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Abstract  

The decline and loss of species and genetic diversity as a result of anthropogenic change 

is occurring at an unprecedented rate, reshaping biodiversity and restructuring 

ecosystems. Population genetic variation is shaped by evolutionary processes and in turn 

determines the evolutionary potential of natural populations. Facilitated by recent 

improvements in DNA sequencing technologies, population genomic analyses can 

resolve patterns of genetic differentiation and evolutionary history, characterize the 

effects of evolutionary processes on genome variation, and facilitate an understanding of 

how environmental variation may underlie local adaptation. Such analyses can inform 

conservation and restoration by establishing baseline patterns of genetic variation across 

the landscape, recognizing evolutionary significant units, sourcing propagules for 

restoration, and predicting species response to changing environmental conditions. Here, 

I applied high throughput DNA sequencing approaches to characterize the historical, 

spatial, and environmental factors shaping genetic variation in several systems of 

conservation and restoration significance. First, I investigated hierarchical genetic 

structure and evolutionary history of Hucho taimen (taimen, the world’s largest 

salmonid), listed as vulnerable by the International Union for Conservation of Nature 

(IUCN), across multiple river basins in Russia and Mongolia. Second, I characterized 

patterns of emergent population genetic structure of nonnative Oncorhynchus mykiss 

(rainbow trout) in the Lake Tahoe basin to inform reintroduction of the U.S. Endangered 

Species Act listed native cutthroat trout Oncorhynchus clarkii henshawi (Lahontan 

cutthroat trout). Rainbow trout have been widely introduced across the globe, stocked for 



 ii 

>50 years into Lake Tahoe, and an understanding of population genetic structure may 

help inform strategies for successful native species reintroduction.  Finally, I quantified 

spatial genetic structure, identified environmental variables potentially involved in local 

adaptation, and predicted variation in maladaptation under projected climate change 

across the range of Pinus muricata, a closed-cone pine occurring in a small number of 

isolated and disjunct stands along the coast of California, and also listed as vulnerable by 

the IUCN. Collectively, my research highlights the wide utility of population genomic 

analyses for taxa of conservation and restoration significance. 
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Introduction  

Globally, species have experienced sharp declines as a result of anthropogenically 

induced environmental change. Ecosystem degradation and habitat destruction (Tilman et 

al., 1994; Travis, 2003, Watson et al., 2018; Bergstrom et al., 2021), overharvest (Russ & 

Alcala, 2011), population fragmentation (Lamont et al., 1993; Morita & Yamamoto, 

2002; Wu et al., 2003; Jaeger & Fahrig, 2004), and species introductions (Bax et al., 

2003; Davis, 2003; Pearson et al., 2022) represent some of the most significant threats to 

biodiversity. Perhaps the greatest threat, the rapidly changing climate, has resulted in 

changes in phenology (Edwards & Richardson, 2004; Visser & Both, 2005; Inouye, 

2008; Piao et al., 2019), shifts in species' range and distribution (Colwell et al., 2008; 

Chen et al., 2011; Wallingford et al., 2020), and disruption of community organization 

(Suttle et al., 2007; Walther, 2010; Glassman et al., 2018). Together, these disruptions to 

ecosystems threaten biodiversity at unprecedented scales, warranting an increase in 

studies to better understand the evolutionary processes underlying the production, 

organization, and maintenance of diversity.  

Evolutionary biologists have long recognized how population genetic variation 

shapes the form and outcome of evolutionary processes. Rapid recent growth in our 

ability to generate and analyze genomic data has transformed our understanding of 

diverse patterns and processes in evolutionary biology and ecology (Andrews et al., 

2016; Porter & Hajibabaei, 2018; Breed et al., 2019; Hohenlohe et al., 2021). Population 

genetic variation provides a critical axis of our understanding of evolutionary and 

ecological processes in both natural and managed systems as genetic diversity underlies 
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evolutionary potential (Reed & Frankham, 2001; Hughes et al., 2008) and has been 

empirically associated with population persistence (Palstra & Ruzzante, 2008) and even 

ecosystem function (Reynolds et al., 2012; Wernberg et al., 2018). The production and 

analysis of genetic data for rare, declining, or managed populations or ecosystems can be 

used to: (1) identify unique populations or lineages, (2) preserve genetic diversity within 

populations, (3) understand and preserve adaptive potential in the context of 

environmental change, and (4) guide genetically appropriate source material for 

translocation or restoration. Historically, conservation geneticists explored variation in 

threatened or endangered species with small extant populations, characterizing patterns of 

standing variation, identifying bottlenecks, and estimating evolutionary potential (e.g., 

Florida panthers, Roelke et al., 1993; Isle Royale wolves, Wayne et al., 1991; northern 

elephant seals, Bonnell & Selander, 1974). Modern applied population genetic analyses 

focus on understanding how genetic variation is partitioned across the landscape and the 

underlying causal mechanisms, identifying unique lineages, uncovering important 

reductions in genetic diversity, and understanding the genetic basis of adaptation. As a 

result, population genomic analyses could provide a critical perspective for understanding 

how populations may respond to global change, and thus can inform recovery and 

restoration strategies. 

Recent DNA sequencing innovations have dramatically increased our ability to 

quantify genome-wide variation spanning large numbers of loci, individuals, and 

populations, and have transformed basic and applied research in genetics (Andrews et al., 

2016; Porter & Hajibabaei, 2018; Breed et al., 2019; Hohenlohe et al., 2021). Genome-

level perspectives on population genetic variation have resolved the genetic structure of 
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populations and species at increasingly fine spatial and temporal scales (e.g., Novembre 

& Stephens, 2008; Kashtan et al., 2014; Larson et al., 2014; Leslie et al., 2015; Shannon 

et al., 2015) and have dramatically increased our ability to detect and characterize the 

influence of evolutionary processes on genome variation. For example, we are now 

capable of quantifying the genetic basis of phenotypes with fitness consequences in non-

model organisms (Ellegren et al., 2012; Jones et al., 2012; Riedelsheimer et al., 2012; 

Shapiro et al., 2013; Poelstra et al., 2014; Lamichhaney et al., 2015), quantifying fine-

scale variation in admixture and introgression across hybridizing lineages (Gompert et 

al,. 2017), anticipating species' adaptive responses to global climate change (Garrett et 

al., 2006; Sork et al., 2013; Exposito-Alonso et al., 2018), and inferring how time, 

migration, and changes in effective population size shape population divergence 

(Edwards & Beerli, 2000; Hey & Nielsen, 2004; Excoffier et al., 2013). Further, 

landscape genomic analyses can facilitate an understanding of the genetic signatures of 

local adaptation and its environmental causes (Rellstab et al., 2015; Forester et al., 2016, 

2018).  Collectively, these advances provide a wide variety of applied ecological and 

evolutionary genetic tools to guide the conservation and restoration of ecosystems. 

By addressing basic evolutionary questions in species of applied significance, my 

dissertation research has utilized population and landscape genomic analyses to resolve 

complex evolutionary histories, to understand the consequences of a long history of 

under-informed management practices, to detect the genetic signature of local adaptation 

and its environmental drivers, and to assess potential maladaptation under projected 

climate change. I investigate these questions across two very different groups of taxa: two 

species of fish in Salmonidae and a rare Pinus species in the Pinus subsection Australes. 
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For one long-lived, native salmonid species, Hucho taimen, I investigated hierarchical 

genetic structure and the evolutionary history underlying it. For one short-lived salmonid 

species, Oncorhynchus mykiss, I characterized the population and landscape genetic 

structure of naturalized nonnative populations for this repeatedly and deliberately 

introduced species, representing one of the most successful invasives in the world. 

Finally, for one species of Pinus, I investigated the extent to which history and 

environment predict current patterns of standing variation while considering the 

consequences of these patterns for long-lived and fragmented forest tree populations 

threatened by climate change. Naturally, none of these taxa can escape the effects of 

environmental change; one is long-lived and immobile, while the others are restricted to 

riverscapes and the downstream flow effects of within-river anthropogenic modifications 

and disturbances. An understanding of the processes shaping and maintaining genetic 

diversity among and within populations of these taxa will be critical for understanding 

their potential future response to human mediated environmental change. 

In Chapter One, I quantified patterns of genetic variation across basins and 

drainages for Hucho taimen. The taimen is the world’s largest and one of the most 

ancient extant members of Salmoninae (salmon, trout, and char; Crête-Lafrenière et al., 

2012), historically occurring from Eastern Europe across much of Asia to the Pacific 

Ocean (Holčík et al., 1988). The species has suffered dramatic population declines across 

much of its range, including extirpations in three large river basins (Rand, 2013) and is 

now extirpated, endangered, or threatened across much of its historic range (Ocock et al., 

2006). Here, I used high throughput sequencing of reduced representation libraries 

(ddRADseq, ~6,000 single nucleotide polymorphisms) to characterize levels of genetic 
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differentiation of taimen among several river drainages spanning Mongolia and Russia. I 

identified substantial genetic differentiation consistent with historical isolation between 

taimen from the Arctic (Selenge) and Pacific (Amur and Tugur) drainages. I did not 

detect genetic differentiation among sites in the Selenge Basin of Mongolia and Russia, 

which is consistent with large-scale movements of taimen and with past studies which 

used smaller sets of genetic markers. Among the Pacific drainages, however, I found 

clear differentiation between the Amur and Tugur basins. Most importantly, these 

analyses revealed surprising evidence for genetic differentiation between two groups of 

taimen sampled in the tributaries and the mainstem of the Tugur basin, despite a lack of 

movement barriers. Coalescent modeling suggested contemporary Tugur tributary taimen 

diverged in isolation, likely in the eastern Amur Basin, before paleohydrological changes 

allowed them to colonize the Tugur. My results are consistent with reproductive isolation 

between two groups of taimen, despite a lack of current geographic isolation after a 

period of allopatric divergence. The hierarchical population structure recovered in this 

study suggests that ecologically relevant genetic variation might be partitioned at smaller 

spatial scales than previously considered, warranting additional study and perhaps 

identification of distinct evolutionarily significant units with unique conservation 

considerations. 

In Chapter Two, I characterized population genetic structure of introduced, 

naturalized rainbow trout (Oncorhynchus mykiss, RBT) to understand and inform 

removal strategies as ecosystem restoration proceeds for the native but locally extirpated 

cutthroat trout subspecies within the Lake Tahoe basin. The Lahontan cutthroat trout 

(Oncorhynchus clarkii henshawi, LCT), endemic to the hydrographic Lahontan basin of 
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northeastern California, northern Nevada, and southeastern Oregon, has been listed as 

threatened under the ESA since 1975 (Coffin & Cowan, 1995). Considered the largest 

inland trout in North America (Peacock et al., 2018), LCT were extirpated in the Lake 

Tahoe basin due to overharvest, lack of access to suitable spawning habitat, water 

diversions, and introduction of nonnative salmonids (Gerstung, 1988; Peacock et al., 

2018). As with the other CT subspecies, perhaps the most formidable threat to survival 

and successful reintroduction of LCT into its historical habitat are naturalized populations 

of nonnative rainbow trout, a close congener that threatens the integrity of the native LCT 

genome through hybridization and introgression (Leary et al., 1987; Allendorf et al., 

2001; Campbell et al., 2002). Large, naturalized populations of RBT have been 

established in the Tahoe basin for >50 years (Cordone & Frantz, 1968), presenting a 

formidable challenge to LCT reintroduction in an ecosystem where nonnative RBT 

introductions were consistent, deliberate, and widespread. Here, I used high throughput 

sequencing of reduced representation libraries (ddRADseq, ~13,000 single nucleotide 

polymorphisms) to characterize population genetic differentiation and diversity within 

and among RBT sampled from different tributary streams. Despite dispersal from 

stocking locations across all regions, these analyses revealed some genetic differentiation 

among tributaries, with individuals from spatially proximate streams clustering across 

multiple population genetic analyses. I detected evidence for genetic differentiation 

among tributaries from the southern, western, and northern regions, including surprising 

structure involving a single tributary (McKinney Creek). These results illustrate the 

extent of differentiation within and among streams and could inform possibilities for and 

implications of RBT removal and LCT reintroduction. Importantly, this research 
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represents a unique perspective on the establishment of population genetic structure in a 

system where intentionally introduced but successfully naturalized populations not only 

represent immensely successful invasions but have also prevented successful restoration 

of an iconic salmonid to its native habitat. 

In Chapter Three, I characterized the distribution of genetic diversity and 

differentiation across the entire range of Pinus muricata (Bishop pine) to understand how 

history and environment have shaped genetic variation and to anticipate variation in the 

degree of local maladaptation under several future climate projection models. P. muricata 

occurs across environmental conditions occupying a narrow coastal band that encompass 

the foggy, maritime conditions of the Pacific coast (Millar, 1986, 1988). Populations are 

highly isolated and disjunct (Little, 1975; Millar, 1986, 1988), unlike other widely 

distributed pine species. I sampled nearly all extant populations of P. muricata and used 

high throughput sequencing of reduced representation libraries (ddRADseq, ~8,000 

single nucleotide polymorphisms) to quantify the distribution of genetic diversity and 

differentiation across the landscape. I found pronounced spatial genetic structure 

following a latitudinal gradient, where populations showed no evidence of reduced 

genetic diversity despite high levels of isolation. Phylogenetic analyses suggested older 

populations in the south than in the north, coinciding with the origin of the Attenuatae 

clade from mid-latitudes in the late Miocene between 5-10 mya followed by subsequent 

northward expansion (Eckert & Hall, 2006; Hernandez-Leon et al., 2013; Saladín et al., 

2017; Gernandt et al., 2018). Notably, populations from Santa Cruz Island showed fine 

scale genetic structure despite occurring in highly proximate stands. I then used genome-

environment association (GEA) analyses to identify environmental variables (both 
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climate and soil) that may contribute to variation in local adaptation across the range. 

Using the resultant subset of climate variables, I used genetic offset approaches to 

quantify the relative degree of maladaptation of each population under several different 

climate projection models at time intervals 2041–2060 and 2081–2100. Genomic offset 

analyses revealed variation in the relative degree of maladaptation of populations, with 

southern populations generally experiencing lower levels of offset than northern 

populations. These results suggest that isolation and local adaptation have shaped genetic 

variation among disjunct populations and illustrate the consequences of this variation for 

P. muricata under projected climate change. 
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Abstract 

Population genetic analyses can evaluate how evolutionary processes shape diversity 

and inform conservation and management of imperiled species. Taimen (Hucho 

taimen), the world’s largest freshwater salmonid, is threatened, endangered, or 

extirpated across much of its range due to anthropogenic activity including overfishing 

and habitat degradation. We generated genetic data using high throughput sequencing 

of reduced representation libraries for taimen from multiple drainages in Mongolia and 

Russia. Nucleotide diversity estimates were within the range documented in other 

salmonids, suggesting moderate diversity despite widespread population declines. 

Similar to other recent studies, our analyses revealed pronounced differentiation among 

the Arctic (Selenge) and Pacific (Amur and Tugur) drainages, suggesting historical 

isolation among these systems. However, we found evidence for finer-scale structure 

within the Pacific drainages, including unexpected differentiation between tributaries 

and the mainstem of the Tugur River. Differentiation across the Amur and Tugur basins 

together with coalescent-based demographic modeling suggests the ancestors of Tugur 

tributary taimen likely diverged in the eastern Amur basin, prior to eventual 

colonization of the Tugur basin. Our results suggest the potential for differentiation of 

taimen at different geographic scales, and suggest more thorough geographic and 

genomic sampling may be needed to inform conservation and management of this 

iconic salmonid. 

 

Key words: Amur, demographic inference, genetic diversity, Hucho taimen, RADseq, 

Salmoninae, Selenge, Tugur. 
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Introduction 

Population genetic data is relevant for shaping conservation, restoration, and 

management activities, and for understanding the response of populations to 

environmental change. Modern high-throughput sequencing technologies have enabled 

genome-wide perspectives and improved our ability to quantify genetic variation across 

populations, including those of conservation concern1, 2. Reduced representation 

approaches such as restriction site-associated DNA sequencing (RADseq) and 

genotyping-by-sequencing (GBS)3 have facilitated genome-wide population genetic 

analyses in organisms without genomic resources, and have often recovered patterns of 

fine-scale genetic structure and resolved patterns of recent diversification that were not 

evident with traditional molecular marker systems4, 5. Such approaches have improved 

our understanding of patterns of population structure and connectivity6, 7, the frequency 

and dynamics of hybridization8, 9, and the potential for species response to 

environmental change10, 11, and have guided the identification of conservation or 

management units12, 13. 

Globally, many salmonid fishes have experienced sharp declines, especially in 

recent decades14, due to anthropogenic factors including aquaculture15, introduced 

species, habitat degradation, overfishing, and climate change16, 17, 18. Population genetic 

data have been central to understanding evolutionary history of sensitive salmonid 

populations19, 20  and for guiding their conservation and management19, 21. High 

throughput sequencing in salmonids has improved the delineation of evolutionarily 

significant units12 and the detection of introgression between introduced and native 

populations22, 23, as well as identifying the genetic basis of adaptive phenotypes24, 25, 26. 
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These perspectives, however, have mostly been limited to certain regions where 

substantial funding has been allocated to bolster fisheries conservation and 

management, such as the North American Pacific Northwest (e.g., see Ref.27)  

In contrast, salmonids occurring in sparsely populated regions of northern Asia 

have received comparatively little research attention. Despite hosting some of the 

world’s most isolated aquatic ecosystems, and being among the least densely populated 

regions in the world, salmonid populations in this region are rapidly declining as a 

result of anthropogenic influences with cascading effects on riverine ecosystems28. Still, 

headwater regions across Siberia and northern Mongolia host some of the world’s most 

pristine rivers and wetlands, receiving some of the highest ecological and chemical 

status ratings from the European Water Framework Directive standards (e.g., regions 

including the Selenge River basin headwaters in northern Mongolia29). Here, in the 

remote headwaters of river basins, species including Siberian taimen (Hucho taimen), 

lenok (Brachymystax lenok and B. tumensis), grayling (Thymallus spp.), and pike (Esox 

lucius and E. reichertii) are thought to be more abundant compared to other parts of 

northern Asia30,31, as there are fewer disturbances from hatcheries, large habitat 

modifications to the landscape (e.g., deforestation), and dam development.  

The taimen is the world’s largest salmonid, and one of the most ancient extant 

members of subfamily Salmoninae, living 80 or more years32, 33. Reaching up to 2 m in 

length and 100 kg in weight34, taimen reside in home ranges of large and variable size 

(mean 23 km, maximum up to nearly 100 km35) with movements over 200 km recorded 

for tagged individuals in northern Mongolia (O.P. Jensen, unpublished data), a 

characteristic that could limit the potential for spatial genetic differentiation.  However, 
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taimen form pair bonds from weeks to months before moving to spawning areas (unlike 

other salmonids36), and upon reaching an acceptable spawning area, a male will 

aggressively attack other males within a 20 m radius of the female37. Thus, the apparent 

monogamous nature of taimen spawning behavior, as well as the timing of pair bond 

formation, could potentially promote spatial genetic differentiation at some scales 

despite large movements. 

Taimen were historically found from the west slope of the Ural Mountains in 

Eastern Europe to the Pacific Ocean in the east, to the Arctic Circle in the north and the 

Gobi Desert in southern Mongolia34. Similar to most of the world’s largest freshwater 

fish species38, taimen have been negatively affected by human activity and are listed as 

“Vulnerable” on the IUCN Red List39. Anthropogenic disturbances (e.g., overfishing, 

pollution, mining contamination, energy development) have substantially decreased its 

native range, including putative extirpations of populations in the Volga, Ural, and 

Pechora River basins40. Further, large stretches of rivers in northern Mongolia have 

seen local extirpations associated with rapid increases in industrialization28, 40. 

Consequently, taimen are listed as threatened or endangered in Mongolia, portions of 

Russia, Kazakhstan, and China28. Though experiencing population declines across 

much of its historic range, several of the remaining population strongholds exist in the 

rivers of northern Mongolia and Siberia31.  

Understanding patterns of genetic diversity and differentiation among river 

systems and basins at different geographic scales will be critical for informing taimen 

conservation strategies. Previous research utilized mtDNA and microsatellite markers to 

illustrate broad phylogeographic relationships in taimen across its native range41, 42, 43, 44, 
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45. Variation across three mtDNA regions has shown substantial divergence between 

populations in different basins, with one distinct clade consisting of the Amur (Pacific) 

and Lena (Arctic) drainages and the other consisting of the Yenesei (Arctic, specifically 

referring to the drainage downstream of Lake Baikal) and Khatanga (Arctic) 

drainages41. More recently, Marić et al.45 found two distinct haplogroups representing 

individuals from the (1) Lena and Amur basins and the (2) Volga (Caspian Sea 

outflow), Ob (Arctic), Yenesei (Arctic), and Khatanga (Arctic) basins. Kaus et al.46 

used both mitochondrial and nuclear markers and found pronounced population 

differentiation between populations from the Amur basin (Pacific) and the Upper 

Yenesei (Arctic) and Selenge (Arctic, specifically referring to the drainage upstream of 

Lake Baikal) basins with analyses identifying two ancestral genetic clusters that the 

authors suggested should be considered separate evolutionary significant units (ESUs). 

