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Abstract  

Critical indices of agricultural drought in the Northeast United States (Northeast) 

are examined with a particular focus on the drought events in 2016 and 2020. We 

evaluate relationships of drought indices that are based on precipitation (PRCP), soil 

moisture (SM), and evaporative demand (E0) and their optimal timescales to agricultural-

impacts data. We resampled forty years (1981-2020) of these daily climate drivers onto 

crop-cover maps provided by the National Agricultural Statistics Service (NASS) and 

computed standardized drought indices, namely the Standardized Precipitation Index 

(SPI), the Standardized Soil Moisture Index (SSMI), and the Evaporative Demand 

Drought Index (EDDI). Further indices that reflect actual evapotranspiration (ET) and the 

balance between PRCP and E0 — the Landscape Evaporative Response Index (LERI) and 

the Standardized Precipitation-Evapotranspiration Index (SPEI), respectively--were also 

included. Indices were estimated at timescales ranging from one week to twelve months. 

All climate drivers were averaged to state and county levels before their use in estimating 

the drought indices. Five of the most widely cultivated crops in the Northeast were 

selected--the most prominent being hay and pasture. Forty years (1981-2020) of annual 

hay yield and twenty-six years (1995-2020) of weekly pasture-condition records were 

retrieved from NASS. Hay yields were detrended and correlated to each set of drought 

indices, while pasture conditions were compared to the progression of indices within the 

drought years of 2016 and 2020. Results show the strongest correlation (Rmax) around 

0.5-0.7 between drought indices and hay yield, with SPI correlations being positive and 
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EDDI correlations negative. The Rmax values and associated distribution of dates and 

timescales were derived for states and counties and exhibited distinct regional spatial 

variation. Hay yield showed the strongest response to shorter timescales for SSMI and 

EDDI than for SPI and SPEI. Weekly pasture conditions in most states exhibited a strong 

response to the 2016 and 2020 droughts. Characteristics of how the degradation of 

pasture through the growing season tracks the progression of drought indices across 

different states were examined. Respectively, pasture conditions show the strongest 

response to 1- to 2-week SSMI, 2-week to 1-month EDDI, and 1- to 3-month SPI. At the 

1-week timescale, fluctuations of LERI generally tracked fluctuations of SSMI 

throughout both 2016 and 2020. The times when major pastureland degradations began 

were usually accompanied by abnormally low LERI, low SSMI, and high EDDI, 

regardless of SPI. 
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1. Introduction 

1.1. Background 

1.1.1. Recent Drought and Impact in the United 

States (US) 

Drought is among the most disastrous and costly weather-related hazards with its 

far-reaching effects. Compared to other extreme hydrologic events, such as floods, 

drought is characterized by slower development, longer duration, wider area, and a 

broader scope of the people affected. However, the causal mechanisms and contributing 

factors of drought can operate at a wide range of temporal and spatial scales (Kiem et al., 

2016). Extreme drought events ranging from weeks to one year focused on the growing 

season are the primary target of this study. In this context, severe drought events have 

been reported across the continental US (CONUS) in recent decades, including the 2011 

Texas drought, the 2012 central Great Plains drought, the 2011-15 California drought, the 

2016 Southeastern US drought, and the 2016 and 2020 Northeastern US droughts 

(Hoerling et al., 2014; Lombard et al., 2020; Nielsen-Gammon, 2012; Park Williams et 

al., 2017; Seager et al., 2015; S. K. Sweet et al., 2017). 

These events have caused huge losses with substantial impacts on various social 

and economic aspects, especially in the agricultural sector. For example, the initial loss 

estimates for the 2012 Great Plains drought were $12 billion (Henderson & Kauffman, 
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2012). According to the US Department of Agriculture (USDA), the final US 2012 corn 

production was 33% below USDA’s expectation at the growing season's start (USDA, 

2013). Severe droughts over North America have also led to massive water shortages: the 

storage level of lakes monitored by the Lower Colorado River Authority hit a record low 

during the 2011-12 Texas drought due to inflows at only 10% of average (Grigg, 2014); 

record-low snowpack and storage levels were also found across California for the 2014 

statewide drought (AghaKouchak et al., 2014). Some drought events may contribute to an 

increased wildfire frequency: the 2011 Southwest drought led to a record burnt area in 

Arizona and New Mexico (Williams et al., 2014); and wildfires that emerged in 

Tennessee during the 2016 Southeastern drought cost 2,400 structures and 14 lives, 

making it the deadliest wildfire event in the Eastern US since 1947 (Praskievicz & 

Sigdel, 2021). In addition, droughts are often accompanied by unemployment: due to the 

2011-2015 California drought, ~17,100 people from which ~7,500 directly in agriculture 

lost their jobs in 2014; the numbers in 2015 during this drought were respectively 

~21,000 and ~10,100 (Howitt et al., 2015). 

