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Abstract

Gesture recognition has become an topic of great interest as it continues to ad-

vance the capabilities of human computer interaction. Research has shown that re-

lated technologies have the potential to facilitate highly accessible user interfaces,

enabling users with various limitations to use different applications in a more intu-

itive way. This thesis presents a new contribution to this research by introducing a

novel approach to performing gesture recognition on American sign language (ASL)

hand gestures through virtual reality (VR) using motion tracking gloves. As a proof

of concept, an application was developed using this approach which is capable of rec-

ognizing 34 ASL hand gestures performed by a user as they navigate a turorial-based

environment. This application was evaluated through a user study to determine the

effectiveness of the approach and any possible improvements that could be made. The

hope is that the approach presented in this thesis could be expanded into a number

of different applications aimed at propagating the use of ASL and improving the lives

of those who use it regularly.
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Chapter 1

Introduction

There has been abundant research in the field of gesture recognition, with related ap-

plications spanning a wide range of technologies and disciplines. Gesture recognition

refers to the process of detecting and interpreting human gestures by acquiring and

analyzing related data [4]. Much of the research in this field has been dedicated to-

wards hand gesture recognition, with sign language gestures being a particular area of

interest. Sign Language is a method of communication used primarily within the Deaf

and Hard of Hearing (DHH) community which uses hand gestures in the place of let-

ters and words. Several applications have been developed with the goal of consistently

and efficiently recognizing sign language gestures in order to ease the communication

challenges commonly faced within the DHH community. While sign language gestures

do follow specific rules and syntax as with any language, the gestures being performed

can still vary greatly depending on the person performing them, as well as the shape

and size of that person’s hands. Because of this, machine learning techniques are

often employed in these types of applications, since they are ideal for adapting to

new data variations, and provide an efficient way of updating required gesture pa-

rameters as needed. Despite the successes of gesture recognition applications, they

also face a number of challenges which can limit overall usability. One common issue

with gesture recognition is occlusions, or obstructions within the area being detected,

which can be caused by overlapping fingers, or forming fists. Many gesture recogni-

tion applications also lack the ability to recognize moving gestures as well as gestures

which involve parts of the body that are outside of a typical field of view.
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VR is another area of research which has seen substantial contributions in vari-

ous disciplines. VR encompasses the creation and utilization of artificial simulations

meant to replace one or more sensory stimuli provided by the real world [14]. A

common technology used to experience VR, which is also the technology that will be

discussed in this thesis, is a VR headset which provides visual and sometimes audi-

tory simulations to a user. Since VR involves immersing the user into a virtual world

with nearly endless possibilities, the field has massive potential to provide unique and

intuitive user interfaces, especially when combined with different types of peripheral

hardware. One approach to designing VR UIs is providing a simulated version of

the user’s hands which can replicate real-world movements within the virtual envi-

ronment. There are a number of tools which achieve this in different ways, with

each one having it’s own benefits and trade-offs. Some tools include infrared sensor

technologies such as the LEAP motion, as well as motion tracking gloves [23].

This thesis presents a novel approach to performing ASL hand gesture recogni-

tion within a VR environment. This approach has been implemented into a usable

application which successfully recognizes ASL gestures being performed by a user.

The hardware used with the application includes the Vive Cosmos VR Headset along

with the VRFree Sensoryx motion capture gloves. Using a feed-forward neural net-

work to classify gestures, all letters of the ASL alphabet are successfully recognized

along with 8 words/phrases. The gesture recognition technique employed by this ap-

plication has the capability to recognize moving gestures as well as gestures which

must be performed at specific parts of the body, which has been a limitation with

many previous related applications. The VRFree gloves also overcome the occlusion

issue of hand gesture recognition by providing distinct sensor data from each joint

of each finger. In order to effectively leverage the VR portion of the application, an

intuitive tutorial-based interface was created for the user which displays examples of

gestures to be performed, and enables the user to perform gestures one at a time until

each one is performed successfully.

The rest of this thesis is structured as follows: Chapter 2 provides background
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knowledge integral to understanding the material of this work. This chapter starts

by providing general information regarding sign language along with a review of tech-

nologies that have been used to promote sign language education and communication.

It then provides information regarding VR, motion tracking hardware, and machine

learning, with a focus on areas that are more relevant to the topics presented in this

thesis. Chapter 3 discusses the framework that has been created for recognizing ASL

gestures within a virtual environment. It also discusses the application that was cre-

ated using this framework, and the implementation of them both. Chapter 4 outlines

the details of a user study that was performed to evaluate the effectiveness of the

ASL gesture recognition application and the intuitiveness of the user interface. The

results of the user study are then analyzed in Chapter 5 based on a number of metrics

used along with input from the participants. Finally, conclusions as well as future

work are present in Chapter 6.



4

Chapter 2

Background and Related Work

2.1 Sign Language

2.1.1 Overview

Sign Language can be defined as a method of communication using hand gestures,

facial expressions, and body posture, which is utilized primarily by the Deaf and Hard

of Hearing (DHH) community. The language incorporates hand gestures represent-

ing “signs” which can be performed using one or both hands, with individual signs

representing letters, words, or phrases. Along with the hand gestures themselves,

facial expressions and body positioning can also be incorporated to present a more

accurate interpretation of the information being communicated. While not everyone

in the DHH community uses sign language as a primary method of communication, a

great number prefer it due to it’s capability to produce a descriptive image with the

entire body, which can often pale in comparison with emphasized speech [31].

While sign language is often associated with those in the DHH community, sev-

eral other groups throughout history have also used a similar type of communication

in different situations [31]. For example, Native Americans have used signs to com-

municate with different tribes due to the high difficulty in mastering many spoken

dialects. Also, hunting groups within Africa continue to use signs to communicate

silently when sneaking up on prey. In fact, nearly everyone does perform some kind

of gestural or nonverbal communication despite sometimes being so subtle that it

goes unnoticed. For example, one might touch their chin to indicate that they are
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thinking about something, or give a passing smile to indicate their comfortableness

with someone [31].

Just as with spoken languages, different types of sign languages exist depending

on the community and/or region in which they are being performed. The application

presented in this thesis focuses on recognizing gestures from American Sign Language

or ASL, which is used in North America. The gestures of the ASL alphabet are

displayed in Figure 2.1. Along with the alphabet, there are also various words and

phrases that can be performed in ASL using either a single hand gesture or multiple

hand gestures combined.

The basic parameters which form a sign in ASL are presented in [31] and are

outlined below :

• Handshape - the shape of a the hands when forming a sign. This can stay the

same or change while performing the sign. Two-handed sign gestures can have

the same handshape for both hands, or they can be different [31].

• Orientation - the position of the hand(s) in relation to the body. An example

of this could be which direction the palm is facing when performing a sign

(facing towards or away from the body, towards the ground, or upward) [31].

• Location - the place in space where a sign is formed. Some signs can be

stationary, such as “MY” or “LOVE”, and some can move from one location in

the signing space to another, such as “HELLO” or “NICE” [31].

• Movement - the direction in which the hand moves in relation to the body

when performing a sign. Some signs may have a simple small movement, such as

“NICE”, while some have a more complex larger movement, such as the gesture

for “SIGN LANGUAGE” [31].

• Nonmanual markers - Additional body movements which are added to signs

to create meaning. These can include facial expressions, head tilting, shoulder

movement, and mouth movements [31].
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Figure 2.1: The American Sign Language Alphabet[30].
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These five parameters must be considered when performing any sign in ASL

because if one of them changes, the entire meaning of the sign can also change.

2.1.2 Technology and Sign Language

Members of the DHH community continue to face a wide range of difficulties through-

out day-to-day life due to the high significance auditory abilities have in various sit-

uations [24]. This is a problem that researchers have striven to solve in a number

of different and creative ways. As research has advanced, a number of software and

hardware tools have been created to help make communication and education easier

within the DHH community.

Historically some common methods of education for sign language users included

face-to-face learning methods, in which an experienced signer demonstrates ASL hand

gestures for a student to replicate, along with literature which displays appropriate

gestures matched with their corresponding meaning [19]. However, As technology has

advanced, there has been excitement among researchers in the area of sign-language

technologies, prompting those in the field of Human Computer Interaction (HCI) to

investigate its future potential [5]. Many of these tools involve detecting performed

sign language gestures and outputting a useful response. Some applications which use

this type of technology include gloves which can translate sign language gestures into

audio and text, Dialogue systems which use image recognition, and educational tools

using gesture recognition in VR [3, 10, 23]. The following sections outline some of

the more notable tools that have been created with the aim of facilitating education

and communication within the DHH community.

2.1.2.1 ASL Translator Glove

Just as phone apps exist to translate spoken words into other languages, it is also

useful to translate sign gestures into their textual and auditory representation. UCLA

researchers successfully developed a glove which achieves this at a low cost. Figure 2.2

shows an image of the glove translating an ASL gesture. The glove is able to translate



8

Figure 2.2: Motion sensor glove developed by researchers at UCLA which can trans-
late signs into images and text [3].

660 ASL gestures in real time at 98.63 accuracy and at a rate of one word per second.

The researchers who created this glove also tested capturing data from face sensors

to detect facial expressions that are a part of ASL signs.

While the glove is able to translate gestures fairly efficiently, the response rate is

a bit too slow to be used as an effective communication tool for experienced signers.

Critics in the DHH community have stated that the glove would instead be useful

in helping more people learn sign language on their own. As such, this glove is an

example of a tool useful for sign language education.

2.1.2.2 Multi Modal Sign Language Kiosk

Some researchers have chosen to focus more on User Interfaces that would be com-

fortable for those in the DHH community to use. One such project is a multi-modal

dialogue system that can be used within information kiosks for the deaf [10]. Devel-

oped by researchers in Switzerland, Turkey, and the Czech Republic, this application
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uses cameras to recognize hand, facial, and body gestures, and respond with an an-

imated interface as illustrated in Figure 2.3. As another input option, the interface

also consists of a touch screen.

Figure 2.3: Setup for an informational kiosk capable of sign language recognition [10].

One major benefit of this application is that it does not involve the user to be

equipped with any sensors or other hardware in order to use it. Encumbrances such

as these can reduce freedom of movement and make for a less comfortable user ex-

perience. Also, this application gathers enough data to capture full body movements

and facial gestures, which are an essential part of sign language. However, as with

other gesture recognition methods that use image processing, there can be several

restrictions based on lighting, colors and textures present, and occlusion. However,

this project is a good example of a tool designed to ease communication difficulties

in the DHH community.

2.1.2.3 ASL Educational VR App using LEAP Motion

While some research projects have shown to have potential use as an educational

tool, such as the translating gloves, others have chosen to directly target an audience



10

in sign language education due to the significant improvements they could provide.

One such project is an ASL educational VR app developed by researchers at the

University of South Florida [23]. Using the LEAP motion sensor in conjunction with

the HTC Vive VR headset, the application successfully detects every letter in the

ASL alphabet with an accuracy of 98.33 percent. To address educational concerns,

the UI of the application places users in a virtual classroom-like environment that

enables the user to select which ASL gesture they would like to learn and presents a

poster outlining how to perform each gesture as shown in Figure 2.4.

Figure 2.4: ASL Educational VR App which utilizes a classroom-like atmosphere in
the UI [23].

While this application does limit the necessary peripheral devices to just a head-

set and sensor, the lack of data coming from the fingers does limit the total gestures

that can be performed due to occlusion. For this same reason, gestures which are

similar to each other (such as “M” and “T”) were incorrectly classified in this appli-

cation.
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2.2 Virtual Reality

2.2.1 Overview

As stated in Chapter 1, Virtual Reality (VR) works by replacing certain sensory

stimuli of the user with artificial ones generated through software and hardware. The

sensory stimuli that is most commonly replaced through VR is that of vision, but

there are many instances in which other senses are manipulated as well. By replacing

or simulating human senses, VR can effectively “trick” the senses of a user, which can

allow them to experience a variety of different things that they could not in the real

world. While these experiences may be simulated, they are sometimes close enough

to reality such that they can they influence a user’s behavior in the real world as well.

One of the most common ways to experience VR is through a VR headset such

as HTC Vive (shown in Figure 2.5). A VR headset displays virtual world data from

a computer or smartphone to the user, and tracks head movements so that the user

can navigate through the virtual environment. Headsets are sometimes paired with

controllers as well to enable the user to further interact with the virtual world. While

VR is often associated with gaming, there are several other types of applications

that have been developed using it, such as those involved in cinema, healthcare,

socialization, prototyping, psychology, and robotics [14].

2.2.2 Application Development

2.2.2.1 Overview

In regard to software, the heart of any modern VR application is the Virtual world

generator or (VWG) [14]. As the name implies, the main role of the VWG is to take

in input data from the real world, and use it to create a virtual world which the

user can interact with intuitively. The diagram in Figure 2.6 shows how a standard

VWG system operates [14]. Inputs into a VWG system could include the motion

tracking sensors within a VR headset, Controller inputs, and other peripheral device

inputs. The output is a rendered world which can be interacted with using one or
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Figure 2.5: The HTC Vive is one of many VR headsets available commercially.

Figure 2.6: The VWG takes in input data from the real world, and uses it to create
and display a virtual world that the user can interact with intuitively [14].
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multiple artificial sensory stimuli. The type of world generated by the VWG can vary

greatly based on user preferences and the intended audience of the application being

developed. For example, the virtual world can be completely synthetic, meaning all

elements of the virtual world are computer generated, or it can be a duplicate of the

real world generated using various cameras and computer vision techniques. Also, the

laws of physics within the virtual world can either be more closely related to those

of the real world, or can be a warped version allowing the user to accomplish things

that would normally be impossible.

Naturally, in order to enable the user to effectively interact with the world gen-

erated by the VWG, the appropriate input hardware must also be selected. Many

VR headsets come equipped with controllers to interface with the virtual environ-

ment. However, there are a wide range of other options to replace or expand upon

this including motion tracking gloves (explained further in Section 2.3), treadmills, or

simply data from motion tracking tools such as the Microsoft Kinect [14]. Some have

even developed custom input mechanisms such as with the Bicycle VR app shown in

Figure 2.7. Depending on the intentions of the application it is important to select

the appropriate hardware and software tools in order to create a user interface that

will be acceptable by the audience.

2.2.2.2 Software Development Tools

There are a number of toolsets available for developing VR applications that come

equipped with a VWG and an intuitive interface to handle concerns such as physics,

interaction, lighting, graphical rendering, etc. Tools such as these are very popular

among indie VR developers since all the tools they need are readily available to

facilitate the development process. On the other hand, developers also have the choice

to build their VWG from scratch using low-level SDKs. This approach does give the

developer more power to modify and optimize various parts of the VR application as

they see fit, but it can also greatly increase the implementation time and resources[14].

Many game development studios choose this route by developing their own proprietary
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Figure 2.7: A custom VR system connecting a bicycle to a VR headset [14].

game engines [35]. In regard to this thesis, the former approach of VR specific toolsets

is more applicable. Two of the most popular tools which fall under this category are

Unity and Unreal Engine. The application presented in this thesis is developed using

the Unity engine as it has a default compatibility with the API which accompanies

the motion tracking gloves. Further information regarding both development engines

is presented in the following sections.

Unity Unity is currently the leading platform in developing real-time 3D and 2D

applications. In 2020 over 50 percent mobile, PC, and console games were made

with Unity [39]. Founded in 2004, the creators of unity had a goal of making game

development more universally accessible to potential users. In achieving this goal,

developers have seen Unity to be more intuitive and easy to use then other develop-

ment engines. Part of the reason for this is the large number of online tutorials that

are available regarding Unity. Unity also supports a larger number of platforms than

other engines, enabling it’s applications to reach a wider array of audiences. While

Unity does surpass others in regards to intuitiveness and universal compatibility, it’s
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offerings regarding high quality graphics can be seen as inferior when compared to

some competitors. However, this is also an area in which unity is improving. Unity

uses C sharp as it’s primary programming language for development [35].

Unreal Engine Unreal Engine was founded in 1998 by Tim Sweeney, who also

founded the popular game development company Epic Games [35]. One of the most

well known and popular games made using Unreal Engine is Fortnite, which generated

a revenue of one billion dollars as of January 2019, and had an audience of 200 million

users. A major benefit of Unreal Engine over it’s competitors is the high quality of

graphics it offers. Unreal engine also provides a number of tools by default, which

would instead be installed as extra plugins in other game engines such as Unity. A

trade off for this, however, is limited offerings regarding possible platforms to develop

on, and also a more complex development process. Unreal Engine also offers all of it’s

development features for free without any limitations, unlike some other development

engines. Developers using Unreal Engine can develop games using either C++ or

Blueprint Visual Scripting as their programming language [35].

2.2.2.3 Hardware Components

Almost any modern VR system on the market today will include a VR Headset and

a set of controllers as a form of user input. However, as mentioned in Section 2.2.2.1,

there can be several variations to this, which introduces other types of input hardware

that can be used. Given the variety of input hardware that can come available with a

VR system, it is most useful to describe the fundamental hardware components that

make up any modern VR setup. These can be categorized as Displays, Sensors, and

Computers, and are presented in the following sections [14]. The image displayed in

Figure 2.8 also shows the disassembly of a popular VR headset called the HTC Vive,

and can be used as a visual reference for the components which the following sections

explain.
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Displays: As mentioned in Section 2.2.1 VR systems involve providing artificial

stimuli to certain human senses in an effort to replace stimuli provided by the real

world. The devices which provide this artificial stimuli are called displays. While

the term ”display” may suggest a purely visual stimuli, this term can also be used

to describe stimuli for the other senses such as auditory displays or haptic displays.

However, in most modern VR systems, visual displays are the most important.

A common way of creating a visual display in VR is by combining a smartphone

with a compatible headset which brings the phone screen close to the eyes, and

uses magnifying lenses to bring the screen into focus. Several VR companies also

use custom displays which use the latest LED display technology incorporated into

smartphones. More advanced VR applications, such as CAVE systems, use large-

panel displays or a combination of digital projectors and mirrors. Haptic displays can

be achieved through methods such as vibratory feedback or resistance in response

to user input. Auditory displays can be achieved through general speakers emitting

sound or through more advanced methods such as bone conduction in which the skull

is vibrated propagating waves to the inner ear [14]. In Figure 2.8, the visual displays

of the HTC vive headset are made up of two AMOLED panels and two Fresnel lenses

which are shown in the bottom-center of the image. Some versions of the HTC Vive

also feature a pair of headphones, but the version presented in this image does not [17].

Sensors: Sensors are devices which are used by VR systems to extract information

from the real world. In order to successfully apply visual and auditory stimuli, it is

important for VR headsets to track both the position and orientation of the head.