Importantly, none of the aforementioned studies detected any evidence for genetic 

differentiation or isolation by distance within these large basins, perhaps suggesting that 

management plans should be implemented at the basin scale. While the lack of evidence 

for genetic structure across finer geographic scales within basins is consistent with the 

potential for large movement and population connectivity among river systems, it could 

alternatively reflect gaps in our understanding and sampling of taimen genetic variation. 

Here, we used high throughput sequencing of reduced representation libraries 

(ddRADseq47) to characterize population genetic structure and diversity of taimen 

within and among several major river drainages in Mongolia and Russia. Specifically, 

we used single nucleotide polymorphism (SNP) data from multiple sampling sites 

within one Arctic and two Pacific drainages to (1) characterize levels of genetic 
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differentiation among drainages, (2) evaluate the potential for fine-scale differentiation 

within drainages, and (3) quantify levels of genetic diversity across sampling sites. We 

additionally used coalescent-based demographic modeling to infer the demographic and 

historical context of divergence between two groups of taimen within one Pacific 

drainage for which we detected unanticipated genetic differentiation at smaller spatial 

scales. Our results shed further light on the evolutionary history of taimen and suggest 

the need for more thorough geographic and genomic sampling to facilitate the 

development of effective strategies for conservation and management. 

 

Methods 

Sample collection, DNA sequencing, and quality filtering 

We used catch and release fly fishing to obtain samples from 174 taimen using single, 

barbless hooks, from five sites across northern Mongolia and four sites in southeastern 

Russia (Fig. 1, Table 1). These sites are distributed across river systems that drain to the 

Arctic (Eg, Uur, Delgermörön) and those that drain to the Pacific (Amur basin: Upper 

and Lower Onon; Tugur basin: Konin, Munikan, Konin/Assyni Junction, and Tugur 

mainstem). Upon capture, small pelvic fin clip samples were taken and the fish were 

released. Fin clips were stored either in ethanol or dried in coin envelopes for transport. 

All methods were carried out in accordance with local and national regulations and 

guidelines (including fishing permits obtained from the local governments), and all 

experimental protocols were approved by the University of Nevada, Reno, Institutional 

Animal Care and Use Committee (IACUC protocol ID 20-10-1098). Genomic DNA was 
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isolated from fin clips using Qiagen DNeasy Blood and Tissue kits (Qiagen Inc., 

Valencia CA), and DNA concentrations were quantified using a Qiagen QIAxpert 

microfluidics analyzer. Due to variability in DNA yield from fin clip extractions, DNA 

samples were standardized to within the range of 20-40 ng/uL to ensure similar template 

concentrations for sequencing library preparation. 

We used a reduced representation approach based on two restriction 

endonucleases to generate ddRADseq libraries. DNA was digested with restriction 

endonucleases MseI (4-base recognition site) and EcoRI (6-base recognition site). To the 

EcoRI cut-sites, we ligated Illumina adaptors embedded with unique 8-10 bp barcode 

sequences which were used to tag DNA from each individual. An Illumina sequencing 

adaptor was ligated to the MseI cut-sites. We then pooled the uniquely barcoded samples 

and amplified fragments using Illumina PCR primers. To reduce the portion of the 

genome sampled for sequencing, libraries were size selected for fragments ranging from 

350-450 bp using a Pippin Prep unit (Sage Science, Beverly, MA) at the University of 

Texas Genome and Sequencing Analysis Center (Austin, TX). Full details on the 

laboratory methods used for library preparation can be found in Ref.48 Size selected 

libraries were then sequenced on two lanes of an Illumina HiSeq 2500 at the University 

of Wisconsin-Madison Biotechnology Center’s Genome Center (Madison, WI).  

Raw sequencing data was filtered for contaminant sequences including E. coli and 

PhiX, and for Illumina sequencing adaptors, using bowtiedb249 and a pipeline of Perl and 

bash scripts (http://github.com/ncgr/tapioca). Importantly, barcode sequences all differed 

by a minimum of three bases, allowing us to detect one or two base sequencing errors 

within them. A custom Perl script (available at DRYAD doi: 10.5061/dryad.wstqjq2kd) 
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was used to correct one or two bp sequencing errors in barcode sequences, remove 

barcodes and cut-site associated bases, and match sequences with individual sample 

names. Reads were then split into fastq files specific to each individual. We then removed 

individuals represented by volumes of sequencing data lower than the 1st quartile of the 

distribution spanning all samples to reduce the fraction of missing data and to increase 

the number of loci retained for analyses of a sufficient number of samples per sampled 

locality.  

Alignment, variant calling, and filtering  

Since we quantified substantial genetic differentiation among samples from the two 

major outflows (Pacific and Arctic, see Results below), we conducted separate analyses 

based on: 1) all individuals (full dataset); and 2) a subset of individuals sampled from 

populations in the Pacific drainages (Pacific subset). We did not analyze data separately 

for the Arctic subset, as analysis of the full dataset (in Results) suggested limited 

genetic structure among populations within this drainage. All methods for alignment, 

variant calling, and filtering were identical for both datasets, except for the de novo 

reference generation, which was implemented separately with the different sets of 

samples. As there were no reference genomes available for any closely related taxa, we 

used a de novo clustering approach to build a reference of genomic regions sampled 

with our sequencing approach as a basis for aligning all of the reads. We used CD-HIT50 

to generate contig consensus sequences (partial reference hereafter) built from 

clustering the unique sequences in our entire dataset with a minimum match percentage 

of 90%. This de novo clustering algorithm, also utilized by the commonly used 
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RADseq pipeline dDocent51 was used to generate a partial reference to serve as a target 

for subsequent read mapping. We used bwa v0.7.552 to map sequences generated for 

each individual to the partial reference based on an edit distance of three. Sequence 

alignment map (.sam) files were converted to binary alignment map (.bam) files with 

samtools v1.353, before samtools v1.3 and bcftools v1.353 were used to identify 

and call variants across the alignments of all individuals. We calculated genotype 

likelihoods for SNPs at sites with a minimum base quality of 20, maximum coverage 

depth of 100, minimum map quality of 20, minimum site quality of 20, and minimum 

genotype quality of 10. We used vcftools v0.1.1454 to further filter called variants. 

We retained only bi-allelic SNPs with minor allele frequencies (MAF) greater than 

0.04, and those where at least 60% of individuals had at least one read. We randomly 

sampled one SNP per 100 bp contig and discarded individuals with missing data at 

more than 30% of loci. 

As mis-assembly of reads representing paralogous regions can lead to 

genotyping error in high throughput sequencing data55, we took several steps to mitigate 

the potential influence of such loci. First, we used vcftools v0.1.14 to remove loci 

with exceptionally high coverage depth per individual, greater than or equal to 50. We 

then additionally identified and removed potentially paralogous loci using the HDplot 

approach described in Ref.55. This method identifies potential paralogs in sequence data 

from populations based on deviations from the expected frequency of heterozygotes and 

from the expected 1:1 ratio of read counts for alternate alleles in heterozygotes. Here, 

we retained loci with heterozygosity (H) levels between 0 and 0.6, and read ratio 
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deviance (D) between -18 and 18. We took these steps to exclude potentially 

misassembled genomic regions representing duplicate or diverged duplicate loci. 

 

Population genetic analyses 

We quantified population structure without a priori sample information using the 

Bayesian ancestry-based model entropy v1.256, 57 which is based on the correlated 

allele frequency model of structure58. We used entropy to infer the number of k 

ancestral populations represented by the data and to estimate admixture proportions (q) 

for individuals. Importantly, this model accounts for statistical uncertainty arising from 

sequencing and alignment error and stochastic variation in coverage depth inherent in 

low to medium coverage sequencing data59, 60. Because entropy provides posterior 

estimates of genotype probabilities at each locus for each individual, it allows for the 

incorporation of genotype uncertainty into downstream population genetic analyses. To 

seed and speed the convergence of Markov chain Monte Carlo runs, we first generated 

starting values for the q parameter. We conducted a principal component analysis 

(PCA) on the covariance matrix of genotype likelihoods calculated above using the 

prcomp function in R version 3.461 and then used k-means clustering and linear 

discriminant analyses (LDA) to estimate ancestry proportions for each individual for 

models representing k = 2 through k = 9 (or through k = 6 for the Pacific dataset). We 

ran entropy models for k = 2 through k = 9 (or k = 6) ancestral groups, with 5 replicate 

chains per k. We ran 100,000 MCMC iterations, retaining every tenth step after a burn-

in of 30,000 steps. Model fit was assessed using the deviance information criterion 

(DIC), where lower DIC values represent better model fit. We conducted entropy runs 
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separately for (1) the set of SNP genotype likelihoods for all individuals and (2) the 

subset of samples representing locations within the Pacific drainages. We used 

genotype probabilities from entropy for the majority of the population genetic analyses 

described below. 

We additionally characterized genetic variation with PCA using the prcomp 

function in R. As metrics of pairwise genetic differentiation among populations, we 

calculated Hudson’s FST62 and Nei’s D63 based on population allele frequencies. As 

metrics of genetic diversity for each sampling location, we calculated nucleotide 

diversity (θπ, or the average number of pairwise differences between sequences64), 

Watterson’s theta (θW, or the number of segregating sites65), and the scaled difference 

between the two (Tajima’s D66) using methods that incorporate genotype uncertainty 

implemented in ANGSD67, 68. We used the de novo artificial reference genome and 

individual .bam files to estimate site allele frequency likelihoods using the “doSaf 1” 

tool. We then used site allele frequency likelihoods as input for REALSFS68 to generate 

folded site frequency spectrum likelihoods. Using “doSaf 1,” we calculated posterior 

allele frequency probabilities. Lastly, we used the thetastat utility from ANGSD to 

estimate per-locus measures of each diversity metric and generated the per-population 

average of these values over all contigs and nucleotides. For comparison with other 

studies, we also calculated expected heterozygosity based on allele frequencies. 

As we found unexpected evidence for divergence between taimen in the Tugur 

mainstem and its tributaries, we used a coalescent-based demographic modeling 

approach to explore parameters characterizing the divergence and demographic history 

of these two populations. The site frequency spectrum (SFS) contains the signatures of 
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divergence and demographic processes (e.g., time, migration, changes in effective 

population size), and high throughput sequencing data has substantially improved our 

ability to estimate such parameters from population genetic data69, 70. Before generating 

the SFS, we further filtered the vcf file generated above. First, we removed variants 

with MAF < 0.1 to guard against rare variants that could represent sequencing errors 

and trimmed outlier loci with FST > 0.15 (the 0.95 quantile of the FST distribution) 

between the two populations. We generated the unfolded SFS for each population using 

easySFS (https://github.com/isaacovercast/easySFS#easysfs) on the stringently filtered 

.vcf file, down sampling populations to sizes of 10 and 10 (--proj 10, 10). 

Using the unfolded SFS, we estimated demographic parameters for eight 

different models using coalescent simulation and a maximum likelihood framework in 

fastsimcoal269. These models represented two-population divergence (Tugur 

mainstem and Tugur tributaries), with and without migration, and with and without 

population expansion or contraction. We ran 50,000 coalescent simulations per 

replicate and a total of 50 replicates, with minimum (-n) of 100,000 simulations for a 

total (-L) of 40 cycles. We used a mutation rate for salmonids (Salmoninae) of 8e-9 bp 

per generation for model estimation (coho salmon71), and to estimate coalescent 

effective population size. For each model, the replicate with the smallest difference 

between the maximum expected likelihood (MEL) and the maximum observed 

likelihood (MOL) represented the best-fit run67. To account for differences in the 

number of parameters included in each model, we calculated AIC scores for each 

model’s best-fit run. We then calculated ∆AIC to compare models.  
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Following parameter estimation for the best fit model, we calculated 95% 

confidence intervals for each parameter. Using the maximum likelihood parameters 

from the *_maxL.par file, we generated 100 bootstrap replicates of the SFS for each 

model. Next, we estimated parameters of these 100 SFS using the same 50-replicate 

analyses described above. The best-fit model parameter estimates for each of the new 

100 simulated SFS were used to calculate mean parameter estimates and subsequently 

to infer 95% confidence intervals. 

 

Results 

Full dataset 

After filtering for contaminants and removing individuals lacking sufficient sequencing 

data, we retained 174 individuals with a mean number of 1,898,867 reads per 

individual. bwa mapped reads from all individuals onto the de novo partial reference 

consisting of 221,178 genomic regions. After variant calling and filtering based on 

sequencing coverage and quality, we retained 7,597 loci with MAF > 0.04. We 

additionally discarded 1,551 SNPs that potentially represented paralogous regions, 

leaving a final set of 6,046 SNPs from 174 individuals (mean coverage = 10.1X per 

locus per individual). Sequence data is available on NCBI’s Short Read Archive 

(accession PRJNA745962; https://dataview.ncbi.nlm.nih.gov/object/ PRJNA745962). 

Both the sequence data and the vcf file are available at DRYAD (doi: 

10.5061/dryad.wstqjq2kd). 

Pronounced genetic differentiation was evident between taimen sampled from 

the Arctic and Pacific drainages across all analyses (Figs. 2A, 3). DIC values from 
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entropy indicated that the k = 2 model best fit the data, though the k = 3 model had 

similar support and illustrated additional population differentiation (Fig. 2B, 

Supplementary Table S1). Individuals were assigned nearly 100% to one of two 

ancestries (Fig. 2A): the Arctic with the single Selenge drainage (Eg, Uur, and 

Delgermörön Rivers), and the Pacific with the Amur (Upper and Lower Onon River 

sites) and the Tugur (Konin, Munikan, Konin/Assyni Junction, and Tugur Rivers) 

drainages (Fig. 1). The k = 3 model reflected the same pattern for the Arctic versus 

Pacific drainages, but individuals were assigned with variable ancestry across several 

Pacific sites exhibiting differentiation (Fig. 2B). 

PCA of the genotype probabilities revealed genetic structure similar to ancestry 

estimates from entropy (Fig. 3A). PC 1 explained 59.99% of variation in the data, 

separating individuals and populations from the Arctic and Pacific drainages. PC 2 

explained only 0.98% of variation in the data, but suggested finer-scale structure within 

the Pacific drainages. Pairwise measures of genetic divergence among sites from the 

two outflows (Arctic and Pacific) were high (FST range = 0.209 - 0.258, Nei’s D range = 

0.1405– 0.1823; Supplementary Table S2) consistent with independent evolutionary 

histories and substantial isolation of drainages (Table 2). A neighbor joining tree based 

on pairwise estimates of Nei’s D among sampling localities provided and alternative 

visualization of hierarchical genetic structure consistent with all other population 

genetic analyses (Fig. 3D). 

Genetic diversity varied across the sampled geographic regions. No populations 

from the Arctic drainage had confidence intervals that overlapped with those in the 

Pacific drainages. Mean nucleotide diversity across all nine sampling sites was 0.00164 
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for θπ (range 0.00119 - 0.00209) and 0.00132 for θW (range 0.00077 - 0.00178). 

Nucleotide diversity was consistently higher in Pacific drainages (mean θπ = 0.00181, 

range 0.00165 - 0.00209; mean θW = 0.00152, range 0.00119 - 0.00178) than in the 

Arctic drainage (mean θπ = 0.00130, range = 0.00119 - 0.00138; mean θW = 0.00093, 

range = 0.00077 - 0.00101), as was HE (Arctic mean = 0.1195, range = 0.118 – 0.121; 

Pacific mean = 0.2203, range = 0.213 – 0.230). Importantly, for taimen localities 

sampled in the current work, sample size was unrelated to both genetic diversity metrics 

(sample size vs. heterozygosity: r = -0.327, P – 0.323; sample size vs. nucleotide 

diversity: r = -0.424, P = 0.253; Supplementary Fig. S1). 

 

Analyses of the Pacific drainages  

Given pronounced genetic differentiation between the Arctic and Pacific drainages and 

evidence for finer-scale differentiation among river systems within the Pacific 

drainages, we conducted assembly and variant calling separately for Pacific 

populations. Unique reads were assembled into a partial reference consisting of 160,858 

contigs. Following reference mapping, variant calling, subsequent bioinformatic 

processing, and paralog filtering, we retained 3,961 SNPs from 83 individuals (mean 

coverage = 10.4X per locus per individual) for the Pacific subset. The vcf file 

associated with the Pacific subset is available at DRYAD (doi: 

10.5061/dryad.wstqjq2kd). 

Although pairwise measures of genetic differentiation among sampling sites 

across this drainage were relatively low (Supplementary Table S2), analyses illustrated 

finer-scale patterns of differentiation that were less evident in analyses of the full data set. 
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The k = 2 entropy model fit the data best, although the k = 3 model had similar DIC 

support (Supplementary Table S1), and further illustrated population structure. Across 

analyses, clear genetic differentiation was evident between the Amur (Upper and Lower 

Onon sites) and Tugur drainages (Figs. 2C, D, 3B). Both the k = 2 and k = 3 entropy 

models assigned individuals from the Amur and Tugur drainages to different ancestral 

clusters (Fig. 2C, D), and PCA clearly separated individuals from the two drainages (Fig. 

3C). 

There was unexpected genetic differentiation among sampling sites within the 

Tugur basin; taimen from the headwater tributaries (KO, MO, AJ; n = 37) were 

differentiated from samples taken in the mainstem Tugur (TU; n = 43; Fig. 1B). 

Ancestry was assigned differentially to separate clusters in both the k = 2 and k = 3 

entropy models (Fig. 2C, D), and the tributary populations formed a non-overlapping 

cluster in PC space intermediate between samples from the Tugur and the Amur 

drainages (Fig. 3C). Although overall genetic differentiation was subtle (FST range = 

0.012 - 0.029; Supplementary Table S2), these analyses nonetheless indicate the 

presence of finer-scale differentiation among sampling sites in the Tugur than in the 

other drainages we examined. 

After the more stringent filtering with vcftools v0.1.14, we retained 1,971 

variants from which we constructed the unfolded SFS. Coalescent simulations using 

fastsimcoal2 were run for eight models spanning variation in divergence and 

demography of the Tugur mainstem and Tugur tributary populations (see Table 3 for 

parameter estimates and model comparison metrics, and Fig. 4 for model schematics). 

Importantly, all models including migration had substantially better fits than the model 
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without migration. Model likelihoods were similar across models including migration, 

but the best fit model included initial divergence, after which coalescent Ne remained 

constant in the tributary population but contracted in the mainstem population (Table 3; 

Fig. 5). Parameter estimates indicated divergence at ≈ 28k generations ago based on a 

mutation rate of 8e-9 (mean ≈ 393 kya based on mean generation time of 13.8 years 

[range ≈ 195 - 594 kya based on generation time range 6.9 - 20.8 years (mean ± 2 

standard deviations)]34, 72; Fig. 5). Generation time was calculated from age-frequency 

data from the Tugur River (M.R. Sloat, unpublished data) and fecundity-at-age data 

presented by Ref.34. Following the ancestral divergence event, asymmetrical gene flow 

was inferred between mainstem and tributary clusters, with greater gene flow from the 

mainstem to tributaries. Coalescent Ne for tributaries was substantially lower than that 

of the mainstem (≈ 10,000 versus ≈ 41,000), and the model indicated population 

contraction in the latter. 

 

Discussion 

We documented hierarchical patterns of genetic differentiation among taimen sampled 

across multiple drainages. We found pronounced divergence among taimen from the 

Arctic and Pacific drainages, but also recovered more subtle patterns of differentiation 

within and among river systems that drain to the Pacific. Although our spatial sampling 

of the distribution was limited, our analyses indicate the potential for genetic 

differentiation at finer scales within basins and even within specific river systems. This 

aspect of our results differs from several past studies and was potentially influenced by 
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different spatial and more thorough genomic sampling. Below, we discuss our results in 

the context of past genetic work on taimen, with consideration of how current and 

future population genetic analyses could inform their management and conservation. 

 

Deep genetic divergence between Arctic and Pacific drainages 

Our population genetic analyses illustrate substantial genetic differentiation consistent 

with significant historical isolation between taimen from the Arctic and Pacific 

drainages (mean FST = 0.24; Fig. 1, Supplementary Table S2), similar to past studies 

based on smaller sets of genetic markers41, 45, 46. Additionally, maximum likelihood 

phylogenetic analyses (RAxML73) based on 1,229 SNPs in a concatenated alignment 

similarly illustrated deep divergence among taimen sampled from the Pacific and Arctic 

drainages (Supplementary Methods, Supplementary Fig. S2). Genetic differentiation 

across systems would be expected given the geologic barriers separating these 

drainages. Though the Amur and Selenge basins are separated by only a few kilometers 

(Fig. 1), the Khentii Mountains arising from the Baikal Rift system (last active during 

the Pliocene74) form a continental divide that likely severed any recent connectivity 

between the Arctic and Pacific river systems. This geologic feature is associated with 

deep phylogeographic breaks for other taxa occurring in this region, including other 

salmonids (Thymallus75, 76, Brachymystax 77, 46), as well as other groups of freshwater 

fishes (Cottus78, Esox79). Divergence time estimates from mtDNA analyses indicate 

divergence across this divide in the range of 1 - 2.5 mya for Cottus78 and 0.5 - 2 mya for 

taimen41, 45. 
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Taimen from the Arctic and Pacific outflows do differ in a few key 

morphological traits, including mean relative mass, and density and size of spot patterns 

(Mikhail Skopets and M.R. Sloat, unpublished data.). This variation is consistent with 

long-term isolation and independent evolution. Variation could possibly be due in part 

to ecological differences among drainages on either side of this divide, such as 

riverscape and landscape topography35, 72, constituent riparian species composition35, 

and marine food web subsidies from seasonal spawning runs of chum salmon in the 

Tugur basin, but not the Selenge basin72. Unfortunately, the geographically sparse and 

clumped nature of our sampling led to a strong correlation between geographic and 

environmental distances among sampling localities, which precluded formal tests of 

environmental influences on spatial genetic structure. 