Under the background of global warming, not only is the frequency of drought 

events increasing (Sheffield & Wood, 2008), but their characteristics are changing at both 

global and regional scales (Huang et al., 2016; Trenberth et al., 2014). In the coming 

decades, there will be urgent needs in improving drought early warning and mitigation 

efforts. Many efforts have already been implemented to meet diverse types of demands 

from decision-makers. Two successful examples are the Drought Early Warning Systems 

(DEWS) of NOAA’s National Integrated Drought Information System (NIDIS, 2020) 
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and the drought-monitoring tools maintained by the National Drought Mitigation Center 

(NDMC, 2021). Drought monitoring plays a crucial role in understanding the mechanism 

and regional manifestation of drought, as well as mitigating its impacts. Such knowledge 

may also aid in predicting the severity of potential damage caused by an upcoming 

drought. Additionally, the existing records of historical dry events can also be 

consolidated into archives to make statistical forecasts of the duration and frequency of 

drought (Sharma & Panu, 2012; Wetterhall et al., 2015).  

1.1.2. Drought in The Northeastern US 

The Northeast has more than 175,000 farms producing more than $21 billion 

worth of field crops annually (NRCC, 2017). By area, agricultural land cover in the 

Northeast breaks down as follows: 60% is forested; 11% is farmland; and 4% is 

pastureland (Bigelow & Borchers, 2017). By current practice, the state of New York 

(NY), Pennsylvania (PA), New Jersey (NJ), West Virginia (WV), Maryland (MD), 

Delaware (DE), and all the New England states comprise the Northeast Climate Region. 

However, current DEWS in the Northeast only covers New England and NY. This study 

expands the research area to include PA and NJ, considering their proximity and 

abundant agricultural resources (Figure 1). 

Though infrequent, agricultural drought (as opposed to hydrologic drought; 

discussed in section 1.1.3) in the Northeast may possess distinct characteristics than in 

other parts of the US. The region is generally wetter and cooler than other major 

agricultural production areas in the country (e.g., Midwest, California; (Dupigny-Giroux 
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et al., 2018)). Due to most agriculture being rainfed rather than irrigated, climate and 

variations of weather are critical for farmland SM and the forming of agricultural drought 

in the Northeast (Dieter, 2018). One example is the drought during the 2016 growing 

season (see also Section 3.2.1). In NY, scarce snow from December 2015 through 

February 2016 was accompanied by severe dry conditions during the summer of 2016, 

causing major damage to rainfed crops and pasture acreages (S. K. Sweet et al., 2017). 

Such a trend underscored the urgent need for early warning information and drought 

mitigation in the region.  

The worst drought in the Northeast recorded in the 20th century occurred between 

1962 and 1966, affecting millions of people and creating a serious water-supply crisis 

(Barksdale, 1968). Although there is little evidence that the event is responsible for 

severe direct economic damage, it has since reshaped water management strategies in the 

Northeast (Degaetano, 1999). A deficit of PRCP was the primary factor contributing to 

this drought; however, temperatures at historical lows during the period prevented the 

situation from worsening (Namias, 1966). This drought was classified as a multi-year 

event mainly due to continuous negative annual values of the Palmer Drought Severity 

Index (PDSI). With the dynamic factors of the land-atmosphere interactions remaining 

uncertain, studies have attributed this event to both atmospheric circulation and sea 

surface temperature anomalies (Barlow et al., 2001; Seager, Pederson, et al., 2012). 