Orientation tracking is achieved through the use of sensors known as IMUs or in-

ertial measurement units. Using a gyroscope combined with an accelerometer and

occasionally a magnetormeter, IMUs measure their own rate of rotation (also known

as angular velocity) and integrate them over time in order to estimate the change in

orientation.

Cameras are used to track position of the head in most VR systems, and in some
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Figure 2.8: The individual components of an HTC Vive headset displayed after a
disassembly [17].

cases the positions of the eyes, hands, and other parts of the body. This is achieved by

using features in an image as reference points to narrow down the possible positions

for moving objects. Sometimes special markers or objects are placed on users or

around a scene in order to obtain more reliable tracking data, but efforts are being

made to try and reduce this need. Depth cameras can also be used, which project

infrared lights on a scene and measure the distance between the lights and an infrared

sensor. One well known device that uses this method is the Microsoft Kinect.

In Figure 2.8, the sensors of the HTC vive headset are shown on the right hand

side within a network of orange ribbon cables. Connected to these cables are a

number of photodiodes, which are sensors used to receive infrared light from base

stations mounted in the play area. These enable a connected computer to calculate
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the headsets position and orientation during operation [17]. Section 2.3 goes into

more detail regarding how various sensors are used to perform motion tracking.

Computers: As explained in Section 2.2.1, the core of modern VR applications is

the virtual world generator or VWG. The primary role of the computer in a VR setup

is to execute the VWG. Sometimes an external PC may be used as this computer,

and be connected to the headset through either a wired setup or, in some newer

cases, a wireless one. Other times, the computer may just be a smartphone that is

placed within the VR headset. The necessary costs and complexity of the VWG are

important considerations when selecting the type of computer that will be part of

the VR system. Given the potential computing power and modularity of PCs vs.

smartphones, these are typically the better choice for more advanced VR systems.

Advancements continue to be made in Graphical processing units (GPUs) which can

be an important foundation for VR as performance demands increase. Headsets also

commonly contain microcontrollers which gather information from the sensors of a VR

system and send them to the computer, and display interface chips which enable the

conversion of input video to display commands [14]. In Figure 2.8 a microcontroller

which performs these operations along with several other functions is shown in the

lower center of the image [17].

2.2.2.4 Development Challenges

VR Sickness: VR sickness has been and continues to be one of the most major hin-

drances towards widespread adoption of VR technology. VR sickness can be defined

as a form of visually induced motion sickness that occurs when using VR systems,

or any other uncomfortable experiences that occur when taking part in VR. Visually

induced motion sickness refers to a type of motion sickness that results from being

exposed to a stimuli that tricks the brain into thinking movement is occurring when it

actually is not. This stimuli exposure is known as apparent motion, or vection when

caused by simulators or VR. Vection occurs as the result of a negative sensory conflict
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in which the vision sense detects that the body is acclerating while the balance sense

(or vestibular sense) detects that the body is motionless. This can occur in VR when

the user moves in the virtual environment using a controller instead of moving in the

real world [14].

A simple way to reduce or remove vection is to reduce or remove visual stimuli

that may indicate that the user is moving when they are not. This can be done

by placing the user within a virtual container, such as a cockpit of a plane, which

would block most outside movement, or just limiting any movement within the virtual

environment. If movement must be performed in a virtual environment, there are also

a number of other methods to reduce vection such as reducing the amount of time in

which the visual stimuli is exposed, making the visual stimuli more realistic to help

convince the brain that it is actually moving, and incorporating distractions which

would help the user avoid the visual stimuli such as shooting enemies. Repeated

practice is also another way to reduce sensitivity towards vection [14].

Aside from vection, there could be a number of other causes to VR sickness that

are difficult to determine. Some of the causes may be due to previous activities which

would induce such experiences, such as staying up too late or not eating enough. There

could also be some users of VR which are more susceptible to VR sickness than others

which causes varied results. Excessive latency being present in a VR system can also

be a cause of VR sickness, as this can cause delays in perceived movement vs. actual

movement, resulting in a sensory conflict. However, most modern VR systems do not

have excessive latency issues thanks to advancements in motion tracking, graphical

processing, and displays. Determining the root cause of VR sickness symptoms is an

effort that continues to be performed by researchers in the field [14].

Uncanny Valley: While realistic VR experiences are desirable in many cases, ex-

cessive realism when applied to virtual representations of human beings, or avatars,

can invoke feelings of discomfort and uneasiness among observers. This phenomenon

is known as the uncanny valley. Because of this, developers try to avoid making
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avatars look exactly as people do in the real world, and instead try to find an ideal

balance between realistic and unrealistic appearances [14].

There are a few ways to bypass the difficulties of the uncanny valley. One popular

way is to use animation to create avatars with unique appearances that are close

enough to humans to at least be somewhat relatable. This can be done in subtle

ways such as enlarging the eyes of characters, or through more exaggerated methods

such as created characters that are dramatically different from humans. It is possible

to create avatars that are so realistic that they bypass the effects of the uncanny valley,

but to do so would likely cost an excessively large amount of time and resources that

would seem infeasible to many development teams [28].

2.2.3 Accessible User Interfaces in VR

2.2.3.1 Overview

When designing software applications that could likely be used by those with a phys-

ical or mental disability, such as the application presented in this thesis, it is essential

to understand the considerations that must be made when targeting such users, and

what can be done to make the their experience as comfortable and intuitive as pos-

sible. Not only must the developer consider how the user is able to provide input to

the interface, but they must also ensure that any output is sufficiently understood by

the user given their limitations. VR software is an ideal choice for developing such

applications, since it can be designed to accept nearly any ordinary human sense as

an input whether it be sight, sound, or touch. Because of this, it is no surprise that

research continues to be performed on effective interfaces in virtual environments for

those with a wide range of disabilities. The following section presents a summary of

various VR applications that have been created using this research.

2.2.3.2 Accessible VR Applications

One particularly unique research project regarding accessibility in VR is the Canetroller

created by Microsoft [41]. Designed for the visually impaired, the Canetroller is a type
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of VR interface device used with the HTC Vive headset which provides haptic and

auditory feedback to the user, enabling them to navigate an environment containing

virtual obstacles. Figure 2.9 demonstrates and example of its usage. The Canetroller

was meant to provide a virtual version of a white cane, which is a popular tool used

by the blind and visually impaired to navigate environments in the real world. While

users of the Canetroller indicated that the multi-modal feedback of the device was use-

ful for determining virtual boundaries, many also thought that the auditory feedback

was not specific enough, making it difficult to determine what types of objects they

were encountering [41]. Microsoft also developed an application in this area focusing

on an interface using hand gestures as input [32]. While this application does not

focus on a specific disability, it is apparent how this could be useful for those who use

hand gestures as a primary means of communication, such as the hearing-impaired.

As with many hand-tracking applications, Microsoft’s tool utilized machine learning

in order to achieve detailed poses during the hand tracking process, and also incorpo-

rated improvements to make the hand-tracking process more accurate and efficient.

This application utilized both a VR headset and a Kinect device in order to track

hand movements, and had issues dealing with occlusions due to the un-encumbered

nature of the hand-tracking [32].

Figure 2.9: A demonstration of how the Canetroller apparatus is used. The left image
shows a user interacting with a virtual trash can, and the the right image shows a
user interacting with a virtual street crossing. When certain encounters are made
with virtual objects, vibratory feedback is provided to the user [41].
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While there have been many VR applications directed towards physical disabil-

ities, there are also several applications directed towards mental limitations. The

University of Texas at Dallas has researched various ways to utilize VR for address-

ing social anxiety and aggression in teenagers afflicted with disorders such as Autism

Spectrum Disorder (ASD) and Asperger’s Syndrome [34]. In their VR applications,

Teens socialize with avatars and participate in several different activities to improve

their social behavior. Teenagers taking part in this program have reported that the

virtual world is less threatening than the real one, and allows them to calmly address

issues as they need to [34]. Researchers at the University of Florida have developed

a similar application that focuses on assisting those afflicted with mental disabilities

in their effort to find jobs in a professional environment [1]. This software is called

“a virtual reality system for vocational rehabilitation of individuals with disabilities”

or “VR4VR” and aims to teach those with ASD one of six vocational skills including

cleaning, loading, money management, shelving, environmental awareness, and social

skills. Many of the individuals tested found the software beneficial, though some

thought that it was not very realistic, and the fact that they knew it was not real

made tasks too easy [1].

2.2.3.3 Challenges

Based on research performed on already present VR applications directed towards

the mentally/physically disabled, the current major challenges with these types of

applications are the following:

• Providing Adequate Feedback to the User - As shown with Microsoft’s

“Canetroller” tool and hand-tracking application, having insufficient feedback to

the user can be highly detrimental in applications directed towards the disabled.

In order to achieve an immersive interface, it is important to target as many

sensory stimuli as possible, and when doing so, ensure that the output is what

one would expect given the situation.

• Providing a Realistic Interface - As shown with the VR4VR application,
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not having a believable virtual environment can greatly limit the experience

of the user, especially if the goal is to simulate real-world scenarios. Having a

more realistic interface can also serve to compensate for the limited senses of

the user by still providing an immersive experience. However, as explained in

Section 2.2.2.4, one must also beware of the uncanny when attempting to design

realistic VR applications.

• Reducing Setup Effort - Having an overwhelming number of tools present in

order to generate a VR experience can decrease the overall accessibility of the

application and make users with limitations less likely to participate. VR4VR

had a significant setup effort which may have also contributed to the lack of

realism within the application.

2.3 Motion Tracking

2.3.1 Overview

Motion tracking can be defined as the process of converting physical movements into

digital data which can be interpreted and analyzed by computer software in real

time [22]. Motion tracking is often used interchangeably with the term motion cap-

ture, and in many ways they are similar, but there are some key differences between

the two which allow for them to be considered separate entities [18]. Perhaps the

most significant difference between the two is that motion capture involves acquiring

movement data to be used in post-processing, while motion tracking involves process-

ing movement data in real time. Motion Capture is often used to construct animated

movies with the aim of creating synthetic characters that have realistic movements.

Motion tracking has also been used in a number of different applications including

medical technology, robotics, and virtual reality [12, 13].

In order for Motion tracking to be successful, it is necessary to track every possible

direction in which a target can move within a three-dimensional space. Each of these

directions is called a degree of freedom of DOF, and any rigid object moving in 3D
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space has six of them [14]. These six DOFs are shown in Figure 2.10 which uses a basic

VR headset as an example motion tracker. Three of the DOFs refer to translational

movements (front to back, left to right, up and down) while the other three refer to

rotational movements (also known as yaw, roll, and pitch) [14]. Section 2.2 touched

on some of the hardware used regarding motion tracking, but the following sections

will go into motion tracking in more detail including the types of tracking that exist

along with current related technologies other than VR headsets. Given the various

considerations that must be made regarding motion tracking, particularly in relation

to sign language gesture recognition, providing a more in-depth understanding of this

process is necessary.

Figure 2.10: An illustration of the six degrees of freedom that exist with any object in
3D space, using the human head being tracked by a VR headset as an example [22].
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2.3.2 Types of motion tracking

2.3.2.1 Optical Tracking

Optical tracking is a type of motion tracking which uses imaging devices to track

motion. [22]. Many VR based optical motion tracking systems use depth sensing

cameras in conjunction with reflective markers to perform motion tracking. These

markers are captured by depth cameras and mapped to a 3D virtual space. The

cameras which perform this tracking are often not restricted to visible light, but utilize

infrared light instead so as to no let natural light distract the user experience [26].

The markers used in the process can be either passive or active [22]. Active markers

feature computer controlled LEDs while passive markers do not. As such, active

markers have a higher tracking accuracy compared to passive markers. However,

active markers also require a power source or a computer connection unlike passive

markers, which can reduce the immersive qualities of a VR experience.

The lighthouse system of the HTC Vive is an example of optical tracking which

treats the headset and controllers as external markers [22]. In this motion tracking

system, external lighthouses or base stations emit infrared (IR) pulses along with IR

laser sweeps on the X/Y axis [16]. An array of IR-filtered photodiodes are also embed-

ded within all items that require tracking, which in this case are the VR headset and

controllers. When the photodiodes are exposed to the IR light from the lighthouses,

their outputs are amplified and passed on to an ASIC (Application-specific Integrated

Circuit) within the tracked devices which determines the location and orientation of

the tracked devices within the area [16]. Some other optical tracking systems, such

as the LEAP motion and Microsoft Kinect, do not require external markers to per-

form optical tracking, and instead use other techniques to achieve this [22]. More

information regarding these motion tracking systems is presented in Section 2.3.3. A

limitation with single camera optical tracking techniques is that there must always

be a line of sight between the tracked object and the camera, which restricts move-

ment [26]. As such multiple cameras are often integrated in systems which use optical
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tracking [26].

2.3.2.2 Non-Optical Tracking

Non-optical tracking is a type of motion tracking which uses a collection of sensors

rather than imaging devices [22]. Three well known sensors which have been widely

used for motion tracking in cell phones and tablets are the gyroscope, accelerometer,

and magnetometer [14]. As mentioned in Section 2.2, these three sensors combined

make up what is known as an IMU or Inertial Measurement Unit, which is used to

determine orientation in most modern VR systems. Modern technology has enabled

IMUs to be developed as Micro Electro Mechanical Systems or MEMS for short. As a

result the components of modern IMUs such as those in cellphones and VR Headsets

are less than 1mm in length [14].

The gyroscope is the main component of the IMU [14]. This component works

by measuring the angular velocity as we rotate about the X, Y, and Z axes. The

sensing elements for each axis to be measured include two vibrating masses which

are vibrating perpendicular to those axes [20]. If a rotation occurs on each axis, a

force is exerted by the vibrating masses due to a scientific principle known as the

Coriolis effect. These Coriolis forces are converted into electrical signals, which are

then calibrated to produce an understandable output such as degrees or radians per

second [14]. Figure 2.11 displays an example of a MEMS gyroscope. These gyroscopes

provide angular velocity measurements at a certain frequency, every millisecond for

example, and we can estimate the orientation of the object to be tracked by integrating

these measurements.

Despite the accuracy of some MEMS gyroscopes, there is typically some discrep-

ancy that exists between the actual orientation of a tracked object, and the orientation

measured by the gyroscope [14]. This discrepancy is called drift error, and in order to

perform optimal motion tracking, other sensors are typically needed to estimate and

account for it. These other sensors are usually an accelerometer and magnetometer.

The accelerometer handles the portion of drift error which corresponds to the and



27

Figure 2.11: An image of a MEMS gyroscope with arrows overlayed to indicate how
angular velocity is measured on a particular axis. Two masses on are vibrated on an
axis to be measured, as indicated by the Actuation arrows, and if a rotation occurs
across a perpendicular axis, Coriolis forces are exerted [14].
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pitch and roll rotational axes (or the “floor” in a VR environment), which is also

called tilt error. An accelerometer works by measuring linear acceleration along the

X, Y, and Z axes. It typically consists of a mass attached to a spring which allows

it to move along one axis as shown in Figure 2.12. A series of fixed plates surround

the mass, and when acceleration occurs, the capacitance between the fixed plates

and the moving mass changes. These capacitance values are then processed to gain a

measurement of acceleration. Accelerometers help to minimize tilt error by helping to

define where the “up” vector is located, or vector which is parallel with gravity. Since

the up vector is always perpendicular with the pitch/roll axes (left/right vectors) in

a world frame, it can be used as a reference point to determine where these axes

are located in the actual world, which can they be used to help correct the sensor’s

interpretation of those axes when identifying it’s own orientation. The accelerometer

estimates the up vector by sensing the acceleration of gravity (9.8m/s2) and adding

it to the acceleration of the body being tracked, which may be very low especially if

the body is stationary [14].

While the accelerometer handles drift error for the pitch and roll axes, magne-

tometers handle drift error for the yaw axis, also known as yaw error [14]. This type

of error can be described as a discrepancy between what direction the tracked object

is facing in the real world and the direction detected by the motion tracker. The mag-

netometer works as a compass by measuring a 3D magnetic field vector that is used

as a frame of reference similar to how the “up” vector is used with the accelerometer.

A difference between a compass and a magnetometer is that the vectors the sensor

outputs do not always point to true “North”. This is essentially due to the fact that

earth’s magnetic field varies from area to area requiring certain offsets to be applied

to establish what true north is. However, in regards to a motion tracking system,

true north is typically not important, since we really just require a reference point

to enable us to calculate our yaw error. Calibrations do need to be made though to

ensure that the detected magnetic field lies on the horizontal plane, and to ensure

that magnetic fields generated from other components such as buildings or circuitry
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Figure 2.12: A diagram depicting the basic operation of a MEMS accelerometer.
Two springs on opposite sides move a mass when acceleration occurs. Capacitance
values are taken between the moving mass and a series of fixed plates, which directly
correspond to the measurement of acceleration [15].
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adjacent to the magnetometer do not negatively influence measurements [14].

While the IMU is a more popular approach to non-optical motion tracking, there

are other approaches that have been experimented with as well. One such approach

is known as acoustic tracking [18]. This type of motion tracking involves a series of

emitters which emit sound that is received by one or more microphones at the location

of the object to be tracked. The location of the tracked object is determined by mea-

suring the time taken for the sound to travel from the emitters to the microphones,

which then can give us the distance between the emitters and the microphones. By

using multiple emitters and microphones, both position and orientation can be deter-

mined through this method. However, since temperature and air pressure can have an

influence on the speed of sound, this type of equipment must also be calibrated before

use or have built-in mechanisms to account for temperature and pressure during mea-

surement. Mechanical tracking is another form of non-optical tracking that has been

used. This type of motion tracking works by connecting to a reference point, such as

a bone joint, and measuring the position of that point. Using trackers with haptic

feedback, this type of tracking can measure the angles and distance between joints

which can help determine position. Trackers like these have been used to construct

full body suits which measure major joint positions as well as devices that fit around

the fingers and gloves to track smaller scale movements [18].

2.3.3 Hand Motion Tracking

2.3.3.1 Overview

Motion tracking technology is often used for estimating the motion of multiple con-

nected bodies relative to each other [14]. This may involve tracking eye movement

relative to the head, head movement relative to the torso, or hand movement relative

to the wrist. In fact, the entire human body can be described as a group of attached

bodies which make up the body’s skeleton. This group of attached bodies is called

a multibody system, and the mathematical representation of the poses these bodies

make relative to each other is called multibody kinematics [14]. Each body, or link,
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in a multibody system is connected to its adjacent body by a joint, allowing one or

more DOFs of motion between them. A common problem in motion tracking involves

predicting the position and/or orientation of a link using only data from other adja-

cent links to which it is connected. For example, we may want to find the position

of a fingertip using data from sensors on the adjacent bones of the finger, but not on

the tip itself. This process is known as forward kinematics. A more difficult task is

performing this process in reverse, in which we try to predict the positions of finger

bones using only the finger tip, or the positions of an arm using only data from the

hand. This process is known as inverse kinematics [14].