We did not detect genetic differentiation among sites within the Arctic drainage 

(Figs. 2, 3), though only three locations, all within the Selenge basin, were sampled in 

this drainage. Future studies could benefit from additional samplings across the Arctic 

drainage, particularly upstream and downstream of Lake Baikal, which may have 

presented a migration barrier to the predominantly riverine taimen. This apparent 

absence of genetic structure is consistent with past studies based on microsatellite and 

mtDNA data45, 46, and with the possibility of population connectivity among sites 

separated by hundreds of kilometers. Limited genetic differentiation across broad 

spatial scales would not be surprising given the large size, long lifespan, and substantial 

opportunity for movement in taimen35. Moreover, the region’s glacial history suggests 

that populations in the Arctic are likely younger than those in the Pacific drainages. 

Northwestern Siberia experienced repeated Pleistocene glaciations which blocked 
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north-flowing rivers and formed ice dam lakes80, 81, 82, whereas the more southern 

Pacific drainages are thought to have been less influenced by glaciation83 (but see 

Ref.80). A younger taimen lineage in the Arctic drainage would be consistent with 

limited differentiation among populations often seen in Arctic fishes84, 85, and also with 

variation in genetic diversity among the regions we sampled.  

For all metrics, levels of genetic diversity were consistently lower for the three 

Arctic drainage sites than those from Pacific drainage sites (Table 2). Measures of 

nucleotide diversity were relatively low, but well within the range of published 

nucleotide diversity estimates across salmonids86, 87, 88, 89. For example, our values for 

taimen were similar to those reported for Atlantic salmon (Salmo salar, overall 

nucleotide diversity of 3.99e-4; Ref.90), a species that has also been strongly influenced 

by recent glacial periods90. Lower diversity in the Arctic drainage is consistent with the 

hypothesis that Arctic populations are younger, and/or suffered recent bottlenecks 

during Pleistocene glacial activity in this region82. 

 

Fine-scale genetic structure within the Pacific drainages 

Our analyses revealed clear, though less pronounced, genetic differentiation between 

the two Pacific drainages (Amur and Tugur). Taimen from the Onon River (Amur 

basin) were differentiated from those occurring 1,800-2,000 km to the east in the Tugur 

basin (mean FST = 0.033). This pattern could be consistent with the Yablonovy and 

Stanovoi Mountain ranges acting as a divide for aquatic fauna separating the 

headwaters of the Lena (just north of the Tugur) and Amur basins91, although a lack of 

sampling over a large area between the Onon and Tugur sites limits our understanding 
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of geographic features associated with spatial genetic structure. As in the Arctic 

drainage, we did not detect evidence for differentiation among sampling sites within the 

Amur basin. However, given the size and complexity of the Amur basin combined with 

the population structure documented across the basin in other salmonids (e.g., 

Thymallus76), it is possible that more thorough sampling could reveal additional 

structure.  

Our analyses revealed unexpected evidence for fine-scale genetic differentiation 

between two groups of taimen sampled in the Tugur basin. Though sampling locations 

within this basin are highly proximate (less than 10 km, Fig. 1) and well within average 

home ranges of taimen35, 92, we observed distinct genetic differentiation between the 

Tugur River mainstem and its tributaries (Figs. 1B, 2C, D, and 3C). Differentiation 

among these groups was subtle but clear (Supplementary Table S2), as individuals from 

the mainstem and tributary groups were completely identifiable and formed non-

overlapping groups in PCA and ancestry-based analyses (Figs. 2D, and 3C). No evident 

barriers to movement (and thus spawning) have been observed in this region, and 

taimen from these sites are not known to differ morphologically. Nonetheless, the 

pattern of consistent differentiation among these sites indicates that some barrier to 

gene flow likely exists. Ecological variation among tributaries and the mainstem has 

been noted, including differences in water flow, water level, and chemical composition, 

as well as the timing of food availability (e.g., variation in chum salmon spawning93), 

suggesting ecological factors may underlie isolation. Reproductive isolation has 

evolved within a number of salmonid species due to spatiotemporal differences in 

spawning (spring versus fall Chinook salmon26), or morphological specialization (dwarf 
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and normal Coregonus clupeaformis94; benthic and limnetic Salvinus alpinus95; pelagic 

and littoral feeding Thymallus nigrescens96). Additionally, although taimen populations 

typically do not differentiate at smaller spatial scales, anadromous Sakhalin taimen 

(Parahucho perryi) demonstrate population genetic structure arising from differences in 

spawning grounds and homing behavior97. While we are unaware of such mechanisms 

underlying divergence in taimen, our results indicate the potential for differentiation at 

smaller geographic scales than previously detected and the need for further study to 

understand its evolutionary causes and consequences for management. 

Given the unexpected differentiation within the Tugur basin, we compared 

empirical and simulated SFS for models representing different divergence scenarios to 

consider the timing and demographic context of this divergence. All seven of the 

models incorporating migration had strongly improved fit compared to the model 

without migration (Table 3), consistent with a history of allopatric divergence followed 

by secondary contact and gene flow. The best fit model included bidirectional gene 

flow, with population size constant in the Tugur tributaries and contracting in the 

mainstem. The divergence time estimate for this model of ~28k generations would 

correspond to divergence at 195 - 594 kya, depending on generation time estimates. The 

estimated coalescent Ne was substantially larger in the Tugur mainstem than the 

tributaries, while migration probabilities were higher from the tributaries into the 

mainstem. It is worth noting that parameter estimates for these models can be affected 

by mutation rate, changes in migration and population size over time, and bioinformatic 

processing of sequence data98, 99. Furthermore, the additional models including 

migration had similar likelihoods to the best fit model yet very different parameter 
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estimates (Table 3). Importantly, coalescent Ne estimates can be heavily affected by 

changes in these modeling input values, as seen in our substantially higher coalescent 

Ne for the best fit model than empirical Nc estimates for taimen72. Denser data and 

sampling would improve our ability to evaluate such models and characterize this 

history. 

A possible, if not likely, scenario underlying divergence in the Tugur basin is 

that ancestral tributary taimen diverged in isolation in the eastern Amur, before 

paleohydrological connections allowed colonization of the Tugur basin. Consistent with 

this hypothesis, taimen in the Tugur tributaries are intermediate with respect to those 

from the Tugur mainstem and the western Amur basin samples in both PCA and 

ancestry-based analyses (Figs. 2 and 3). Although the Tugur and Amur basins have no 

contemporary hydrologic connectivity and the hydrologic history of this region is not 

well understood, faunal similarities are consistent with paleohydrological connections 

among these drainages during the Pleistocene. For example, mtDNA haplotype sharing 

among the Amur and Tugur basins has been documented in blunt-nosed lenok 

(Brachymystax lenok), suggesting a history of such connectivity77. The location of a 

potential paleo connection between the Tugur and Nimelen, a lower Amur tributary, is 

apparent in a low-relief area where active channels in tributaries of the two rivers are 

separated by <1 km and by a drainage divide of <10 m. One hypothesized scenario is 

that the Tugur was forced south and joined the lower Amur during Pleistocene “back-

arc glaciation” of a Sea of Okhotsk marine ice sheet and the Stanovoi glacier complex 

to the west before drainages reorganized and became independent during glacier 

retreat80, 100. A similar pattern of glaciation has been hypothesized to generate 
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paleohydrological connections between the proto Tugur drainage and mid-Amur 

drainages of the Bureya and Zeya Rivers (see Fig. 6 of Ref.100). 

Understanding the historical and geographic context of differentiation in the 

Tugur basin as well as the mechanisms potentially maintaining this genetic variation 

will require further study. Our results are based on relatively sparse spatial sampling 

only in the western Amur basin. More thorough sampling of the eastern Amur basin, 

especially where it nears the Tugur, will be necessary to more thoroughly characterize 

the geographical variation and the origin of divergence among taimen in the Tugur 

basin. Similarly, additional sampling within the Tugur basin could improve 

understanding of the spatial distribution of the genetically differentiated groups 

detected here. As importantly, an understanding of ecological, morphological, and life 

history variation among taimen in this system will be critical for understanding 

potential mechanisms underlying and maintaining differentiation. Further work here is 

warranted as the Tugur River continues to support the largest individuals of the world’s 

largest salmonid101, and the majority of the watershed is protected within the Tugursky 

Nature Reserve, a regional zakaznik (equivalent to an IUCN Category IV protected 

area). 

 

Implications for conservation and management 

Given substantial and widespread declines of taimen populations, an understanding of 

genetic diversity and spatial genetic structure could be critical for informing taimen 

conservation. The demarcation of taimen management units could become important as 

anthropogenic influences known to impact fish populations (e.g., see Ref.102, 103) increase 
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in frequency and intensity, and as translocation efforts are considered for regions where 

populations have declined or have been extirpated. Genetic diversity is often considered a 

key parameter for conservation and restoration, as it is commonly viewed as a proxy for 

population resilience and evolutionary potential104, 105. Nucleotide diversity estimates for 

all of our sampling sites were in the range of estimates published for other salmonids86, 87, 

88, 89, and do not reflect severely reduced diversity. Although, Tajima’s D estimates were 

slightly positive for the Amur basin, which could be consistent with population declines 

here. However, our sampling was limited to regions with healthy river systems and those 

that have yet to exhibit strong population declines, and may not represent standing 

variation in other areas of the distribution. 

 Evolutionarily significant units (ESUs106, 107) are often used to designate 

lineages of conservation importance. Kaus et al.46 proposed two taimen ESUs across 

northern Mongolia that largely correspond to our Selenge (Arctic) and Amur (Pacific) 

basin sites. Our results indicating the presence of substantial genetic divergence 

between these basins lend support for two separate units that might require separate 

conservation and management strategies. The hierarchical population structure 

recovered in this study suggests that ecologically relevant genetic variation might be 

partitioned at smaller spatial scales than previously considered, and we thus caution 

against the translocation of taimen among geographically and ecologically distinct 

populations before more thorough genetic sampling can be completed. The 

differentiated groups we detected in the Tugur basin could reflect ecological and 

historical variation warranting unique conservation consideration, though further study 

is clearly needed. Indeed, the additional evidence for population structure within the 
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Pacific drainages suggests that our understanding of taimen genetic structure across 

different riverscapes is likely limited by both the geographic and genomic extent of 

sampling. Due to difficulty in sampling via fly fishing, our sampling was opportunistic, 

geographically sparse, and less than ideal for quantifying how environmental and 

hydrological variation may influence spatial genetic structure across the distribution. 

Future studies with more comprehensive sampling within and across basins could be 

essential for developing a finer scale understanding of the factors influencing 

evolutionary history of taimen across Siberia and the rest of its range.  

 

Data availability 

The datasets generated for this study are available at the Dryad Digital Repository (doi: 

10.5061/dryad.wstqjq2kd; https://doi.org/10.5061/dryad.wstqjq2kd) and NCBI’s Short 

Read Archive (accession PRJNA745962; https://dataview.ncbi.nlm.nih.gov/object/ 

PRJNA745962).  
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Table 1. Geographic locations, sample sizes, and capture information for taimen 
analyzed in this study. Site abbreviations correspond to those in Figs. 1 and 2. 
Outflow Basin Location Name Latitude, Longitude N 

Arctic Selenge 
Eg (EG) 49.84, 102.57 13 
Uur (UR) 50.34, 101.87 62 
Delgermörön (DL) 50.11, 98.85 18 

Pacific 

Amur 
Upper Onon (UO) 49.24, 112.02 6 
Lower Onon (LO) 49.12, 111.96 5 

Tugur 

Konin (KO) 53.28, 136.26  5 
Munikan (MO) 53.27, 136.12 3 
Konin / Assyni Junction (AJ) 53.07, 136.03 19 

  Tugur (TU) 53.11, 136.25 43 
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Figure legends 

 
Figure 1. Map illustrating the main drainages from which taimen were sampled from 

Mongolia and Russia. One Arctic (purple) and two Pacific (green) drainage sampling 

sites (a). The red rectangle denotes the Tugur basin sampling area, shown in greater 

detail (b). Sampling sites correspond to those in Table 1 and include the Delgermörön 

(DL), Eg (EG), Uur (UR), Lower Onon (LO), Upper Onon (UO), Tugur (TU), 

Konin/Assyni Junction (AJ), Konin (KO), and Munikan (MU) sampling sites. A 

recently released taimen rests in the flooded grassland (c).  

 

Figure 2. Ancestry coefficient estimates (q) generated with entropy for analyses based 

on all sampled individuals (a, b) and for separate analyses based on the subset of 

individuals from the two Pacific drainages (c, d). Vertical bars represent individuals, 

and colors correspond to the admixture proportions for each of k clusters. For both sets 

of analyses, the k = 2 models (a, c) fit the data best. Models for k = 3 (b, d) are 

additionally shown for each set of analyses as the revealed patterns of clustering further 

illustrate population genetic structure within river systems. As in Fig. 1, sampling sites 

correspond to those in Table 1 and include the Delgermörön (DL), Eg (EG), Uur (UR), 

Lower Onon (LO), Upper Onon (UO), Tugur (TU), Konin/Assyni Junction (AJ), Konin 

(KO), and Munikan (MO) sampling sites.  

 

Figure 3. Genetic variation among taimen illustrated with PCA (calculated using R 

software) of 6,046 SNPs called in all sampled individuals (a), Arctic individuals (b), 
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and in 3,961 SNPs called separately for individuals from the Pacific drainages (c). In 

panel (a), samples from the Pacific drainages are represented by circles, and those from 

the Arctic drainage by squares. In panel (c), samples from the Amur basin are 

represented by triangles while those from the Tugur basin are represented by circles. 

The neighbor joining tree in panel (d) supports the deep divergence between Arctic and 

Pacific drainages, where symbols represent populations shown in panel (a).  

 

Figure 4. Representations of each two-population model tested with fastsimcoal2, 

where TU represents the mainstem population, TT represents the tributaries population, 

and arrows represent gene flow. Model numbers and parameters correspond to those 

listed in Table 3.  

 

Figure 5. The expected versus observed SFS for the best fit model shows substantial 

overlap (a). Panel B shows the schematic representing the best fit model (model 1) from 

demographic inference using fastsimcoal2. Coalescent Ne is given for population, with 

branch and arrow width corresponding to population size and level of gene flow, 

respectively (but not drawn to scale). Numbers in parentheses represent 95% confidence 

intervals. 
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Supplementary Methods 

We conducted a phylogenetic analysis of all sampling localities based on a 

concatenated alignment of ddRADseq loci using a maximum likelihood approach based. 

Given patterns of hierarchical genetic structure in previous analyses, and to produce an 

illustrative tree without an unnecessarily large number of tips, we subsampled 3 

individuals from each sampling locality for this analysis. We additionally included three 

individuals of Brachymystax lenok (a closely related salmonid, also sampled in 

Mongolia) as an outgroup. We generated a multiple alignment of sequenced ddRADseq 

loci using ipyrad v. 0.9.151. Default values were chosen for most parameters, unless 

otherwise stated below. Nucleotide sites with phred scores less than 33 were considered 

missing and were replaced with “N,” representative of an ambiguous nucleotide base. We 

began with de novo assembly using vsearch2 with a clustering similarity threshold 

(clust_threshold) of 0.85. To account for uneven sequence depth, statistical 

(mindepth_statistical) and majority-rule (mindepth_majrule) base calling were set to 5 

and 4, respectively. Contigs were reduced to consensus sequences within each individual 

at each site, and sequences with more than 5% heterozygous bases (max_Ns_consens) or 

more than 8% heterozygous sites (max_Hs_consens) were discarded. Next, the clustering 

step was repeated using identical parameters, but across, rather than within, all 

individuals. Clusters were then filtered and discarded if they contained more than eight 

indels (max_Indels_locus) or if more than 20% of sites were variable (max_SNPs_locus). 

Finally, we retained all loci found in more than 21 individuals (min_samples_locus). 
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We used the resultant phylip output file from ipyrad as input for phylogenetic 

analyses using a maximum likelihood approach. We inferred a maximum likelihood 

phylogeny used RAxML v. 8.2.123 using the “-f a” option, which searches for the best--

scoring tree and performs a bootstrap analysis. We conducted searches using the GTR + 

GAMMA evolutionary model of sequence evolution, and the number of bootstrap 

replicates was assessed using the autoMRE option, resulting in 1,000 replicates. Although 

bootstrap support was low for many nodes at more recent scales, we rendered the tree in 

Fig. S2 to show all nodes in order to illustrate relevant patterns of divergence and support 

across the sampled localities. 
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Table S1. DIC values for 5 replicate entropy runs of each k ancestral model for both the 
full dataset and the Pacific subset. Mean and standard deviation (SD) are included for 
each model. Lower DIC scores represent better model fit. 

 
 
  



 

 

64 

Table S2. Pairwise estimates of mean FST (upper diagonal) and Nei’s D (lower diagonal) 
among all sampling sites. Site abbreviations correspond to those in Table 1. 

  DL EG UR UO LO KO MO AJ TU 
DL - 0.009 0.006 0.213 0.224 0.255 0.250 0.247 0.258 
EG 0.0014 - 0.008 0.209 0.221 0.252 0.247 0.244 0.256 
UR 0.0004 0.0008 - 0.212 0.223 0.255 0.250 0.248 0.256 
UO 0.1441 0.1405 0.1438 - 0.017 0.039 0.038 0.026 0.036 
LO 0.1492 0.1474 0.1485 0.0035 - 0.034 0.034 0.023 0.031 
KO 0.1797 0.1767 0.1794 0.0155 0.0109 - 0.029 0.017 0.023 
MO 0.1702 0.1698 0.1698 0.0128 0.0085 0.0039 - 0.018 0.022 
AJ 0.1736 0.1709 0.1734 0.0093 0.0060 0.0041 0.0027 - 0.012 
TU 0.1823 0.1804 0.1797 0.0153 0.0107 0.0042 0.0031 0.0033 - 
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Figure S1. Plots of genetic diversity metrics (heterozygosity and nucleotide diversity) by 
sample size for each locality. Sample size does not influence estimates of genetic 
diversity. 
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Abstract Hybridization with introduced or invasive species is a driver of population 

declines in native salmonids and a major threat to their persistence in the wild. The 

rainbow trout (Oncorhynchus mykiss, RBT) has been widely introduced globally and 

represents an important invasive species, often establishing naturalized populations. The 

cutthroat trout (Oncorhynchus clarkii, CT), a close congener, is particularly susceptible to 

competition and hybridization from RBT introductions which has led to range-wide 

population declines and loss of CT genetic variation. The Lahontan cutthroat trout (O. c. 

henshawi, LCT) whose historic distribution included the Lake Tahoe basin, was 

extirpated by the 1940s due to overfishing and introduction of nonnative salmonids, 

including now naturalized RBT. Diploid reproductively viable RBT were stocked 

annually into Lake Tahoe from the late 1800s until the mid-2000s by California and 

Nevada fish and wildlife agencies, planting the same commonly raised hatchery strains 

over time. Since 2007, triploid (sterile) RBT comprise the bulk of RBT planted. To assess 

potential homing of RBT to streams for spawning, thereby informing LCT reintroduction, 

we characterize genetic variation of RBT in a subset of Lake Tahoe tributaries. Despite 
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extensive dispersal from stocking locations, our analyses revealed variation in population 

differentiation among tributaries, with individuals from spatially proximate streams 

clustering. Although subtle, we also detected evidence for genetic differentiation among 

tributaries from the southern, western, and northern regions, including surprising 

structure involving a single tributary. These results illustrate the extent of differentiation 

within and among streams, and could inform possibilities for and implications of RBT 

removal and LCT reintroduction. 

 

Key words: RADseq, genetic diversity, genetic structure, Oncorhynchus clarkii, 

Oncorhynchus mykiss, introduced species 
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Introduction 

In recent decades, populations of many North American native freshwater fishes have 

dramatically declined and are under increasing risk of extinction (Abell et al. 2000; 

Moyle et al. 2011). Over the 20th and 21st centuries, the cold-water salmonids have 

suffered significant range contractions globally due to anthropogenic disturbances. This 

is especially pronounced among the native inland species, where local population 

extirpations have been widespread, resulting in threatened or endangered listing under the 

United States Endangered Species Act (ESA) or as vulnerable on the International Union 

for Conservation of Nature (IUCN) red list (Dauwalter et al. 2020; Fagan et al. 2005; 

Maxwell and Jennings 2005; Muhlfeld et al. 2019). Major threats to native salmon and 

trout include habitat loss, fragmentation, and degradation; nonnative salmonid 

introductions and invasions; introductions of hatchery raised stocks; and climate change 

(Bonar et al. 2005; Clavero et al. 2017; Costello 2009; Ford and Myers 2008; Kareiva et 

al. 2000; Wenger et al. 2011; Otero et al. 2014; Sepulveda et al. 2015). Specifically, the 

inland forms of cutthroat trout (Oncorhynchus clarkii, CT), consisting of multiple 

subspecies native to the intermountain western United States, are at increased risk of 

extirpation from habitat alterations, nonnative salmonid introductions, and impacts of 

climate change (Dunham et al. 1997, 2003; Kruse et al. 2000; Peterson et al. 2004; 

Sanderson et al. 2009; Wenger et al. 2011, 2017). Nonnative salmonid introductions, in 

particular, represent a triumvirate of threats to native species from competition, predation, 

and hybridization (Dunham et al. 1997, 2003; Koel et al. 2005).  

