation across IEEE 30-bus system

Table 6.9: List of Failure Components

Time Instant Component No. Component Description

t1 – –

t2
C1 Line 15-23

C2 Line 18-19

t3 C3 Line 16-17

t4 C4 Line 4-6

t5
C5 Line 2-6

C6 Line 2-5

Also, it is assumed that all failed components will be fully restored after one-hour pe-

riod from the hurricane end instant. All test cases are validated through comparisons

between the proposed proactive redispatch strategy and corrective redispatch strat-

egy. In the corrective strategy, no prior redispatching is applied before the hurricane

impact time; however, dispatching is readjusted at each time instant to encounter

the failed components and fulfill the current system operational constraints.
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6.4.2.1 Hurricane Impact Time

Within the context of this study, a hurricane impact time is the instant when

a hurricane lands and its impacts are being realized on power grid components.

Since a hurricane can occur at different times during a day, the realization of its

impact will vary based on system operational conditions at the impact time. Two

hurricane events are simulated: E1–hurricane occurs during peak load demand and

E2–hurricane occurs during peak solar generation. Table 6.10 summarizes the two

simulated hurricane events.

Table 6.10: Simulated Hurricane Events

Impact period Start time End time

E1 During peak load demand 18:25 18:50

E2 During peak solar generation 11:55 12:20

(a) During peak load period

During normal operation, generators and RESs supply the full load demand; but,

during a hurricane, RESs are forced to shut down due to their uncertain generation

behavior. In this case, E1–hurricane lands at 18:25 during which neither solar nor

wind will have noticeable input, as shown in Fig. 6.8. Therefore, the dependency on

conventional generators will increase significantly.

Fig. 6.11 shows the real power output of all four conventional generators for 24

hours. In a normal day, all generators are utilized at almost 50% of their capacities.

The occurrence of hurricane imposes a corrective redispatch to adjust the generation

based on the new system state. This is noticed at G1 and G2 where a ramp down

behavior is realized to maintain operational constraints. The generation profiles have

changed completely due to applying the proposed proactive generation redispatch.

Prior to the hurricane, higher utilization of G1 is noticed to compensate for the less

utilization of G3 and G4. During the hurricane, G3 and G4 ramp up to match the
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Figure 6.11: Real power output of all conventional generators with and without
proactive redispatch strategy during E1 hurricane (case 1(a))

required load demand and compensate the ramping down of G1 and G2. Also, G2

comes to a complete shutdown at 18:50. After the restoration of system components
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(1 hour post hurricane end time), G1 and G2 ramp up to benefit from their low

operational costs. G3 operates at almost the full capacity to maintain high load

demand; whereas G4 ramps down to reduce overall operational costs. Generally, the

proactive redispatch provides a better preparedness of the system.

The failure of system components on the hurricane trajectory results in split-

ting the power system into two islands. Most of the load spots exist in A2; while

the two largest generators exist in A1. Insufficient generation resources at a specific

area yields non-avoidable load curtailments. Fig. 6.12 shows the amount of load

curtailments with and without the proactive redispatch strategy. The proactive re-

dispatch shows less load curtailments compared to the corrective redispatch. At the

first few instants during hurricane, the proactive redispatch has avoided any load

curtailments. Afterwards, the proposed algorithm has shown at least 30% reduction

in load curtailments. At 18:50, the amount of load curtailments is still growing mo-

mentarily under the corrective strategy. After the restoration of failed components,

the proactive redispatch provides faster recovery of curtailed load.

(b) During peak solar generation period

Since RESs are forced to shut down during the hurricane because of their uncertain

behavior, this case assess the proactive redispatch algorithm when the hurricane lands

during high generation supply from RESs. E2–hurricane lands at 11:55 during which

RESs have high generation, as shown in Fig. 6.8. The capabilities of the proactive

redispatch strategy can be realized due to high reliance on conventional generators.