As discussed in Section 2.1, there are number of factors that go into sign language

recognition, and hand tracking is certainly among the most important. The hand can

be considered as a multibody system with each hand bone treated as a link in a

chain of bodies to be tracked. There a number of different hand tracking devices

available which each detect the position and orientation of hands in different ways.

Some include only non-optical tracking by default, while others include only optical

tracking, and some utilize a combination of both. The following sub section will

provide details regarding a number of hand tracking options that are available along

with a comparison between them. Each of these hand tracking options were researched

in order to identify the option which would be most ideal for the sign language

recognition application presented in this thesis. The option which was ultimately

chosen was the VRfree hand tracking system by Sensoryx.

2.3.3.2 Comparison

LEAP Motion The LEAP Motion is an optical hand tracking device which consists

of two infrared cameras paired with three infrared LEDs [36]. The LEDs shine infrared

light upon the tracking area while the cameras pick up any light that is reflected back.

Using this reflected light, and image of the hands can be generated. While the device

itself has a small footprint, it provides a tracking window of approximately 2 feet

away from the sensor with a field of view spanning a 140x120 degree area [37]. The
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Figure 2.13: A user’s hands being tracked by the LEAP motion device and the
resulting skeletal figures provided by the accompanying SDK [37].

device can be used standalone or paired with a VR headset. As demonstrated in

Figure 2.13, an accompanying SDK enables the generation a skeletal model based on

the image captured by the device, which can be used in gesture recognition [37].

While the LEAP motion is capable of hand gesture recognition to an extent,

and has even demonstrated limited sign language gesture recognition as discussed in

Section 2.1, it still faces difficulties common among many optical trackers including oc-

clusion and decreased reliability when in the presence of conflicting light sources [36].

Also, while the possible tracking area is large relative to the device, it is not large

enough to allow for the wide range of movements that many gestures involve, es-

pecially those in sign language. A positive trait of the device, however, is that it

provides optimal comfort to the user, as no tracking devices need to be worn by the

user when performing tracking.

Vive Hand Tracking System The HTC Vive VR headset provides another method

of optical tracking which utilizes its included cameras to capture images of a user’s
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Figure 2.14: An image showing ASL gesture recognition being performed using the
Vive hand tracking SDK. The left-most image shows the skeletal model generated by
the SDK while in an idle state. The center and right-most images show two ASL
gestures being successfully recognized. (Figure by the author)

hands, similar to the Leap motion presented in the previous paragraphs [11]. Using

the captured images, an accompanying SDK provides the capability to generate skele-

tal representations of the hands in a virtual environment. These tracking capabilities

also extend across multiple headsets offered by HTC, and not just the original Vive

headset. Depending on the number of cameras present on the headset, this solution

also offers a larger tracking area and field of view than some competitors. The fact

that no additional hardware is needed aside from the VR headset also gives the Vive

Hand tracking system an edge regarding usability [11].

An early prototype of the application presented in this thesis utilized the Vive

hand tracking system to recognize certain sign language gestures. Some results are

shown in Figure 2.14. While the hand tracking did allow for the recognition of certain

sign language gestures, the common issues of occlusion and light interference still in-

hibited this tracking method, limiting its sign language tracking capabilities. As with

other optical tracking solutions, the lack of sensors that need to be equipped allow

for a more comfortable user experience. Also, when testing this tracking method, the

Vive cosmos headset was used which is unique in that it does not require external

base stations for tracking. This helped to reduce necessary setup for the testing that

was performed.
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Hi5 Gloves The Hi5 Gloves are an example of non-optical motion tracking which

uses 6 IMU sensors to track the orientation of the hand and fingers. The Hi5 gloves can

also be combined with a optical motion tracker to enable location tracking using the

HTC Vive Headset. A large advantage of these gloves over competitors is their ability

to provide haptic feedback to the user. This can provide a much more immersive

experience in certain scenarios, especially in VR. However, despite the gloves sensors

being able to track some directions of finger movement, they do not fully track finger

spreading, or the process creating and removing gaps between the fingers. This type of

tracking is essential for sign language recognition since there are a number of gestures

which rely on this capability. Also, the vive trackers which must be attached to the

gloves to enable location tracking are rather bulky, causing more restrictive movement

when forming gestures.

VRFree Gloves The VRFree Glove system by Sensoryx has a number of features

which are ideal for hand motion tracking when compared to competitors. This track-

ing system consists of two gloves which each have multiple sensor types including

multiple IMUs along with a head module which can attach to a VR headset [25] as

shown in Figure 2.15. The head module communicates with wrist module sensors

on the gloves to track their location in a virtual space while other sensors track the

orientation of the fingers within the hands. So the VRfree gloves can track both

position and orientation of the gloves without the need of external tools like third

party optical trackers. This combination of sensors also present the common problem

of occlusion which is present in most optical motion tracking solutions. The gloves

also come with a comprehensive API which allows for granular tracking data to be

retrieved from the sensors as needed. Because of these features, the VRfree gloves

were chosen as the motion tracking solution for the sign language gesture recognition

application presented in this thesis.

Of course, these gloves like several other motion tracking systems do come with

flaws. The main flaw in relation to sign language gesture recognition is the more



35

Figure 2.15: An image demonstration of the tracking capabilities of the VRfree glove
system. A user plays a virtual piano using the gloves which is one of many possible
activities that can be performed in the demo application provided with the glove
SDK [25].

restrictive movement and reduced comfort which comes with wearing gloves vs. not

wearing gloves. Ideally comprehensive motion tracking could be achieved without the

user needing to equip any hardware, but this is currently not a realistic expectation

given the current state of motion tracking technology. The VRfree gloves also do not

provide haptic feedback which may be desirable in certain scenarios, but not in the

application presented in this thesis.

2.4 Machine Learning

2.4.1 Overview

Machine learning is a term used to describe any program or system which can gener-

ate predictions from unknown input data using a mathematical entity called a model,

which defines the relationship between the input data and the possible predictions [8].

In the simplest case, a model could be a linear function, while in many cases it is a
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complex algorithm consisting of several steps and parameters. By building, or train-

ing, a model using example data which has the same traits as the unknown data,

the model can “learn” how to recognize these traits in future, unknown data sets.

Machine learning can be separated into two categories: supervised learning and un-

supervised learning. To train a model using supervised learning, we provide a set of

labels which consist of possible predictions that can be made, and a set of features

which are the traits the data has that can be used to help predict those labels. The

model then learns which feature values best represent each label, and can then use

new feature values to predict unknown labels within the same range. Unsupervised

learning involves finding patterns in a dataset, usually without knowing any corre-

sponding labels. The project presented in this thesis uses supervised learning, so this

method will be the primary one discussed in this section.

Machine learning is a useful practice for a number of different reasons. For

one, it reduces time spent programming and necessary code. This is because rather

than programming a series of rules and restrictions that define an application, one

can simply provide a a set of examples that abide by these rules, and feed them

into a model which can learn these rules and restrictions based on features of the

examples [8]. Also, machine learning makes applications easier to customize. For

example, if an application needs to be changed to cater to a new group of users, a new

data set could just be provided representing these user’s needs with little or no changes

being needed to the model [8]. Finally, and perhaps most importantly, machine

learning helps us to solve problems which we do not know how to solve by hand, or

would be excessively complex when solved by hand. Relating a set of features to a

set of labels can result in rather complex formulas, but with machine learning, these

formulas are generated by the model, and only require examples of inputs and outputs

to do so [8]. The following sections will outline some key concepts regarding machine

learning which were used to build the gesture recognition application presented in

this thesis.
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2.4.2 Training a Model

To provide more detail as to what a model is, it is easiest to start by looking at the

simplest case, in other words a linear function. Figure 2.16 shows an chart taken

from Google’s machine learning crash course [8]. This graph shows a number of

points plotted which relates the number of chirps per minute a cricket makes to the

temperature of the environment in which the cricket is located. Using this data,

we could create a model that takes the chirps per minute as an input feature, and

outputs a predicted temperature, or vice versa. In this case, our model can just be a

line which approximates the relationship between the input and the output, with the

function being the basic equation for a line: y = mx + b. In this function y would

represent the temperature (which we are trying to predict), m would be the slope

of the line, x would be the chirps per minute (our input feature), and b would be

the y-intercept. This works as a model because we could just plug in a value for our

feature x along with the known slope and y intercept, and get a predicted output

value. However, when applying machine learning conventions, this function would

look like the following: y′ = b + w1x1. In this case, y′ would be our predicted label

(the temperature value), b would be the bias (or y intercept), w1 would be the weight

(which can be related to the slope in the line formula) and x1 would be the feature.

This type of model is known as linear regression. A more complex version of this model

could also have multiple features which each have separate weights. In this case the

function for the model can be written as the following: y′ = b+w1x1 +w2x2 +w3x3.

Training a model is essentially the process of finding the best values for the weights

and bias in this function such that our prediction is accurate. Or in our example,

finding the line that best fits with the trend of our input data so as to accurately

predict new, unknown data which has the same features [8].

Most training processes for a model can be seen as an iterative trial and error

process such as the one outlined in Figure 2.17. Each iteration starts by first plugging

in one or more features into the model function along with starting values for the
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Figure 2.16: An example of a simple model to predict environmental temperature
based on a number of cricket chirps. The left side shows the data without a model
applied and the right side shows the data with the model. In this case the model is
essentially just the function for a line: y=mx+b [8].

weight and bias parameters [8]. A prediction is then made using these values of what

the corresponding label is. This predicted label along with the actual label are then

plugged into a loss function. The purpose of this loss function is to determine how

far off our predicted label is from the actual label which corresponds to the input

features. Using the computed loss, new values for the weight and bias parameters

will be generated which will reduce the loss during the next iteration. This process

is repeated until parameter values are found which produce the lowest possible loss.

For a linear regression model, a popular loss function used is the mean square error

(MSE) but there are a variety of other loss functions that can be used depending on the

complexity of the model [8]. The process of generating new parameter values to reduce

loss relies on a few other values called hyperparameters which can be adjusted to

optimize the learning process. Examples of hyperparameters include the learning rate,

which essentially determines how large of an adjustment should be made to the model

parameters during each iteration, and the number of epochs, which determines how

many iterations should be executed during the training process. More information

regarding the specific processes that occur in each stage of Figure 2.17 can be found

in [8].
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Figure 2.17: A diagram showing the typical process when training a supervised ma-
chine learning model [8].

Even if a model is trained successfully with a low loss, issues could still occur

during the inference (prediction) phase due to a number of reasons. one possible

cause for this is overfitting, which describes a scenario in which a model is unable to

make accurate predictions on new data due to having parameters which specifically

correspond to peculiarities within the training data [8]. The main reason this happens

is because a model is more complex than it needs to be. By simplifying a model, we

can reduce, or completely eliminate, any peculiarities which may not be present in

unseen data, enabling the model to make better predictions. One way to simplify

models is through a process called regularization. Regularization is essentially a way

of minimizing the complexity of model by modifying parameters which contribute

to that complexity. For example, L2 regularization encourages the values of weights

to be close to zero, as weights with a large absolute value can contribute to the

complexity of a model. Ensuring that appropriate features are chosen is also a good

way to reduce complexity of a model. Machine learning developers generally spend a

great deal of time performing feature engineering, which is the process of converting

raw feature data into a format which can be easily manipulated and understood by

a model. Also, testing the model against the same data set that was used in training

can cause unexpected results when testing against unseen data. It is best to use a
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test data set that contains different data from the training data set when evaluating

the performance of a model [8].

2.4.3 Neural Networks

A common machine learning problem is known as classification, in which the labels

can be seen as the set of classes we are trying to predict based on given input data [8].

For example, the ASL hand gesture for the letter “A” would be considered one of

these classes (or labels). The features would be various characteristics of each class

which distinctly separate them from the other classes. For hand gestures, these could

be finger locations/rotations, movement parameters, etc. Because of this, gesture

recognition can be seen as a classification problem. Sometimes a classification problem

can be solved using a linear model, but in many cases the input features and output

labels do not have a linear relationship, and other methods need to be utilized. One

method to resolve nonlinear relationships such as these is by combining multiple

features into one synthetic feature known as a feature cross, but this still cannot

solve some of the more difficult nonlinear classification problems. In the most difficult

cases, a common solution is using neural networks [8].

A neural network is a type of model used in machine learning which is composed

of layers which consist of simple connected units, or neurons [8]. As the name suggests,

this type of model is inspired by the network of neurons located within the brain of an

organism. Figure 2.18 shows the basic structure of a neural network. The structure

starts with an input layer of neurons, which is used to pass input data to be classified,

or in other words, to be used to make predictions. Then, there are one or more hidden

layers present. Each of these hidden layers will transform the data in such a way so

as to better relate it to the output labels. In some cases, each of the neurons in

these hidden layers will simply contain a weighted sum of the input features of the

same format as the function for a basic linear model presented in the overview of

this chapter: y′ = b + w1x1 + w2x2 + w3x3. However, in order to resolve non-linear

relationships between the inputs and outputs, it is also necessary to transform the
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Figure 2.18: A diagram showing the basic structure of a neural network. This type
of model consists of an input layer, multiple hidden layers containing linear transfor-
mations (weighted sum), a non-linear transformation layer containing an activation
function, and an output layer [8].
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data in a non-linear way. So along with these linear layers, we also have layers which

pass the outputs of the linear transformations through a non-linear transformation

called an activation function. There are a number of possible activation functions

that can be used, with two of the more popular ones being Sigmoid and ReLU [8].

Including these non-linear transformations enables us to model much more complex

relationships between the input and output values. Finally, after the hidden layers,

there is an output layer, which will contain the results of the predictions made [8].

The training process for a neural network has some similarities to the process outlined

in Section 2.4.2, however there are a number of other functions applied to each node

of the neural network making the process a bit more complex. The most common

training algorithm for neural networks is a process called backpropagation, and a

good visual explanation of the process can be found in [6].

The structure presented in Figure 2.18 contains a single output node, which can

be useful in any case in which we just have two mutually exclusive classes [8]. For

example, we may want a neural network to determine which emails being received are

spam or not spam. Such problems as this are known as binary classification problems.

However, if we want to determine if the input features correspond to one of many

classes, it would be more efficient to use a slightly different structure known as a

multi-class neural network. Figure 2.19 shows an example of this. Also, instead of

having an output value of true or false to distinguish between multiple classes, we

can assign a probability value showing how likely the input features correspond to

each class. This is achieved by applying a function before the output layer known

as softmax. Using probabilities not only expedites the training process, but can

also provide useful insights regarding how different feature values can influence the

classification, such as how different variants of a sign language letter can affect the

probability of being classified as that gesture [8].

The neural networks which have been presented in the examples so far are known

as feed forward neural networks or FNNs. FNNs have input data travel through each

layer once until they reach the output layer [9]. This type of neural network is the
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Figure 2.19: A diagram showing an example of a multi class neural network. As
opposed to a standard neural network, this one has multiple output predictions, with
each prediction corresponding to a different class. A logit is a raw prediction value
before it undergoes some kind of transformation, such as a regularization function or
a softmax function. [8]
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same one which was used to develop the project presented in this thesis. There are

a number of other neural network types with more complex structures than FNNs

which are used for a variety of different purposes. One of these is the Recurrent Neural

Network or RNN. An RNN differs from an FNN in that it is run multiple times in order

to generate a desired predicted output based on a combination of multiple inputs [9].

This is because the hidden layers from a previous run of an RNN pass on parts of

their used inputs to the hidden layers in each subsequent run. Because of this, RNNs

are often used to predict sequences of data, such as bodies of text. For example, if

we wanted to predict a desired song based on single lyric, we could split the song

lyric into parts and pass each part into an RNN. The RNN would maintain a memory

of the previous lyric portion with each run, enabling it to combine them together

to make a more accurate prediction of what the desired song will be. Other types

of neural networks are explained in the glossary of google’s machine learning crash

course which can be found in [9]. Neural networks can also further be characterized

as being deep or wide. A deep neural network is one which contains multiple hidden

layers while a wide neural network is one which has many inputs mapping directly

to the output layer with no hidden layers in-between. Because of this, wide neural

networks cannot express non-linearities through hidden layers, but they can mimic

nonlinear behavior through other methods such as feature crosses [9].

2.4.4 Supporting Tools

As the usage of machine learning has become more prevalent, a number of software

tools have been created and utilized in order to facilitate machine learning develop-

ment, and make the process more intuitive. Some of these tools, which were also used

to develop the project presented in this thesis, are explained below:

Tensorflow: Tensorflow is an open source platform used to develop machine learn-

ing applications [7]. While it includes a number of tools and resources to both build

and deploy machine learning based software, the area of focus regarding this the-
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sis is the upper level APIs used to build and train models, and make predictions

using those models. The majority of this functionality is present in an API called

tf.keras, which is a Tensorflow variation of another open source API named Keras.

The tf.data API is also useful for handling large amounts of data of different types

through an abstraction called a dataset. Many of the operations in Tensorflow re-

volve around the use of another abstraction known as a tensor, which is essentially

a specialized multidimensional array. Tensors are used as a primary data structures

during both the training and the inferrence (or prediction) phase of development in

tensorflow [7].

Pandas and NumPy: Pandas and Numpy are two powerful data handling libraries

which accompany the Python programming language. Numpy provides a number

of useful data structures such as multidimensional arrays and matrices, along with

several functions for performing complex operations on these structures quickly [21].

Pandas provides a very useful data structure used extensively in machine learning

applications called a dataframe [33]. A dataframe is similar to a spreadsheet or a

table within a database. One of the dataframe’s more useful qualities is that it can

contain multiple different data types, which exceeds the capabilities of data structures

in several other languages. Pandas not only includes a number of functions to perform

various operations on dataframes, but also includes functions to display them in

intuitive ways for research purposes. Pandas also features a number of functions for

converting between Numpy structures and its own, making the two a very useful

combination [33].

Spyder: Spyder is an open source development environment written in Python and

used primarily for developing applications related to data science [29]. Some features

of Spyder include advanced data visualization tools, a variable explorer enabling de-

velopers to view and edit variables at runtime, and an embedded console window

which can be used to run code separately or view outputs. The variable explorer is
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very useful in viewing large dataframes as it also color coats each cell based on the

differences between its contents and the surrounding data, making it easy to observe

patterns within the dataframe [29].