Since the 1960s, the Northeast has experienced a long-term trend of increasing 

humidity (Seager, Pederson, et al., 2012). Ground observations and models have both 

indicated a moderate and steady PRCP increase in the area (Frumhoff et al., 2007). The 
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most recent multi-year dry period was the 1999-2004 drought that intermittently stretched 

across North America, also affecting the Northeast (Lotter et al., 2003; Seager, 2007). In 

general, global warming tends to intensify the hydrological circulation and make 

droughts and floods more frequent and severe (Seager, Naik, et al., 2012; Trenberth et al., 

2014). Climate-model simulations suggest that such an increase in drought frequency and 

severity will be especially evident for the Northeast under continued warming (Giorgi et 

al., 2011; Hayhoe et al., 2007; Lickley & Solomon, 2018). 

The mean temperature of summer 2016 in NY was 2.6 °F above the 20th century 

average, while the total precipitation was 0.46 inches below the 20th century average 

(NCDC, 2022). The anomalous weather had severe impacts on large agricultural areas in 

western NY and southern New England (Kaufman, 2016; Nosowitz, 2016; S. K. Sweet et 

al., 2017). A survey of over 200 farmers in NY suggests that, in 2016 alone, non-irrigated 

fields lost over 30% of yield, with some farmers reporting over 90% (S. Sweet & Wolfe, 

2017). This drought occurred in three atypical ways. First, the drought period was 

established and extended quickly in early summer, despite average rains in May and July. 

Within the same year, the drought was alleviated by heavy winter rainfall and officially 

lifted in March 2017 based on the US Drought Monitor (USDM; (Moden, 2017)), making 

it more intense but much shorter in duration compared to those of the 1960s and 2000s. 

Second, a significant snowfall deficit in the previous winter and low snowmelt were 

factors contributing to groundwater depletion and low streamflow (S. K. Sweet et al., 

2017). This depletion enhanced the establishment of drought at its early stage and 

accelerated its expansion. Finally, the drought was worse than PRCP data alone would 
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suggest (Orr, 2016). Record hot temperatures occurred during the growing season, which, 

in conjunction with the absence of rain, rapidly depleted SM to the crop-wilting 

threshold. 

An increasing number of studies have found that drought in the Northeast is 

driven by multiple factors (e.g., snowpack, SM, land-atmosphere interactions) rather than 

PRCP deficits alone (Alessi et al., 2022; Frumhoff et al., 2008; Hayhoe et al., 2007; S. K. 

Sweet et al., 2017). With the rapid development and being focused on the growing 

season, features of the 2016 drought were reproduced by a similar drought event in 2020, 

except that the 2019-2020 winter snowfall was not as low as that in 2015-2016 (Lombard 

et al., 2020). Again, field crops were severely damaged with states in New England 

suffering the most (Erdman, 2020). Both the 2016 and 2020 droughts brought public 

attention to the phenomenon and its agricultural impacts. 

Only a small fraction of crops is irrigated in the Northeast as irrigation in such a 

humid region is generally considered complementary – only used to secure more 

sensitive and specialty products like fruits and vegetables. The lack of irrigation systems 

highlights the need for drought information and early warning in the Northeast. Besides 

the USDM, the US government offers climate and agriculture services to meet various 

needs. Some examples are the monthly and seasonal drought outlooks provided by 

NOAA’s Climate Prediction Center (CPC, 2021), the weekly streamflow and 

groundwater status map generated by the United States Geological Survey (USGS, 2021), 

and the real-time regional analyses maintained by the Northeast Regional Climate Center 

(NRCC, 2021). The integrated portals that collect and organize these data sources are 
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widely available to users. For example, the USDA maintains climate hubs for the 

Northeast region that features different drought maps, advice on mitigation practices, and 

occasional seminars (USDA, 2021). 

In 2006, Congress approved NIDIS with inter-agency coordination and an 

integrated research mandate to establish regional DEWS. The Northeast DEWS (NE 

DEWS) was formed following the 2016 drought. It brought together more than 100 

community leaders representing sectors ranging from water and agricultural management 

to local governments and watershed groups. The mission of the NE DEWS is to 

collaboratively improve drought early warning capacity and long-term drought resilience 

throughout New England and NY. Enhancing drought monitoring, forecasting, and 

research has been prioritized as the primary objective as necessary for the mission 

(NIDIS & NOAA, 2019).   
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Figure 1. Definition of the Northeast in this study (green). Deep green shows the NE 

DEWS region, while this study adds PA and NJ. (Map courtesy: NE DEWS – 

https://www.drought.gov/dews/northeast) 

  

https://www.drought.gov/dews/northeast
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1.1.3. Drought Types 

Droughts are generally classified into meteorological, hydrological, agricultural, 

socioeconomic, and ecological types (Crausbay et al., 2017; Mishra & Singh, 2010; 

Wilhite & Glantz, 1985).  