Fig. 6.13 compares the real power output of all conventional generators with and

without proactive redispatch. Although the proposed algorithm is applied for a whole

day, Fig. 6.13 shows a view for two–hour period starting at the hurricane impact

time. Overall, the generation profiles varies based on the applied redispatch strategy.
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Figure 6.12: Load curtailments with and without proactive redispatch strategy during
E1 hurricane (case 1 (a))

In a typical day with normal operating conditions, the power supplied from RESs

will yield less utilization of conventional generators. This is clearly noticed in the

corrective strategy results of Fig. 6.13. Applying the proactive redispatch strategy

encourages the system to rely on G1 due to its high capacity and low operational

costs. Also, G3 and G4 ramp up during the hurricane to match the required load

demand. On the other hand, G1 ramps down very fast to maintain all dynamic

constraints post islanding behavior.

The significant impact of the redispatch strategy is the capability to minimize

load curtailments even with unavailability of RESs as shown in Fig. 6.14. It is

worth noting that the proactive redispatch resulted in no curtailments during hur-

ricane period and prior to islanding. At 12:20, the proactive redispatch has much

lower load curtailments compared to corrective redispatch by almost 60%. After the

hurricane, the curtailed load under proactive redispatch is due to islanding behavior

and insufficient generation in A2. The increase in load demand starting at 12:30
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Figure 6.13: Real power output of all conventional generators with and without
proactive redispatch strategy during E2 hurricane (case 1(b))

does not impose further stress conditions on the proactive redispatch strategy. On

average, proactive redispatch reduced the amount of load curtailment by 70% post

the hurricane period.

6.4.2.2 Strategy Execution Time

Due to high uncertainties in hurricane’s temporal and geographical progression

and high possibility of changing its trajectory, it may not be essential to apply the

redispatch strategy for the whole day resulting in overall high operational costs.

The proposed algorithm can be executed at any instant prior to hurricane; however,

diverse generation levels and costs are encountered. In this case, the impact of

execution time of the proposed strategy is tested by comparing two scenarios: (i)

60-minute interval, and (ii) 120-minute interval prior to the hurricane.

Fig. 6.15 shows the real power output of all conventional generators for the
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Figure 6.14: Load curtailments with and without proactive redispatch strategy during
E2 hurricane (case 1 (b))

two scenarios during E2–hurricane. When the proactive redispatch strategy is exe-

cuted earlier, operational costs are reduced and the utilization of reliable generators

is achieved. For instance, G1 ramps up as soon as the proactive strategy is being

implemented while G2 ramps down to complete shutdown. This implies the capabil-

ity of the proactive redispatch strategy to prioritize low-operational cost generators

over high-operational cost generators. Also, G4 is pushed to maintain low generation

level prior to the hurricane for further cost reduction. Although same load curtail-

ment level is observed for both scenarios, different costs are encountered. The total

operational costs for scenario (i) and (ii) are $940,297.7 and $937,629.7, respectively.

6.4.3 Effects of RES Sizes on the Resilience Level

In this case, further analysis is conducted to assess the impacts of varying pene-

tration levels of RESs on the resilience of power systems and overall operational costs.

The standard IEEE 30-bus system is modified to include solar power plants at buses
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Figure 6.15: Generation profile under different implementation time

3, 6, and 10, and wind power plants at buses 12, 15, and 25. The generation cost

coefficients for all units are modified to create a diverse cost profile as summarized

in Table 6.11. All conventional generators are assumed to have 15 minutes minimum

up/down time. E2–hurricane is considered in this case. Simulations are run on the

system with varying RESs levels under proactive redispatch and corrective redispatch

strategies. For validation purpose, the initial generation level of all units is obtained

from optimal power flow solution for a normal day—no hurricane is expected.