Barracuda and ONNX: Barracuda is neural network inferrence library used in

the Unity development environment [38]. Once a neural network is trained through

other tools such as tensorflow and a model file is created, this model can be imported

into Unity code using functions available within the Barracuda API. In order for model

files to be imported using Barracuda, they must be of the ONNX format. ONNX

or Open Neural Network Exchange is a standard format for representing machine

learning models, and is meant to be easily interchangeable between various software

tools and frameworks. Tensorflow, along with a few other machine learning APIs,

offer functions to easily convert their default model formats to the ONNX format so

that they may be shared among other applications [38].
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Chapter 3

ASL Gesture Recognition
Application

3.1 Overview

This chapter explains the structure and implementation of the ASL Gesture Recogni-

tion Application. This application consists of two parts: A trainer and a recognizer.

The trainer is responsible for generating training data for the machine learning mod-

els which perform the gesture recognition, executing the training process to generate

those models, and converting those models to a format which can be used by the

recognizer. The trainer would only need to be run when the set of gestures to be

recognized changes. For example, if we would want to include more ASL words or

phrases to be recognized than what is already included, the trainer would need to be

run so that new models can be generated. The recognizer uses the models created by

the trainer to classify incoming ASL gestures being performed by a user. The recog-

nizer also consists of a UI that guides the user in performing each ASL gesture, and

instructs them how to do so. The current state of the application includes a series of

stages which the user can navigate through, which each prompt for a separate ASL

gesture to be performed. However, this UI is fairly malleable, and can be reworked

to suit a wide variety of ASL related applications.

Given the number of possible gestures that can be recognized within ASL, it was

essential to design this application in such a way that it could be easily expanded

upon as necessary. In this initial implementation of the application, the models are
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trained to recognize 34 ASL gestures, including the 26 letters of the alphabet as well

as 8 words/phrases. Each ASL gesture is categorized based on the features of it which

are used for recognition. These categories include static gestures, multi gestures, and

positional gestures. Static gestures are essentially any ASL gesture that involves a

single hand pose with one or both hands while Multi Gestures involve a series of

poses. Positional gestures are static gestures or multi gestures that have a more strict

reliance on the position in which they are performed. These categories are explained

further in Section 3.4. Gestures are performed using the VRFree motion tracking

gloves developed by Sensoryx, which are used in conjunction with the Vive Cosmos

VR Headset. The VR gloves were chosen as input due to their ability to fully track

individual finger movement and robust API as explained in Section 2.3.3. The Vive

Cosmos was chosen as the VR hardware due to the low number of peripheral hardware

components required, such as optical tracking lighthouses, as well as it’s easy setup

process. On the software side, tensorflow combined with python tools are used in

the training process, while Unity and C-Sharp tools are used for both training data

generation and performing the entire gesture recognition process.

The remainder of this chapter is outlined as follows: Section 3.2 goes over the

functional and non-functional requirements for the ASL gesture recognition applica-

tion. Section 3.3 presents a use case diagram for the gesture recognition application

along with detailed explanations of the use cases on both the training and recogni-

tion side. Section 3.4 outlines the architecture and implementation of the application,

explaining the trainer and architecture modules separately. A class diagram is also

presented which explains the Unity class structure in more detail, as this makes up

most of the application’s structure. Finally Section 3.5 goes over the User Interface

of the application developed using Unity.

3.2 Software Requirements

The requirements of the ASL gesture recognition application are outlined in this

section. These include both functional and non-functional requirements. Functional
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requirements describe what services the specified system should perform in order to

meet it’s user needs [27]. Non-functional requirements are those which do not describe

services which are provided directly for user, but rather traits or constraints of the

software which enable it to provide these services [27].

3.2.1 Functional Requirements

Table 3.1 outlines the functional requirements for the ASL Gesture recognition appli-

cation. Each functional requirement is assigned a priority between 1 and 3. Priority 1

requirements are those that are considered essential for the application to perform its

base functionality. Priority 2 requirements are not essential, but provide additional

functionality to improve the functionality of the application. Priority 3 requirements

are the lowest priority, and correspond to features which could be added later to

further improve the functionality of the application. All priority 1 requirements were

satisfied in the development of the application along with a few priority 2 require-

ments.

Table 3.1: List of Functional Requirements

Name Priority Description

FR1 1
The application will recognize trained ASL gestures per-
formed by a user in real time.

FR2 1
The application will provide feedback to the user when
a trained ASL gesture is successfully recognized.

FR3 1
The application will provide visual aids to help teach a
user how to perform various trained ASL gestures and
calibration gestures.

FR4 1

The application will display virtual hands which will
mimic any movement performed by the user while
equipped with the VR headset and motion tracking
gloves.

FR5 1
The application will enable the user to calibrate the
gloves using a calibration routine provided by the glove
API.

FR6 1
The application will only start tracking moving ASL ges-
tures (or multi gestures) when a starting gesture is per-
formed indicating the start of the moving gesture.

Continued on next page
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Table 3.1 – continued from previous page
Name Priority Description

FR7 1

The application will only start tracking gestures which
rely on position (or positional gestures) when a starting
gesture is performed indicating the start of the posi-
tional gesture.

FR8 1
The application will enable a user to generate training
data for new static ASL gestures in the form of JSON
files.

FR9 1
The application will enable a user to generate training
data for new moving ASL gestures (multi gestures) in
the form of JSON files.

FR10 2
The application will enable the user to adjust the thresh-
old for gesture recognition in order to make gestures
more/less strict as necessary.

FR11 2
The user will be able to start the application from an
executable file.

FR12 2
The application will feature an advanced data panel
which displays which gesture is being detected and more
gesture detection details.

FR13 2
The application will enable the user to execute advanced
calibration procedures, such as head and neck calibra-
tion.

FR14 2
The application will display a count of how many at-
tempts each gestures takes and how long each gesture
takes.

FR15 2
A free mode to perform any asl gesture and form random
sentences, etc.

FR16 2
The application will log anytime a gesture is recognized
along with an accompanying timestamp.

FR17 3
The user will be able to switch between different modes
of the application through a menu.

FR18 3
The user will be able to interact with the application
through a virtual touch interface.

FR19 3
The user will have the ability to replay gestures by load-
ing json files of previous gestures performed.

FR20 3
The user will be able to chat with another user using
ASL through a network connection.

FR21 3
The user will be able to execute the training process
from unity rather than through separate python execu-
tion.

Continued on next page
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Table 3.1 – continued from previous page
Name Priority Description

FR22 3
The user will be able to communicate with virtual NPCs
in a gamefied environment.

3.2.2 Non-Functional Requirements

Table 3.2 outlines the non-functional requirements for the ASL Gesture recognition

application.

Table 3.2: List of Non-Functional Requirements

Non-Functional Requirements
Name Description

NFR1
The inference process and UI shall be executed in separate
threads.

NFR2 The inference code and uI code shall be written in C Sharp.
NFR3 The model training code shall be written in python.

NFR4
There shall be three different neural networks implemented for
ASL gesture recognition: One for static gestures, one for multi
gestures, one for positional gestures.

NFR5
The model files shall be converted to ONNX format for use in
Unity.

NFR6 The barracuda framework shall be used to interpret model files.

NFR7
The inferrence code shall be populated with gesture and label
data using CSV files.

3.3 Use Case Modeling

This section outlines the various use cases of the ASL gesture recognition application.

Use cases are described for each module of the application: the model training system

(trainer) and the gesture recognition system (recognizer). Each of these systems also

has a separate actor. The User interacts with the use cases of the gesture recognition

system. This can be considered the front end of the application, and involves the

use cases which would most often be performed. The Developer interacts with the

use cases of the model training system. These use cases describe the process for both
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generating training data and training the gesture recognition models that will be used

by the application. There are also a number of included use cases triggered by each

system when the user or developer performs certain actions.

The use case diagram displayed in Figure 3.1 illustrates all use cases that are

involved in both systems. Table 3.3 provides descriptions for each use case.

Figure 3.1: Use case diagram for the ASL gesture recognition application.
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Table 3.3: Use Case Descriptions

Name Description

Start Calibra-
tion

The user begins the calibration routine for the gloves. This in-
volves holding three distinct poses for about three seconds each.
This calibration routine is defaultly available with the glove API,
and is typically performed if there is a significant mismatch be-
tween the locations of the user’s hands and the locations of their
virtual counterparts.

Display
Calibration
Prompts

After the user starts the calibration process, the system will
display an image for each calibration gesture to assist with the
process. After the user completes a calibration gesture, an image
showing the next image to perform will appear.

Perform Cal-
ibration Ges-
ture

After the calibration routine has started the user will be
prompted to perform each calibration gesture. Three gestures
are required, and each gesture must be held for a few seconds
each.

Write Calibra-
tion Parame-
ters

As the calibration process is performed the system will write
relevant calibration parameters to a series of text files which are
used by the glove display system to synchronize the virtual hands
with the real ones.

Perform ASL
Static Gesture

Users will be able to perform static ASL gestures, which are ASL
gestures that involve a single hand gesture without any motion
involved. These include all letters of the alphabet except for “J”
and “Z”.

Perform ASL
Multi Gesture

Users will be able to perform multi ASL gestures, which are
ASL gestures that involve one or more hand/arm movements
and possible more than one distinct hand gesture. These include
the ASL letters “J” and “Z”, along with a number of words and
phrases.

Check if Hand
Parameters
Match

Each time a possible ASL gesture is performed by the user, the
system will check if the hand parameters match those of ASL ges-
tures that have been trained by the application. This is done by
plugging the hand parameters into the machine learning model
that was trained using them as features. Hand parameters con-
sist of joint locations for each of the fingers.

Continued on next page
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Table 3.3 – continued from previous page
Name Description

Check if Multi
gesture Param-
eters Match

Each time a possible ASL multi gesture is performed by the user,
the system will check if the multi gesture parameters match
those of ASL gestures that have been trained by the applica-
tion. This is done by plugging the multi gesture parameters
into the machine learning model that was trained using them
as features. multi gesture parameters relate to the pattern of
movement which is performed by the multi gesture, the distances
between each waypoint of this movement, and some others.

Check if Posi-
tional Parame-
ters Match

Each time a possible ASL positional gesture is performed by the
user, the system will check if the positional parameters match
those of ASL gestures that have been trained by the applica-
tion. This is done by plugging the positional parameters into
the machine learning model that was trained using them as fea-
tures. Positional parameters relate to the location of the gloves
relative to the headset.

Gesture Recog-
nized

Assuming all necessary gesture parameters match those of a ges-
ture that has been trained by the application, a gesture is labeled
as recognized by the application, which will display an appropri-
ate prompt to the user indicating this, such as the virtual hand
changing colors.

Go to next ASL
gesture

The user will be able to navigate between various ASL gestures
of focus which can be performed within the application. This
is meant to provide a tutorial-like atmosphere to help facilitate
ASL education. Navigation is performed through the use of ar-
rows which are activated by being looked at in the VR environ-
ment.

Display next
ASL gesture
Prompt

When the user navigates to a different ASL gesture to perform,
an image and/or video will be displayed which is meant to help
guide the user in performing that gesture.

Go to previous
ASL gesture

The user will be able to navigate between various ASL gestures
of focus which can be performed within the application. This
is meant to provide a tutorial-like atmosphere to help facilitate
ASL education. Navigation is performed through the use of ar-
rows which are activated by being looked at in the VR environ-
ment.

Display previ-
ous ASL ges-
ture Prompt

When the user navigates to a different ASL gesture to perform,
an image and/or video will be displayed which is meant to help
guide the user in performing that gesture.

Continued on next page
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Table 3.3 – continued from previous page
Name Description

Generate Static
Gesture Train-
ing Data

The developer will be able to generate training data for static
ASL gestures through the ASL Gesture Recognition Applica-
tion. This is done by performing the gesture to be trained as
many times as needed while wearing the motion tracking gloves
and headset, and generating the data for those gestures in the
form of JSON files. This training data also includes features for
positional gestures.

Generate Multi
Gesture Train-
ing Data

The developer will be able to generate training data for ASL
multi gestures through the trainer module of the ASL Gesture
Recognition Application. This is done by performing the ges-
ture to be trained as many times as needed while wearing the
motion tracking gloves and headset, and generating the data for
those gestures in the form of JSON files. This training data also
includes features for positional gestures.

Aggregate
data files into
dataframes

The developer will be able to group the training data JSON
files into dataframes through the use of a pre-processing script.
Dataframes are a table-like data structure available within the
Pandas framework. These dataframes are then used in the train-
ing process at a later point.

Convert
dataframes
into CSV files

After the developer creates the training dataframes, they will
automatically be converted into CSV files by the system. This
is so that these dataframes will not need to be re-generated at
another point, in case optimization needs to be performed during
the training process.

Seperate Fea-
ture and Label
Data

When the dataframes are converted into CSV files, the sys-
tem will also separate the feature and label data into distinct
columns. The label data corresponds to the name of the trained
letter,word, or phrase, while the feature data corresponds to the
various parameters of each of these.

Train Static
Gesture Model

The developer will be able to train the machine learning model
for Static ASL gestures. This is done by running the appropriate
training script which references the dataframe containing the
necessary training data.

Train Multi
Gesture Model

The developer will be able to train the machine learning model
for Multi ASL gestures. This is done by running the appropriate
training script which references the dataframe containing the
necessary training data.

Continued on next page
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Table 3.3 – continued from previous page
Name Description

Train Posi-
tional Gesture
Model

The developer will be able to train the machine learning model
for Positional ASL gestures. This is done by running the appro-
priate training script which references the dataframe containing
the necessary training data.

Read in train-
ing dataframes
from CSV file

When the developer runs any training script, the system will
automatically read in the CSV file that was creating when ag-
gregating the training data JSON files.

Generate
Model using
Training Data

After the training data has been read in and parsed by the sys-
tem, the data will be automatically passed into a training func-
tion to generate an associated neural network.

Test Model us-
ing Test Data

After a model has been generated by the training process, the
system will then automatically test the model against a separate
set of Test data, and notify the developer of the results.

3.4 Architecture and Implementation

These sections provide a high-level view of the architecture and implementation of the

ASL gesture recognition application. The training module and recognition module of

the application are described separately. A class diagram is also presented in this sec-

tion which describes the c-sharp classes used by the application and the relationships

between them.

3.4.1 ASL Gesture Representation

This section provides more details regarding the three gesture categories used to

identify ASL gestures: static gestures, multi gestures, and positional gestures.

3.4.1.1 Static Gestures

Static gestures are any ASL gesture which involves performing a single hand pose

with one or both hands. Once the hand pose is performed successfully, the gesture

is immediately identified as successful by the application as well. See Figure 3.2 for

examples of static gestures. Some gestures which fall under this category include

all letters of the alphabet except for “J” and “Z”, and words or phrases such as
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Figure 3.2: Examples of ASL gestures that are seen as static gestures by the appli-
cation [30].

“LOVE”, “I AM”, and “MY”. Static gestures are essentially the base of all ASL

gestures recognized by the application. For example, a multi gesture is seen as a

series of static gestures, and a static positional gesture is simply an ASL static gesture

that is more reliant on position. The static gesture representation was adopted from

a default gesture representation of the same name which came available with the

VRfree API. Both data types essentially serve the same purpose, though the hand

parameters are handled differently with each.

Another important note regarding static gestures is that they can be repeated

among different ASL gestures. For example, the gesture for the letter “I” is the same

as the starting gesture for the letter “J”. Because of this, certain static gestures are

grouped under a category called base gestures so as to allow for more distinction

between each set of gesture parameters, which also makes the corresponding machine

learning model easier to train.

3.4.1.2 Multi Gestures

Multi gestures are any ASL gesture which involves performing one or more hand

poses, possibly at different locations around the body. The first pose of a multi

gesture is called the starting pose, and once this is performed, the application begins

to check any subsequent gestures performed to see if they are also a segment of the

complete multi gesture. If no subsequent gestures are detected within a given time
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frame, then the application identifies that multi gesture as a failure, and will require

the user to start over by re-performing the starting pose. Some examples of multi

gestures include the letters “J” and “Z” (Figure 3.3), and words or phrases such as

“LEARNING”, “SIGN LANGUAGE”, and “NAME IS”. Multi gestures can be either

one handed or two handed.

The multi gesture representation was adopted from a default gesture represen-

tation of the same name which came available with the VRfree API. However, the

original representation did not consider the position of the hands when recognizing

gestures. The representation was updated to include both positions of the hands

and distances between each subsequent hand pose, or multi gesture segment. Hand

rotation was also incorporated as a parameter to account for hand gestures which

had the same overall finger placement but were oriented at a different rotation. Multi

gestures are essentially seen by the application as a sequence of static gestures which

Figure 3.3: Examples of ASL gestures that are seen as multi gestures by the applica-
tion [30].
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are reliant on position, rotation, distance, and the time in which they are performed.

3.4.1.3 Positional Gestures

Positional gestures are static gestures or multi gestures that require a stricter adher-

ence to the positions of the hands relative to the body when being performed. For

example, some ASL gestures need to start directly adjacent to the head, such as the

word “HELLO”. The words/phrases “MY” and “I AM” are other examples as they

need to be performed close to the chest. To reinforce the positioning constraints of

these types of gestures, the application uses the distance and direction of the gloves

from the VR headset as a gesture parameter. If positional gestures fall out of an

expected distance/direction threshold, they are not detected by the application. Po-

sitional gestures are not seen as an explicit data type within this application, but

rather a trait of both the static gesture and multi gesture categories. As such Certain

static gestures and multi gestures trigger this additional positional tracking when

performed.

3.4.2 Trainer Architecture and Implementation

The architecture of the training system for the ASL Gesture Recognition Application

is described in Figure 3.4. This architecture is broken up into five modules which are

described in the following sections:

3.4.2.1 Hardware Input

The trainer uses both the VRfree gloves and Vive Cosmos VR Headset as input

hardware. This hardware is used to generate training data through the Unity software.

This is done by performing the necessary gesture to be trained as many times as

necessary while equipped with the headset and gloves.

3.4.2.2 Input Data

After the gestures to be trained are performed using the input hardware, a JSON

file is generated for each time the gesture was performed. This JSON file contains
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Figure 3.4: Architecture Diagram for the training portion of the ASL gesture recog-
nition application.
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necessary parameter data which will eventually be used as features within the machine

learning models at a later stage. Along with this JSON file, a separate file containing

the feature and label data for each model is also compiled which includes names, and

flags to assist extracting data from the JSON file. This feature and label data file

would only need to be updated when new gestures need to be trained that have not

already been trained previously. Both of these data sets are passed into the next

module of the trainer known as the Preprocessor.