The Lahontan cutthroat trout (O. clarkii henshawi, LCT), endemic to the 

hydrographic Lahontan basin of northeastern California, northern Nevada, and 
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southeastern Oregon, has been listed as threatened under the ESA since 1975 (Coffin and 

Cowan 1995). This subspecies has been extirpated from >90% of its historic stream 

habitat and 99% of its historic lake habitat (Coffin and Cowan 1995; Dunham et al. 

1997). The only native lacustrine population remaining in the western Lahontan basin 

(Truckee, Walker, and Carson river watersheds) exists in Independence Lake in the upper 

Truckee River watershed (where the majority of historically occupied lacustrine habitat is 

found: Independence, Tahoe, Donner, Cascade, Fallen Leaf, Walker, and Pyramid lakes; 

Peacock et al. 2018). A relatively small geographic area of the larger Lahontan basin, the 

Truckee River watershed spans the California-Nevada border and is home to the two 

largest lacustrine habitats occupied historically by LCT: Lake Tahoe, a large oligotrophic 

subalpine lake representing the tenth deepest lake in the world, and the endorheic and 

mesotrophic Pyramid Lake, a remnant of the large pluvial Lake Lahontan, which covered 

most of northwestern Nevada during the Pleistocene (Thompson et al. 1986). The two 

large lakes are connected by the 195 km Truckee River corridor. LCT in these large 

lacustrine habitats grew to exceptionally large sizes and were considered the largest 

inland trout in North America (Peacock et al. 2018). In addition to being the apex 

predator in these ecosystems, these fish were an important part of the diet and cultural 

heritage of the native Paiute and Washoe tribes. In the 1940s, LCT were extirpated from 

the Lake Tahoe and Truckee River basins due to overharvest, lack of access to suitable 

spawning habitat, water diversions, and introduction of nonnative salmonids including 

lake trout (Salvelinus namaycush), brook trout (S. fontinalis), kokanee salmon (O. nerka), 

brown trout (Salmo trutta), and rainbow trout (O. mykiss) (Gerstung 1988; Peacock et al. 

2018).  



 

 

73 

As with the other CT subspecies, perhaps the most formidable threat to survival 

and successful reintroduction of LCT into its historical habitat are naturalized populations 

of nonnative rainbow trout (RBT, O. mykiss), a close congener with which CT subspecies 

readily interbreed often forming hybrid swarms (Allendorf et al. 2001; Campbell et al. 

2002; Leary et al. 1987). RBT, native to the west coast of North America and the 

northeastern coast of Russia south through Kamchatka, exhibit well documented homing 

behavior, returning to natal streams to spawn and thus giving rise to population genetic 

structure specific to populations by basin, stream, and even location within stream 

(Altukhov et al. 2000; Heath et al. 2001; Weigel et al. 2013). RBT have been artificially 

propagated in the United States for >150 years, with the first RBT hatcheries in the 

United States dating back to the early 1870s, originally established on San Leandro Creek 

(tributary to San Francisco Bay) and Campbell Creek (tributary to the McCloud River in 

northern California) (Schley 1971). Shortly thereafter, RBT were shipped across the 

United States, starting with New York and Michigan (Schley 1971). Since that time, RBT 

have been widely introduced across the globe, and naturalized populations (those that 

were originally stocked but achieved natural reproduction, spawning in the ecosystems 

where they were introduced) have flourished in a significant number of ecosystems, 

earning the species a place on the world’s worst 100 invasive species list (Lowe et al. 

2000). The history of rainbow trout hatchery stocks involves multiple source populations 

of inland and anadromous forms as well as intermixing of these source populations in 

hatchery stocks over time. Although hatcheries have not focused on maintaining genetic 

variation in their stocks, the mixing of genomes across these different source populations 

could facilitate survival and naturalization potential of stocked RBT.  
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Introduction and success of RBT in nonnative ecosystems has led to the loss of 

biodiversity and has dramatically impacted the fates of native CT due to hybridization. 

The relationship between RBT and CT is one of the most well- known examples of 

introgressive hybridization in salmonids (Mandeville et al. 2019; Ostberg and Rodriguez 

2004). Past work in the Truckee River suggests an unequal mating dynamic between LCT 

and RBT, as female LCT mtDNA haplotypes accounted for 14% of the F1 hybrids, 

despite the fact that LCT make up less than 5% of the salmonids in the river. This 

suggests that female LCT mate with male RBT in higher proportion than would be 

expected by chance (Kirchoff 2016). Depending on rates of backcrossing, such a dynamic 

could lead to the potential loss of native LCT genetic variation through genetic 

assimilation (Allendorf et al. 2001). Competitive exclusion and reduced fitness of hybrids 

can contribute to greater introgression with RBT, resulting in genetic erosion and 

eventual loss of pure CT populations across their range (Allendorf and Leary 1988; 

Muhlfeld et al. 2009; Rhymer and Simberloff 1996; Todesco et al. 2016). 

In the Lake Tahoe basin, where LCT were historically the only native salmonid, 

naturalized RBT populations have been established for >50 years (Cordone and Frantz 

1968). In recent years, both California and Nevada fish and wildlife agencies have either 

stopped planting RBT (California 2007) or have switched to planting primarily infertile 

triploid RBT along with a small number of hatchery raised diploid RBT from naturalized 

stream populations (Incline and Third Creeks) that drain into Lake Tahoe (Nevada 2011). 

Thus, reestablishing naturally reproducing populations of LCT in Lake Tahoe basin is 

constrained by multiple threats including hybridization with these robust, naturalized 

populations of RBT that now occupy most tributary streams. Both RBT and CT are 
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spring stream spawners, and both have stream resident and migratory forms, where 

homing to natal streams is common (Dunham et al. 2002; Keefer and Caudill 2014; Labar 

1971; Muhlfeld et al. 2012; Neville et al. 2006; Wenburg et al. 1998). We currently lack 

knowledge of population genetic variation in naturalized RBT of the Lake Tahoe basin, 

including the extent to which genetic structure could have arisen as a result of homing to 

specific streams. Such perspectives could be an important step towards assessing the 

threat of hybridization among naturalized RBT and reintroduced LCT, identifying 

streams best suited for RBT removal and LCT reintroduction.  

Here, we establish a baseline understanding of population genetic structure of 

nonnative, naturalized populations of RBT found in tributaries draining into Lake Tahoe. 

Characterizing genetic structure may aid in understanding and anticipating challenges 

associated with reintroduction of native LCT, where introduced nonnative salmonid 

populations have been regularly bolstered by stocking for recreational angling purposes. 

Specifically, we sought to understand the occurrence and extent of genetic differentiation 

of RBT among different regions of the basin, including the potential for naturalized 

populations to be associated with spawning in specific tributaries. Genetic differentiation 

among RBT from specific streams or groups of streams may indicate homing behavior 

and decreased migration among tributaries and could thus aid in the identification of 

streams where mitigation strategies could facilitate LCT reintroduction into streams with 

suitable spawning and rearing habitat. We used single nucleotide polymorphism (SNP) 

data generated with a reduced-representation sequencing approach for RBT sampled from 

a subset of streams that drain into Lake Tahoe to better understand the genetic 

consequences of deliberate species introduction by: (1) characterizing basin-wide 
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population genetic structure, and (2) quantifying genetic diversity within and among RBT 

sampled from different streams. An understanding of population genetic substructure of 

naturalized nonnative salmonids will be critical to developing effective conservation and 

management strategies in systems where restoration of native ecosystems is a priority.  

 

Methods 

Stocking and catch records  

Rainbow trout have been planted into waters of the Lake Tahoe basin since the late 

1800s; several local within-basin hatcheries were established early on and supplied RBT 

for the lakes and tributaries of the basin (Online Resource 1; Leitritz 1970; Sigler and 

Sigler 1986). The specific strains of trout raised in these hatcheries are typically not 

identified in any available records. However, these strains likely originate from the 

McCloud River (redband trout) and other tributaries in the upper Sacramento River 

watershed, as there were multiple egg collection stations and several hatcheries on these 

rivers in the early 20th century (Leitritz 1970). Trout from these within-basin hatcheries 

were widely planted around Lake Tahoe and in its tributaries from the early 1900s to 

mid-century (Kelley 1957). Further, rainbow trout appear to have already been 

naturalized in the Truckee River by the early 1900s, as eggs were collected and housed at 

the Verdi hatchery (1902-1905) on the Truckee River and then shipped to the Tahoe and 

Mt. Shasta (Siskiyou County, California) hatcheries to be reared for later out-planting 

(Leitritz 1970). Still, despite decades of stocking, by the end of the 1950s, Lake Tahoe 

was considered a “poor fishing lake” as few of the planted rainbow were actually caught 

by anglers (Kelley 1957). All within-basin hatcheries were decommissioned by the 1950s 
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(Online Resource 1), and California had closed the majority of its over 120 hatcheries 

and egg collection stations by 1960, consolidating its hatchery program of all fish species 

to 11 modernized hatcheries (Leitritz 1970). In the Lake Tahoe basin, California and 

Nevada state fish and wildlife agencies began to focus on habitat improvement and use of 

specific RBT strains to establish and increase the size of naturalized RBT populations 

around the lake.  

Records indicate the early efforts to establish robust naturalized populations of 

RBT within the Lake Tahoe basin were limited at best. Here, we focus on stocking 

records from the past ~50 years, after the change in stocking strategy by California and 

Nevada game and fish agencies, to assess whether stocking patterns are associated with 

any observed genetic structure of naturalized RBT populations. We obtained records of 

the strains, number of individuals, and stocking locations around the lake from both 

California Department of Fish and Wildlife (CDFW) and Nevada Department of Wildlife 

(NDOW). We also obtained information on strain origin and history from archives of the 

United States Fish and Wildlife Service (USFWS) and individual hatcheries. Further, we 

evaluated mark-recapture data from recreational catch records of tagged, stocked RBT to 

investigate movement patterns and dispersal of newly stocked individuals along inshore, 

lacustrine habitat. 

 

Sample collection  

To determine which tributaries to Lake Tahoe were occupied by RBT, we consulted with 

state and federal fish and wildlife agencies regarding recent electrofishing survey data. 

We attempted to sample fish from the majority of streams where RBT were previously 
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observed. Several tributaries suffered detrimental effects of severe multi-year drought, 

resulting in the absence of RBT or streambeds that were completely dry. Despite 

sampling efforts spanning 28 streams, we were only able to collect data from 8 tributaries 

for this study (Fig. 1a, Table 1). These tributaries likely represent stable habitat that 

would be continuously occupied by RBT. We used electrofishing methodology for 

individual capture and collected small fin clip samples from the left pelvic fin from all 

individuals sampled (following state permit regulations and IACUC protocols; see 

Acknowledgments).  

  

DNA sequencing 

Genomic DNA was isolated from fin clips using Qiagen DNeasy Blood and Tissue kits 

(Qiagen Inc., Valencia, CA). We used a reduced-representation technique (ddRADseq; 

Peterson et al. 2012) to create DNA sequencing libraries using the protocol described in 

Parchman et al. (2012). Briefly, we digested DNA with restriction endonucleases MseI 

and EcoRI. We ligated Illumina adaptors containing unique 8-10 bp DNA barcodes to 

each EcoRI cutsite, and Illumina DNA sequencing adaptors to each MseI cutsite. 

Barcoded samples were pooled and amplified using PCR primers and a proofreading 

polymerase (Iproof, BioRad, Hercules, CA). See the protocol document at the DRYAD 

repository (doi: 10.5061/dryad.15dv41nzk) for more details on sequencing library 

preparation. The reduced-representation library was sent to the University of Texas 

Genome and Sequencing Analysis Center, where DNA fragments 350-450 bp in length 

were selected using the Pippin Prep quantitative electrophoresis unit (Sage Science, 

Beverly, MA) and subsequently sequenced across two lanes on the Illumina HiSeq 4000. 
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Alignment and variant calling  

We used bowtie2_db (Langmead and Salzberg 2012) and Perl and bash scripts 

(http://github.com/ngcr/tapioca) to filter raw sequencing data for contaminant DNA 

including PhiX and E. coli, and for PCR primers and sequencing adaptors. We used a 

custom Perl script to correct 1-2 bp sequencing errors in unique barcode sequences as all 

barcodes differed by ≥3 bp. We then matched barcoded sequences with unique sample 

IDs, removing barcode associated bases from reads, and we subsequently split fastq files 

into individual fastqs for each sample. Samples yielding sequence data <100 megabytes 

were removed from further analyses.  

 We mapped reads to the O. mykiss reference genome (GenBank assembly 

accession GCA_900005705.1) using bwa v0.7.5  (Li and Durbin 2009). Next, we 

converted sequence alignment map files to binary alignment map files using samtools 

v1.3 before calling variants using samtools v1.3 and bcftools v1.3  (Li et al. 

2009). To calculate genotype likelihoods, we used minimum site quality of 20, minimum 

genotype quality of 10, minimum base quality of 20, minimum map quality of 20, and 

maximum coverage depth of 100. Using vcftools v0.1.14  (Danecek et al. 2011), 

variants were filtered to include only bi-allelic SNPs with minor allele frequencies >0.05 

and where at least 60% of individuals had at least one read. Next, we removed samples if 

an individual was missing data at more than 30% of its loci. To avoid over-assembled 

loci that could represent paralogous regions, we filtered out loci with coverage depth 

>12x using vcftools v0.1.14. As a further step against genotyping errors representing 

potentially misassembled paralogous regions, we used the HDplot approach (McKinney 
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et al. 2017), retaining loci with heterozygosity (H) between 0 – 0.55 and read ratio 

deviance (D) from -4 through 4 to ensure we only retained singleton loci. 

  

Population genetic analyses  

To infer genotypes probabilistically and to infer population structure via ancestry, we 

used entropy (Gompert et al. 2014). Similar to the admixture model in structure 

(Falush et al. 2003; Pritchard et al. 2000), entropy is a Bayesian model that estimates the 

number of k ancestral groups and estimates admixture proportions (q) within and among 

populations without a priori sample information. Stochastic differences in coverage 

depth and sequencing and alignment errors are characteristic of low- to medium-coverage 

sequencing data (Buerkle and Gompert 2013; Fumagalli et al. 2013; Nielsen et al. 2011); 

entropy accounts for this uncertainty by producing posterior probabilities for each 

individual genotype at each locus. To begin, we used the prcomp function in R version 

3.4 (R Core Team, 2017) to run PCA on the covariance matrix of genotype likelihoods. 

We then used linear discriminant analysis (LDA) and k-means clustering to assign initial 

ancestry proportion estimates to each individual for k = 2 through k = 8 groups. We ran 

entropy models for each of the k ancestral groups using 5 chains per k, running 100,000 

MCMC iterations and retaining the 10th step after a burn-in of 30,000 steps. To assess 

model fit, we compared the deviance information criterion (DIC) for each model, where 

the lowest DIC represented the best-fit model.  

As a model free method for examining population genetic variation, we used the 

prcomp function in R to run PCA on genotype probabilities generated with entropy. We 

additionally conducted discriminant analysis of principal components (DAPC; Jombart et 
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al. 2010) to analyze differences between groups of individuals. Where PCA maximizes 

total variance between individuals, DAPC minimizes variation within groups and 

maximizes variation between groups (Jombart et al. 2010). First, we ran DAPC without a 

priori group assignment by using find.clusters in the adegenet R package to infer the 

number of k genetic clusters (Jombart 2008; Jombart and Ahmed 2011), where Bayesian 

Information Criterion (BIC) scores were used to assess model fit. Next, considering 

patterns of subtle differentiation among groups of streams in prior analyses in addition to 

ecological and biological relevance, we conducted DAPC using a priori group 

assignments based on region (k = 3: North, South, West), and again with the same three 

regions but with McKinney Creek individuals grouped separately based on clustering in 

PCA and entropy analyses above (k = 4: North, South, West, McKinney). To 

additionally analyze population genetic differentiation, we ran three separate analyses of 

molecular variance (AMOVAs). Using the poppr (Kamvar et al. 2014) package in R, we 

analyzed variance explained by among versus (a) within stream, (b) within region (k = 3; 

North, South, West), and (c) within region, with McKinney grouped separately (k = 4; 

North, South, West, McKinney). 

To summarize genome-wide levels of differentiation among RBT sampled from 

each stream, we calculated Nei’s D (Nei 1972) and Hudson’s FST (Hudson et al. 1992) on 

allele frequencies. To assess levels of genetic variation for RBT sampled from each 

stream, we calculated ΘW (the number of segregating sites; Watterson 1975) and Θπ (the 

average number of pairwise differences between sequences; Tajima 1983) using ANGSD, 

where genotype uncertainty is incorporated (Korneliussen et al. 2013, 2014). We used the 

“doSaf 1” tool within ANGSD to estimate the site allele frequency likelihoods from the 
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reference genome and BAM files. Site allele frequency likelihoods were then used to 

generate folded site frequency spectrum likelihoods using REALSFS (Fumagalli et al. 

2013). We calculated posterior allele frequency probabilities, and then used the 

thetastat tool in ANGSD to estimate per-locus diversity metrics. We averaged these 

values across all contigs and nucleotides to generate population-level measures of 

diversity. 

 

Results 

Review of stocking and catch records 

Multiple RBT hatchery strains have been stocked into Lake Tahoe since 1960, and often 

multiple stocks were planted in a single year (Online Resource 2). The same stocking 

stations around the lake have been used annually by California (8 sites on the West and 

South shores) and Nevada (4 or 5 sites on the East, North, and South shores) fish and 

wildlife agencies. The preponderance of diploid RBT stocked into Lake Tahoe from 

1980-2010 by both state fish and wildlife agencies were the Eagle Lake strain (O. mykiss 

aquilarum, ~500,000 adult individuals), representing 50% of all RBT planted among the 

16 strains stocked into the lake over this time period (Online Resource 2). Eagle Lake is 

an endorheic lake found in Lassen County in northern California, and this strain is raised 

in multiple hatcheries across the country. Additionally, from 1991-present, NDOW 

biologists also recovered sperm and eggs from naturalized RBT males and gravid females 

spawning in North Lake tributaries (Incline and Third creeks) and fertilized eggs were 

transferred to and raised in the NDOW Mason Valley hatchery with the aim of planting 

these offspring from successful spawn runs back into the lake. A total of 691,688 
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hatchery raised RBT from these creeks have been stocked back into the lake since 1991, 

representing ~43% of all individuals from the 8 diploid strains stocked 1991-present. In 

recent years, however, the number of hatchery raised RBT stocked from these naturalized 

populations in Incline and Third creeks has been greatly reduced (~2000 per year 2016-

2020). In 2006, the only trout planted by CDFW were 2000 Golden trout (O. mykiss 

aguabonita) fingerling, stocked near Taylor Creek, which drains into Lake Tahoe in 

South Lake. Golden trout are distinctive in coloration and readily distinguishable from 

other hatchery RBT strains. From 2007-present, CDFW has stocked only kokanee salmon 

into Lake Tahoe (total 605,508 individuals). Beginning in 2011, NDOW switched to 

primarily planting infertile triploid RBT (191,265), which now account for 91% of all 

planted RBT. All samples genotyped in this study are from naturalized RBT caught in 

tributaries around the lake. Analysis of recent recapture records by NDOW biologists 

illustrated wide-ranging dispersal of RBT from two stocking locations in East Lake (Cave 

Rock and Sand Harbor) and mixing across all regions of the lake (Online Resource 3). 

These data, in addition to the preponderance of stocking Eagle Lake and naturalized RBT 

from the Lake Tahoe basin, strongly suggest that any observed genetic structure will not 

be an artefact of stocking history. 

 

Alignment and variant calling 

Following contaminant filtering and removal of individuals with insufficient sequencing 

data, we retained 150 individuals with a mean of 1,416,116 reads per individual. bwa 

mapped reads from all individuals to the O. mykiss reference genome (GenBank 

assembly accession GCA_900005705.1). After variant calling and filtering based on 
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sequencing coverage and quality, we retained 13,162 loci with MAF > 0.05. Additional 

filtering for potentially paralogous regions resulted in the removal of an additional 355 

SNPs, leaving a final dataset of 12,807 SNPs. The final dataset consisted of 150 

individuals with a mean coverage of 4.6X per locus per individual. Sequence data (fastq 

files) for each individual are deposited at the SRA of NCBI (accession PRJNA7497193), 

and the vcf file, sequence data, and other supplementary files are available at the 

DRYAD repository (doi: 10.5061/dryad.15dv41nzk). 

 

Population genetic analyses 

DIC values from entropy indicated that the k = 2 model best fit the data (Fig. 2, Online 

Resource 4), although the k = 3 and 4 models had similar support and illustrated 

additional aspects of spatial genetic structure (described below). PCA based on genotype 

probabilities revealed subtle genetic structure, where PC 1 explained 3.06% of the 

variation in the data while PC 2 explained only 1.60% (Fig. 1b, c). When plotted by 

region of the lake (North, West, South, McKinney), PCA revealed subtle but apparent 

differentiation of RBT from different sets of streams across the basin. Specifically, RBT 

in the three regions (North, West, South) exhibited differentiation, with McKinney Creek 

as a uniquely differentiated, fourth group (Figs. 1b, c, and Fig. 2). Finally, using 

AMOVA to analyze variance explained by among versus (a) within stream, (b) within 

region (k = 3; North, South, West), and (c) within region, with McKinney grouped 

separately (k = 4; North, South, West, McKinney), we found that 95.47% of variance 

explained was attributed to variation within individuals (Table 2). 
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 Results from DAPC without a priori clustering are largely concordant with those 

from PCA and entropy, with the three regions (North, West, South) illustrating 

divergence, and with McKinney forming a uniquely differentiated cluster (Fig. 3a, b). 