Meteorological drought usually results from a PRCP deficit over a prolonged 

period, which originates from anomalies in large-scale atmospheric circulation patterns 

(Dai, 2011). Driving factors of such anomalies could be anomalous sea surface 

temperature (SST; (Giannini et al., 2003)), ocean-atmosphere interactions such as El 

Niño–Southern Oscillation (ENSO; (McCabe et al., 2008)), internal atmospheric 

variables such as semi-permanent pressure systems (Sousa et al., 2018), and other 

complex climate teleconnections. Other factors, such as land-atmosphere interactions or 

feedback, may also contribute to reduced PRCP and hence to meteorological drought 

(Fernando et al., 2016; Kam et al., 2014). 

Agricultural drought is generally defined by a deficit in SM, which is crucial to 

plant water use during the growing season and strongly affects yield. Negative anomalies 

in SM are mainly caused by the preceding PRCP deficit or increased ET (Sheffield et al., 

2004; Van Loon, 2015). Temperature, net incoming radiation, wind speed, and humidity 

can all cause variations in ET (Walter et al., 2001). Due to the lack of observation 

networks, SM data are generally estimated from hydrological models.  

Hydrological drought is characterized by a decrease in streamflow, reservoir 

level, or groundwater level. Though the antecedent PRCP deficit plays a significant role 
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in forming such deficits, the existing local hydrological conditions, such as low water 

storage and snow accumulation are also important (Van Loon & Van Lanen, 2012).  

Socioeconomic drought is associated with the supply and demand throughout 

economic activities (e.g., industrial materials, food security; (Wilhite & Glantz, 1985)), 

which preserves definitions of all above types while including the effect of human 

activities that may account for the drought (Wilhite, 2000).  

Finally, ecological drought was defined as the water deficit that exceeds the 

vulnerability of ecosystems. Such vulnerability is driven by both humans and nature, 

while the impact of drought can be transferred between the two and generates feedback 

(Crausbay et al., 2017). It happens in sectors where human communities are closely 

connected to nature (e.g., air quality regulation, waste treatment, erosion prevention, 

recreation) (Millar & Stephenson, 2015). 

Due to the multiple physical and socio-ecological interactions and imprecise 

definitions of drought (Collins et al., 2016), it is generally hard to quantify its impact. 

This study focuses on agricultural drought for several reasons. First, the main impact of 

agricultural droughts is damage to and loss of crop productivity. Response time of crops 

to drought varies widely, ranging from immediately at the drought onset to the lifetime of 

the drought, depending on the crop type, planting location, and cultivating strategies 

(Blum, 1996; Mounce et al., 2016; Simelton et al., 2009). Other signals like reduced 

streamflow or economic shock occur in the mature stage or the aftermath of drought 

events. Second, water availability as represented by SM plays an essential role in plant 

growth, especially during critical phenological phases (Bolten et al., 2009; Yang & 
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Zhang, 2006). SM is the central variable integrating the effects of the water supply 

(PRCP) and demand (ET) at a particular location, therefore a good criterion for 

estimating drought onset (Sun et al., 2015; Yuan et al., 2019). Finally, agricultural sectors 

are among the main users that benefit most from drought information (Ash et al., 2007; 

Trnka et al., 2020). Few studies to date have focused on using drought indices to depict 

agricultural droughts in the Northeast. A better understanding of drought conditions as 

they relate to agricultural productivity in the Northeast is one of the primary purposes of 

this study. In addition, it can add value to the NE DEWS.  



12 

 

 

1.2. Proposed Science Questions 

The aims of this study are to connect crop yield and conditions to different 

climate drivers while identifying the key indicators and timescales of agricultural drought 

in the Northeast. Specifically, this paper attempts to reveal such connection and 

identification by addressing the following questions: 

I. How does each drought index perform when compared to the yield of hay 

from a long-term record? 

II. What are the most critical periods and timescales that relate each drought 

index to hay yield and drought-driven pastureland degradation? 

III. How do drought indices evolve and interact during the recent drought 

years of 2016 and 2020? 