Fig. 6.16 shows that the operational cost decreases smoothly as the size of RESs

increases when using the proposed proactive redispatch algorithm. Ignoring the

proactive redispatch results in less operational costs due to the low utilization of

conventional generators. Also, increasing the size of RESs without retiring conven-

tional generators can reduce the total amount of load curtailments, which highlights
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Table 6.11: Modified Generator Parameters of IEEE 30-bus System

Unit G1 G2 G3 G4 G5 G6

b 1.8 2 1.8 2.2 1.9 1.6

Csu 70 75 80 65 60 70

Csd 30 40 35 25 30 40

Unit S1 S2 S3 W1 W2 W3

b 0.9 1 0.9 1.1 1 0.8

the importance of integrating RESs to resilience enhancement of power systems. At

the beginning of the day, higher load curtailments may be observed compared to the

end of the day due to the very tight operating conditions. Even with high generation

capacities, the power flow for some transmission lines hits the maximum threshold

yielding further burdens on system operation.

Figure 6.16: Variation between RES size and operational costs and total load cur-
tailments

Fig. 6.17 shows the relationship between load curtailment and time under var-

ious RESs penetration levels. For each penetration level, the generation redispatch

is solved with and without proactive strategy. It is noticeable that for all RESs

penetration level, the proactive redispatch has avoided load curtailments. Without

employing proactive generation dispatch similar to the proposed approach, load cur-

tailments cannot be avoided regardless of RES sizes. As the RES sizes increase, the
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load curtailment profile changes based on the weather data and the total amount

of load curtailments decreases. Due to the very tight operating conditions, load is

curtailed even with zero penetration level of RESs.

Figure 6.17: Variation between RES size and load curtailments

6.5 Conclusion

In this chapter, three assessment frameworks have been studied considering the

impacts of uncertainties in extreme weather events and RESs. Ice storm events as

well as hurricane events have been considered in this study. First, uncertainties of

ice storms on transmission system resilience was quantified. The results showed the

effectiveness of the proposed method quantify the impact of ice storms in a par-

ticular geographical location. The proposed algorithm provides a list of vulnerable

components to ice storms. Also, the proposed algorithm provides a benchmark re-

silience metric to evaluate diverse resilience enhancement strategies. On the other

hand, a resilience assessment evaluation method was developed and used to quantify

the long-term spatiotemporal uncertainties and short-term impacts of hurricanes on

power systems. The proposed framework leveraged proactive generation redispatch

for enhanced resilience. The results showed the effectiveness of the proposed frame-
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work to quantify both the spatiotemporal uncertainties and the fragility uncertainties

of hurricanes on power grid. Also, a list of the most vulnerable components to hur-

ricanes was provided. The proposed framework paves the way to system planners

to determine future resilience enhancement requirements. Finally, the impacts of

unavailability of RESs during hurricane events on transmission power systems was

evaluated. The assessment framework leveraged proactive generation redispatch to

mitigate the negative impacts of RESs during an extreme event for enhanced re-

silience. The results showed that the proactive generation redispatch strategy is able

to reduce the total amount of load curtailment by 60% in many cases and avoided

load curtailments for hurricane taking place at high RESs generation period. Also,

the role of execution time of the proposed proactive redispatch has been assessed

providing deeper analysis on system resilience performance curve. Also, it paves a

framework for system planners to determine proper upgrade and hardening require-

ments for resilient power grids. In the future, the role of large-scale energy storage

systems integrated into proactive generation redispatch shall be considered. Also,

the scalability of the proposed algorithm to larger systems will be studied.
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Chapter 7

Conclusion and Future Work

This dissertation has studied resilience enhancement strategies including proac-

tive, corrective, and restorative techniques. Also, the role of uncertainties in ex-

treme weather events has been evaluated through various probabilistic methods for

enhanced resilience performance. This chapter provides concluding remarks and dis-

cusses future directions.