The k = 4 analysis clustered individuals differently than analyses using PCA or entropy, 

with main clusters corresponding to three main clusters representing North Lake, 

McKinney Creek, and South and West Lake, and a fourth cluster representing few 

anomalous individuals (Fig. 3b, e, Online Resource 5). Analyses using a priori group 

assignments grouped populations more distinctly than in PCA (Fig. 3c, d). 

Pairwise measures of genetic divergence indicated low levels of differentiation 

among sampled streams but were also consistent with evidence for differentiation among 

groups of streams from different regions of the basin (FST range = 0.0182 – 0.0487, Nei’s 

D range = 0.0090 – 0.0271; Table 3). Genetic diversity for 150 individuals across 8 

sampling sites was 0.00270 for Θπ (range 0.00242 – 0.00287) and 0.00263 for ΘW (range 

0.00219 – 0.00311) (see Table 4). Genetic diversity was relatively consistent across 

regions, with North Lake mean Θπ = 0.00275 (range = 0.00271 – 0.00279) and mean ΘW 

= 0.00269 (range = 0.00262 – 0.00276), South Lake mean Θπ = 0.00265 (range = 

0.00242 – 0.00287) and mean ΘW = 0.00265 (range = 0.00219 - .00311), West Lake (not 

including McKinney) mean Θπ = 0.00270 (range = 0.00261 – 0.0281) and mean ΘW = 

0.00263 (range = 0.00248 – 0.00277), and McKinney Θπ = 0.00269 and ΘW = 0.00245.  

Interestingly, Tajima’s D varied among all populations, including variation within 

regions of the lake (range = -0.3151 – 0.2683). 
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Discussion 

Nonnative trout species pose multiple threats and challenges to conserving and restoring 

native trout fisheries. Predation, competition, and hybridization all represent obstacles to 

native CT populations and to the potential success of reintroductions (Dunham et al. 

1997, 2003; Koel et al. 2005). These issues are especially acute in the Lake Tahoe basin, 

where native LCT populations were extirpated and replaced with multiple nonnative 

salmonid species. Both CT and RBT spawn in streams or near stream outflows 

(Arostegui and Quinn 2019), making both hybridization and competition for rearing and 

suitable spawning habitat problematic. For the inland CT subspecies and RBT, both 

stream resident and migratory life histories have been identified (Arostegui and Quinn 

2019; Neville et al. 2006, 2016). Individuals with the migratory life history spend one or 

more years in the natal stream before migrating to lake or main stem river habitat for the 

remainder of maturity (Arostegui and Quinn 2019). Greater differences in habitat use 

within lakes arise as adults, where large-bodied, adult LCT inhabit pelagic zones (Al-

Chokhachy et al. 2009; Meeuwig and Peacock 2017), while adult RBT primarily inhabit 

inshore habitats (Swales 2006), suggesting less interspecific competition in later adult 

stages. Thus, we aimed to gain a better understanding of where (or if) lake dwelling, 

naturalized RBT home for spawning and the extent of differentiation within and among 

streams to understand the possibilities for and implications of RBT removal and LCT 

reintroduction.  

Here, we quantified fine scale population genetic structure and genetic diversity 

of naturalized RBT sampled from different tributary streams, establishing baseline 

population genetic data for naturalized RBT of the Lake Tahoe basin. Our analyses 
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revealed subtle but consistent population differentiation among tributaries, with 

individuals from spatially proximate populations primarily grouping closer together than 

others across multiple population genetic analyses (Figs. 1, 2, 3). Differentiation became 

more evident as populations were grouped by geographic region (Figs. 1, 2, 3). Many 

stream beds were entirely dry during the sampling period, meaning RBT that may have 

attempted spawning in these tributaries had to move to the lake for the remainder of the 

dry season. Additionally, the few streams of East Lake where sampling was possible 

were predominantly or entirely inhabited by other nonnative, competitor species (e.g., 

brook trout, Salvelinus fontinalis).  

Identifying plausible explanations for this population genetic structure presents a 

challenge in this system, where nonnative RBT introductions of fish from mixed sources 

were consistent, deliberate, and widespread, . Possibilities include long-term homing 

behavior to certain tributaries, which has been observed in some (but not all) stocked 

populations of RBT in other systems (Biette et al. 1981; Quinn 1993; Schroeder et al. 

2001). Homing behavior by planted nonnative trout could arise from overwintering adults 

seeking spawning habitat in the spring. The larger tributaries with more consistent water 

flow would be natural targets for spawning adults and eventually act as natal streams for 

homing behavior of surviving, reproducing offspring. 

We originally hypothesized that genetic structure may be related to the historical 

stocking of genetically differentiated strains into specific tributaries or regions. Earlier 

work, however, has shown that in streams where multiple hatchery raised RBT strains 

were planted over multiple years, the resulting naturalized populations were thoroughly 

admixed between otherwise genetically distinct strains (Kirchoff 2016; Peacock and 
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Kirchoff 2004). Additionally, a study on naturalized RBT in the mainstem Truckee River, 

which flows from Lake Tahoe to Pyramid Lake, showed that admixture among hatchery 

strains was evident along the entire length of the river (though subtle genetic population 

structure corresponding to instream barriers was also observed; Kirchoff 2016). Review 

of the Tahoe stocking records also suggests that the strains and stocking events are 

unlikely to have caused genetic differentiation we observed as stocking events regularly 

included individuals of mixed ancestry, with multiple stocking events within the same 

year and recaptured fish routinely found throughout the basin. We found substantial 

overlap in strains planted by both CDFW and NDOW, with no convergence of patterns 

between stocked strains and stocking locations with population genetic differentiation. 

Further, there have been no RBT stocking events on the California side of the lake since 

2007, and primarily sterile, triploid RBT have been stocked on the Nevada side since 

mid-2011 (with few exceptions of naturalized RBT from North Lake; see Results). 

Combined with the average life expectancy of 3-5 years and wild RBT reproductive 

maturity at approximately three years of age (McAfee 1966), we can infer that RBT 

currently occurring in the Lake Tahoe basin are naturalized populations that are 

reproducing across the landscape and are now assorted in the patterns we observed.  

As stocking events of reproductively viable RBT have almost entirely ceased in 

the past decade, it is possible that we observed a snapshot of the ongoing, increasing 

admixture of populations from different genetic sources. Alternatively, we may have 

identified nascent population structure developing as a result of what may be reduced 

survival of stocked individuals that were maladapted to local environments, combined 

with drift arising from naturalized RBT that are philopatric to individual streams. Some 
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combination of these explanations is likely, as most stocked individuals are unlikely to 

survive and reproduce, something that has been documented across multiple stocked 

salmonid species (Brunner et al. 1998; Heggenes et al. 2002; Benavente et al. 2015). 

However, given that the Eagle Lake strain of RBT together with hatchery raised RBT 

from naturalized populations within the Lake Tahoe basin represent the majority of 

stocked trout since 1980, the population structure we observed strongly suggests an 

emergent homing behavior – if not to particular streams – to particular regions of the 

lake, where habitat attributes may influence the spatial dispersion of RBT.  

Such genetic differentiation due to habitat variation has been observed in a large 

number of other studies. In a study on population genetic structure among coastal 

cutthroat trout populations, Wenburg et al. (1998) showed that genetic clustering was 

explained by physiogeographic region, and although individual stream homing was 

important, the dynamic between gene flow among streams and genetic drift accounted for 

the regional pattern. Further, Gresswell et al. (1994) showed that life history traits 

including size, age, migration strategy, and migration timing among spawning 

populations of Yellowstone cutthroat trout (O. clarkii bouvieri) in tributary streams of 

Yellowstone Lake vary considerably across populations, suggesting genetic 

differentiation likely driven by habitat variability. Landscape features also influence 

population genetic structure among life history types of rainbow trout (anadromous and 

resident) in the Pacific Northwest (Narum et al. 2008). Instream landscape characteristics 

explained patterns of genetic variation among resident populations, while isolation by 

distance explained patterns in anadromous forms, which in many instances were confined 
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to the lower reaches of these watersheds by high gradient streams and barriers to 

upstream movement (Narum et al. 2008).  

Results from previous studies are consistent with recent comparison of two 

different systems in Patagonia where naturalized RBT populations flourish. The first lake 

represents the largest RBT smolt producer in Chile, where aquaculture escapees regularly 

establish and integrate with naturalized populations of RBT (Canales-Aguirre et al. 

2018). The other, contrasting lake is protected via national park and reserve status, where 

aquaculture is prohibited and only two stocking events since 1900 occurred, leading to 

the development of a fully naturalized population (Canales-Aguirre et al. 2018). In this 

case, the lake permitting aquaculture yielded reduced genetic structure and higher genetic 

diversity stemming from multiple genetic sources of farmed individuals, while the 

protected lake showed marked genetic structure and reduced genetic diversity from lower 

propagule pressure (Canales-Aguirre et al. 2018). Our results likely fall somewhere 

between these two extremes as we found subtle but consistent population structure 

potentially influenced by intermittent stocking events in the last 50 years along with 

variation in genetic diversity estimates (Table 4). The comparison between results of the 

current and future studies could provide a perspective vital for LCT reintroduction 

success. 

Our results carry substantial implications for conservation and management of 

LCT in this system, where both hybridization and ecological challenges that have arisen 

from an altered food web constrain recovery of the native apex predator to this 

ecosystem. Amelioration of the effects of nonnative salmonids in the western United 

States has led to substantial research into both the impacts of these nonnative fishes and 
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ways to remove them (Al-Chokhachy et al. 2009; Meeuwig and Peacock 2017; Ruzycki 

et al. 2003; Syslo et al. 2011). A case study in lake trout removal for Yellowstone CT 

conservation illustrates the challenges of removing entrenched nonnative salmonids: 

despite decades of gillnet removal efforts and over 450,000 pounds of lake trout removed 

from Yellowstone Lake, the lake trout population continues to increase (Syslo et al. 

2011). Similar gillnetting efforts in Fallen Leaf Lake, a small subalpine lake which drains 

into Lake Tahoe, where LCT have been reestablished, have reduced the average size of 

nonnative lake trout and therefore some of the predation threat for LCT, but have not 

eliminated them (Al-Chokhachy et al. 2020). Instream electrofishing removal of 

nonnative salmonid populations across ecosystems also yields mixed results, with success 

somewhat dependent upon habitat size (Brunson 2020; Pacas and Taylor 2015; Rytwinski 

et al. 2019). Such mechanical removal efforts are unlikely to be wholly successful when 

used in isolation. Still, the ecological similarities with CT including stream spawning life 

history offer opportunities to target resident RBT stream populations as well as lake 

dwelling RBT entering the streams for spawning. For example, based upon pilot studies 

conducted in the smaller Fallen Leaf Lake ecosystem (Al-Chokhachy et al. 2009; 

Meeuwig and Peacock 2017), current USFWS management activities include: (1) the use 

of weirs to reduce RBT access to the single available spawning stream, (2) instream 

electrofishing removal of adults, and (3) redd disruption to reduce RBT recruitment into 

the Fallen Leaf Lake population (Al-Chokhachy et al. 2020). The efficacy of such an 

approach as a long-term solution to the hybridization threat posed by RBT remains 

unknown, even in this smaller ecosystem, and will require ongoing genetic monitoring. 

The results of the study in Fallen Leaf Lake may help refine the effectiveness of such an 



 

 

92 

approach and allow expansion to the much larger Lake Tahoe and similar sized 

landscapes. 

 Moving forward, tracking changes to RBT genetic structure on a temporal scale 

spanning time periods long enough to observe any potential changes in genetic structure 

(i.e., across multiple generations) would increase our understanding of the population 

dynamics and habitat utilization in this complex, altered system and could help fine tune 

reintroduction strategies for LCT in Lake Tahoe. Should the observed patterns represent 

emergent RBT population genetic structure based upon homing behavior to natal streams, 

targeted RBT removal (mechanical and/or chemical) would open habitat for LCT 

reintroduction and potentially facilitate similar homing behavior to tributaries for 

spawning LCT. From there, active management of trout entering the streams to spawn 

using weirs together with ongoing genetic monitoring of reestablished LCT stream 

populations may allow this iconic trout to gain a foot hold in its historic habitat.  

 

Data availability 

The datasets generated for this study are available at the Dryad Digital Repository (doi: 

10.5061/dryad.15dv41nzk; https://doi.org/10.5061/dryad.15dv41nzk) and NCBI’s Short 

Read Archive (accession PRJNA7497193; https://dataview.ncbi.nlm.nih.gov/object/ 

PRJNA7497193).  
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Table 1. Sampling information for RBT from streams in the 
Lake Tahoe basin. Here, streams are grouped according to 
geographic region. 

Region Stream Latitude, Longitude N 

North Incline (IN) 39.24, -119.94 13 
Third (TH) 39.24, -119.95 25 

West 

Ward (WR) 39.14, -120.20 16 
Blackwood (BK) 39.11, -120.18 16 
Madden (MD) 39.09, -120.18 23 
McKinney (MC) 39.06, -120.15 23 

South Taylor (TA) 38.93, -120.05 7 
Upper Truckee (UT) 38.86, -120.03 27 
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Table 2. AMOVA results of both k = 3 (North, South, West) and k = 4 (North, South, West, 
McKinney), where df represents degrees of freedom and PVE represents percent of variance 
explained. 

  

   df sum of  
squares 

variance  
(σ) PVE p-value 

k = 3 

between populations 2 5425 13.1 1.057 0.02 
between samples within populations 3 9626 43.08 3.475 0.01 
within samples 142 168051 1183.46 95.468 0.01 
total 149 183102 1239.64 100 NA 

k = 4 

between populations 3 8254 24.11 1.945 0.02 
between samples within populations 4 6796 32.08 2.588 0.01 
within samples 142 168051 1183.46 95.468 0.01 
total 149 183102 1239.64 100 NA 
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Table 3. Pairwise estimates of Nei’s D (Nei, 1972) and mean FST (Hudson et al., 1992) 
among all sampling sites. FST estimates are given on the upper diagonal, and Nei’s D 
on the lower diagonal. Population abbreviations correspond to those in Table 1. 
  BK IN MC MD TA TH UT WR 
BK - 0.0375 0.0314 0.0198 0.0459 0.0276 0.0217 0.0252 
IN 0.0199 - 0.0294 0.0302 0.0487 0.0224 0.0326 0.0365 
MC 0.0158 0.0148 - 0.0248 0.0483 0.0229 0.0302 0.0334 
MD 0.0099 0.0161 0.0120 - 0.0414 0.0217 0.0182 0.0208 
TA 0.0254 0.0271 0.0268 0.0234 - 0.0405 0.0401 0.0452 
TH 0.0142 0.0112 0.0109 0.0104 0.0229 - 0.0231 0.0283 
UT 0.0109 0.0161 0.0154 0.0090 0.0222 0.0111 - 0.0225 
WR 0.0122 0.0192 0.0173 0.0102 0.0241 0.0144 0.0107 - 
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Table 4. Population genetic diversity of 150 individuals from 8 populations based directly on 
DNA sequence variation across sampled genomic regions. Below are estimates of θπ, or the 
average number of pairwise differences between sequences, θW, or the number of segregating 
sites, and Tajima's D, or the scaled difference between these two. Confidence intervals (95%) are 
included in high and low columns.  
Region Pop N HE θπ  θπ low θπ high θW  θW low θW high D D low D high 

North IN 13 0.221 0.00271 0.00270 0.00272 0.00262 0.00261 0.00263 0.0224 0.0132 0.0315 
TH 25 0.226 0.00279 0.00278 0.00280 0.00276 0.00275 0.00277 -0.0436 -0.0523 -0.0348 

West 

WR 16 0.214 0.00261 0.00260 0.00263 0.00248 0.00247 0.00249 0.0754 0.0661 0.0846 
BK 16 0.220 0.00269 0.00268 0.00270 0.00265 0.00264 0.00266 -0.0379 -0.0475 -0.0284 
MD 23 0.222 0.00281 0.00280 0.00282 0.00277 0.00277 0.00278 -0.0497 -0.0588 -0.0406 
MC 23 0.222 0.00269 0.00268 0.00270 0.00245 0.00244 0.00245 0.2107 0.2015 0.2199 

South TA 7 0.206 0.00242 0.00241 0.00243 0.00219 0.00218 0.00220 0.2683 0.2595 0.2770 
UT 27 0.216 0.00287 0.00286 0.00288 0.00311 0.00310 0.00311 -0.3151 -0.3240 -0.3062 
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Figure legends 
 
 
Fig. 1 Lake Tahoe basin rainbow trout sampling sites (a). PCA of genotype probabilities 

from entropy, based on 12,807 SNPs from 150 samples across 8 sites, grouped and 

colored by region (b) and stream (c).  

 

 

Fig. 2 Estimates of ancestry coefficients (q) generated with entropy are scaled along the 

y-axis for each of k = 2 (a), k = 3 (b), and k = 4 (c) models. Vertical bars represent 

individuals, and colors represent ancestry proportion for k clusters. Population 

abbreviations correspond to those in Table 1. Here, the k = 2 model best fit the data, 

supported by the lowest deviance information criterion (DIC; Online Resource 4).  

 

 

Fig. 3 Discriminant analyses of principal components without a priori clustering based 

on the find.clusters function (a, b), and with a priori cluster assignment (c, d), where 

plots a and c represent k =3, and b and d represent k = 4 models. Panel e represents the k 

= 4 model without a priori clustering, where vertical bars represent individuals, and 

colors represent proportion of ancestry from each ancestral group. 

 
 
 
 
 
 
 
 



 

 

105 

Figure 1 
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Figure 2 
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Figure 3 
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Online Resource 1 Historical rainbow trout hatcheries in the Tahoe basin. 
Hatchery  Location  County  State Years 
Frasier   Squaw Creek  Placer  CA 1875-1880 
Hurley   Tahoe City  Placer  CA 1880-1888 
Phipps   Lake Tahoe  El Dorado CA 1884-1888 
Mt. Tallac  Taylor Creek  El Dorado CA 1895-1909 
Marlette-Carson Carson City  nonea  NV 1916-1917 
Blackwood Creek Blackwood Creek  Placer  CA 1921-1932 
Tahoe   Tahoe City  Placer  CA 1889-1956 
Verdi   Verdi   Washoe  NV 1902-1905, 
         1909-1986 
aCarson City is an independent city  
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Online Resource 2 Rainbow trout stocking records (1960-2020) from the California Department  
of Fish and Wildlife (CDFW) and Nevada Department of Wildlife (NDOW). 
STRAIN    YEAR(S)   No. stocked per year 
Fall spawning strain    1960                     5,941  
Kamloops (British Columbia)  1962               127,000  
Trophy     1975                 12,261  
Trophy/Shasta cross   1975                   2,396  
No strain ID    1975-1983              198,748  
Whitney    1978-1979, 1980, 1984, 1986              33,441  
Wigwam    1982-1983, 1991             242,404  
Wigwam/Shasta cross   1982                   2,200 
Blue Mountain    1983                 44,280  
Nashua     1983                 11,898  
Junction    1984                   9,895  
Coleman (anadromous steelhead) 1985                 13,125  
Kamloops/Junction cross  1986                 15,200  
Sand Creek    1983-1984, 1987-1988, 1991             66,200  
Shasta (mixed ancestry including  1977-1988              180,791 
Eagle Lake)    
Eagle Lake    1971, 1980, 1984-2010             422,172  
Hot Creek (Eagle Lake origin)  1980-1985, 1997              69,437  
Wytheville    1988, 1990                27,803  
Marlette Lake Tahoe Basina  1988                 19,600  
Marlette Lake Tahoe Basinb  1990                 13,790  
Erwin (Wytheville origin)   2000                   13,941  
Kamloops     2006-2008                  37,065  
Tasmanian (anadromous  1986, 1995-1999, 2004, 2008-2010          124,130  
steelhead, Sonoma Creek) 
Jumper     2012                     8,126  
No strain ID    2011, 2014                 13,576  
Tahoe Basinc     1991-2010, 2015-2018, 2020                      691,688  
(Incline and Third Creeks)  
Kamloops (triploid)    2007, 2015                10,812  
Trout Lodge (triploid)   2018                 13,602  
Triploid RBT    2011-2017, 2019, 2020             177,663  
TOTAL                                       2,609,185 
a naturalized RBT from Lake Tahoe raised in Marlette Lake, Lake Tahoe basin (fingerlings) 
b naturalized RBT from Lake Tahoe raised in Marlette Lake, Lake Tahoe basin (adults)  
c  naturalized RBT from Incline and Third creeks, which drain into North Lake Tahoe, raised in  
NDOW Mason Valley hatchery   
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Online Resource 3 Individuals stocked at Cave Rock (CR, circles) and Sand Harbor 
(SH, triangles) across three years were recovered and reported to the Nevada Department 
of Wildlife. Results indicate mixing of stocked individuals across all regions of the lake. 
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Online Resource 4 Deviance information criteria for each of 5 replicate entropy runs, 
including mean and standard deviation, where a lower score indicates better model fit.  
k 1 2 3 4 5 mean SD 
2 6,849,821 7,056,445 6,695,732 7,112,544 7,058,046 6,954,518 176,076 
3 12,076,597 10,519,135 9,712,600 9,747,084 9,930,560 10,397,195 993,016 
4 11,888,946 11,154,106 13,788,505 11,506,529 10,873,331 11,842,283 1,152,730 
5 16,200,905 10,521,209 11,029,413 15,003,581 14,091,069 13,369,236 2,489,804 
6 15,672,915 15,905,383 17,747,334 20,482,260 16,204,417 17,202,462 2,004,494 
7 15,336,136 51,082,844 15,853,549 75,907,098 26,233,082 36,882,542 26,193,710 
8 19,268,427 82,991,043 17,512,223 16,024,636 129,551,613 53,069,588 51,293,193 
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Online Resource 5 Discriminant analyses of principal components without a priori 
clustering based on the find.clusters function where vertical bars represent 
individuals, and colors represent proportion of ancestry from each ancestral group. 
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Abstract 

Understanding the distribution of genetic diversity and differentiation in species with 

disjunct populations is critical for assessing local adaptive variation, as well as 

evolutionary potential, especially in the context of climate change. In contrast to the large 

distributions and population sizes of most pine species, Pinus muricata (Bishop pine) 

occurs in a small number of isolated populations occupying a narrow band of 

environmental conditions along the coast of western North America. To describe the 

spatial arrangement of genetic differentiation and diversity in this species, we used 

genotyping by sequencing to generate population genomic data for trees sampled from 

nearly all existing populations of P. muricata (12 populations, 213 individuals, 7,828 

loci). We used genetic-environment association (GEA) analyses to quantify the 

contribution of environmental variables to local adaptation and spatial genetic structure. 