1.3. Broader Impacts on the Scientific 

Community 

The objective of this study is to gain a more comprehensive understanding of 

drought and its impacts on agriculture in the Northeast. This will be accomplished by 

determining the most relevant climate drivers and timescales of droughts in the region 

and examining the degradation of crop conditions during cases of agricultural drought. 

The outcomes will lead to a better understanding of drought monitoring, data 

management, and informed decision-making by local authorities and stakeholders. The 
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identification of appropriate timescales may potentially be used as a reference for water 

management services for the timing of drought mitigation. In addition, knowing the 

critical period of the year for drought impacts can help farmers better plan growth cycles, 

crop types, and management strategies. Funded by NIDIS and NE DEWS, this study is 

based on a NOAA Sector Application Research Program (SARP), which aims to identify 

the most effective indicators and the most suitable timescales for drought monitoring in 

the Northeast. The findings of this study have the potential to be incorporated into the 

next phase of the NE DEWS Strategic Plan and contribute to its priorities of enhancing 

drought monitoring and research and strengthening decision making for drought 

preparedness.  



14 

 

 

2. Data and Methods 

2.1. Data 

2.1.1. Physical Drivers and Indices as Drought 

Indicator  

This study examines the physical drivers that affect crop water balance and 

agricultural drought (Dai et al., 2018; Narasimhan & Srinivasan, 2005; Sepulcre-Canto et 

al., 2012). Respectively, PRCP, SM, and E0 represent the supply of, storage of, and 

demand for moisture at the surface and therefore represent the climate constraints on the 

surface water budget. Further, drought indices corresponding to these physical drivers 

can provide spatial and temporal assessments of the severity of dry anomalies (Hayes et 

al., 2011). Multi-scalar drought indices allow the user to select a timescale, or 

accumulation period, in order to examine droughts that extend across various periods, 

such as months or years. The most widely used indices that depend on either PRCP or E0 

alone are, respectively, the Standardized Precipitation Index (SPI; (McKee, 1995; McKee 

et al., 1993)) and the Evaporative Demand Drought Index (EDDI; (M. T. Hobbins et al., 

2016; McEvoy et al., 2016)). Other widely used indices that involved the climate drivers 

that are the foci of this study are the Standardized Precipitation-Evapotranspiration Index 

(SPEI; (Vicente-Serrano et al., 2010)), which depends on the difference of PRCP - E0; the 

Empirical Standardized Soil Moisture Index (ESSMI, replaced by SSMI in section 2.2.1; 

(Carrão et al., 2016)) that depends solely on SM; and the Landscape Evaporative 

Response Index (LERI; (Rangwala et al., 2019)), which depends on ET. The 
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correspondence between climate drivers and the drought indices used in this study is 

illustrated in Figure 2. The methods for deriving these drought indices are detailed in 

section 2.2.1.  
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Figure 2. Conceptual representation of the physical drivers (PRCP, E0, ET, and SM) of 

surface water balance and their correspondence to the drought indices (SPI, EDDI, SPEI, 

LERI, and SSMI) used in this study. (Adapted with permission from The EDDI User 

Guide – https://psl.noaa.gov/eddi/pdf/EDDI_UserGuide_v1.0.pdf)  
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Precipitation 

The PRCP data used in this study were obtained from gridMET (Abatzoglou, 

2013). The dataset has daily temporal frequency from 1980 to 2020, with a spatial 

resolution of ~4 km (1/24 degree) covering the CONUS. It combines spatial attributes of 

gridded climatic data from the Parameter-elevation Regressions on Independent Slopes 

Model (PRISM; (Daly et al., 1994)) with temporal attributes from the North American 

Land Data Assimilation System Phase 2 (NLDAS-2; (Xia et al., 2012)) using climate-

facilitated interpolation. Only grid points inside the Northeast were selected in this study, 

with a buffer zone of two points around the edges of the study area retained for area 

weighting (weighting algorithm detailed in section 2.2.2). 