Proactive resilience enhancement strategies. We have developed two proac-

tive strategies to improve resilience of power grids against weather-related and cyber-

related events. First, a proactive generation redispatch enhancement strategy was

formulated using MDP for minimal load curtailment and operational costs. The

proposed algorithm considered probabilistic failure behavior of system components

and generation and transmission operational constraints. The generation redispatch

strategy was tested against hurricane and wildfire events to measure their adapt-

ability to different event types. Several test cases were performed on IEEE 30-bus

system. Results showed that the proposed approach outperforms current correc-

tive strategies for enhanced resilience. The second strategy provided a defensive

resilience enhancement strategy through islanding of CPPSs into smaller microgrid

for enhanced robustness. The proposed algorithm reduces the negative impacts of

cyber-induced failures to power layer by isolating vulnerable components. Results

showed the capability of the proposed defensive islanding to create smaller microgrids
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satisfying radiality constraint and minimal load curtailment.

Corrective resilience enhancement strategies. We have developed three cor-

rective strategies to improve resilience of power grids against severe failure scenarios.

Reinforcement learning approaches were leveraged to formulate the proposed control-

based enhancement strategies. First, a distribution network reconfiguration strategy

was developed to reroute the flow of energy to islanded load spots due to multiple

line outages in a distribution feeder. An actor-critic algorithm was trained to de-

termine the set of tie-switches to be turned on maintaining traversing and radiality

constraints. The results showed the capability to determine new distribution sys-

tem topology for enhanced resilience. The second strategy focused on allocating and

sizing distributed generators in islanded distribution feeder due to diverse events.

A multi-agent actor-critic algorithm was developed and trained considering system

operational constraints. Results showed that the proposed RL-based framework is ca-

pable of determining locations and sizes of DGs on the IEEE 33-node system against

multiple line outages. Finally, a reactive shunt dispatching strategy was formulated

and modeled to maintain the voltage regulation of the transmission system within

the permissible range after a severe event. A multi-agent soft actor-critic model was

developed and tested on the IEEE 30-bus system. Results showed that the proposed

shunt dispatching strategy can improve the voltage profile in many cases.

Restorative resilience enhancement strategies. We have developed a restora-

tive strategy to retain curtailed loads of islanded distribution systems after extreme

outage. The proposed algorithm was formulated using multi-agent reinforcement

learning model to dispatch DGs for minimal load curtailment. Test cases were simu-

lated to validate the efficiency of the proposed framework against single, double, and

multiple line outages. The results showed that reinforcement learning methods can
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provide fast and efficient control actions for enhanced restorative resilience.

Uncertainty Quantification. We have modeled uncertainties of extreme events

and unavailability of RESs in resilience assessment methods. First, a resilience eval-

uation framework was developed to measure the resilience of transmission system

against freezing ice storms. Various ice storm scenarios were simulated using PDFs

governing the behavior of weather-related parameters. The proposed algorithm was

able to determine the list of most vulnerable components against ice storms. The

second method quantified the spatiotemporal (long-term) and impact (short-term)

uncertainties of hurricanes for enhanced power system. The proposed framework

was tested on the IEEE 30-bus system mapped on the Northeastern region of the

USA. A list of vulnerable components against hurricanes was extracted for future

hardening and improvement upgrades. In the last strategy, the role of RESs during

extreme events was assessed taking into account an integrated-proactive generation

redispatch approach for enhanced resilience. The proposed framework highlighted

the importance of generation redispatch to overcome tight generation challenges due

to unavailability of solar and wind sources during hurricanes. The proposed method

was tested on the IEEE 30-bus system. Detailed analysis was conducted to evalu-

ate the importance of strategy execution time. Also, the correlation between size of

RESs and resilience performance was quantified.

Future Work. The future directions of the proposed work can be stated as follows:

1. Developing a resilience enhancement strategy that fulfill all resilience attributes

including resourcefulness, robustness, adaptability, and rapid recovery is a so-

phisticated problem. Integrating several strategies such as proactive generation

redispatch and network reconfiguration can improve overall resilience. However,

deeper investigation is still required to assess the interoperability of diverse
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strategies within the cyber-physical power system domain.