3.4.2.3 Preprocessor

The Preprocessor module involves reformatting the JSON files from the Input module

into a format which can be passed into the model training functions. This module

also involves reading in the feature and label data from from the corresponding file

defined within the Input module, and using those to assist reformatting the JSON

data. This reformatted data will then be passed into the model training functions in

the next module. The Preprocessor is executed through a single python script.

3.4.2.4 Model Training

The Model Training module handles the training of each model used when performing

recognition in the ASL Gesture recognition application. This module is responsible for

taking in preprocessed data and passing it to the model training functions. There are

three models which need to be trained for the ASL gesture recognition application: A

static gesture model, a multi gesture model, and a positional gesture model. Models

are generated using tools from the Tensorflow framework along with general python

and numpy data structures and operations. More information regarding the models

used with this application is present in Section 3.4.5.

3.4.2.5 Model Conversion

After the models are trained, they are then converted into the ONNX format so that

they can be utilized within the Barracuda machine learning framework. Once these

models are converted, they can then be passed into the gesture recognition process.
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3.4.3 Recognizer Architecture and Implementation

The architecture of the recognition system for the ASL Gesture Recognition Appli-

cation is described in Figure 3.5. This architecture is broken up into five modules

which are described in the following sections:

3.4.3.1 Hardware Input

Just as with the trainer, the Recognizer uses both the VRfree gloves and Vive Cosmos

VR Headset as input hardware. Data from the gloves and headset are transferred to

the gesture recognition application by the user as they perform gestures. The user

will also perform calibration routines using the gloves combined with the headset.

3.4.3.2 Input Data

Rather than taking external gesture data files as input, the gesture recognizer takes

sensor data directly from the gloves in real time. Rotational and positional data from

Figure 3.5: Architecture Diagram for the inference portion of the ASL gesture recog-
nition application.
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the gloves are read in by the corresponding API to be processed through Unity. This

includes data from each joint of each finger along with the wrist. Calibration files are

also read in through the API to make the virtual representation of the gloves more

accurately match their real-world counterparts.

3.4.3.3 Gesture Processor

After the glove data is retrieved, it is then parsed and passed through a series of

functions within the Unity application as a part of the gesture recognition process.

All data is ultimately passed into one of three model workers which each correspond

to a model that was trained to recognize a certain type of ASL gesture. These model

workers are a part of the barracuda machine learning framework. After the data

is passed through each model, the predicted ASL gesture ID which has the highest

probability of matching the supplied data is output. This corresponding probability is

then compared to a confidence threshold which would cause the application to either

accept or reject the model’s prediction based on the probability that has seemed most

accurate in practice.

Based on the ASL gesture type, the corresponding data may undergo different

transformations before being passed to the model workers. Appropriate static gesture

features are extracted directly from the base hand data structure from the API, and

then passed to the static gesture model worker. If the hand data corresponds to a

starting gesture that is part of a larger multi gesture, then movement data calculations

are performed on both this gesture and subsequent potential multi gesture segments

as more hand gestures are performed. Certain features are then extracted from both

this movement data and the individual gesture segments, and then passed into the

multi gesture model worker. In both cases, the positional data of the static gesture

or starting gesture is also extracted, and passed on to the positional model worker if

the ASL gesture is also one that has a strict reliance on position.
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3.4.3.4 Display

The display module is responsible for both notifying the user of the success and

failure of corresponding gestures performed, as well as providing an user interface in

which the user can navigate through different gestures to be performed and observe

visual guides to assist them with performing each gesture. The default mode of the

application has users focus on an individual ASL gesture (or tutorial gestures) to be

performed based on a visual guide. The user navigates between these gestures using

virtual arrows which take the user to the next or previous gesture to be performed.

Along with visual cues in the VR environment to indicate gesture success/failure,

logs are also generated to provide this data along with associated timestamps for

development purposes.

3.4.4 Class Diagram

A class diagram for the gesture recognition application is outlined in Figure 3.6. Since

some of the classes used have a large amount of member variables and functions, this

diagram only includes the connections between each class along with their names for

clarity. Specific details regarding each class are specified in the following sections,

though only public member variables are displayed along with the member functions,

as this are sufficient to the scope of this thesis. Note that there are several public

variables present in some classes because certain public variables in Unity can be

adjusted during runtime, which helped to facilitate the adjustment of gesture recog-

nition parameters during the user study as needed. In more finalized versions of this

application, most of these variables would be private. Some Unity specific functions

present within some of the classes include Awake(), Start(), and Update().Awake()

and Start() essentially perform initialization procedures on the classes before the

application starts. Update() performs operations during every frame while the ap-

plication is executing. A frame is essentially one of several snapshots that make up

the visuals displayed to the user, similar to how multiple images make up a video. As

such, frames can take place in a fraction of a second, enabling Update() to be called
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Figure 3.6: Class Diagram for the ASL gesture recognition application.
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at a very high frequency.

The classes for this application were all developed within Unity, and as such

involve functionality related to the VR portion of the application. This includes

all functionality in the recognizer, and a smaller portion of functionality within the

trainer involved in data generation. Most of the trainer functionality is handled

within separate python scripts used for building the machine learning models which

are used by the application. Some of these classes presented in this section originally

came with the VRFree API, and were customized for the needs of the application.

Others were created specifically for this application, such as those more involved in

the machine learning process.

3.4.4.1 MachineLearningDetector

The MachineLearningDetector class is shown in Figure 3.7. This class is responsible

for both initializing the models before they are used by the application, reading in the

feature and label data to be used with those models, and making predictions on incom-

ing gestures that are performed while using the application. This class uses a number

of CVSRecord functions to read in the feature and label data from corresponding CSV

files that were generated during the training process. This class also implements a

recognition function for each model that passes the appropriate feature data into

each model to gain a predicted label. These functions are detectGestureStatic(),

detectGestureMulti(), and detectGesturePositional().

The member variables with the type NNModel correspond to objects represent-

ing the models that were trained to perform recognition of various types of ASL

gestures. The various CSVRecord objects correspond to the rows of CSV files that

contain lable and feature data which are read in to facilitate the prediction process.

The detectedGestureID variable corresponds to the current predicted gesture based

on paramters fed in through the motion tracking gloves and VR headset. Member

functions include those for parsing CSV files containing label and feature data, and

detection functions which perform gesture predictions based on data that is read in.
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Figure 3.7: MachineLearningDetector class
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3.4.4.2 GestureDectection

This class has the most tasks of any other class which include the following: Extracting

and calculating additional feature data that is not defaultly available through the

glove API such as multi gesture data and positional data; confirming which feature

data should be passed to which models, and passing them to these models using a

MachineLearningDetector class object; Displaying the primary UI including tutorial

prompts and navigational arrows; Instantiating all gesture objects along with their

corresponding confidence thresholds and data structures; and facilitating the training

data generation process along with generating these corresponding data files. To

assist with these processes, this class invokes a number of instances of other classes

which have more specific tasks.

The GestureDectection class is shown in Figure 3.8. Three variables are dedi-

cated to defining the usage mode of the application. The variable trainingMode cor-

responds to the usage of the application which involves training gestures. The variable

tutorialMode corresponds to the front end of the application which involves perform-

ing gestures based on a series of tutorials. The variable inferrenceMode corresponds

to a usage of the application which involves testing recently trained gestures without

any specific tutorial prompt. This mode is mainly used on the developer side. Model

objects are also defined here which are passed into the MachineLearningDetector

class. Aside from this, various variables are defined to help facilitate the training

and prediction process. Functions include those to help navigate through the tutorial

process, such as NextTutorialGesture() and PreviousTutorialGesture() as well

as those to assist with generating training data, such as addStaticGestures() and

addMultiGestures(). Training data is generated within the Update() function of

this class. The function checkPoseCoroutine() is by far the most important as it

executes the inference process on the models by calling detection functions present

in the MachineLearningDetector class. This process is run in a separate thread so

as to not inhibit the UI being presented to the user. Functions which are run in a

separate thread in Unity, or coroutines, are represented by the IEnumerator data
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Figure 3.8: GestureDetection class
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type. checkPoseCoroutine() is called at a similar frequency to the update function

with calls taking place every 0.02 seconds.

3.4.4.3 CSVRecord

There are a number of CSV Record classes which have nearly identical functional-

ity but different parameters. Due to their similarities, they are all explained within

this section. These classes include CSVRecord GestureFeatures, CSVRecord Static

GestureModelLabels, CSVRecord MultiGestureModelLabels, and CSVRecord Posi

tionalGestureModelLabels. Each class is meant to hold records of a CSV file con-

taining associated features and labels to be processed by the MachineLearningDetect

or class. Each row of the CSV file is read into a CSV Record object. These objects

are iterated through in order to determine which ASL gestures to check and and

display.

Each of the CSVRecord classes are shown in Figure 3.9. CSVRecord GestureFeat

ures is the simplest class as it only contains a single member variable used for holding

a string representing a feature of a given model. CSVRecord StaticGestureModelLab

Figure 3.9: CSVRecord classes
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els contains flags to help identify if the static gesture is part of a larger multigesture

or positional gesture so as to treat the gesture differently if necessary. The variable

numberOfMovementsToBeDuplicated corresponds to the number of times this partic-

ular trained gesture is used in other ASL gestures. CSVRecord MultiGestureModelLa

bels contains similar flags to help identify they type of multigesture that is being per-

formed. CSVRecord PositionalGestureModelLabels contains basic traits regarding

the corresponding position gesture such as whether or not it is a multi gesture and

the underlying static gesture used.

3.4.4.4 JSONDataHandling

This class is responsible for writing gesture data to JSON files to be used in the

training process of the application. This class was adapted from already present JSON

handling functions with the VRFree API. After all training gestures are saved locally

through the GestureDetection class, they are then exported using a JSONDataHandl

ing object. There are separate functions for saving both static gestures and multi

gestures. This class was adapted from an existing class within the VRFree API, and

updated to accommodate new data parameters deemed necessary for ASL gesture

recognition.

The JSONDataHandling class is shown in Figure 3.10. The only member variable

of the class is a flag named max num gestures which corresponds to the maximum

number of gesture files that can be generated at one time using the trainer. This

is here to prevent file generation from blocking the training process for a signifi-

cant period of time. All of the member functions of this class are meant to fa-

cilitate the gesture file generation process performed by this class. For example,

AddStaticGesture() and AddMultiGesture() essentially stage corresponding static

gesture and multi gesture objects to later be serialized into JSON files. Various “save”

functions such as SaveStaticGestures() and SaveMultiGestures() actually gen-

erate these JSON files.
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Figure 3.10: JSONDataHandling class

3.4.4.5 StaticGesture

This class is used as a representation for static ASL gestures within the application.

An object of this class is created for each static ASL gesture in both the training and

recognition process. During training, new instances of this class are created for each

saved training gesture, which are serialized into JSON files. During the recognition

process, static gesture objects are created for any incoming gestures by default, and

removed if they do not match any ASL gesture currently supported by the application.

An array of static gesture objects is also created for each multi gesture, since there

may be a different static gestures involved for each multi gesture pose. This class was

adapted from an existing class within the VRFree API, and updated to accommodate

new data parameters deemed necessary for ASL gesture recognition.

The StaticGesture class is shown in Figure 3.11. The member variable centerp

ose corresponds to data read in from the gloves which is used to populate the fea-

ture data required by the static gesture model. The variable handLocation and

cameraLocation are also used for positional and multi gestures. The member func-

tions poseSatisfiesGesture and poseSatisfiesPositionalConstraints are pre-

diction functions which use the MachineLearningDetector class to match the gesture

performed with the static gesture model and positional gesture model respectively.
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Figure 3.11: StaticGesture class

3.4.4.6 MultiGesture

This class is used as a representation for ASL multi gestures within the application.

An object of this class is created for each multi ASL gesture in both the training

and recognition process. During training, new instances of this class are created

for each saved training gesture, which are serialized into JSON files. During the

recognition process, multi gesture objects are created for incoming static gestures

that are recognized as also being the starting gesture for a multi gesture. They

are then deleted once processing is finished or if the multi gesture detected is not

currently supported by the application. This class was adapted from an existing class

within the VRFree API, and updated to accommodate new data parameters deemed

necessary for ASL gesture recognition.

The MultiGesture class is shown in Figure 3.12. The member variables pref-

aced with gestureSuccession are used to hold data relating to each segment of the

multi gesture that is being performed. The list timeIntervals defines the maxi-

mum amount of time allowed to perform each segment of the multi gesture. The lists

intermediateGestureDistances, handLocations, and intermediateGestureDire

ctions are used to calculate the distance and direction between each gesture and

hold the resulting values. The lists handRotations, handRotationDifferences, and

handRotationInverses are used to calculate the rotational differences between each
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Figure 3.12: MultiGesture class

gesture segment. The list cameraLocations is used to define the locations of each

gesture segment with respect to the camera location for positional gesture tracking.

The flag startingGestureDetected indicates when to start tracking the segments of

a multigesture by signaling when the starting gesture has been performed. The list

gestureDetectors corresponds to a list of MultiGestureDetector objects which

perform the bulk of the gesture segment tracking as explained with the next class

presented. Just as with the StaticGesture class, there is a member function named

poseSatisfiesGesture which passes along multi gesture parameters to a correspond-

ing model to perform predictions. There is also a member function named addPose

which is used during the training process to add more poses or gesture segments to a

multi gesture to be trained.
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3.4.4.7 MultiGestureDetector

This class performs the bulk of the gesture recognition process regarding multi ges-

tures. Once a static gesture is performed that is also the start of a potential multi

gesture, a MultiGestureDetector object is created for that potential multi gesture.

This object will then track any subsequent multi gesture segments to determine if all

necessary segments within the multi gesture are detected within a certain timeframe.

If all segments are detected within that time frame, then the parent MultiGesture

object is seen as detected. Otherwise, if a non-matching gesture segment is detected,

or the detection process goes past the necessary time frame, the parent MultiGesture

is seen as not detected. This class was adapted from an existing class within the VR-

Free API, and updated to accommodate new data parameters deemed necessary for

ASL gesture recognition.

The MultiGestureDetector class is shown in Figure 3.13. The variable success

ionStatus indicates which segment of a multi gesture object to analyze during the

detection process. For example if the successionstatus is 2 then the second multi

gesture segment will be analyzed. The flag done indicates that the detection process

is finished for this particular multi gesture, regardless of success or failure, and the

flag detected indicates whether or not the detection process was successful. The

variable firstDetectedStaticGestureID corresponds to the id of the static gesture

which corresponds to the first segment of the multi gesture. All gesture segments are

Figure 3.13: MultiGestureDetector class



76

checked within the Update() function of this class.

3.4.4.8 TwoHandedGesture

This class provides functionality for processing two handed ASL gestures. The class

features detection flags for both the left hand and right hand so that they can be

handled in parallel. TwoHandedGesture objects are created when both training two

handed gestures as well as performing recognition on two handed gestures.

The TwoHandedGesture class is shown in Figure 3.14. The variables

leftHandGestureName and rightHandGestureName represent the identifiers of each

hand’s gesture used by the models during the prediction process. The flags

leftHandDetected and rightHandDetected are used to determine whether or not

each hand’s gesture has been detected. No member functions aside from a constructor

are present since the main purpose of this class is to hold flags related to two handed

gestures.

Figure 3.14: TwoHandedGesture class

3.4.4.9 TutorialGesture

This class is used to store data related to the current gesture being recognized when

using the application in tutorial mode. When starting the application in tutorial

mode, a list of TutorialGesture objects is created corresponding to any gestures that

must be performed as part of the tutorial. Any incoming gesture data is compared

against the current TutorialGesture object in this list when determining recognition.
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The TutorialGesture class is shown in Figure 3.15. Basic identifiers for the class

are present as member variables such as the gesture ID and flags to indicate whether

or the gesture is a multigesture or positional gesture. There is also a constructor

present to build the TutorialGesture object.

Figure 3.15: TutorialGesture class

3.4.4.10 AccuracyThresholds

This class is used to store data related to the accuracyThresholds (or confidence

thresholds) associated with ASL gestures that can be recognize by the application.

These thresholds correspond to the minimum recognition probability that must be

met in order for an ASL gesture to be labeled as recognized by the application. This

recognition probability is the probability output by each model which states how likely

the given gesture parameters correspond to each gesture. The values which are used

for accuracy/confidence thresholds for each gesture were determined through testing

during the development of the application. Though they also be adjusted at runtime

if needed. The AccuracyThresholds class is shown in Figure 3.16. Along with

the constructor there are just three member variables corresponding to the accuracy

thresholds for each gesture model present.
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Figure 3.16: AccuracyThresholds class

3.4.5 Models

3.4.5.1 Overview

There are three models used on the machine learning side of the application: A static

gesture model, a multi gesture model, and a positional gesture model. Each model

is implemented through python using the tensorflow framework for model generation

and a combination of the numPy and Pandas libraries for data manipulation. Each

model has an associated python script that is used to execute the training process. A

preprocessor python script is also used to reformat the raw JSON training data into

dataframes that could be used easily with the models.

All models used are feed forward neural networks with a softmax function ap-

plied to the output layer to force each output value to be a probability. Each output

node corresponds to a different ASL gesture, so this probability represents the likeli-

hood that the input features correspond to that particular ASL gesture. Each neural

network has an input layer, output layer, and one intermediate layer with a “relu”

activation function to handle non-linearities. Each model was trained using 900 to

1000 samples per label, which were generated by three different people. Along with

the 34 ASL gestures that were trained to be recognized by the application, 3 unused

gestures were also trained which represented false positives that were mistakenly rec-

ognized as actual ASL gestures during development. By having these false positive

gestures trained, and ignoring them during the inference process, the number of false

positives during gesture recognition was reduced. The following sections will outline

more specific details regarding each model.
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3.4.5.2 Static Gesture model

The static gesture model takes a total of twenty-one features corresponding to pa-

rameters of the gloves which are available through the VRFree API. The parameters

used in this case are the angles of gaps between various joints of the hand, which

are calculated using data from the sensors of the gloves. Each angle of interest has

a corresponding data field that is part of a parent “HandAngles” class. Each of the

data fields which are used in this application, along with the corresponding hand

angles they represent, are explained below:

• fingerAngles0close - This data field corresponds to the angle of opening

between the first joints of each of the five fingers of the hand. As such, there is

one feature value for each finger corresponding to this field, for a total of five.

• fingerAngles0side - This data field corresponds to the sideways movement

of the first joints of each of the five fingers of the hand. As such, there is one

feature value for each finger corresponding to this field, for a total of five.