Actual Evapotranspiration and the Landscape Evaporative 

Response Index 

ET is defined as the sum of transpiration from vegetation and evaporation (and 

sublimation) from bare soil and water bodies. However, as a flux of water vapor from the 

land surface, ET is difficult to measure with a useful degree of accuracy and 

spatiotemporal resolution. The operational Simplified Surface Energy Balance (SSEBop) 

model developed by USGS compares land surface temperature from The Moderate 

Resolution Imaging Spectroradiometer (MODIS) against pre-defined dynamic boundary 

conditions to estimate the ET fraction (ETf), which is the ratio of ET over the E0 (Senay 

et al., 2013). The ETf ratio is then multiplied by E0 (detailed below) to generate ET. The 
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ET product provides an eight-day averaged map in the resolution of a 1 km grid for the 

period of 2000 to the present. 

Compared to other drought indices derived in this study (section 2.2.1) that are 

based on PRCP, SM, and E0, the index corresponding to ET is particularly limited by its 

period of record. This study directly uses LERI (https://psl.noaa.gov/leri/; (Rangwala et 

al., 2019)) as the measure of anomalies in ET. LERI uses ET derived from the SSEBop 

model (see section 2.1.1) that combines climatological E0 with the ETf generated by 

MODIS thermal imagery. Similar to its data source, LERI has temporal resolutions of 

monthly and eight days, with a period of record covering 2000 to the present, which is 

only around half of that for PRCP, SM, and E0 (1980 to present). This study uses the 

eight-day LERI as it is almost in line with the frequency of weekly crop conditions record 

and the 1-week timescale of other indices. 

Evaporative Demand and the Complementary Relationship 

E0 can be regarded as the upward demand for moisture at the interface of land and 

atmosphere. It is the potential flux, as it marks the maximal ET under ample moisture 

availability – figuratively, the “thirst of the atmosphere” (M. Hobbins et al., 2017). The 

effect of E0 on drought is complex, depending on the type of drought and the regional 

moisture availability. Such complexity is particularly evident in humid regions like the 

Northeast. Generally, E0 both drives and responds to ET depending on the moisture 

availability. A hypothesis known as the Complementary Relationship (CR) states the 

feedback mechanism between E0 and ET (theoretical shape shown in Figure 3). When 

https://psl.noaa.gov/leri/
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there is sufficient SM, referred to as the energy-limited situation, E0 and ET vary together 

as ET approaches E0. If strong E0 and ET continues with little incoming water 

compensation, SM will become insufficient to supply further ET. Under this moisture-

limited situation, SM becomes the limiting factor of ET. The energy that would have 

been used for ET is now used to produce sensible heat flux, resulting in elevated E0 

diverging from the lacking ET (Bouchet, 1963; Huntington et al., 2011; Pendergrass et 

al., 2020). E0 plays a crucial role in the CR hypothesis, and the amplifying feedback of E0 

from ET signifies the transition from an energy-limited situation to a moisture-limited 

situation. Therefore, it is necessary to consider E0 as of equal importance as PRCP, SM, 

and ET regarding drought impact. 

In practice, E0 can be directly estimated using atmospheric-based metrics (e.g., 

atmospheric forcings on a prescribed reference crop surface (ET0; (Allen et al., 1998)), or 

water evaporated from a metal pan modeled by meteorological data (Epan; (Rotstayn et 

al., 2006)). The E0 dataset used in this study is also downloaded from the gridMET 

dataset, in the same spatial and temporal resolutions as PRCP (~4 km, daily; see above). 

The formulation of E0 used here applies a widely accepted algorithm using the ASCE 

Standardized Reference Evapotranspiration Equation (Walter et al., 2005): 

𝐸0~ 
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

𝐶𝑛

𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 𝐶𝑑𝑢2)
(2 − 1) 

In which Cn and Cd are reference constants for a 0.5-m tall crop like full-cover alfalfa. 

Based on the Penman-Monteith formulation (Monteith, 1965), E0 is therefore 

parameterized as physically driven by 2-m air temperature (T). Other scalars include the 
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humidity – saturation (es) and actual (ea) vapor pressure, the slope of the saturation vapor 

pressure-temperature curve at T (∆); net radiation (Rn), soil heat flux density (G); 2-m 

wind speed (u2); and the psychrometric constant (γ). 

Due to the inherent difficulties in using satellite-based data (e.g., approximation 

of missing values due to cloud cover), remotely sensed ET products at spatial and 

temporal resolutions useful for drought decision-making are usually hard to obtain. 