2. Assessing vulnerabilities in CPPS has become important. Also, the developed

CPPS models should take into account recent technological advancement in

resilience, big data, cloud computing, and DER market participation.

3. Adopting existing standards such as IEC-61850 and IEEE-1547 to power sys-

tems has become essential to cope with the rapidly integration of information

and communication technologies. Studying the formulated models from a re-

silience perspective is a sophisticated and challenging problem.

4. The capabilities of reinforcement learning methods are showing a promising

pathway in the field of resilience enhancement strategies. Deeper analysis on

scalability of proposed methods to larger problems with increased constraints

and complexities will help in achieving the concept of smart grids.

5. Integrating the dynamic behavior of power system in resilience enhancement

strategies will create comprehensive assessment models that achieve robustness

of system performance.
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[147] H. Xu, A. D. Domı́nguez-Garćıa, and P. W. Sauer, “Optimal tap setting of volt-
age regulation transformers using batch reinforcement learning,” IEEE Trans.
on Power Systems, vol. 35, no. 3, pp. 1990–2001, 2020. 70

[148] M. M. Hosseini and M. Parvania, “Artificial intelligence for resilience enhance-
ment of power distribution systems,” The Electricity Journal, vol. 34, no. 1, p.
106880, 2021. 70

[149] J. Xie, I. Alvarez-Fernandez, and W. Sun, “A review of machine learning ap-
plications in power system resilience,” in 2020 IEEE Power Energy Society
General Meeting (PESGM), 2020, pp. 1–5. 70

[150] M. Kamruzzaman, J. Duan, D. Shi, and M. Benidris, “A deep reinforcement
learning-based multi-agent framework to enhance power system resilience using
shunt resources,” IEEE Transactions on Power Systems, vol. 36, no. 6, pp.
5525–5536, 2021. 70, 73, 81

[151] L. Tightiz and H. Yang, “Resilience microgrid as power system integrity pro-
tection scheme element with reinforcement learning based management,” IEEE
Access, vol. 9, pp. 83 963–83 975, 2021. 70

[152] Z.-c. Zhou, Z. Wu, and T. Jin, “Deep reinforcement learning framework for
resilience enhancement of distribution systems under extreme weather events,”
International Journal of Electrical Power & Energy Systems, vol. 128, p.
106676, 2021. 70

[153] H. Nie, Y. Chen, Y. Xia, S. Huang, and B. Liu, “Optimizing the post-disaster
control of islanded microgrid: A multi-agent deep reinforcement learning ap-
proach,” IEEE Access, vol. 8, pp. 153 455–153 469, 2020. 70, 100

[154] M. M. Hosseini and M. Parvania, “Resilient operation of distribution grids using
deep reinforcement learning,” IEEE Transactions on Industrial Informatics,
pp. 1–1, 2021. 70, 100



168

[155] A. Zai and B. Brown, Deep reinforcement learning in action. Manning Pub-
lications, 2020. 70, 101

[156] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018. 71

[157] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” CoRR, vol. abs/1801.01290, 2018. [Online]. Available:
http://arxiv.org/abs/1801.01290 74, 75

[158] Z. Fan, R. Su, W. Zhang, and Y. Yu, “Hybrid actor-critic reinforcement
learning in parameterized action space,” CoRR, vol. abs/1903.01344, 2019.
[Online]. Available: http://arxiv.org/abs/1903.01344 75

[159] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft actor-critic algorithms and
applications,” CoRR, vol. abs/1812.05905, 2018. 76

[160] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” CoRR, vol. abs/1802.09477, 2018. 76

[161] M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems
for loss reduction and load balancing,” IEEE Power Engineering Review, vol. 9,
no. 4, pp. 101–102, 1989. 80, 107