• fingerAngles1close - This data field corresponds to the angle of opening

between the second joints of each of the five fingers of the hand. As such, there

is one feature value for each finger corresponding to this field, for a total of five.

• fingerAngles2close - This data field corresponds to the angle of opening

between the third joints of each of the five fingers of the hand. As such, there is

one feature value for each finger corresponding to this field, for a total of five.

• thumbAngle1Side - This data field corresponds to the sideways movement of

the second joint of the thumb. As such there is only one feature value for this

particular data parameter.

3.4.5.3 Multi Gesture model

The multi gesture model takes a total of thirteen input features corresponding to the

differences between each gesture segment of the multi gesture as well as flags related
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to the type of gesture being performed. Each segment of a multi gesture is predicted

using this model. For example, the letter “Z” has four poses or gesture segments,

so there are four output predictions that correspond to a full multi gesture of “Z”

being successfully performed. Each of these gesture segments has a set of feature

values which correspond to it’s difference from the previous gesture segment that was

performed. The differences between each segment of the multi gesture are quantified

in three different ways:

• Direction and distance from previous pose - This parameter corresponds

to the distance vector going from each gesture segment to each subsequent

gesture segment. The sign of the corresponding coordinates of this vector can

also give us the direction of each gesture segment when compared to the previous

one. Each coordinate value of this vector (X, Y, and Z) is isolated into it’s own

feature, making three features total for this parameter.

• Direction and distance from starting gesture - This parameter corre-

sponds to the vector going from the starting gesture to each subsequent gesture

segment. The sign of the corresponding coordinates of this vector can also give

us the direction of each gesture segment when compared to the previous one.

Each coordinate value of this vector (X, Y, and Z) is isolated into it’s own

feature, making three features total for this parameter.

• Rotational difference to previous gesture - This parameter corresponds

to the rotational difference between each gesture segment and each subsequent

gesture segment. This is done by multiplying the rotation of the previous ges-

ture segment to the inverse of the rotation of the next gesture segment. Each

coordinate value of this rotation or quaternion (X, Y, Z, and W) is isolated into

it’s own feature, making four features total for this parameter.

Other flags are also included as features to make each multi gesture more distinct

from others. These include a static gesture id corresponding to the starting gesture
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that is performed, a two handed gesture flag to indicate if the gesture is two-handed

or one-handed, and a camera location usage flag to determine if the multi gesture is

also one that relies on position.

3.4.5.4 Positional Gesture model

The positional gesture model takes in a total of four input features corresponding

to the distance and direction of the ASL gesture in reference to the VR headset,

and also an id for the static gesture used within the ASL gesture. The distance and

direction in this case is gained by the distance vector between the gloves and headset.

Using these parameters, the model can predict if a positional gesture is accurate. For

example, when the hand is next to the head, it will have a different distance and

direction to the headset if it is instead located at the chest.

3.5 User Interface

The UI of the application is a virtual environment generated through Unity. The

UI is displayed through the Vive Cosmos VR headset and also through an additional

screen on the associated PC for development purposes. The following sections outline

various parts of the UI along with screenshots.

3.5.1 Calibration UI

When users first start the application, they are prompted to calibrate the gloves by

looking up at a calibrate button as shown in Figure 3.17. When they look up, they

will see the calibrate button as shown in Figure 3.18.

Once they look at the calibration button for about one second, an image will

appear to perform the first calibration gesture as shown in Figure 3.19. Once this

calibration pose is performed two additional images will appear prompting the user to

perform the next calibration gestures as shown in Figure 3.20 and Figure 3.21. After

the calibration process is complete, the corresponding calibration data is written to

a series of files which are used by the VRFree framework to display gloves accurately
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Figure 3.17: The initial dialog the user sees in the application which prompts them
to calibrate the gloves.

Figure 3.18: The calibration button which the user looks at to start the calibration
process.
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Figure 3.19: The first calibration gesture that is performed in the calibration process.

Figure 3.20: The second calibration gesture that is performed in the calibration pro-
cess.
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Figure 3.21: The third calibration gesture that is performed in the calibration process.

to the user.

3.5.2 Tutorial UI

After calibration is performed, the user is prompted to perform an ASL gesture by

being shown a display of the gesture to perform as shown in Figure 3.22. For simpler

ASL gestures, such as most letters of the alphabet, a single image is shown to the

user which mirrors the gesture they are intended to perform. Once the gesture is

performed successfully, the corresponding letter, word, or phrase is displayed to the

user and the virtual hand(s) the gesture is being performed with turns green as shown

in Figure 3.23. Each gesture prompt will also have two arrows enabling the user to

navigate between different gestures to perform.

More complex gestures, such as multi gestures, have multiple images along with

a video to show the user how to perform the corresponding movement. This display is

shown in Figure 3.24. When the starting pose of a multi gesture is performed, green

text will appear to the user indicating that multi gesture will be tracked on the next

movement, as shown in Figure 3.25.

After the multi gesture has started, the green text will change to red and indicate



85

Figure 3.22: The first stage of the tutorial in which the user is prompted to perform
the ASL gesture for the letter “A”.

Figure 3.23: The display after performing the first stage of the tutorial successfully.
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Figure 3.24: A stage of the tutorial in which the user is prompted to perform the
ASL gesture for the letter “J”.

Figure 3.25: A multi gesture prompt in the tutorial after a user makes the starting
pose for the gesture.
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Figure 3.26: A tutorial dialog after the user successfully performs an ASL multi
gesture.

that the multi gesture is currently in progress. From that point the user will have a

limited amount of time to finish the multi gesture. This is shown in Figure 3.26.

3.5.3 Training UI

The training UI of the application is meant for developers, and as such, features

more configurable options than the front-end UI. Screenshots of this UI are shown in

Figure 3.27 and Figure 3.28. The training UI incorporates the inspector window of

the Unity software, which has a number of fields to configure the training parameters.

These include the number of gestures to be performed within multi gestures, the name

of the gesture being trained, and others. For two handed gestures, the developer can

set for training records to be generated automatically based on a timer and maximum

sample size since both hands will be used to perform the gesture. For single hand

multi and static gestures, training records are generated through a key-press.

As the training process continues, the colors of the hands change based on the

current stage within the training process. For example, when a multi gesture is

being trained, and a new gesture segment within that multi gesture is defined, the
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Figure 3.27: Screenshot of the training UI in which a segment in a two-handed multi
gesture is being defined.

Figure 3.28: Screenshot of the training UI in which the last segment of a two-handed
multi gesture is being defined.
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hands turn blue. When a two handed gesture segment is being performed, the hands

turn yellow, as shown in Figure 3.27. When the entire two-handed gesture has been

performed, the hands turn red as shown in Figure 3.28.
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Chapter 4

User Study

4.1 Overview

When developing software applications that involve a direct interaction with one or

more users, it is crucial to understand the needs of those users and how the software

application meets those needs [40]. A large part of this process is gathering data from

prospective users, which can be done through a few different ways such as through

questionnaires or through observational studies. This type of research was also used

to evaluate the ASL gesture recognition application presented in this thesis, to ensure

that it adequately met the user needs it is intended to fulfill. The front-end of the

application, or the Recognizer, was the primary component evaluated through this

type of research, since it is accessed much more frequently than the trainer, and

would target a more general user group while the trainer targets those more on the

development side.

Prior to performing research using human test subjects, a few steps also need

to be performed. The first step is receiving a certification to perform the relevant

research through the Collaborative Institutional Training initiative (CITI). This train-

ing provides an in-depth look into both the history of perform research using human

test subjects, as well as the necessary protocols in order to ensure the safety of users

and integrity of the research. Once this is done, the next step is to gain approval

to perform the research from the Institutional Review Board (IRB). This involves

submitting the CITI training certification along with a number of other documents
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related to the research to be performed for the IRB’s review. These documents can

be found in the Appendices of this thesis.

The remainder of this chapter will go over the details of the user study that was

conducted for this thesis. Section 4.2 goes over the participants that were involved

in the user study along with the recruitment process. Section 4.3 goes over the tools

used to perform the study and the setup process. Section 4.4 outlines the proce-

dure for performing the user study including the necessary steps taken and location.

Section 4.5 outlines the tasks users were asked to perform in order to evaluate the

functionality and performance of the ASL gesture recognition application. Section 4.6

reviews the metrics that were involved as a part of the user study and their relevance.

4.2 Participants

The participants of the user study varied among different ages, backgrounds, and

familiarity with VR and ASL. They included mostly students at the University of

Nevada, Reno along with family and friends. To recruit participants of the user

study, the recruitment email shown in Appendix F was used along with word of

mouth. A total of 21 participants were recruited in the study. In order to participate,

users were also required to have a hand size that fit appropriately within the VRFree

gloves to be used during the study. This was determined through a hand sizing guide

that was provided to each participant. Users were also required to be right-handed

to match the gesture types that were generated by the trainers of the application.

4.3 Apparatus

The apparatus for the user study included a Windows 10 desktop computer, a Vive

Cosmos VR headset, and a pair of the VRFree motion tracking gloves by sensoryx. A

user equipped with the VR headset and gloves is shown in Figure 4.1 The application

was run through the Unity IDE. A view of the VR environment, a logging window,

and a inspector panel were displayed through unity during the user study process.



92

Figure 4.1: A user equipped with the two primary components of the apparatus: the
Vive Cosmos VR Headset, and the VRFree Gloves.
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A view of the VR environment was necessary so that the researcher leading the user

study could see what the user was seeing while the headset was equipped and perform

guidance as necessary. The logging window was used to observe quantitative metrics

during to the process to assist with troubleshooting if needed and observe important

trends. The inspector panel was used to make adjustments to the accuracy/confidence

thresholds of gestures to be recognized as necessary. These adjustments were made

if participants were unable to perform gestures within a significant amount of time,

even with manual assistance by the researcher.

The user was seated throughout the entire user study process. Before the user

study began, a horizontal and vertical alignment was performed to maintain a con-

sistent placement among all users that performed the test. Horizontal alignment was

done using a line of tape on the floor to indicate how far the user should be from

the computer. A vertical alignment was achieved using a mirror with a marking to

indicated the adequate height of the user’s eyeline. Questionnaires/Surveys were pro-

vided to the user through PDF Documents located on the computer as well as hard

paper copies.

4.4 Procedure

After participants agreed to take part in the study, they were informed in detail

on what the study involves. The participants then were provided with a pre-test

survey which asked them about their demographics, familiarity with virtual reality,

familiarity with sign language, familiarity with motion tracking hardware/software,

and familiarity with electronic entertainment such as video games. Participants were

then provided with a simulator sickness questionnaire which asked them if they are

currently experiencing any symptoms associated with simulator sickness, and how

severe those symptoms are. The participant was then given a demonstration of the

tasks that needed to be performed during the study. Once the demonstration was

over, the participant began performing the tasks themselves with assistance being

provided from the researcher as needed.
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The tasks of the study involve performing a series of American Sign Language

(ASL) gestures as prompted by the VR application while equipped with the VRfree

Sensoryx Motion Tracking gloves and the Vive Cosmos VR Headset. After putting

on the headset and gloves, the process began by powering on the gloves and starting

the VR application from the PC. The gloves were then calibrated through a routine

in the application which involved the participant performing three poses. Sometimes

multiple calibrations were needed if the 3D hand models in the virtual environment

did not accurately match the locations of the hands in the real world. Once calibration

had been performed successfully, the participants then followed a series of prompts

within the virtual environment which each instructed them on how to perform a

specific ASL gesture. This instruction was conveyed through both images and video.

When the user was able to perform the ASL gesture successfully, they were asked to

move on to the next one by looking at a button in the virtual environment.

If participants were not able to perform a gesture successfully from observing the

prompt alone, the researcher would assist the participant either by providing verbal

instruction or manually manipulating the user’s hands. If the participant was still

unable to perform the gesture successfully, the researcher would either prompt the

user to re-calibrate the gloves, or adjust confidence thresholds used by the recognition

application. This process was repeated for a total of 34 ASL gestures. Throughout

this process, data from three quantitative metrics was gathered including the time

necessary to perform each gesture successfully, the number of attempts needed to

perform a multi gesture successfully, and the number of times a re-calibration was

needed. This data was collected through logs generated within the VR application as

well as observation by the researcher. Once all gestures had been performed success-

fully, the participants then removed the VR headset and gloves with the researcher’s

assistance.

The study concluded with a post-test survey and a second simulator sickness

questionnaire meant to determine if any symptoms were being experienced after go-

ing through the study. The post-test survey asked the participant some questions



95

regarding their overall experience while performing the tasks. These included overall

comfort while performing the tasks, difficulty performing each gesture, intuitiveness

of the user interface, usefulness of the gloves in teaching ASL hand gestures, poten-

tial improvements that can be made, other possible applications for the gloves, and

general feedback along with any other general comments and observations.

4.5 Tasks

More detail regarding each of the tasks user study participants were asked to perform

are outlined below:

Calibrate Gloves: When the application first begins, the user is required to cal-

ibrate the gloves to accommodate their hand size and body type. This involves

performing three different calibration gestures that have been defined by the VRFree

API. The user begins the calibration by looking up at the calibration button within

the virtual environment for couple of seconds which then makes the first calibration

gesture prompt appear to the user. When the researcher has determined each calibra-

tion gesture is being performed accurately, the user is prompted to hold the gesture

for a few seconds as part of the calibration process before moving on to the next.

After the first calibration process is complete, the user could optionally perform an-

other calibration at any other time during the user study as an effort to troubleshoot

issues when prompted by the researcher.

Observe Gesture Prompts: When a calibration is not being performed, the user

is prompted to perform 1 of 34 ASL gestures that have been trained for the applica-

tion. Each prompt appears as a visual cue of which gesture to perform in the form

of an image, a video, or both. Each visual cue displays the researcher performing the

corresponding gesture in a mirrored view. In some cases, gestures are also displayed

in a first-person view for clarity. If the user encounters issues when performing ges-

tures, they are able to observe these visual cues to verify there are no issues with their



96

form or movement. If the user continues to encounter difficulties after attempting to

match the visual cue, they are assisted by the researcher.

Perform ASL gestures: Once the user feels confident that they can match the

visual cue, they are asked to attempt to perform the corresponding gesture. This

involves attempting to match both the finger and hand placement depicted in the

prompt, and in the case of multi gestures, matching the movement performed in the

displayed video. The gestures the user is prompted to perform include all 26 letters

of the ASL alphabet along with 8 words and phrases. Some gestures involve just

using a single hand while others involve two hands. If the user continues to encounter

difficulties after multiple attempts, the researcher helps to guide them, and in severe

cases, helps physically manipulate their hands and fingers to be in the appropriate

position.

Navigate between gestures: Whenever the user is prompted to perform an ASL

gesture, there are also two arrows displayed to the user: one pointing to the left and

one pointing to the right. When the user completes a gesture successfully, they are

prompted to advance to the next gesture by looking at the arrow to the right. If

the user accidentally navigates to the next gesture before previous one is performed

successfully, they are prompted to go back to the previous gesture by looking at the

left arrow before continuing.

4.6 Design

Three quantitative metrics are taken during each user study session. These include

the amount of time necessary to perform each gesture, the number of attempts in

performing each multi gesture, and the number of calibrations performed. These

metrics were evaluated to determine capabilities of the gloves and application in

recognizing ASL gestures, and any limitations when performing gesture recognition on

multiple users. Qualitative metrics were gained through a post-survey which gained
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input from users regarding the components of the application along with it’s usefulness

if different areas.

The user study was designed using the within-subjects method which involves

each participant testing all interfaces of the application under the same conditions [2].

This is opposed to a between-subjects design which involves each person testing a dif-

ferent interface of the application. The dependent variables of the application include

the three quantitative metrics introduced previously. The ASL gesture recognition

application works as the single independent variable of the study.
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Chapter 5

Results and Data Analysis

The following sections outline the results that were obtained during the user study.

Section 5.1 reviews data gathered through a pre-questionnaire before the tasks in-

volved in the user study were executed. The data gathered here includes the partic-

ipant’s backgrounds and their familiarity with related concepts. Section 5.2 reviews

the quantitative results of the measurements obtained from each task. Section 5.3

details the data obtained from the post-questionnaire outlining feedback from the

participants regarding the application. This section also reviews the results of a sim-

ulator sickness questionnaire that was used to determine if usage of the application

exacerbated any symptoms of simulator or VR sickness. Finally, Section 5.4 presents

a discussion regarding the significance of the results and the possible reasons for the

data distribution.

5.1 Data From Pre Questionnaire

Figure 5.1 shows a graph outlining the ages of all participants who took part in the

study. As the graph shows, most participants were in their 20’s or 30’s with a few

being younger and older. Most of the participants were either current or graduated

UNR students with some having education from other institutions.

Along with age and educational background, the pre-questionnaire also asked

participants to rate their familiarity regarding different technologies and concepts on

a scale of 1 to 5, with 1 being not familiar, and 5 being very familiar. First the user
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Figure 5.1: Ages of user study participants
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was asked how familiar they are with virtual reality. This results of this question

are shown in Figure 5.2. Four users stated they were not familiar with VR while six

stated they were very familiar. The majority of others rated their familiarity between

a two and three.

Next the participants were asked to rate their familiarity with American Sign

Language (ASL). The results of this question are displayed in Figure 5.3. Here the

majority of users were not familiar with ASL or only slightly familiar. Two partici-

pants felt they were more familiar with ASL, rating themselves at a four.

Participants were also asked to rate their familiarity with motion tracking soft-

ware and hardware as well as forms of electronic entertainment such as video games.

Regarding motion tracking hardware and software, the majority of the participants

stated that they were not familiar with a rating of one. The others were split fairly

evenly between two and five. Regarding familiarity with electronic entertainment,

the majority of participants felt that they were very familiar providing a rating of

five while most others provided a rating of three or four. One participant provided a

Figure 5.2: VR familiarity of user study participants
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Figure 5.3: ASL familiarity of user study participants

rating of two indicating they were not as familiar with electronic entertainment such

as video games.

5.2 Data Analysis

Each participant was asked to perform thirty-four ASL hand gestures while having

them successfully recognized by the application. In many cases, multiple attempts

were needed to perform each gesture and have them successfully recognized. This

was due to a few different reasons including gestures not being performed correctly,

the motion tracking gloves needing to be re-calibrated, or confidence thresholds used

in the recognition process needing to be adjusted. Because of this, data was gathered

to evaluate the following three metrics: The amount of time needed to perform each

gesture, the number of attempts need to perform multi gestures, and the number of

calibrations performed by each participant. Each of these resulting data sets were

aggregated into tables which are presented in this section. The amount of time needed

to perform each gesture along with the attempts needed to perform each multi gesture
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are also aggregated into box plots showing the analysis of variance (ANOVA) of these

metrics for each gesture.