Based on these results, we quantified genomic offset as a relative estimate of potential 

maladaptation given future climate projections at 2041–2060 and 2081–2100. Our 

analyses reveal pronounced spatial genetic structure across the distribution, with most 

populations forming genetically identifiable groups across a latitudinal gradient, and 

differentiation at a remarkably fine scale among three stands on Santa Cruz Island. 

Despite occurring in small, isolated stands, P. muricata populations do not exhibit 

reduced diversity relative to many other more widespread pines. GEA analyses suggested 

that specific soil and climate variables have contributed to local patterns of genetic 

differentiation. Genomic offset analyses suggest geographic variation in potential 

maladaptation, with northern populations generally experiencing higher levels of offset 

under projected climate change models. Overall, our results suggest that isolation and 
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local adaptation have shaped current patterns of genetic variation among disjunct 

populations and illustrate the evolutionary consequences of this variation for P. muricata. 

 

Key words: climate maladaptation, genetic diversity, genetic offset, genetic-environment 

association (GEA), GEA offset, Pinus muricata (Bishop pine), RADseq 
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Introduction 

Variation in gene flow, drift, and local adaptation are all expected to shape spatial genetic 

structure across species with fragmented distributions. Fragmented populations of rare 

plant species often suffer decreased levels of genetic diversity, whether a cause or 

consequence of rarity (Gitzendanner & Soltis, 2000; Nybom, 2004), that can decrease 

evolutionary potential and increase extinction risk at geographic, temporal, and climatic 

scales. Disjunct distributions, coupled with processes that reduce diversity (e.g., genetic 

drift), often result in pronounced levels of spatial genetic structure (Young et al., 1996). 

While such patterns are common across plant systems, numerous studies have identified 

inconsistencies, where broad distributions and large population sizes do not always 

protect a species from genetic erosion, and where genetic variation of rare species is not 

necessarily reduced but is instead overgeneralized as low (Gitzendanner & Soltis, 2000; 

Ellis et al., 2006; Honnay & Jacquemyn, 2007; Kramer et al., 2008; Ægisdóttir et al., 

2009). Rather, populations with high genetic diversity despite fragmentation may be 

resistant to genetic erosion due to high levels of outcrossing, long lifespans (i.e., older 

individuals with increased diversity from a previously expanded range), and overlapping 

generations (Nybom, 2004; Ægisdóttir et al., 2009; Escaravage et al., 2011; Walisch et 

al., 2015), all of which are characteristic of several conifer species.  

Pines are among the most ecologically and economically important plants on 

Earth, occurring across diverse landscapes and playing an essential role in structuring 

forest ecosystems (Farjon, 2008). Pines typically occur in large, contiguous populations 

that exhibit little genetic structure (González-Martínez et al., 2006; Petit & Hampe, 2006) 

due to high levels of gene flow from wind dispersal (Slavov & Zhelev, 2004; González-
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Martínez et al., 2006). Despite the prevalence of gene flow, a long history of common 

garden studies has demonstrated that pine populations are locally adapted to diverse 

environmental conditions (Langlet, 1971; Matyas, 1996; Morgenstern, 1996; Sork et al., 

2013; Lind et al., 2018), and more recent studies have quantified adaptation across the 

landscape with both phenotypic and genomic approaches (Eckert et al., 2015; Yeaman et 

al., 2016; De La Torre et al., 2019; Mahony et al., 2020; Hall et al., 2021). Pines 

generally have exceptionally long lifespans, but the seedling phase is typically when 

selection acts strongest (Savolainen et al., 2007; Alberto et al., 2013; Lind et al., 2018). 

As a result, adults can occur in environments that differ from what they experienced as 

seedlings, and climate change is creating an increasing mismatch between the genetics of 

pine populations and their environments (Aitken et al., 2008; O’Connor et al., 2014; 

Tíscar et al., 2018; De La Torre et al., 2019). Moreover, recent models predict 

dramatically high mortality rates as a result of warming temperatures and associated 

physiological stresses for pines distributed in western North America (e.g., Alberto et al., 

2013; Mcdowell et al., 2016). Understanding the distribution of phenotypic and genetic 

variation across populations of pines will be critical for understanding environmental 

variation driving local adaptation and the potential response of forests to environmental 

change (Savolainen et al., 2013; Ellegren, 2014; Prunier et al., 2016).  

Pinus muricata (Bishop pine), P. radiata (Monterey pine), and P. attenuata 

(knobcone pine) are emblematic California closed-cone pines, and form a monophyletic 

clade (Attenuatae, sensu; Gernandt et al., 2018) within the Australes subsection of the 

North American hard pines (Gernandt et al., 2005, 2018). Phylogenetic analyses based on 

a variety of data indicate that the Attenuatae clade originated in the late Miocene between 
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5-10 mya (Eckert & Hall, 2006; Hernandez-Leon et al., 2013; Saladín et al., 2017). In 

contrast to the wide distributions and large population sizes of many pine species, each of 

these species is distributed in restricted ranges and smaller populations (Little, 1975). P. 

muricata occurs in few disjunct coastal populations in California, USA, and Baja 

California, Mexico (Fig. 1a,b). These populations are narrowly distributed within a 

couple kilometers of the coastline where they occupy slopes and terraces and experience 

a Mediterranean climate with moisture coming from fall and winter precipitation and 

spring and summer coastal fog (Millar, 1986, 1988). While populations in the north 

occupy a more continuous stretch of coastline, others are highly isolated, including stands 

on two of the Channel Islands (Critchfield & Little, 1966; Little, 1975). As with the other 

Attenuatae, P. muricata populations exhibit varying degrees of serotiny (the retention of 

seeds in closed cones), a fire adaptation that has evolved repeatedly in Pinus (Lamont & 

Enright, 2000; He et al., 2012). 

While early taxonomic treatments of the California closed-cone pines were 

varied, subsequent phylogenetic and population genetic analyses illustrated P. muricata 

as a monophyletic lineage characterized by some level of geographic structure (Millar, 

1988; Strauss et al., 1993; Gernandt et al., 2018). P. muricata exhibit considerable 

phenotypic variability, including variation in stomatal form (Millar, 1983), stem form 

(Duffield, 1951), cone morphology (Duffield, 1951; Linhart et al., 1965), and xylem 

monoterpene characteristics (Mirov et al., 1966) that vary among geographic regions. 

Based on early analysis of phenotype, Duffield (1951) recognized distinct northern, 

central, and southern races, and crossing trials by Millar and Critchfield (1988) indicated 

potential reproductive barriers among these three geographic groups of populations. 
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Analyses of genetic variation across these populations have been limited to allozymes 

and small segments of chloroplast and mitochondrial DNA, but indicated significant 

differentiation among the different regions of the distribution (Millar, 1988; Hong et al., 

1993; Strauss et al., 1993). These analyses also suggested that despite current small 

population sizes, P. muricata populations do not lack genetic diversity. Fossil cones 

dating to 26 kya or older from many currently unoccupied regions in coastal and central 

California illustrate that P. muricata had much more continuous distributions at times in 

the past (Axelrod, 1980, 1981). Cyclical climate fluctuations during the Pleistocene 

(Heusser et al., 1985; Mann & Hamilton, 1995; Hewitt, 2004) as well as tectonic events 

reshaping the California coast (i.e., the uplifting of the Cascade Range and its division 

moving south from Mt. Shasta into the Sierra Nevada and Coastal Ranges; Hewitt, 2004) 

could have thus driven repeated cycles of contraction and expansion in P. muricata.  

Models based on climate change projections predict extraordinarily high mortality 

for conifers in western North America (Lenihan et al., 2008; Davis et al., 2019; Halofsky 

et al., 2020), even for broadly distributed pines (McDowell et al., 2013; Mcdowell et al., 

2016). Bishop pine represents one of the most range-restricted pines on Earth, and is 

listed as threatened by the IUCN (Farjon, 2013). The severe degree of isolation could 

make P. muricata particularly susceptible to the effects of warming temperatures as its 

disjunct, restricted populations could further constrict with insufficient northward range 

expansion in response to environmental change, making it a potential future candidate for 

assisted migration. As past analyses of genetic variation in P. muricata were based on 

small numbers of traditional molecular markers, current high throughput sequencing data 

stand to improve our understanding of genetic variation in P. muricata along several 
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fronts. Genome-wide data should generate a more comprehensive understanding of 

patterns and levels of genetic differentiation among populations, as well as a more 

thorough understanding of variation in genetic diversity. Importantly, recent methods for 

genetic environment association (GEA) analyses applied to genome-wide data can 

facilitate an understanding of how environmental variation contributes to the spatial 

genetic structure of populations and local adaptation (Forester et al., 2018; Capblancq et 

al., 2020a). An understanding of associations among genetic and environmental variation 

can then predict the relative extent of maladaptation populations might experience under 

projected future climate variation (Fitzpatrick et al., 2018; Capblancq et al., 2020a). Such 

analyses may be especially relevant given that P. muricata occurs in small and disjunct 

populations, as well as the outsized importance of conifer species that are often 

foundational, dominant plant species with extended ecological significance. 
Here we used high-throughput sequencing of reduced representation libraries 

(ddRADseq) to quantify spatial variation in genetic differentiation and diversity to further 

understand the geographic and historical context of divergence across the range of P. 

muricata. Next, we used two GEA approaches to evaluate the extent to which climate and 

soil variation have shaped spatial genetic structure and potentially contributed to local 

adaptation. Finally, given the occurrence of P. muricata across few small and disjunct 

populations and its status as threatened under the IUCN (Farjon, 2013), we estimated the 

extent of maladaptation under multiple future climate projections using genomic offset 

techniques (designated as “GEA offset,” detailed below). Our results provide a 

perspective on the association of spatial and environmental variation with population 
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genetic variation in a rare, range-restricted conifer, and provide an applied perspective on 

the potential of these populations to respond to environmental change. 
 

Materials and Methods 

Sample collection, sequencing, alignment, and variant calling. Needle samples were 

collected from up to 30 trees per population as DNA sources from mature trees at 12 site 

across the range of P. muricata, including from three stands of Santa Cruz Island (Table 

1, Fig. 1a,b). Genomic DNA was isolated at Ag-Biotech (Monterey, CA) and 

subsequently used in a reduced-representation workflow to create DNA sequencing 

libraries following the protocol described in Parchman et al. (2012). For details on DNA 

sequencing library preparation, see the Supporting Information and the protocol at the 

DRYAD repository (DOI: 10.5061/dryad.sqv9s4n61). Fragments 350-450 bp in length 

were size-selected using the PippinPrep quantitative gel electrophoresis unit (Sage 

Science, Beverley, MA) at the University of Texas Genome and Sequencing Analysis 

Center (Austin, TX) and subsequently sequenced with S2 chemistry on one lane of the 

Illumina NovaSeq platform. 

 We filtered sequencing data for contaminants (e.g., PhiX, E. coli) and for Illumina 

sequencing oligos using bowtie_db2 (Langmead & Salzberg, 2012) and Perl and bash 

scripts. We then used a custom Perl script to demultiplex reads by individual by first 

correcting 1 – 2 bp errors in barcode sequences and removing restriction site-associated 

bases, and subsequently to match each individual to its unique DNA barcode sequence, 

splitting sequencing data into individual fastq files. Next, we used the CD-HIT clustering 

algorithm (Fu et al., 2012) to align contig consensus sequences using a minimum match 
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percentage of 90%, thereby generating a de novo assembly for mapping reads. Reads for 

each individual were mapped to the partial reference using bwa v0.7.5a (Li & Durbin, 

2009) with a minimum edit distance of 3. We called single nucleotide variants using 

samtools v1.3 (Li et al., 2009) and bcftools v1.3 (Li et al., 2009) across the 

alignments. Here, we generated genotype likelihoods from samtools v1.3 (Li et al., 

2009) using --min-MQ 20, --min-BQ 20, --max-depth 100, and minimum genotype 

quality (GQ) 10. We then used vcftools  v0.1.14 (Danecek et al., 2011) to ensure we 

only retained biallelic variants that were found in a minimum of 70% of individuals with 

minor allele frequencies greater than 0.05, and removed individuals that were missing 

data at >20% of loci. Finally, to avoid genotyping error due to paralogous regions, we 

used two methods. First, we filtered over-assembled loci with coverage depth >40x. We 

then removed potentially duplicate or diverged duplicate loci using the HDplot approach 

to ensure we retained only singletons (McKinney et al., 2017). Here, we retained loci 

with heterozygosity between 0 – 0.5 and read ratio deviance from -20 – 30. For 

phylogenomic analyses, we performed variant calling with the same parameters but 

included P. radiata individuals (see below). 

 

Spatial genetic structure. To assess spatial genetic structure, we used both model-based 

(entropy; Gompert et al., 2014) and model-free (principal components analysis, PCA) 

approaches. We began by using entropy (Gompert et al., 2014), a hierarchical Bayesian 

model, to estimate genotype probabilities and admixture proportions q from k ancestral 

demes without the use of a priori sample origin information. entropy employs a model 

similar to that of structure (Pritchard et al., 2000), but accounts for genotype 
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uncertainty stemming from variation in sequencing coverage depth across individuals and 

loci while estimating genotype and ancestry coefficient posterior probabilities for each 

individual at each locus. First, we ran PCA on genotype likelihoods using the prcomp 

function in R version 3.4 (R Core Team, 2017). We then used the lda function from 

the MASS package (Venables & Ripley, 2002) in R version 3.4 (R Core Team, 2017) to 

run linear discriminant analysis. We ran kmeans clustering for k = 2 through k = 12 

demes to find initial starting values for the model. The model was run for 100,000 

MCMC iterations (5 chains per k) after an initial burn-in of 30,000, saving every 10th 

iteration. We used deviance information criterion (DIC) to assess model fit, where lower 

values represent better model fit. 

 Using genotype probabilities generated with entropy, we examined genetic 

variation among individuals and populations using the prcomp function in R, maximizing 

total variance between individuals. As pairwise metrics of genetic differentiation among 

populations, we used allele frequencies to estimate Hudson’s FST (Hudson et al., 1992) 

and Nei’s D (Nei, 1972). We also calculated expected population-level heterozygosity 

(HE) and individual inbreeding coefficients (F), which were averaged across individuals 

within each population. Individual inbreeding coefficients (F) were calculated while 

incorporating genotype uncertainty using ngsF (Vieira et al., 2013), implemented through 

angsd-wrapper  (Durvasula et al., 2016). We then calculated population levels of genetic 

diversity while incorporating genotype uncertainty using the doSaf 1, REALSFS, and 

thetastat calls in ANGSD (Korneliussen et al., 2013, 2014) We retained estimates for 

both Θπ (the average number of pairwise differences between sequences; Tajima, 1983) 

and ΘW (the number of segregating sites; Watterson, 1975), and calculated the scaled 
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difference between the two, or Tajima’s D (Tajima, 1989) for each locus. To assess how 

geography and environment influence genetic variation, we used Mantel tests (Nperm = 

999; Mantel, 1967) to calculate isolation-by-distance (IBD; Wright, 1943) and isolation-

by-environment (IBE; Wang & Bradburd, 2014), comparing geographic (Haversine) and 

environmental (Euclidean, described in the next section) distance to genetic distance 

(Nei’s D).  

 

Phylogenetic analyses. As an alternative assessment of genetic differentiation across the 

range of P. muricata, we conducted Maximum Likelihood based phylogenetic inference. 

We converted the SNP matrix generated above into PHYLIP format using vcf2phylip v 

2.0 (Ortiz, 2019) and inferred a phylogeny with IQ-TREE (Nguyen et al., 2015) using P. 

radiata as an outgroup. We ran IQ-TREE using ModelFinder (-m MFP; Kalyaanamoorthy 

et al., 2017) to infer the best substitution model that minimized the BIC (Bayesian 

Information Criterion) score for building the Maximum Likelihood phylogenetic tree. A 

total of 50 models were tested and evaluated with 1,000 ultrafast bootstrap (UFBoot) 

replicates to assess statistical support (-bb 1000; hoang18). We also used the ASC option 

to correct for ascertainment bias (Lewis, 2001). We trimmed the final tree for easy 

visualization using the drop.tip function from the R package phytools v 0.7-80 

(Revell, 2012; Revell & Revell, 2014), keeping a maximum of four individuals per P. 

muricata population and one individual of P. radiata.  

 We used the drop.tip function to simplify the tree to retain one sample tip per 

population. Then, we used the phylo.to.map function in the R package phytools v 
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0.7-80 (Revell & Revell, 2014) to plot a map of California and link tree tips with each 

population's geographic coordinates.  

 

Genetic-environment association analyses. Detecting correlated shifts in allele 

frequencies and environmental variation facilitates an understanding of the genomic 

signatures of local adaptation to specific environmental variables (Savolainen et al., 

2013; Rellstab et al., 2015; Forester et al., 2018) and can be used to anticipate species 

response to changing environmental conditions (Fitzpatrick & Keller, 2015; Brauer et al., 

2016; Bay et al., 2018). Multiple model-based GEA methods that account for population 

genetic structure have been utilized, including latent factor mixed models (Frichot et al., 

2013; Frichot & François, 2015; Caye et al., 2019), BAYENV (Günther & Coop, 2013), 

BAYESCENV (De Villemereuil & Gaggiotti, 2015). Here, we used two methods to identify 

environmental drivers of local adaptation: (1) redundancy analysis (RDA; Legendre & 

Legendre, 2012), an ordination approach valuable for its low false-positive and high true-

positive rates while accounting for complex demographic histories (Forester et al., 2018), 

and (2) Gradient Forests (GF; Ellis et al., 2012; Fitzpatrick & Keller, 2015), a machine-

learning algorithm that fits an ensemble of decision trees using Random Forests  and 

constructs cumulative importance turnover functions from these models, associating sets 

of loci with a multivariate assortment of predictors. 

 We pulled environmental data for each sampling location, incorporating 

elevation, 19 bioclimatic variables from the WorldClim v2.1 database at 30-arcsecond 

resolution (~1 x 1 km; Fick & Hijmans, 2017), and 14 soil variables from SoilGrids 2.0 

(see Supporting Information for details on soil data generation; Poggio et al., 2021). We 
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also considered fire as a potential variable, but there have been only two fires across all 

sampling sites since fire history recording began, so we did not include this factor. To 

avoid multicollinearity, soil variables were collapsed into the first five PC axes (cuml. 

PVE = 93.89%; Supporting Information Table S3), and we removed all bioclim variables 

with |r| > 0.75, retaining elevation, mean annual temperature (bio1), isothermality (bio3), 

temperature seasonality (bio4), and temperature annual range (bio7). Soil PC2 was 

removed due to strong correlation with bio1 (|r| = 0.85). The environmental (Euclidean) 

distance matrix was used to calculate IBE as described in the previous section. As we 

were not concerned with identifying specific outlier loci, population structure was not 

partialled out before conducting our GEA analyses, as we aimed to assess only the 

magnitude and directionality of specific environmental variables’ influence on spatial 

genetic variation. We did, however, include latitude as a covariate in our GEA analyses 

as it is strongly associated with PC1 (or population structure). The rda function in the 

vegan package (Oksanen et al., 2013, 2019) was used for RDA and the gradientforest 

package was used for GF in R. Both analyses used all genomic loci (i.e., genotype 

probabilities) as the response variables and the center and standardized environmental 

variables as predictors. Total importance for each environmental variable was calculated 

as the total weighted loadings (sum of eigenvalue*loading for each axis) in the RDA and 

the weighted importance (R2) in GF.    