Therefore, only EDDI will be used in the long-term correlation analysis to represent the 

demand side of the water balance (section 3.1), though both EDDI and LERI will be 

examined in the intra-annual case studies (section 3.2).  
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Figure 3. Conceptual representation of the Complementary Relationship (CR) between 

evaporative demand (E0) and actual evapotranspiration (ET) and the schematic evolution 

of surface moisture availability. The farther to the right of the X-axis, the dryer the 

regional environment. (Adapted with permission from The EDDI User Guide – 

https://psl.noaa.gov/eddi/pdf/EDDI_UserGuide_v1.0.pdf)  
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Soil Moisture 

In agricultural drought monitoring, model-based SM products often serve as the 

alternatives for the scarce in-situ SM observations (Robock et al., 2000). SM, together 

with other land surface conditions generated by the land-surface models (LSM) forced by 

NLDAS-2, has been widely evaluated across the CONUS (Robock et al., 2003; Schaake 

et al., 2004). Phase 2 of NLDAS used upgraded LSMs and better atmospheric forcings 

than phase 1, while extending the retrospective simulation range to 1979 through present 

(with a 4-day lag) (Xia et al., 2012). Noah is the primary land surface model of the 

Weather Research Forecast model (WRF; (Skamarock et al., 2019)) and its version 2.8 is 

one of the LSMs used in NLDAS-2 that generates SM products. The performance of this 

product across the CONUS has been comprehensively validated through intercomparison 

with in-situ observations and other LSMs (Cai et al., 2014; Xia et al., 2014). SM outputs 

from Noah-2.8 forced by NLDAS- 2 were used over the Northeast domain. The SM data 

has daily frequency and a period of record covering 1980-2020. The SM data are at a 

1/8th-degree resolution – (i.e., 12 kms; three times coarser in length than PRCP and E0), 

and available for four soil depths: 0-10 cm, 10-40 cm, 40-100 cm, and 0-100 cm. 

2.1.2. Crop Datasets from The National Agricultural 

Statistics Service 

A better understanding of the performance of drought metrics for agricultural 

monitoring can be gained by tracking crop conditions and production records. With most 

field crops being rainfed, agriculture in the Northeast is a major economic sector subject 
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to the vulnerability to the variation of seasonal drought. The National Agricultural 

Statistics Service (NASS; (USDA, 2018)), which is maintained by USDA, conducts 

hundreds of annual field surveys by giving questionnaires to ask farmers what, where, 

and when they are planting. NASS aims to publish such agricultural statistics, including 

crop yield and condition used in this study, to all users through censuses and surveys. 

Censuses provide five-yearly detailed data for the nation, each state, and some counties, 

while surveys are implemented at local levels at a much higher frequency through 

networks of state offices and universities. The crop datasets used in this study are either 

from or validated by these surveys. 

Cropland Data Layer 

The Cropland Data Layer (CDL) is a gridded, crop-specific, categorized geo-

referenced product created by NASS that uses satellite imagery to generate acreage 

estimates for different plant categories. All historical CDL products are freely available 

via the Crop-Scape online tool (NASS, 2016b). For this study we extracted annual raster 

layers in a 30-m resolution grid for the Northeast for the period from 2009 to the present. 

About 90% of the pixels display a constant crop type through the period, with the primary 

exceptions being fields that frequently switch between two crop types. In the raster set, 

each land use category (crop type) was assigned a three-digit identification number as a 

variable. For each pixel, we arranged the identification number across the years from 

smallest to largest and then assigned the median value to that pixel. In this way, a single 

map showing the majority of crop types across the years in the Northeast was derived. 

Considering the number of data points (more than two billion pixels each year for the 
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Northeast) and our limited computing resource, we believe the median value can 

effectively represent the most frequently planted crop category on each pixel. 

Selecting Crop Types 

We focus on rainfed crops for this study to reflect natural forcing from the climate 

drivers that would otherwise be suppressed for irrigated crops. Based on the 2017 

irrigation report published under NASS’s five-yearly agricultural census (USDA, 2019), 

only ~13% of the farmlands were irrigated in NY during 2018, and these are generally 

vulnerable crops (e.g., berries, grape wineries). The irrigation coverage is even smaller 

for New England and PA (USDA, 2019).  