Tables 5.1 and 5.2 show the amount of time needed to perform each letter of the

ASL alphabet. The tables also show the mean completion time along with standard

deviation for each gesture. Table 5.3 shows these same measurements for the eight

ASL words and phrases that were also measured as a part of the study. Each row of

each table corresponds to a participant of the user study, who is identified by an ID

number between 1 and 21.

Graphs depicting box plots for each of these data sets are shown in Figures 5.4,

5.5, and 5.6. Box plots, also known as Box and Whisker plots, are a standard way

of presenting five key components relating to the distribution of a dataset: the min-

imum (excluding outliers), the first quartile, the median, the third quartile, and the

maximum (excluding outliers). The lower whisker of the box plot shows the mini-

mum value while the upper whisker shows the maximum value. The line within each

“box” shows the median of the data set. The bottom half of the box depicts the first

quartile of the dataset and the top half depicts the second quartile. In the graphs

presented, dots are also display indicating each data point including outliers. An ”x”

symbol is used to represent the mean of each gesture. Extreme outliers are indicated

through boxes with arrows pointing towards the top of the graph.

As shown in Figures 5.4 and 5.5, the majority of performance times for letters

A-Z range between 1 to 10 seconds indicating that most ASL gestures were performed

and recognized by the application quickly. Letters that had significantly higher per-

formance times include “A”, “G”, “J”, “P”, “Q”, and “Z”. Since the letter “A” was

the first gesture performed by participants, it is likely that participants were still

getting comfortable with using the application at this time, which may contribute

to the higher variance in this case. The letters “J” and “Z” have the highest vari-

ance among the alphabet, showing that participants had more difficulty with multi

gestures rather than static gestures. This was partly due to these gestures being

more complex than static gestures, and also due to the application not capturing all
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Table 5.2: Performance Times in Seconds for Letters R-Z
Performance Times in Seconds for Letters R-Z

ID R S T U V W X Y Z
1 3 1 2 2 2 2 2 2 7
2 53 2 3 2 3 3 4 2 14
3 11 28 5 21 12 4 4 3 13
4 28 21 34 6 3 4 24 11 25
5 3 3 3 3 2 3 2 2 6
6 9 7 27 6 6 4 5 4 27
7 23 4 3 3 3 3 2 2 27
8 7 3 5 2 1 2 2 2 20
9 2 3 2 1 1 2 2 2 8
10 3 5 3 3 2 2 5 2 30
11 4 37 3 4 2 2 2 2 6
12 17 5 37 14 4 5 4 3 8
13 12 2 2 3 2 2 3 2 22
14 5 3 4 4 3 2 3 4 15
15 7 4 4 3 4 3 3 3 96
16 31 2 1 1 2 2 2 2 108
17 10 2 2 3 16 7 3 2 24
18 14 3 3 4 4 3 3 4 11
19 6 6 9 4 8 6 6 5 8
20 20 4 13 4 7 4 5 6 53
21 7 11 3 10 3 3 5 3 53
Mean 13.1 7.43 8 4.9 4.29 3.24 4.33 3.24 27.67
SD 12.09 9.26 10.52 4.64 3.67 1.38 4.57 2.07 27.51
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Figure 5.4: Box and whisker plot depicting performance times for letters A-M.
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Figure 5.5: Box and whisker plot depicting performance times for letters N-Z.
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Figure 5.6: Box and whisker plot depicting performance times for ASL words and
phrases.
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possible variations of the gestures that can be performed. There are also a number

of outliers in each case with extreme outliers being present with the letters “I”, “J”,

“K”, and “Z”. While some of these outliers are due to the same aforementioned

difficulties, the more extreme cases may also be due to participants having bodily

features that did not adhere closely enough with the those of the researchers who

trained the models used for recognition. Such features include hand size, height, arm

length, and others. While the study attempted to constrain hand size to match those

that could fit well within the motion tracking gloves, there was still some variability

in this and other body features that could be contributing factors to outliers. On

this same note, the calibration process was limited to only a basic glove calibration in

order to facilitate the setup process and confirm that this type of calibration was suf-

ficient. However, other calibrations, such as headset calibration and more advanced

glove calibrations may be needed in order to maintain consistent recognition. These

same trends are noticed in Figure 5.6 with ASL words and phrases, with the phrases

“NAME IS” and “LEARNING” being those with the highest variance. However,

with some of these gestures being two handed, the recognition process becomes more

complex exacerbating the difficulties previously presented.

Table 5.4 outlines the number of attempts needed to perform each multi gesture

for each participant. This data is also displayed through a box plot in Figure 5.7.

The number of attempts was measured for multi gestures and not static gestures

because multi gestures have distinct starting and ending points which can more easily

be tracked by the application vs. the starting and ending points of static gestures.

Most multi gestures attempts ranged between 1 and 10, indicating most multi gestures

took minimal attempts to perform successfully. The number of attempts for the

multi gestures “LEARNING” and “SIGN LANGUAGE” had the highest data range

excluding outliers. The gestures “J” and “NAME IS” had extreme outliers which

coincide with their significant performance times shown in the previous figures. As

mentioned previously, limited training data was likely a contributing factor to these

outliers, as some participants bodily features did not match those of the researchers
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Figure 5.7: Box and whisker plot depicting number of attempts to perform ASL multi
gestures
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who initially trained the application. More advanced calibration methods may have

also been needed in order to keep the number of necessary attempts consistent among

multi gestures.

Table 5.5 outlines the number of calibrations necessary for each participant who

took part in the user study. Every participant performed the calibration process at

least once before any ASL gesture recognition took place. Subsequent calibrations

were prompted if a noticeable mismatch was present between the virtual represen-

tation of the hands and their real-world counterparts. While most participants only

needed a single calibration, one user required three calibrations while two others re-

quired 2. This shows in most cases there was an accurate representation of the gloves

within the virtual environment. Those that did not likely had bodily features that did

not correspond with the training data, such as hand size, arm length, and height. Also

as mentioned previously, only a basic calibration occurred, so it is possible that with

more advanced calibration procedures, fewer calibrations overall would be needed.

5.3 Data From Post Questionnaire and Simulator

Sickness Questionnaire

This section outlines data from the post-questionnaire and simulator sickness ques-

tionnaire that were distributed as a part of the user study. The post-questionnaire

asked details regarding the participant’s opinion of the application after using it as

well as their thoughts about the overall process. First users were asked to rate how

comfortable they were while using the application. The results of this question are

shown in Figure 5.8. Most participants answered with a rating of 5 indicating that

they were very comfortable while one participant answered with a rating of 3 indi-

cating they were only somewhat comfortable. Next, participants were asked to rate

how easy it was to perform each gesture with 1 being very difficult, and 5 being very

easy. The results of this question are shown in Figure 5.9. Most participants provided

a rating of 4 indicating that it was easy, but not very easy. The remainder of the

participants were split between a rating of 3 and 5. Since most participants were not
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Table 5.5: Number of Calibrations Performed for each Participant

ID
Number of Calibrations
Performed

1 1
2 1
3 1
4 3
5 1
6 1
7 1
8 1
9 1
10 1
11 2
12 1
13 1
14 1
15 1
16 1
17 1
18 2
19 1
20 1
21 1

Mean 1.19
SD 0.5



114

Figure 5.8: Comfort of user study participants

Figure 5.9: Easiness in performing gestures
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familiar with ASL prior to using the application, it makes sense that most would not

find the application very easy to use, though limitations an training data did also

make the application more difficult to use in certain cases.

Next, participants were asked to rate how intuitive they thought the UI of the ap-

plication was. The UI includes the images and videos which work as gesture prompts,

navigational arrows, and calibration prompts. The results of this question are shown

in Figure 5.10. Most participants answered this question with a rating between 4 and

5 indicating that they thought the UI was intuitive. Participants were then asked how

useful they felt the application was in teaching ASL to potential users. While the

application is not necessarily geared towards this specific purpose, the hope is that

it could be expanded to become an application which does perform ASL education,

as it could be expanded to be other ASL related tools as well. The results of this

question are shown in Figure 5.11. Most participants provided a rating of 5 here

indicating that they thought the application would be very useful in teaching ASL

while others were split between a rating of 1 and 4. Participants were then asked

Figure 5.10: Intuitiveness of UI
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Figure 5.11: Usefulness in Teaching ASL

to rate their overall experience when using the application. These results are shown

in Figure 5.12. Move participants provided a rating here between 4 and 5 indicating

their overall experience was positive.

Participants were also asked to provide feedback regarding possible improvements

that could be made to the application and other general observations. One participant

believed that the application could better handle variations of ASL gestures that are

performed by different users. This is because not every ASL user signs the same

way, and as such, different variations should be caught and recognized through the

application in order to increase it’s usability. Another participant thought that it

would be useful if the application provided more notifications as to what is wrong

with a gesture when it is being performed incorrectly, so as to help users more easily

correct the issue themselves. Another participant thought that more instruction could

be provided aside from the videos and images. Overall, most participants proposed

changes to make the UI clearer and have the application provide more guidance

regarding how to perform gestures correctly.
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Figure 5.12: Overall User Experience

Participants were also given a simulator sickness questionnaire before and after

using the application. Each questionnaire asked the participant to rate the frequency

in which they were feeling a number of symptoms related to simulator or VR sickness.

The first questionnaire was meant to establish a baseline of how users felt before us-

ing the application, so as to determine if any changes occurred after going through

it. The second questionnaire outlined any changes in symptoms that occurred after

using the application. The majority of the participants had no change in symptoms

indicating that the application did not cause or exacerbate symptoms of VR sickness

in most cases. A total of 7 participants did report a change in symptoms. The largest

change reported by a participant was a moderate feeling of eye strain when there

was none previously. Other participants reported a slight increased feeling of nausea

and sweating. Other reported symptoms throughout the 7 participants include slight

increased feelings of general discomfort,fullness of the head,dizziness,headache, and

burping. Two participants also reported decreases in symptoms they were initially

feeling before the study began. For example, one participant initially reported a
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difficulty focusing and concentrating which went away after going through the appli-

cation. Another participant reported they had a decreased feeling of fullness in their

head after participating in the application.

5.4 Discussion

Overall based on the results gathered, the majority of participants thought that the

application was a useful tool and had a positive experience when taking part in the

study. From a quantitative perspective, most static ASL gestures were recognized

within a shorter timespan of 1 to 10 seconds, while most multi gestures required a

timespan of 1 to 60 seconds. Most multi gestures were recognized successfully after 1

to 10 attempts by the participants. At most, three glove calibrations were required

by a user in order to resolve a mismatch between the participant’s hands and their

virtual counterparts.

Regarding outliers and deviations to the trends of the majority, there are a few

factors which contributed to this. These include certain participants finding it more

difficult to match the ASL gestures presented in the UI prompts than others. This

could be resolved by providing clearer instruction within the UI, as suggested by

certain participants in the post-questionnaire. Another contributing factor which

was mentioned previously is a variation in bodily features that was present among

the participants which also deviates more significantly from those of the researchers

that trained the application. The features in this case which have been shown to

be most influential are hand size, arm length, and height. While efforts were made

to constrain hand size as much as possible, deviations did still occur. More training

data from people with various body types and hand sizes would help resolve this issue.

Finally, more advanced calibration procedures aside from the basic calibration that

was performed with the application may provide more consistent recognition results.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

This thesis has presented a novel approach to performing ASL gesture recognition

using motion tracking gloves in conjunction with a VR headset. This approach has

been implemented into a usable application and tested among various participants.

By utilizing machine learning, the application in it’s current state successfully rec-

ognizes 34 ASL gestures as they are performed by a user, including 26 letters of

the alphabet, and 8 words/phrases. The front-end of the application incorporates

a tutorial-like interface, enabling users to cycle between various gestures to be per-

formed while receiving guidance in the form of images and videos. The application

was designed such that it could easily be expanded into various ASL related VR ap-

plications which could be used for education, general communication, or a number of

other purposes.

To simplify the development and recognition process, gestures were categorized

as static, multi, and positional gestures based on their characteristics as specified by

the syntax of ASL. The application was also split into two separate modules: A trainer

and a recognizer. The trainer facilitated the process of generating training data for

ASL gestures to be used to generated a neural network for each gesture category.

These neural networks are passed to the recognizer, which uses them to perform

recognition on incoming hand gestures which are performed in a VR environment.

Gestures were performed using the VRFree motion tracking gloves by Sensoryx, and
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data handling was achieved through the API associated with the gloves. The VR

Headset used was the Vive Cosmos.

The testing process involved 21 participants performing all 34 ASL gestures while

having them recognized by the application and while being monitored by a researcher.

Feedback from each participant regarding the application was gained through the

use of questionnaires. Three quantitative metrics were measured during each user

study including the amount of time taken to perform each the gesture, the number

of attempts needed to perform multi gestures, and the number of glove calibrations

needed. It was found that the majority of static gestures were recognized within 1-10

seconds and most multi gestures within 1-60 seconds. The majority of multi gestures

were also performed using 1-10 attempts. Most participants required a single glove

calibration, while at most 3 calibrations were required.

6.2 Future Work

While the majority of the results presented in this thesis were positive, there are a

number of improvements that can be made to reduce outliers that occurred and to

better guide users in performing gestures correctly. The most important improve-

ment would be to include more training data. Only three trainers were utilized in

developing the application, so by increasing this number to a larger amount, and also

ensuring that trainers have varied body types and hand sizes, the performance of

the application would improve. Also, while it may require a longer setup process,

incorporating more advanced calibration procedures that are part of both the VR-

Free and Vive APIs may be ideal to ensure consistent recognition of the hands and

optimal comfort of the user. Also to reduce the need for manual adjustment during

application execution, it may be useful to automatically adjust confidence thresholds

that influence successful recognition based on the performance of users. This would

enable the application to find optimal confidence thresholds for specific users that

maximize recognition capabilities while also minimizing false positives.

In regard to possible expansions that could be made to this application, one ad-
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dition would be a conversational interface in which users could make any ASL hand

gesture and have it recognized immediately. This differs from the current implemen-

tation of the application which has users move through specific stages and focus on

a single gesture during each stage. While the current interface may be beneficial for

those first learning ASL, a conversational interface would be an ideal environment for

practicing gestures, especially if dialog capabilities were included to enable chats with

other users over a network. Also, since there are multiple different types of glove sizes

distributed by VRFree, another possible expansion would be to incorporate usage of

these different glove sizes to make the application more accessible to different users.

Also it would be useful to automate the training process further so as to not require

users to manually execute python scripts and convert the models to a usable format.

Both the trainer and recognizer functionalities could likely be incorporated into a

single executable that a user can run.
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UNR Research Integrity 
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Research Integrity 
Tel: (775) 327-2368 

Web: unr.edu/research-integrity 

 

Protocol – Social Behavioral Educational Research and Record Research 
IRBNet ID: 1842535-1, PI: Sergiu Dascalu, Project Title: American Sign Language Gesture Recognition using 

Motion Tracking Gloves in VR 

 
 

 
 
Background: 
Gesture recognition refers to the process of detecting and interpreting human gestures by acquiring and 

analyzing related data i.  There has been abundant research in the field of gesture recognition, with related 

applications spanning a wide range of technologies and disciplines.  Much of this research has been dedicated 

towards hand gesture recognition, with sign language gestures being a particular area of interest.  Sign 

Language is a method of communication used primarily within the Deaf community which incorporates hand 

gestures representing letters and words ii.  Some applications which have focused on sign language gesture 

recognition include gloves which can translate sign language gestures into audio and text, Dialogue systems 

which use image recognition, and various educational tools iii iv v.  Despite the successes of gesture recognition 

applications, they also face several challenges which can limit their overall usability.  One common issue with 

gesture recognition is occlusions, or obstructions within the area being detected, which can be caused by 

overlapping fingers, or forming fists.  Many gesture recognition applications also lack the ability to detect 

moving gestures as well as gestures that involve parts of the body that are outside of a typical field of view.   

 

Virtual Reality (VR) is another area of research which has seen substantial contributions in various disciplines.  

VR encompasses the creation and utilization of artificial simulations meant to replace one or more sensory 

stimuli provided by the real world vi.  A common technology used to experience VR is a headset which provides 

visual and sometimes auditory simulations to a user.  Since VR involves immersing the user into a virtual world 

with nearly endless possibilities, the field has massive potential to provide unique and intuitive user interfaces, 

especially when combined with different types of peripheral hardware.  One approach to designing VR user 

interfaces involves providing a simulated version of a user's hands which can replicate real-world movements 

within the virtual environment.  There are a number of tools which achieve this in different ways, with each one 

having its own benefits and trade-offs.  Some tools include infrared sensor technologies such as the LEAP 

motion, as well as motion tracking gloves v.  

The purpose of this research is to develop and test a novel approach to performing ASL hand gesture 
recognition within a VR environment.  This approach has been implemented into a software application which 
successfully recognizes ASL gestures being performed by a user.  The hardware used with the application 
includes the Vive Cosmos VR Headset along with the VRFree Sensoryx motion capture gloves.  The gesture 
recognition technique employed by this application has the capability to detect moving gestures as well as 
gestures which must be performed at specific parts of the body, which has been a limitation with many 
previous related applications.  The VRFree gloves also overcome the occlusion issue of hand gesture 
recognition by providing distinct sensor data from each joint of each finger.  In order to effectively leverage the 
VR portion of the application, an intuitive interface is created for the user which displays examples of gestures 
to be performed, and enables the user to perform gestures one at a time until each one is performed 
successfully. 
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Study Aims/Objectives: 

• Determine the overall performance of the proposed gesture recognition approach when tested by 

different users 

• Determine what improvements can be made to this approach to improve its performance and usability 

• Determine the intuitiveness of the developed user interface and the overall satisfaction of users while 

testing the developed application. 

 
Study Population: 
The participant population will include people at least 18 years old, with any gender or ethnic background.  
Participants must have a hand size that at least comes close to the size specifications of the motion tracking 
VR gloves that will be used during the study. 
 
Vulnerable Populations: 
No vulnerable populations will be included in this research. 

 
Sample Size: 
The sample size will be 20 participants.  This number was determined to be suitable after reviewing previous 
similar studies to the one I am performing.  The number of participants in these studies were either close to or 
exactly 20, and it appears the researchers of these studies were able to extract sufficient data in these cases.  
Also, after discussing the sample size with more experienced members of my research group, they have stated 
that 20 is typically an adequate sample size for the type of study I am performing. 
 