 

GEA offset analyses. Predicting changes to the spatial distribution of local adaptation 

will be essential for both anticipating species response and effectively conserving and 

managing populations as environmental conditions rapidly change. Using future climate 
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models in combination with results from GEA, researchers have been able to identify the 

rate of allele frequency change across an environmental gradient at a single locus and 

have coined this “genetic offset” (Fitzpatrick & Keller, 2015) or “genomic vulnerability” 

(Bay et al., 2018; Ruegg et al., 2018). We use caution with these terms, as suggested by 

Láruson et al (2021), and refer to the predicted mismatch of genetic-environment 

associations across the landscape under different climate scenarios as “GEA offset.” 

These changes to the strength and direction of association between present and future 

may be especially threatening to longer-lived, sessile species that will experience 

environmental change over the course of individual lifespans (e.g., coniferous trees). 

Here, we quantified GEA offset using the set of climatic variables from the previous 

section to compare with future climate change scenarios using both GF and RDA 

(Referred to as GF offset and RDA offset, respectively).  

Future climate data was extracted from WorldClim v2.1 CMIP6 (Eyring et al., 

2016) at 30-arcsecond resolution (~1 x 1 km) for time intervals 2041–2060 and 2081–

2100 (approximately one and two generations from present, respectively) under two 

climate change scenarios: Shared Socioeconomic Pathway (SSP) 1-2.6 (mild change) and 

SSP5-8.5 (severe change). These models utilize adjusted greenhouse gas scenarios and 

are widely accepted as the most likely climatic shifts (see Van Vuuren et al., 2011 for 

details). All available global climate models (GCMs) for each time interval/SSP 

combination at the sampling locations were extracted, resulting in the mean estimate for 

each bioclimatic variable across eight GCMs that were subsequently used as projected 

climate data (see Supporting Information Materials and Methods for full details on data 

extraction and summary statistics). The same variables used in the GEA analyses were 
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used for offset analyses, only allowing the bioclimatic variables to change between 

current and future climate scenarios. We, again, avoided basing inference on any specific 

outlier loci and instead used all available genomic loci, as suggested by Láruson et al. 

2021. We calculated the offset between current and future climate scenarios using the 

Euclidean distance of predicted environmental importance for each individual with both 

RDA and GF, following Capblancq & Forester (2021) and Fitzpatrick & Keller (2015), 

respectively. For the RDA offset, we chose to use all RDA axes to calculate the total 

weighted loading of each variable as the associative measure. We additionally calculated 

the GEA offset between the different generational time intervals (2041–2060 versus 

2081–2100) and climate change scenarios (SSP1-2.6 versus SSP5-8.5).  

 

Results 

Sample collection, sequencing, alignment, and variant calling. After removing 

contaminant DNA and eliminating individuals with insufficient sequencing data, we 

retained a mean of 3,309,158 reads per individual. Subsequent filtering steps resulted in 

retention of 9,260 loci in 213 individuals. Finally, we removed 1,432 loci representing 

potentially paralogous regions, resulting in retention of 7,828 SNPs with mean coverage 

of 10.5X per locus per individual.  

 

Spatial genetic structure. We found pronounced genetic differentiation across the 

landscape (Figs 1c, S1) across a hierarchy of scales. DIC values from entropy indicated 

the k = 3 model as best fit number of demes (Supporting Information Table S1), 

corresponding to individuals from populations from the north coast (Npop = 6, north of 
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38°N; PP, NR, PA, SP, FR, and PR populations), the central coast (Npop = 3, from 

34.5°N to 38°N; DM, DC, and LO populations), and SCI (Npop = 3, south of 34.5°N, CP, 

CH, and PB populations) (Supporting Information Fig. S1). Demes showed mixed but 

consistent ancestry within populations, indicating marked differentiation following a 

latitudinal gradient (Figs 1c,d, S1). PCA based on genotype probabilities from entropy 

provided additional support for landscape genetic differentiation, with PC axes 1 and 2 

explaining 14.4% and 3.1% of the variation in the data, respectively. All populations 

from the north coast grouped together within a tight cluster, overlapping in PC space, 

while individuals from the central coast and Santa Cruz Island (SCI) populations grouped 

tightly in non-overlapping clusters (with the exception of overlap of the Christy Pine and 

Pelican Bay populations from SCI; Fig. 1c). Patterns of differentiation along the first 

principal component axis were almost perfectly concordant with the latitudinal gradient 

(latitude-PC1: r = 0.93, p < 0.001) and greater population structure was highlighted in the 

south than in the north.  

To identify additional population structure within the regional demes, we 

separately analyzed 89 individuals from six sampling sites along the north coast, and then 

74 individuals from three sampling sites on SCI. The north coast populations showed 

some genetic differentiation, with differentiated populations following a latitudinal 

gradient, although levels of differentiation among sampling sites were subtle (overall 

mean FST = 0.067, overall FST range = 0.011 – 0.117; Fig. 2a,b). SCI populations, on the 

other hand, showed marked fine scale population differentiation despite highly 

geographically proximate stands (<10 km), grouping in nonoverlapping PC space (Fig. 

2c).   
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 Population differentiation increased in magnitude as latitude decreased, with 

northern populations yielding lower values of pairwise FST and Nei’s D than in southern 

populations (Supporting Information Fig. S2). Individual inbreeding estimates (F) varied 

across all sampling sites (Table 1, Supporting Information Fig. S3c), but were minimal 

overall (F mean = 0.0499, F range = 0 – 0.3135), showing no observable latitudinal 

pattern. Mean nucleotide diversity varied across the landscape but was relatively high 

compared to similar taxa, with mean Θπ  = 0.00695 (range = 0.00616 – 0.00831) and 

mean ΘW  = 0.00659 (range = 0.00539 – 0.00838) (Supporting Information Table S2, 

Supporting Information Fig. S3a,b). All measures of Tajima’s D were negative 

(Supporting Information Fig. S3d), consistent with population expansion. (See Table 1 

and Supporting Information Table S2 for additional diversity metrics, including 95% 

confidence intervals in the latter.) Individually, geographic distance and environmental 

distance were each strong predictors of genetic distance, indicating both IBD (Mantel r = 

0.8081, p = 0.001) and IBE (Mantel r = 0.4177, p = 0.008). Further, the association 

between geographic and environmental distance was strong (Mantel r = 0.5608, p = 

0.001).  

 

Phylogenetic analyses. The phylogenetic results based on the same filtering parameters 

(resulting in 5,427 SNPs from 12 P. muricata populations and the single P. radiata 

population) were congruent with a latitudinal gradient of differentiation, where 

population differentiation was more remarkable as latitude decreased. The Maximum 

Likelihood phylogeny based on the optimal substitution model (PMB+F+ASC+R6) 

showed three well-supported clades (Fig. 3). The first clade (UFBoot = 97) grouped the 
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northern populations (PR, FR, SP, PA, NR, and PP; north of 38°N) and one central coast 

population (DM; 36.59°N). The second clade (UFBoot = 100) grouped the southern 

mainland population (LO; 34.73°N) and SCI populations (CH, PB, CP, south of 34.5°N). 

Finally, the DC population on the central coast (35.24°N) appeared in a single clade 

(UFBoot = 75). Moreover, individuals from southern and central coast populations were 

grouped by population, whereas individuals from northern populations were not.  

 

Genetic-environment association analyses. Both of the GEA analyses provided evidence 

of specific environmental variables influencing spatial genetic variation and potentially 

local adaptation. The most influential variables in the RDA and GF showed some degree 

of concordance (r = 0.5767, p = 0.0801), where the top variables were latitude, elevation, 

and mean annual temperature (bio1) for RDA, and mean annual temperature (bio1), 

latitude, and soilPC3 for GF (Fig. 4; soil PC loadings in Supporting Information Table 

S3). Within the RDA, the environmental variables explained a large portion of the spatial 

genetic structuring with an adjusted r2 = 0.2083, where the first axis alone explained the 

majority of that variance (PVE = 57.96%). When assessing the total weighted loadings of 

each variable, latitude contributed 3.54 and 5.43 times more than the next two variables 

(elevation and bio1, respectively; Fig. 4b). Alternatively, when looking only at the RDA1 

loadings, latitude and bio1 were roughly equivalent and had much higher loadings than 

the remaining variables, similar to the results of GF. The cumulative weighted R2 of the 

GF model was 0.2160, where bio1 and latitude were roughly equivalent and yielded the 

greatest importance (Fig. 4b). Soil PCs ranked 3rd - 6th, and bio3, elevation, bio7, and 

bio4 followed in rank in order of importance. The top ranked variable (mean annual 
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temperature, or bio1) had 4.58 times greater R2 than the lowest ranked variable 

(temperature seasonality, or bio4).  

 

GEA offset analyses. The GEA offset analyses indicated a large amount of variation in 

offset among populations under future climate change scenarios. Differences based on the 

severity and time interval of climate projections were variable. There was a discernible 

difference in population-specific results from RDA and GF offset across all four of the 

possible time interval/SSP combinations (Fig. 5, Supplemental Information Fig. S4), 

likely due to the variation in association of environmental variables found in the GEA 

analyses above (Fig. 4). Still, GEA offset across all climate scenario combinations was 

associated with changes in mean annual temperature (bio1), which showed the strongest 

association with sampled loci (Fig. 4b, Supplemental Information Fig. S5). Despite 

differences arising from variation in environmental variables, results of each method 

were consistent when assessing relative offset (Fig. 5). For both GEA offset methods, 

both SSP1-2.6 and SSP5-8.5 scenarios projected to 2041–2060 (roughly one generation 

from present) indicated minimal offset. Projected to 2081–2100 (roughly two generations 

from present), however, measures of offset under the SSP5-8.5 scenario were drastically 

increased, with the SSP5-8.5 scenario yielding offset 2.35 and 3.41 times more severe 

than the offset under the SSP1-2.6 scenario for GF and RDA, respectively. While the 

offset between 2041–2060 and 2081–2100 for SSP1-2.6 was only a 1.04- and 1.07-fold 

increase, the same comparison yielded a 1.86- and 2.66-fold increase for SSP5-8.5.  
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Discussion 

Spatial variation in differentiation and diversity. Our results illustrate genetic 

differentiation at a hierarchy of scales across the range of P. muricata. At the broadest 

spatial scale, we detected clear evidence for differentiation among groups of populations 

in northern, central, and southern California (Figs 1c,d, S1). Genetic differentiation was 

moderate among these groups (mean FST = 0.067, FST range = 0.011 – 0.117; Supporting 

Information Fig. S2), but trees from each group formed strongly identifiable units in 

ordination, ancestry, and phylogenetic analyses. These results are not surprising in light 

of past studies illustrating differentiation within and among some of these groups based 

on allozymes (Millar, 1983, 1988), morphology (Duffield, 1951), turpentine composition 

(Forde & Blight, 1964; Mirov et al., 1966), phenology (Millar, 1983), and tests of 

reproductive compatibility (Critchfield, 1967; Millar & Critchfield, 1988). Cone serotiny 

levels, which are likely shaped by variation in fire, are also higher in the south than in the 

north (Duffield, 1951). Clear patterns of genetic and phenotypic differentiation in this and 

past studies are consistent with disjunct P. muricata populations evolving independently 

in different geographic regions of western North America. 

 Past phylogenetic analyses of Pinus subsection Australes based on a variety of 

data and methods inferred crown ages ranging from 6 – 43 mya (Eckert & Hall, 2006; 

Saladín et al., 2017; Gernandt et al., 2018). While subsection Australes has a present day 

distribution in southeastern North America, Mexico, and the coastal and Pacific slope 

regions of western North America (Gernandt et al., 2018), fossil data suggests the group 

was previously more widespread in North America (Axelrod, 1986). The monophyletic 

group of P. muricata, P. radiata, and P. attenuata (Attenuatae clade) has been previously 
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suggested, based on paleontological data, to have originated in Mexico from an oocarpae-

like ancestor (Axelrod, 1980). Our phylogenetic analyses suggest southern P. muricata 

populations are older than those in the north, consistent with a southern origin followed 

by a northward expansion (Fig. 3). Also consistent with such a history, genetic 

differentiation is stronger among southern populations than among those in the northern 

part of the distribution. More recent shifts of Pinus along coastal California have been 

illustrated by pollen records from the Santa Barbara basin, where pines were replaced by 

woodland and chaparral vegetation as wetter, cooler climates were replaced by warmer, 

drier climates ~5.7 kya (Heusser, 1978; Axelrod, 1981). Further, cone fossils likely 

representing P. muricata and sister species P. radiata have been recovered throughout 

coastal regions of California (Axelrod, 1981) illustrating more continuous distribution 

during the cooler, wetter Late Wisconsin climate before drought and heat during the 

Xerotherm (~4 – 8 kya) led to range fragmentation (Axelrod, 1967a,b, 1980). Indeed, 

fossil pollen illustrates repeated cycles of Pinus expansion and contraction coinciding 

with climate fluctuations over the last 160k years (Heusser & Sirocko, 1997; Millar, 

1999) consistent with the hypothesis (Millar, 1999) that these populations may have 

persisted as a dynamic metapopulation. 

While the broad patterns of differentiation above were expected based on past 

work, our analyses revealed genetic differentiation among sampling sites within these 

groups at much finer geographic scales than anticipated. Most individuals were fully 

identifiable to sampling site based on genotypic data (Figs 1c, 2a,c), and we observed a 

distinct latitudinal gradient of population differentiation (Figs 1c inset, 3b). Individuals 

from populations in southern and central regions formed largely non overlapping and 
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clearly differentiated clusters in PC space, while those from northern regions showed 

differentiation only at much finer scales (Figs 1c, 2). 

Previous work on continuously distributed P. muricata along the northern coast 

near Sea Ranch between Point Arena (PA) and Salt Point (SP) sampling sites (Fig. 1a) 

described a notable break in phenotype and phenology. A steep clinal transition occurs 

across this region as illustrated by differences in monoterpene composition, leaf color, 

and stomatal form (Duffield, 1951; Millar, 1983). Alpha-pinene composes the majority of 

monoterpene fraction in xylem resin north of the transition zone, while delta-3-carene 

prevails to the south (Mirov et al., 1966), and populations north of the transition have 

blue needles while green needles predominate south of the transition (Duffield, 1951) due 

to the waxiness of stomatal chambers (Millar, 1983). Further, Millar (1983) found 

significant differences in allozyme GOT-1 between trees north and south of the transition 

zone. Importantly, however, no differentiation was evident along the north coast for the 

other 19 allozymes queried by Millar (1983), nor was it evident in other studies. Rather, 

the phenotypic differentiation among P. muricata north and south of Sea Ranch appears 

to persist despite a lack of stark differences in genetic differentiation among the southern 

and northern groups of the north coast. 

While we did not find genome-wide structure mirroring the distinct phenotypic 

break within the north coast region described by Millar (1983) and others, we did recover 

a subtle but clear pattern of differentiation among sampling sites across latitude here. 

This, and evidence for population differentiation across small distances (described 

below), was likely evident due to the much higher marker density applied here compared 

to past studies based on fewer molecular markers. One mechanism likely underlying this 
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pattern is the north to south distributional band of trees with prevailing winds blowing 

pollen inland to closely neighboring trees, and then into habitat unsuitable for P. 

muricata. This hypothesis was proposed by Millar (1983), who suggested that this pattern 

may be due to prevailing wind directions in combination with changes in flowering time 

and thus reproductive receptivity. When trees release pollen along the coast from April 

through May, winds primarily originate from the NNW, indicating dispersal that would 

inhibit pollen movement in opposing directions (Millar, 1983), concordant with our 

results. Here, we further observed differentiation among sites in this north coast region at 

a finer scale than was evident in past studies (Fig. 2a; Millar, 1988, 1989). This scale of 

spatial genetic structure in a conifer is notable, even if characterized by subtle overall 

levels of differentiation. While our results are supported by previous work, future study 

of this cline with denser individual and genomic sampling is warranted. 

We also documented evidence of differentiation among three distinct P. muricata 

stands on SCI (Fig. 2c). Although overall levels of differentiation were subtle (FST mean 

= 0.0387), that we detected any differentiation among stands separated by 10 km or less 

was surprising. Most conifers exhibit little genetic structure even over great distances 

(González-Martínez et al., 2006; Petit & Hampe, 2006), with few exhibiting population 

structure over small spatial scales. A number of factors may have influenced genetic 

differentiation on the island, but most notable are stand-replacing drought in combination 

with foraging and trampling by feral sheep, both of which could reduce genetic diversity 

and promote genetic drift. Bishop pine on SCI has an extensive history of known 

mortality events occurring in the late 1940s, mid 1970s, late 1980s, and mid 2010s 

(Fischer et al., 2009; Robeson, 2015; Taylor et al., 2020). Feral sheep foraged on and 
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trampled native vegetation, contributing to forest die-off before being removed by the 

mid 1980s (Wehtje, 1994; Junak, 1995). As the forests began rapidly recovering from 

sheep removal, two severe droughts caused extensive die-offs in the following 40 years 

(Taylor et al., 2020). A severe drought from 1987-1991 caused extensive mortality 

(Wehtje, 1994; Walter & Taha, 1999) with the loss of 70-90% of island pines (Walter & 

Taha, 1999). A second event occurred from 2012-2016 (extended through 2017 in the 

south) when California experienced the most severe drought since record keeping began 

in the mid 1800s (Robeson, 2015; Taylor et al., 2020). The severity of these mortality 

events combined with genetic drift in these small stands likely influenced the genetic 

differentiation we observed on SCI, where at least partial stand replacing events occurred 

(Baguskas et al., 2014; Taylor et al., 2020). In addition, the CP stand was distinguished 

from the other SCI stands by climate and soil variation and was differentiated in RDA-

based GEA analyses (Fig. 4; see below). This suggests that local adaptation may be 

another mechanism contributing to genetic differentiation across fine spatial scales. 

Given the narrow coastal and disjunct distribution of P. muricata, there has been 

concern about its persistence and evolutionary potential, as reflected by its listing as 

threatened by the IUCN (Farjon, 2013). Past studies indicated that these populations were 

not genetically depauperate (Millar, 1983, 1999; Hong et al., 1993),and we also found 

that populations did not have reduced diversity, despite small population size and 

isolation. In fact, genetic diversity estimates were high within the range of comparable 

estimates from other recent DNA sequencing studies in conifers (Picea glauca, Pic. 

sitchensis, Pic. mariana, Pic. pungens, and Pic. breweriana, Haselhorst et al., 2019; 

Cryptomeria japonica, Uchiyama et al., 2012; Pin. elliotii and Pin. taeda, Acosta et al., 
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2019; Pic. abies, Wang et al., 2020). Additionally, consistently negative estimates for 

Tajima’s D suggest population expansion (Tajima, 1989), inconsistent with the idea that 

these populations are experiencing ongoing contraction. While negative Tajima’s D 

estimates can also arise from selective sweeps, it is unlikely to find this pattern across the 

whole genome (Stajich and Hahn, 2005); thus, genome-wide patterns of Tajima’s D are 

likely due to such demographic changes. Our results are consistent with the suggestion of 

Millar (1999), that populations may have persisted as disjunct entities, experiencing 

periodic episodes of contraction, expansion, and recolonization in a metapopulation-like 

dynamic during shifting climates of the late Quaternary.  

 

GEA analyses. Despite its limited range, both demographic (e.g., genetic drift) and 

adaptive (i.e., local adaptation to environmental variation) processes appear to have 

shaped spatial genetic structure in P. muricata, as indicated by IBD and IBE, 

respectively. We did, however, find a strong association between geographic and 

environmental distance (Mantel’s r = 0.5608, p = 0.001), which could confound the 

inference of genetic-environment associations (Wang & Bradburd, 2014; Rellstab et al., 

2015; Forester et al., 2016). Additionally, as the range of P. muricata is limited narrowly 

to the western coast of North America (Fig. 1a,b), genetic differentiation was strongly 

predicted by latitude (latitude-PC1: r = 0.93, p < 0.001). Studies using landscape genetic 

approaches have commonly corrected for population structure using partial Mantel tests 

or RDAs that partial out PC axes or Moran Eigenvalue Maps (MEMs; Manel et al., 2010; 

Rellstab et al., 2015). Here, we instead included latitude as a covariate in our models 

(statistically equivalent to partialling out latitude or PC 1) to reduce environmental 
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associations arising purely from demographic processes, allowing for a more 

conservative interpretation of both GEA and GEA offset analyses. 

Both GEA methods indicated that allele frequency shifts across the disjunct 

coastal distribution of P. muricata were strongly associated with latitude, elevation, mean 

annual temperature (bio1), and composite soil variables loaded by soil organic carbon, 

sand, and clay (Fig. 4). Sampling sites in the northern part of the range were associated 

with lower temperature (bio1), lower elevation, and lower soil PC1 compared to those in 

the central and southern regions (Fig. 4). As might be expected due to different 

approaches and assumptions underlying the models in the two different analyses, there 

was some discordance between the RDA and GF associations (Fig. 4b). One factor likely 

contributing to discordance among the methods is that latitude and mean annual 

temperature (bio1) were strongly negatively correlated (r =  -0.9657), skewing the linear 

regression in the RDA model. GF, on the other hand, uses regression tree approaches that 

are better equipped for variable selection with highly collinear data (Genuer & Tuleau-

Malot, 2010). Still, both analyses found strong associations between allele frequencies 

and both elevation and mean annual temperature (bio1), indicating local adaptation to 

those variables, or to unmeasured variables correlated with them. Elevation is commonly 

associated with temperature, precipitation, and soil type, and can be used as a proxy for 

variables likely unmeasured within the data. Additionally, mean annual temperature 

(bio1) was implicated in both analyses. While mean annual temperature (bio1) has been 

shown to be important for local adaptation in pines, it is strongly correlated with other 

bioclimatic variables we removed from our model, each of which may represent more 

causal association (i.e., bio4, bio5, and bio8–19 range |r|: 0.844 – 0.967). Landscape 
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genetic studies of other Pinus species have identified similar genetic-environment 

associations, most consistently citing variation associated with geography (e.g., 

longitude, elevation), precipitation, and temperature (e.g., P. taeda, Eckert et al., 2010a,b; 

P. albicaulis, Lind et al., 2017; P. pinaster, Jaramillo-Correa et al., 2015, P. lambertiana, 

Eckert et al., 2015).  