[162] A. Singhal, V. Ajjarapu, J. Fuller, and J. Hansen, “Real-time local volt/var
control under external disturbances with high pv penetration,” IEEE Trans.
on Smart Grid, vol. 10, no. 4, pp. 3849–3859, 2019. 93

[163] G. Qu and N. Li, “Optimal distributed feedback voltage control under limited
reactive power,” IEEE Trans. on Power Systems, vol. 35, no. 1, pp. 315–331,
2020. 93

[164] S. Wang, J. Duan, D. Shi, C. Xu, H. Li, R. Diao, and Z. Wang, “A data-
driven multi-agent autonomous voltage control framework using deep rein-
forcement learning,” IEEE Trans. on Power Systems, vol. DOI: 10.1109/TP-
WRS.2020.2990179, pp. 1–11, 2020. 93

[165] R. Lincoln. Pypower. [Online]. Available: https://pypi.org/project/
PYPOWER/ 94

[166] A. T. Eseye, X. Zhang, B. Knueven, and W. Jones, “Enhancing distribu-
tion grid resilience through model predictive controller enabled prioritized
load restoration strategy,” in 2020 52nd North American Power Symposium
(NAPS), 2021, pp. 1–6. 100

http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1903.01344
https://pypi.org/project/PYPOWER/
https://pypi.org/project/PYPOWER/


169

[167] J. Zhao, F. Li, X. Chen, and Q. Wu, “Deep learning based model-free robust
load restoration to enhance bulk system resilience with wind power penetra-
tion,” IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1969–1978,
2022. 101

[168] Y. Du and D. Wu, “Deep reinforcement learning from demonstrations to assist
service restoration in islanded microgrids,” IEEE Transactions on Sustainable
Energy, vol. 13, no. 2, pp. 1062–1072, 2022. 101

[169] Q. Li, X. Zhang, J. Guo, X. Shan, Z. Wang, Z. Li, and C. K. Tse, “Inte-
grating reinforcement learning and optimal power dispatch to enhance power
grid resilience,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 69, no. 3, pp. 1402–1406, 2022. 101

[170] M. Feofilovs, A. Gravelsins, and F. Romagnoli, “Review of disaster resilience
assessment methods: (quantitative aspects for renewable energy systems mod-
elling),” in 2020 IEEE 61th International Scientific Conference on Power and
Electrical Engineering of Riga Technical University (RTUCON), 2020, pp. 1–4.
113

[171] S. N. Naghshbandi, L. Varga, A. Purvis, R. Mcwilliam, E. Minisci, M. Vasile,
M. Troffaes, T. Sedighi, W. Guo, E. Manley, and D. H. Jones, “A review of
methods to study resilience of complex engineering and engineered systems,”
IEEE Access, vol. 8, pp. 87 775–87 799, 2020. 113

[172] M. A. Haque, G. K. De Teyou, S. Shetty, and B. Krishnappa, “Cyber resilience
framework for industrial control systems: Concepts, metrics, and insights,” in
2018 IEEE International Conference on Intelligence and Security Informatics
(ISI), 2018, pp. 25–30. 113

[173] M. Noebels, J. Quirós-Tortós, and M. Panteli, “Decision-making under un-
certainty on preventive actions boosting power grid resilience,” IEEE Systems
Journal, pp. 1–12, 2021. 114

[174] E. Ciapessoni, D. Cirio, G. Kjølle, S. Massucco, A. Pitto, and M. Sforna, “Prob-
abilistic risk-based security assessment of power systems considering incumbent
threats and uncertainties,” IEEE Transactions on Smart Grid, vol. 7, no. 6,
pp. 2890–2903, 2016. 114

[175] A. Gholami, F. Aminifar, and M. Shahidehpour, “Front lines against the dark-
ness: Enhancing the resilience of the electricity grid through microgrid facil-
ities,” IEEE Electrification Magazine, vol. 4, no. 1, pp. 18–24, March 2016.
114