Recruitment Process:  
Participants will be invited to participate in the study through word of mouth or email contact.  This will be done 
as needed during various time periods and in various places until all participants are gathered.  During this 
process, the prospective participant will be given a brief description of the study.  A full overview of the study 
will be provided once the participant agrees to it.       
 
Screening Procedures: 
The first screening process for potential participants will be regarding hand size. To participate in the study, 
participants must have a hand size that at least comes close to the size specifications of the motion tracking 
VR gloves that will be used during the study.  To confirm this, participants will place their hands on a sizing 
guide provided by the vendor of the gloves (this sizing guide has been attached a supporting document with 
my submission). 
 
The second screening process will be regarding age.  The participants will state their age on a pre survey 
before the study begins.  If they 18 years old or older, they can participate in the study. 
 
Informed Consent Process: 
When first inviting the participant to take part in the study, the researcher will verbally explain the study to 

them.  The participant will then be invited to the lab in which the study will be taking place if they are still 

interested in taking part in the study.  Once in the lab, the participant will be provided a consent form to fill out 

which includes all the necessary details regarding the study.  The researcher will then demonstrate the tasks 

that will need to be done during the study by performing them.  After this, the researcher will ask the participant 

again if they would still like to participate in the study.  The participant is free to opt-out of the study at any point 

in time.  After the study has been completed, the participant will be given a copy of the consent form along with 

the researcher’s contact information. 
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Data Collection Procedures: 
After the participant agrees to take part in the study, they will be informed in detail what the study involves.  

The participant will then be provided with a pre-test survey which asks participants about their demographics, 

familiarity with virtual reality, familiarity with sign language, familiarity with motion tracking hardware/software, 

and familiarity with electronic entertainment such as video games.  The participant will then be provided with a 

simulator sickness questionnaire which asks participants if they are experiencing any symptoms associated 

with simulator sickness, and how severe the symptoms are.  The participant will then be given a demonstration 

of the tasks that need to be performed during the study.  Once the demonstration is over, the participant will 

begin performing the tasks themselves with assistance being provided from the researcher as needed.   

 

The tasks of the study involve performing a series of American Sign Language (ASL) gestures as prompted by 

a VR application while equipped with the VRfree Sensoryx Motion Tracking gloves and the Vive Cosmos VR 

Headset.  After putting on the headset and gloves, the process begins by powering on the gloves and starting 

the VR application from the PC.  The gloves are then calibrated through a routine in the software which 

involves the participant performing three poses.  Sometimes multiple calibrations may be needed if the 3D 

hand models in the virtual environment do not accurately match the locations of the hands in the real world.  

Once calibration has been performed successfully, the participant will then follow a series of prompts within the 

virtual environment which each instruct the participant on how to perform a specific ASL gesture.  This 

instruction will be conveyed through images and in some cases video.  When the user is able to perform the 

ASL gesture successfully, they will be asked to move on to the next one by looking at a button in the virtual 

environment.  This process will be repeated for a total of 34 ASL gestures.  Throughout this process, data from 

three quantitative metrics will be gathered including the time necessary to perform each gesture successfully, 

the number of attempts needed to perform a moving gesture successfully, and the number of times a 

recalibration is needed.  This data will be collected through logs generated within the VR application as well as 

observation by the researcher.  Once all gestures have been performed successfully, the participant will then 

remove the VR headset and gloves with the researcher’s assistance. 

 

The study will then conclude with a post-test survey and a second simulator sickness questionnaire meant to 

determine if any symptoms are being experienced after going through the study.  The post-test survey will ask 

the participant some questions regarding their overall experience while performing the tasks.  These include 

overall comfortability while performing the tasks, difficulty performing each gesture, intuitiveness of the user 

interface, usefulness of the gloves in teaching ASL hand gestures, potential improvements that can be made, 

other possible applications for the gloves, and general experience along with any other general comments and 

observations. 

 
Study Duration/ Study Timeline: 
Only one meeting will be needed for each participant in the study.  Each meeting should take approximately 1 
hour to complete.  The expected approximate end date of the study will be February 28th 2022.  
 
Study Locations: 
The study location will be Room 436 in the William Pennington Engineering Building at the University of 
Nevada, Reno. 
 
International Research: 
This research will take place in the U.S. and will not involve external international locations.  This research 

involves American Sign Language (ASL) which is a primary method of communication for the deaf in both the 

United States and Canada.   

 
Participant Compensation: 
No compensation will be provided to participants in this study. 
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Risk to Participants: 
Motion sickness may be experienced for some participants of the study who have not used virtual reality 
applications often or at all.  Before the study begins, participants will be notified of this possibility and will be 
asked to remove the virtual reality headset if they begin to feel sick at any point in time.  Should participants 
feel sick during the study, they can choose to either continue the study after a period of rest or stop the study 
altogether.        
 
Benefits to Participants: 
This research does not present any direct benefit to the participants. However, the research provides an 
opportunity to gain a better understanding of gesture recognition in general as well as its possible applications 
within a virtual reality environment. 
 
Privacy of Participants: 
Participants will be recruited individually, and no record will be kept of contact.  The only record of a person’s 
participation that will be kept in the study is the survey responses.  No additional records will be kept.  The 
participant will be interacting with the researcher in a research lab within the William Pennington Engineering 
Building at the University of Nevada, Reno. 
 
Data Management and Confidentiality: 
A randomized ID will be given to each participant which will have no identifiable information.  All collected data 
will be stored under the ID numbers and saved on a computer which requires specific login credentials.  Also, 
the computer in which the data will be saved is located in a lab that requires key card access.   
 
Approach to Analysis: 
A standard ANOVA method will be used for statistical analysis along with other common transformations and 

methods.   
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University of Nevada, Reno 
Social Behavioral or Educational Research Consent Form 

 
Title of Study:  

 
American Sign Language Gesture Recognition using Motion Tracking 
Gloves in VR 

Principal Investigator: Sergiu Dascalu, PhD 
Co-Investigators / 
Study Contact: 

Justice S Colby 
Justice S Colby 

Study ID Number: 1842535-1 
Sponsor: N/A 

SUMMARY OF KEY ELEMENTS: 

Introduction 

You are being invited to participate in a research study. Before you agree to be in the study, 
read this form carefully. It explains why we are doing the study; and the procedures, risks, 
discomforts, benefits and precautions involved. 
 
At any time, you may ask one of the researchers to explain anything about the study that you 
do not understand. 
 
You do not have to be in this study. Your participation is voluntary. If you do not agree to 
participate, you will receive the care/education you would have received if the study was not 
taking place. 
 
Take as much time as you need to decide. If you agree now but change your mind, you may quit 
the study at any time. Just let one of the researchers know you do not want to continue. 

Why are we doing this study? 

We are doing this study to determine the overall performance and usability of a novel approach 
to sign language recognition in virtual reality, while also examining possible improvements that 
can be made. 

Why are we asking you to be in this study? 

We are asking you to be in this study because you are an adult who can speak English and also 
has a hand size that can fit within the motion tracking gloves being used in the study. 

How many people will be in this study? 

We expect to enroll 20 participants at the University of Nevada, Reno. 

What will you be asked to do if you agree to be in the study? 

If you agree to be in this study you will be asked to complete a pre-test survey, post-test survey, 
and a simulator sickness questionnaire at the beginning and end of the experiment along with a 
series of tasks which help to assess overall performance and usability of the application. 
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The pre-test survey will ask you questions regarding your age, gender, highest completed level 
of education, and various questions relating to your familiarity with key components of the 
application.  The simulator sickness questionnaire will ask you if you are experiencing any 
symptoms associated with simulator sickness and how severely they are affecting you. 
 
The tasks of the study will be performed while wearing a VR headset and a pair of motion 
tracking gloves.  These tasks include calibrating the gloves, and performing a number of ASL 
gestures while having them successfully recognized by the gesture recognition algorithm of the 
application. 
 
The post-test survey will ask questions regarding the participant’s thoughts on usability and 
design of the application along with any improvements that can be made. 

How long will you be in the study? 

The study will take about an hour of your time. 

What are your choices if you do not volunteer to be in this research study? 

If you decide not to be in the study, tell the investigator and you will be allowed to leave. 

What if you agree to be in the study now, but change your mind later? 

You do not have to stay in the study.  You may withdraw from the study at any time by leaving 
the room after informing the investigator. 

What if the study changes while you are in it? 

If anything about the study changes or if we want to use your information in a different way, 
we will tell you and ask if you want to stay in the study. We will also tell you about any 
important new information that may affect your willingness to stay in the study. 

Is there any way being in this study could be bad for you? 

Some users of virtual reality experience discomfort, nausea, headaches, and eye strain.  If at 
any point in time you begin to experience any of these symptoms, please remove the virtual 
reality headset. We can continue testing or stop altogether. 

What happens if you become injured because of your participation in the study? 

In the event that this research activity results in an injury, treatment will be available. This 
includes first aid, emergency treatment, and follow-up care as needed. Care for such injuries 
will be billed in the ordinary manner to you or your health insurance carrier. 

Will being in this study help you in any way? 

Probably not, except it will add to your experience with using VR applications. 

Who will pay for the costs of your participation in this research study? 

No costs are associated with participation in this study. 
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Will you be paid for being in this study? 

You will not receive any payment for being this study. 

Who will know that you are in in this study and who will have access to the information we 
collect about you? 

The researchers, the University of Nevada, and the Reno Institutional Review Board will have 
access to your study records. 

How will we protect your private information and the information we collect about you? 

We will treat your identity with professional standards of confidentiality and protect your 
private information to the extent allowed by law. 
 
We will not use your name or other information that could identify you in any reports or 
publications that result from this study. 

Do the researchers have monetary interests tied to this study? 

The researchers and/or their families have no monetary interests tied to this study. 

Whom can you contact if you have questions about the study or want to report an injury?      
At any time, if you have questions about this study or wish to report an injury that may be 
related to your participation in this study, contact Sergiu Dascalu at (775) 784-4613 and/or 
Justice Colby at (775) 219-5629.  

Whom can you contact if you want to discuss a problem or complaint about the research or 
ask about your rights as a research participant? 

You may discuss a problem or complaint or ask about your rights as a research participant by 
calling the University of Nevada, Reno Research Integrity Office at (775) 327-2368. You may also 
use the online Contact the Research Integrity Office form available from the Contact Us page of 
the University’s Research Integrity Office website. 

Agreement to be in study 

If you agree to participate in this study, you must sign this consent form. We will give you a 
copy of the form to keep. 

 
Participant’s Name Printed   

   
Signature of Participant  Date 

   
Signature of Person Obtaining Consent  Date 
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University of Nevada, Reno 
Social Behavioral Research 

 
Title of Study:  

 
American Sign Language Gesture Recognition using Motion Tracking 
Gloves in VR 

Principal Investigator: Sergiu Dascalu, PhD 
Co-Investigators / 
Study Contact: 

Justice S Colby 
Justice S Colby 

Study ID Number: 1842535-1 
Sponsor: N/A 

Pre Test Survey 

 
Participant ID #:__________________  
 
Please Enter Your Age:__________________  
 
What is your gender? __________________ 
 
What is your highest level of completed education? __________________ 
 
Please rate your familiarity with Virtual Reality (VR).  
(1 – Not Familiar, 5 - Very Familiar)  
 

Not   1   2   3   4   5    Very 
          Familiar                      Familiar 
 

Please rate your familiarity with American Sign Language (ASL).  
(1 – Not Familiar, 5 - Very Familiar)  
 

Not   1   2   3   4   5    Very 
          Familiar                      Familiar 
 

Please rate your familiarity with Motion Tracking Hardware and Software.  
(1 – Not Familiar, 5 - Very Familiar)  
 

Not   1   2   3   4   5    Very 
          Familiar                      Familiar 
 

Please rate your familiarity with Video Games or Similar Forms of Electronic Entertainment.  
(1 – Not Familiar, 5 - Very Familiar)  
 

Not   1   2   3   4   5    Very 
          Familiar                      Familiar 
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UNR IRB Post-Test Survey
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University of Nevada, Reno 
Social Behavioral Research 

 
Title of Study:  

 
American Sign Language Gesture Recognition using Motion Tracking 
Gloves in VR 

Principal Investigator: Sergiu Dascalu, PhD 
Co-Investigators / 
Study Contact: 

Justice S Colby 
Justice S Colby 

Study ID Number: 1842535-1 
Sponsor: N/A 

Post Test Survey 

 
Please rate how comfortable you were during the test.  
(1 – Very Uncomfortable, 5 – Very Comfortable)  
 

Very   1   2   3   4   5                 Very 
Uncomfortable                      Comfortable 
 

Please rate how easy it was to perform each gesture.  
(1 – Very Difficult, 5 - Very Easy)  
 

Very   1   2   3   4   5    Very 
          Difficult                      Easy 
 

Please rate the intuitiveness of the user interface.  
(1 – Not Intuitive, 5 - Very Intuitive)  
 

Not   1   2   3   4   5    Very 
          Intuitive                      Intuitive 
 

Please rate the usefulness you feel these gloves have in teaching ASL hand gestures.  
(1 – Not Useful, 5 - Very Useful)  
 

Not   1   2   3   4   5    Very 
             Useful                      Useful 

 
Please rate your overall user experience.  
(1 – Very Bad, 5 - Very Good)  
 

Very  1   2   3   4   5    Very 
                  Bad                      Good 
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What potential improvements, if any, would make the application more useful or easy to use? 
 ______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________  
 
 
Based on your experience, what are some other applications in which you feel these gloves 
would be useful? 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________  
 
 
Please write any other comments or observations that you might have. 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
______________________________________________________ 
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Appendix F

UNR IRB Simulator Sickness
Questionnaire



 

No______________                 Date____________________ 

 

SIMULATOR SICKNESS QUESTIONNAIRE 
Kennedy, Lane, Berbaum, & Lilienthal (1993)*** 

 
Instructions : Circle how much each symptom below is affecting you right now. 

 

1. General discomfort 

 

None Slight Moderate Severe 

2. Fatigue 

 

None Slight Moderate Severe 

3. Headache 

 

None Slight Moderate Severe 

4. Eye strain 

 

None Slight Moderate Severe 

5. Difficulty focusing 

 

None Slight Moderate Severe 

6. Salivation increasing 

 

None Slight Moderate Severe 

7. Sweating 

 

None Slight Moderate Severe 

8. Nausea 

 

None Slight Moderate Severe 

9. Difficulty concentrating 

 

None Slight Moderate Severe 

10. « Fullness of the Head »  

 

None Slight Moderate Severe 

11. Blurred vision 

 

None Slight Moderate Severe 

12. Dizziness with eyes open 

 

None Slight Moderate Severe 

13. Dizziness with eyes closed 

 

None Slight Moderate Severe 

14. *Vertigo 

 

None Slight Moderate Severe 

15. **Stomach awareness 

 

None Slight Moderate Severe 

16. Burping 

 

None Slight Moderate Severe 

 

* Vertigo is experienced as loss of orientation with respect to vertical upright. 

 

** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of 

nausea. 

 

 
Last version : March 2013 

 

***Original version : Kennedy, R.S., Lane, N.E., Berbaum, K.S., & Lilienthal, M.G. (1993). Simulator Sickness 

Questionnaire: An enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology, 

3(3), 203-220. 
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Simulator Sickness Questionnaire*** 
Kennedy, Lane, Berbaum, & Lilienthal (1993)*** 

 

 
Validation of the French-Canadian version of the SSQ developed by the UQO 

Cyberpsychology Lab :  

 

 Total : items 1 to 16 (scale of 0 to 3). 

o  « Nausea » : items 1 + 6 + 7 + 8 + 12 + 13 + 14 + 15 + 16. 

o  « Oculo-motor »: items 2 + 3 + 4 + 5 + 9 + 10 + 11. 

 

Please refer to the following articles for more information about the French-Canadian validated 

version : 

 

BOUCHARD, S., Robillard, & Renaud, P. (2007). Revising the factor structure of the Simulator 

Sickness Questionnaire. Acte de colloque du Annual Review of CyberTherapy and 

Telemedicine, 5, 117-122. 

BOUCHARD, S., St-Jacques, J., Renaud, P., & Wiederhold, B.K. (2009). Side effects of immersions in 

virtual reality for people suffering from anxiety disorders. Journal of Cybertherapy and 

Rehabilitation, 2(2), 127-137. 

BOUCHARD, S. Robillard, G., Renaud, P., & Bernier, F. (2011). Exploring new dimensions in the 

assessment of virtual reality induced side-effects. Journal of Computer and Information 

Technology, 1(3), 20-32. 
 

Based on results from Bouchard, St-Jacques, Renaud, & Wiederhold (2009), below are the mean scores 

reported: 

 
 

 

Note. For the original scoring version, consult : Kennedy, R.S., Lane, N.E., Berbaum, K.S., & Lilienthal, M.G. (1993). 

Simulator Sickness Questionnaire: An enhanced method for quantifying simulator sickness. International Journal of 

Aviation Psychology, 3(3), 203-220. 
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Appendix G

UNR IRB Participant Recruitment
Email



Recruitment Email Script 

General Recruitment Email:  

Good [morning, afternoon, etc.],  

I am conducting a research study to assess the performance and usability of a virtual reality (VR) 

application designed to recognize American Sign Language (ASL) gestures being performed by a user. I 

am currently looking for 20 participants to conduct a user study to advance this research. Participants in 

the study will be asked to perform a number of tasks while wearing both a VR headset and a pair of 

motion tracking gloves.  These tasks include performing an initial calibration of the gloves and also 

performing 34 ASL hand gestures as prompted within the VR environment.  The entire process should 

take approximately an hour to complete.  The user study will be performed in WPEB Lab Room 436.  If 

you are interested in participating in this user study, please email Justice Colby at 

jcolby@nevada.unr.edu to set up a time that works best for you to complete the study. 

Sincerely,  

Justice Colby 

 

Personal Recruitment Email:  

Dear [participant],  

I am conducting a research study to assess the performance and usability of a virtual reality (VR) 

application designed to recognize American Sign Language (ASL) gestures being performed by a user. I 

am currently looking for 20 participants to conduct a user study to advance this research. Participants in 

the study will be asked to perform a number of tasks while wearing both a VR headset and a pair of 

motion tracking gloves.  These tasks include performing an initial calibration of the gloves and also 

performing 34 ASL hand gestures as prompted within the VR environment.  The entire process should 

take approximately an hour to complete.  The user study will be performed in WPEB Lab Room 436.  If 

you are interested in participating in this user study, please email Justice Colby at 

jcolby@nevada.unr.edu to set up a time that works best for you to complete the study. 

Sincerely,  

Justice Colby 
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Appendix H

UNR IRB User Study Flyer
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