 

GEA offset. Genetic-environment association studies reveal how spatial genetic variation 

and its environmental correlates are distributed across landscapes, after attempting to 

control for neutral processes (Rellstab et al., 2015; Hoban et al., 2016; Forester et al., 

2018). Results of GEA analyses can then form the basis for genetic offset analyses that 

quantify how the identified genetic-environment associations may shift with changing 

climatic conditions, and thus how populations may become maladapted to novel 

environments (Fitzpatrick & Keller, 2015; Capblancq et al., 2020a). Presumably due to 

their ecological importance and long life spans, forest trees have been the focus of 

numerous such studies (Populus balsamifera, Fitzpatrick & Keller, 2015; Po. tremula, 

Ingvarsson & Bernhardsson, 2020; Quercus rugosa, Martins et al., 2018; Q. suber, Pina-

Martins et al., 2019; Eucalyptus melliodora, Supple et al., 2018; Pin. taeda, Lu et al., 

2019; Fagus sylvatica, Capblancq et al., 2020b; Pin. contorta, Mahony et al., 2020; Pin. 

cembra, Dauphin et al., 2021; Po. balsamifera, Gougherty et al., 2021; reviewed 

thoroughly in Capblancq et al., 2020a). Most genetic offset studies to date have focused 

on loci associated with adaptation by either conducting GEA outlier analyses or by using 

previously identified causal loci (e.g., Gougherty et al., 2021). Outlier-based offset 

analyses may have issues, however, as population structure and clinal associations can 
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result in false-positives (Lotterhos & Whitlock, 2015; Rellstab et al., 2015), and local 

adaptation to similar environments can occur via different subsets of loci in separate 

populations (Crow et al., 2021; Lopez-Arboleda et al., 2021). GEA approaches 

(especially RDA), however, appear robust in identifying multilocus selection given 

complex demographic and evolutionary histories (Lotterhos & Whitlock, 2015; Forester 

et al., 2016, 2018; Capblancq et al., 2018). Here, we applied offset analyses based on all 

available loci, rather than merely outlier or causal loci, as this approach is known to 

perform well across diverse demographic scenarios in assessing how environmental 

associations will shift in response to predicted future climate (see Láruson et al., 2021). 

We use the suggestion from Láruson et al. (2021) of referring to analysis-specific offset 

and thus use the term “GEA offset” (described in detail in Materials and Methods) to 

describe our results. 

The degree of GEA offset varied based on analysis (RDA versus GF), climate 

projection severity (low change SSP1-2.6 versus extreme change SSP5-8.5), and time 

interval (2041–2060 versus 2081–2100). As expected, the relative degree of GEA offset 

increased with both model severity and time from present. GEA offset was higher for 

SSP5-8.5 than for SSP1-2.6, and increased across time within each model (Fig. 5). Mean 

annual temperature (bio1) was most strongly correlated with spatial allele frequency 

shifts, and also strongly predicted GEA offset (Supplemental Information Fig. S5). For 

example, the Lompoc (LO) population had the greatest predicted change in mean annual 

temperature and subsequently the most severe GEA offset across all climate projections 

and time intervals. We identified considerable geographic variation in the degree of 

maladaptation predicted across the sampled range with few inconsistencies between GF 



 

 

143 

offset and RDA offset (sup Fig. S5). While geographic variation in offset was not 

strongly consistent across latitude, models, or time frames, populations in northern 

regions were generally predicted to experience greater GEA offset, indicating increased 

levels of future maladaptation, while those in the central and southern regions tended to 

have lower levels of offset. A possible explanation for the lack of clear, north to south 

increasing maladaptation pattern is that P. muricata may be environmentally buffered 

along the coast. This could also be influenced by independent evolutionary histories in 

southern and northern populations. 

Forest tree populations can respond to climate change via local adaptation, 

migration, or phenotypic plasticity (Aitken et al., 2008). Genomic perspectives on 

maladaptation to future climates can be used to predict fitness outcomes across suitable 

environments and can inform conservation and restoration by identifying habitats and 

geographic regions of increased vulnerability or suitability (Bay et al., 2018; Supple et 

al., 2018; Capblancq et al., 2020a; Capblancq & Forester, 2021; Gougherty et al., 2021; 

Rellstab, 2021). Despite variation across space, time, and methods, all P. muricata 

populations are predicted to experience some GEA offset, suggesting persistence will rely 

to some degree on adaptation to changing climate. Evidence here for genetic 

differentiation across both broad and fine spatial scales, and the fact that P. muricata is 

distributed in a small number of highly disjunct populations, means that contemporary 

gene flow among disjunct populations is an unlikely source of novel allelic variation to 

aid adaptation to shifting climate. Further, the long life span of P. muricata will limit the 

rate of local adaptation to rapid climate change in isolated populations (as recognized in 

other long-lived conifers; e.g., Jia et al., 2020). Given these constraints, assisted 
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migration (i.e., assisted gene flow; Aitken & Whitlock, 2013; Aitken & Bemmels, 2016; 

Grummer et al., 2022) may be an approach worth future consideration to ameliorate 

threats to persistence by introducing and/or increasing adaptive variation in populations 

particularly at risk. 

 

Conclusions. Consistent with past studies of morphology, allozymes, and reproductive 

compatibility, our results indicate defined spatial genetic structure across disjunct 

populations occurring in different geographic regions, as well as differentiation within 

these regions at much finer scales than is typical of pines. Although standing genetic 

variation does not appear reduced within populations, evidence for genetic differentiation 

among isolated, disjunct populations of P. muricata is consistent with a lack of 

contemporary gene flow among populations evolving independently in different locales 

and environmental conditions. Indeed, we identified specific soil and climate variables 

that contribute to allele frequency shifts across the distribution. Evolution to changing 

climate in P. muricata may thus be constrained by a lack of gene flow among different 

geographic regions and even populations, in addition to the environmental mismatch 

experienced by seedlings and much older adult trees. The large and genome-wide set of 

polymorphisms analyzed here provided fine-scale resolution of spatial genetic structure, 

but also facilitated inference of the environmental variables shaping spatial genetic 

variation. Our analyses suggest that the consequences of a changing climate may include 

local maladaptation. Although the extent of genetic offset varied across climate model 

projections and time intervals, geographic variation in the extent of potential 

maladaptation was a consistent feature of our results. Both ex situ and in situ 
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conservation considerations for isolated populations of this relatively rare pine should 

recognize this endemic genetic variation and its potential causes, in addition to the impact 

that climate change may have on the fitness of local populations. 
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Tables 
Table 1 We collected 213 individuals from 12 locations spanning the range of P. 

muricata. Population abbreviations (in parentheses) correspond to those in Fig. 1. 

Population genetic estimates based on sequence variation included nucleotide diversity 

Θπ, or the average number of pairwise differences between sequences, and Tajima’s D, or 

the scaled difference between Θπ and the number of segregating sites (ΘW; see Supporting 

Information Table S2 for an expanded list of diversity metrics with 95% confidence 

intervals). Finally, we calculated the mean individual inbreeding coefficient (F) at each 

sampling location.  

Site Lat, Long N Elev. (m) Θπ D F 
Patrick’s Point (PP) 41.140, -124.154 9 58 0.00616 -0.0251 0.0741 
Navarro River (NR) 39.195, -123.765 4 75 0.00727 -0.0168 0.0362 
Point Arena (PA) 38.876, -123.663 14 27 0.00719 -0.0567 0.0261 
Salt Point (SP) 38.577, -123.334 20 51 0.00729 -0.0612 0.0081 
Fort Ross (FR) 38.519, -123.247 19 59 0.00698 -0.0536 0.0312 
Point Reyes (PR) 38.063, -122.849 23 241 0.00689 -0.0582 0.0062 
Del Monte (DM) 36.594, -121.926 19 142 0.00674 -0.0470 0.1430 
Diablo Canyon (DC) 35.245, -120.879 3 379 0.00831 -0.0715 0.0220 
Lompoc (LO) 34.734, -120.440 28 292 0.00788 -0.0152 0.0990 
Christy Pines (CP) 34.014, -119.797 37 421 0.00629 -0.0496 0.0350 
Pelican Bay (PB) 34.024, -119.692 18 87 0.00617 -0.0370 0.0899 
China Pines (CH) 34.003, -119.614 19 363 0.00625 -0.0447 0.1058 
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Figure legends 

Fig. 1 Genetic structuring among populations was pronounced and followed a 

latitudinal gradient. Sampling sites along the west coast of North America (a), where 

sites correspond to those in Table 1 and include Patrick’s Point (PP), Navarro River 

(NR), Point Arena (PA), Salt Point (SP), Fort Ross (FR), Point Reyes (PR), Del Monte 

(DM), Diablo Canyon (DC), and Lompoc (LO). Dark green shading represents the 

limited distribution of P. muricata along coastal California (distribution map from the 

Conservation Biology Institute, Data Basin, databasin.org) and provides support for the 

sampling regime at nearly all locations, where lines indicate sampling sites. The red box 

in panel (a) represents Santa Cruz Island, illustrated in greater detail in panel (b), with 

sampling sites including Christy Pines (CP), Pelican Bay (PB), and China Pines (CH). 

Genetic variation was visualized using principal components analysis (PCA) based on 

genotype probabilities from entropy for all individuals sampled (c), where a clear 

latitudinal gradient is evident (PC 1 versus latitude; inset, panel (c)). Colors in panel (c) 

correspond to colors and sampling locations in panels (a) and (b). Finally, ancestry 

estimates (q) from entropy for k = 3 (best fit model, top) and k = 4 (bottom) models are 

shown in panel (d), where vertical bars represent individuals and colors correspond to 

admixture proportions. See Supporting Information Fig. S1 for additional plots of the k = 

2 and k = 5 models.  

 

Fig. 2 Stronger regional genetic differentiation was evident among southern 

populations. We ran PCA using genotype probabilities from entropy of only the north 
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coast populations (a), and subsequently plotted PC 1 against latitude (b). Additionally, we 

ran PCA of only the Santa Cruz Island populations (c). Colors correspond to those in Fig. 

1a,b,c. 

 

Fig. 3 Environmental variation was associated with spatial genetic structure. RDA 

associated genotype probabilities from entropy with the set of predictor variables (a). 

Arrow length and direction correspond to loadings of each variable onto the RDA axes. 

The inset plot shows the percent of variance explained (PVE) for each of the first 6 RDA 

axes (cuml. PVE = 93.62%), with RDA axis 1 explaining the majority of variance (PVE = 

57.96%). Colors match with the map and PCA in Fig. 1, and GEA variables bio1, bio3, 

bio4, and bio7 refer to mean annual temperature, isothermality, temperature seasonality, 

and temperature annual range, respectively. Relative importance (%) is shown for each 

variable for both RDA (dark grey; weighted axis loadings) and GF (light grey; R2) along 

with the correlation between the two (b). Numbers accompanying bars correspond to the 

rank of each variable within each method, where a rank of 1 indicates the variable 

explaining the greatest portion of spatial genetic structuring within the particular method.  

 

Fig. 4 Phylogenetic inference supported population genetic structure across the 

landscape, showing evidence of southern origin populations and subsequent 

northward expansion. Maximum likelihood phylogeny of P. muricata with P. radiata 

as an outgroup, inferred with IQ-TREE (a). The scale bar represents the expected number 

of nucleotide substitutions per site. Ultrafast bootstrap support values are indicated in the 

branches. Projected phylogeny onto the California geographic map showing each 
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population’s location (b). One individual is represented for each population to avoid 

overlapping. 

 

Fig. 5 Geographic variation in GEA offset across different time intervals, climate 

change scenarios, and modeling approaches. The degree of GEA offset for each 

population is represented as the difference between present conditions and four projected 

time interval/SSP combinations using both RDA (top row) and GF (bottom row). While 

there was some discordance across methods, sites suffering the most severe GEA offset 

remained consistent. Additionally, dramatic shifts in associations were predicted under 

both offset modeling approaches (RDA and GF) at time interval 2081-2100 for the SSP1-

2.6 climate scenario, and at both time intervals for the SSP5-8.5 climate scenario. 
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Figures 
 
Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Supporting Information  

1. Soil data extraction and summarization 

 To include aspects of soil variation, we downloaded data from SoilGrids 2.0 

(www.soilgrids.org; Poggio et al., 2021). Across sampling sites, we extracted data for ten 

soil variables at six soil depths (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm). Because 

sampling sites occurred on along the coast and SoilGrids resolution is ~250 x 250m, four 

locations were assigned no data as the average of the grid overlapped with the Pacific 

Ocean. For these sites, we averaged the three nearest grids with positive estimates as the 

point estimate of missing values for each soil variable. Next, we assessed correlations and 

standard deviations across soil depths, within each variable at each locality, to decide 

between two options: average across all depths or split into a shallow and deep depth 

variable. The final dataset included 14 soil variables. Exact descriptions of variables, 

depth decisions, and units are available online. For the final analyses, the 14 soil 

variables were highly correlated and collapsed into composite variables using principal 

components analyses (PCA) for downstream analyses (Supporting Information Table S3). 

See Materials and Methods in main text for additional information.  

 

2. Future climatic variable extraction and summarization 

 

 Future climate data was extracted from WorldClim v2.1 CMIP6 (Eyring et al., 

2016) at 30-arcsecond resolution (~1 x 1 km) for time intervals 2041–2060 and 2081–

2100 (approximately one and two generations from present, respectively) under two 
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climate change scenarios: Shared Socioeconomic Pathway (SSP) 1-2.6 and SSP5-8.5 

(www.worldclim.org/data/cmip6/cmip6_clim30s).  All available global climate models 

(GCMs) for each time interval/SSP combination at the sampling locations were extracted 

(25 total available). Not every GCM was available at each of our sampling locations and 

desired time interval / SSP combinations. As such, we used GCMs that matched across 

SSPs. Within SSP1-2.6, a total of eight GCMs were used: ACCESS.ESM1.5, 

CNRM.CM6.1, CNRM.CM6.1.HR, FIO.ESM.2.0, GFDL.ESM4, INM.CM4.8, 

INM.CM5.0, MIROC.ES2L. Within SSP1-2.6, a total of six GCMs were used: 

ACCESS.ESM1.5, FIO.ESM.2.0, GISS.E2.1.G, GISS.E2.1.H, MIROC6, 

MPI.ESM1.2.HR. Within each year interval, SSP, and chosen bioclimatic variable (bio1, 

bio3, bio4, bio7; see Materials and Methods of main text for selection process), we 

assessed correlations and percent change across GCMs and averaged across GCMs for 

the point estimate for each sampling location and future climate projection. The 

correlations across GCMs combinations were high (mean r = 0.976, range = 0.907 – 

0.999) and percent change was low (mean = 2.782%, range = 1.381 – 5.175). Averages 

and descriptions for all future bioclimatic variables at each site is available online.  
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Supporting Information Table S1 DIC values for each of 5 replicate entropy runs for k 
demes. Genotype probabilities from the best fit model (the fifth replicate of the k = 3 
model, in bold) were used for subsequent analyses.  
 k 1 2 3 4 5 mean SD 
2 4,694,069 4,730,125 4,691,057 4,612,379 4,704,762 4,686,478 44,183 
3 4,573,061 4,569,639 4,525,149 4,577,898 4,521,519 4,553,453 27,681 
4 5,202,771 5,307,073 5,359,470 5,316,896 5,270,698 5,291,382 58,764 
5 5,378,464 5,395,386 5,023,277 5,226,875 5,206,145 5,246,029 151,181 
6 11,050,473 15,687,610 14,395,517 15,386,044 11,128,048 13,529,539 2,278,526 
7 6,865,803 6,922,160 6,839,397 7,327,504 7,303,602 7,051,693 242,865 
8 23,748,442 18,486,485 67,706,204 12,030,852 19,406,859 28,275,768 22,436,805 
9 2,719,179 45,738,006 11,256,110 11,256,110 13,778,710 16,949,623 16,629,517 
10 68,820,992 152,029,331 13,460,452 21,236,365 21,942,261 55,497,880 58,229,723 
11 11,000,307 11,000,307 16,821,156 12,876,326 11,909,958 12,721,610 2,419,440 
12 12,873,377 12,873,377 15,950,014 10,585,768 12,022,045 12,860,916 1,963,596 
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Supporting Information Table S3. Principal component axis (PCA) loadings of soil 
variables for axes 1-5 with parenthetic PVE for each axis (cuml. PVE = 93.89%). Full 
description of variables, units, and raw values available online. Extracted from 
www.soilgrids.org.  

Soil 
variable 

Description 
(depth in cm) 

PC1 
(36.1%) 

PC2 
(33.9%) 

PC3 
(11.8%) 

PC4 
(6.2%) 

PC5 
(5.9%) 

ocs Organic carbon 
stock (0-30) -0.0186 -0.4241 -0.2577 -0.1335 0.0116 

ocd 
shallow 

Organic carbon 
density (0-30) 0.1794 -0.3715 0.2586 -0.0860 0.2175 

ocd 
deep 

Organic carbon 
density (60-200) -0.0064 -0.3915 -0.1864 0.3568 0.1509 

bdod Bulk density  
(0-200) -0.1667 0.3462 0.1320 0.5355 0.0538 

clay Proportion of 
clay (0-200) 0.0735 0.2395 -0.5709 -0.2339 -0.0188 

cfvo % coarse 
fragments (0-200) 0.3482 0.2239 -0.0682 0.0905 -0.1553 

sand Proportion of 
sand (0-200) -0.4029 -0.1102 0.0206 -0.1213 0.1492 

silt Proportion of  
silt (0-200) 0.3881 -0.0046 0.2652 0.2452 -0.1506 

cec Cation exchange 
capacity (0-200) 0.3771 0.1685 -0.2040 -0.1675 0.1040 

nitrogen 
shallow 

Soil nitrogen 
(0-30) 0.4020 0.0398 -0.1453 -0.1830 0.0483 

nitrogen 
deep 

Soil nitrogen 
(60-200) 0.0956 -0.2493 -0.3870 0.5039 -0.4519 

soc 
shallow 

Soil organic 
carbon (0-15) 0.3718 0.0083 0.3493 0.0534 0.1559 

soc 
deep 

Soil organic 
carbon (15-200) 0.2169 -0.3215 -0.1276 0.1278 0.4584 

phh2o Soil pH 
(0-200) -0.0435 0.3063 -0.2501 0.2973 0.6369 
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Supporting Information Fig. S1. Estimates of ancestry coefficients (q) for k = 2 – 5 
models, where each vertical bar represents an individual and colors correspond to the 
proportion of ancestry for k demes. The k = 3 model fit the data best, yielding the lowest 
deviance information criterion (DIC). Full DIC scores for all replicate models are 
supplied in Supplementary Table 1. Here, the lowest DIC for each model is provided to 
the right of each plot, in millions. Population abbreviations correspond to those in Table 
1. 
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Supporting Information Fig. S2 Pairwise estimates of FST (upper diagonal; Hudson et 
al., 1992) and Nei’s D (lower diagonal; Nei, 1972), where populations are listed 
latitudinally and population abbreviations correspond to those in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

172 

Supporting Information Fig. S3 Estimates of nucleotide diversity, inbreeding (F), and 
Tajima’s D for each population, ordered latitudinally. (a) and (b) population mean and 
standard deviation of nucleotide diversity, Θπ and ΘW, respectively. (c) Individual 
inbreeding coefficients (F) at each sampling site, showing relatively low inbreeding 
overall (mean =  0.0499) but also highlighting variation across the landscape. Colored 
points represent the raw data shaped by the distribution, and squares and error bars 
represent the population mean and a 95% bootstrapped confidence intervals. (d) 
Population mean and standard deviation of Tajima’s D were consistently negative across 
all sampling sites, suggesting population expansion. Colors correspond to those in Fig. 
1a,b,c.  
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Supporting Information Fig. S4. GEA offset was calculated for each population as the 
difference between two future scenarios using both RDA (top row) and GF (bottom row). 
The changes in environmental associations between SSP1-2.6 and SSP5-8.5 at year 
interval 2041–2060 and between year intervals 2081–2100 and 2041–2060 at SSP1-2.6 
were minimal. Dramatic shifts in associations were predicted under the SSP5-8.5 
scenario from year intervals 2041–2060 and 2081–2100 and between SSP1-2.6 and 
SSP5-8.5 at year interval 2081–2100. 
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Supporting Information Fig. S5 Associations between the GEA offsets using both RDA 
(top row) and GF (bottom row) and the estimated increase from present mean annual 
temperature (bio1, ℃) across the four time interval / SSP combinations. A generalizable 
pattern emerged, illustrating that GEA offset increases with projected increases in mean 
annual temperature and is consistent between the two different approaches. 
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