[176] M. de Jong, G. Papaefthymiou, and P. Palensky, “A framework for incorpo-
ration of infeed uncertainty in power system risk-based security assessment,”
IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 613–621, 2018. 114



170

[177] E. Brostrom, J. Ahlberg, and L. Soder, “Modelling of ice storms and their
impact applied to a part of the swedish transmission network,” in 2007 IEEE
Lausanne Power Tech. IEEE, 2007, pp. 1593–1598. 114

[178] M. Farzaneh and K. Savadjiev, “Statistical analysis of field data for precipi-
tation icing accretion on overhead power lines,” IEEE Transactions on power
delivery, vol. 20, no. 2, pp. 1080–1087, 2005. 114

[179] H. Yang, C. Chung, J. Zhao, and Z. Dong, “A probability model of ice storm
damages to transmission facilities,” IEEE Transactions on power delivery,
vol. 28, no. 2, pp. 557–565, 2013. 114

[180] A. T. DeGaetano, B. N. Belcher, and P. L. Spier, “Short-term ice accretion
forecasts for electric utilities using the weather research and forecasting model
and a modified precipitation-type algorithm,” Weather and forecasting, vol. 23,
no. 5, pp. 838–853, 2008. 114

[181] S. G. Krishnasamy, “Assessment of weather induced transmission line loads on
a probabilistic basis,” IEEE Transactions on Power Apparatus and Systems,
vol. PAS-104, no. 9, pp. 2509–2516, 1985. 114

[182] B. Zhou, L. Gu, Y. Ding, L. Shao, Z. Wu, X. Yang, C. Li, Z. Li, X. Wang, Y. Cao
et al., “The great 2008 chinese ice storm: Its socioeconomic–ecological impact
and sustainability lessons learned,” Bulletin of the American meteorological
Society, vol. 92, no. 1, pp. 47–60, 2011. 114

[183] J. Yang, H. Teng, C. Yao, N. Liu, B. Sun, H. Yuan, M. Liu, J. Bai et al., “The
reliability evaluation method study of power system communication networks
in case of ice storm,” Engineering, vol. 5, no. 09, p. 30, 2013. 114

[184] G. Cruse and A. Kwasinski, “Statistical evaluation of flooding impact on power
system restoration following a hurricane,” in 2021 Resilience Week (RWS),
2021, pp. 1–7. 114

[185] N. T. Bazargani and S. Bathaee, “A novel approach for probabilistic hurri-
cane resiliency assessment of an active distribution system using point esti-
mate method,” in 2018 19th IEEE Mediterranean Electrotechnical Conference
(MELECON), 2018, pp. 275–280. 115

[186] G. Zhang, F. Zhang, X. Wang, and X. Zhang, “Fast resilience assessment of
distribution systems with a non-simulation-based method,” IEEE Transactions
on Power Delivery, vol. 37, no. 2, pp. 1088–1099, 2022. 115

[187] P. Gautam, P. Piya, and R. Karki, “Resilience assessment of distribution sys-
tems integrated with distributed energy resources,” IEEE Transactions on Sus-
tainable Energy, vol. 12, no. 1, pp. 338–348, 2021. 115



171

[188] Storm prediction center. [Online]. Available: https://www.spc.noaa.gov/
products/ 119, 127

[189] Storm events database (national centers for environmental information).
[Online]. Available: https://www.ncdc.noaa.gov 120, 127

[190] Wind database (national centers for environmental information). [Online].
Available: https://www.ncdc.noaa.gov/cdo$-$web/datatools/lcd 120, 127

[191] Daily U.S. snowfall and snow depth (national centers for environmental
information). [Online]. Available: https://www.ncdc.noaa.gov/snow-and-ice/
daily-snow 120

[192] M. Abdelmalak and M. Benidris, “Enhancing power system operational re-
silience against wildfires,” IEEE Transactions on Industry Applications, 2022.
127

[193] ——, “A Markov decision process to enhance power system operation re-
silience during hurricanes,” in 2021 IEEE Power Energy Society General Meet-
ing (PESGM), 2021, pp. 01–05. 128

[194] National Renewable Energy Laboratory Measurement and Instrument Data
Center. [Online]. Available: http://www.nrel.gov/midc/ 135

https://www.spc.noaa.gov/products/
https://www.spc.noaa.gov/products/
https://www.ncdc.noaa.gov
https://www.ncdc.noaa.gov/cdo$-$web/datatools/lcd
https://www.ncdc.noaa.gov/snow-and-ice/daily-snow
https://www.ncdc.noaa.gov/snow-and-ice/daily-snow
http://www.nrel.gov/midc/

	Abstract
	Acknowledgment
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Power System Resilience
	1.3 Objectives
	1.4 Organization

	2 Modeling of Extreme Events
	2.1 Introduction
	2.2 Spatiotemporal Propagation Characteristics
	2.2.1 Wind Field Model
	2.2.2 Ice Storm Model

	2.3 Fragility Modeling
	2.3.1 Wind Speed Fragility
	2.3.2 Ice Precipitation Fragility

	2.4 Failure Probability of System Components

	3 Proactive Strategies
	3.1 Introduction
	3.2 Proactive Generation Redispatch
	3.2.1 Impacts of Extreme Weather Events on System Components
	3.2.2 The Concept of Generation Redispatch
	3.2.3 Markov Decision Process Formulation
	3.2.4 Implementation and Results for Hurricane Event
	3.2.5 Implementation and Results for Wildfire Event

	3.3 Defensive Islanding for CPPS
	3.3.1 Cyber-induced Failure Model
	3.3.2 Cyber Resilience-based Defensive Islanding
	3.3.3 Spectral Clustering for Defensive Islanding
	3.3.4 Implementation and Results

	3.4 Conclusion

	4 Corrective Strategies
	4.1 Introduction
	4.2 Reinforcement Learning Approaches
	4.2.1 Single Agent Actor-Critic Algorithm
	4.2.2 Multi-Agent Soft Actor-Critic Algorithm

	4.3 Distribution Network Reconfiguration
	4.3.1 Problem Environment
	4.3.2 Training and Execution Algorithms
	4.3.3 Implementation and Results

	4.4 Allocation and Sizing of Distributed Energy Resources
	4.4.1 Problem Environment
	4.4.2 Training and Execution Algorithms
	4.4.3 Implementation and Results

	4.5 Dispatching Reactive Power Compensators
	4.5.1 Problem Environment
	4.5.2 Training and Execution Algorithms
	4.5.3 Implementation and Results

	4.6 Conclusion

	5 Restorative Strategies
	5.1 Introduction
	5.2 Multi-Agent Deep Deterministic Policy Gradient Approach
	5.3 The Proposed MADDPG Dispatch Algorithm
	5.3.1 MADDPG Dispatch Environment
	5.3.2 Training and Execution Algorithms

	5.4 Implementation and Results
	5.4.1 System under Study
	5.4.2 Training
	5.4.3 Testing and Validation

	5.5 Conclusion

	6 Resilience Assessment Approaches considering Uncertainties
	6.1 Introduction
	6.2 Resilience of Power Systems to Ice storms
	6.2.1 Resilience Quantification Framework
	6.2.2 Implementation and Results

	6.3 Quantifying Spatiotemporal and Fragility Uncertainties of Hurricanes
	6.3.1 Implementation Procedure
	6.3.2 Case Studies and Results

	6.4 Role of RESs in Generation Redispatch
	6.4.1 Problem Settings
	6.4.2 Validation of the Proposed Algorithm
	6.4.3 Effects of RES Sizes on the Resilience Level

	6.5 Conclusion

	7 Conclusion and Future Work
	References