According to the CDL map, in terms of land area, the top five most widely 

cultivated crops in the Northeast are hay, pasture, corn, soybean, and winter wheat. Based 

on the proportion of crop cover for six crop types in the gridMET cells (Figure 4), not 

only do non-alfalfa hay (hereafter referred to as hay) and pasture have the largest area 

coverage over other crops in the Northeast, but they also exist across a significant portion 

of New England. (Peña-Gallardo et al., 2019) thoroughly assessed the spatial and 

temporal patterns of how crop yields respond to drought across the nation (including NY 

and PA, but not New England) but only examined corn, soybean, and winter wheat. So, 

an extension to hay and pasture for the Northeast with comparison to multiple climate 

drivers would add value to this existing knowledge base. The results presented in this 

paper were focused on the yield of hay and the condition of pasture.   
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Figure 4. Crop-cover pixel ratio of gridMET cells (4 km) for the top five most widely 

planted (in acreage) crops in the Northeast US.  
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Crop Yield 

Based on Figure 4, this study chose the annual yield of hay (excluding alfalfa) to 

represent the variability of field crop production in the Northeast from 1980 to 2020. 

County-level crop yield data in the Northeast US can be accessed through the Quick Stats 

web portal (NASS, 2016a). Given that a significant portion of the Northeast falls into 

land use categories other than agriculture (e.g., city, idle land, and natural reserves), the 

yield data in some less cultivated counties may possess much larger temporal variability 

than in others. Therefore, only counties with more than 1% of their land covered by hay 

are selected as available. Adopted from NASS, the yield data used in this study were 

calculated as crop production divided by harvested areas. When considering drought 

impact, the production per area may better reflect the capacity for producing crops as it 

eliminates external factors like expanded farming or anthropogenic changes in arable 

land area (Iizumi & Ramankutty, 2015; Wurster et al., 2020). 

Detrending Time Series 

Interannual variability of crop yield depends not only on climate forcing but also 

anthropogenic factors like evolving management strategies and farming technologies. 

The combination of such factors can drive a non-climatic trend in the yield data. Thus, it 

is necessary to eliminate these sorts of trends when examining agricultural yield in order 

to limit analysis to climatic factors (Lobell & Asner, 2003). After detrending, all the 

residuals were divided by the standard deviation of each time series to ensure states and 
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counties with different magnitudes of agricultural land are scaled to the same level of 

yield fluctuation (Potopová et al., 2016; H. Wu et al., 2004).  

Crop Conditions 

To track the progression of crop health within specific drought years, weekly crop 

conditions were extracted from NASS. NASS contacts over 3,600 respondents across the 

county for visual observations and subjective estimates of crop conditions (Rosales, 

2021). Questionnaires from these respondents are collected weekly and aggregated to 

state and national levels based on NASS’s acreage records, with the county-level data 

remaining confidential for privacy protection. Overall, data on pastureland are the most 

detailed of all other crop types in the Northeast. They are available weekly from April 

through November from 1995 for all nine states, and describe the condition as one of five 

categories: excellent, good, fair, poor, and very poor. 

2.2. Connecting Crop Yield to Drought Indices 

2.2.1. Climate-Driver Averaging and Drought-Index 

Derivation 

Crop area-weighted Climate Drivers 

As all the crop data were collected at either the state or county level, the gridded 

climate drivers were averaged onto these levels so that comparisons can be made. A 
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proper way to take the average would be to break down the grids based on the CDL-

provided spatial distribution of a target crop in that state or county. The 30-m spatial 

resolution of the CDL is much finer than that of the 4-km gridMET variables. Therefore, 

the land cover proportions of specific crops in each gridMET cell can be derived based 

on the count of target CDL pixels, i.e., those with the desired three-digit crop-type 

number. For example, within the geo-referenced range of a gridMET cell, if 1200 of total 

18,000 CDL pixels indicate crop type “hay,” then the ratio 1200/18,000=6.67% is 

assigned to the gridMET cell for category “hay”. In this manner, each gridMET cell was 

given a set of two ratio values, corresponding to hay and pasture. Then, for each county 

and state, a shapefile was applied to mask all the gridMET cells inside that county or 

state boundary with that crop type. In this case, the weighted average of PRCP and E0 in 

each state and county can be derived based on the CDL. Here taking the PRCP for hay in 

NY as an example: 

𝑃𝑅𝐶𝑃𝑁𝑌
ℎ𝑎𝑦

=
∑ [𝑟𝑖(ℎ𝑎𝑦) ∙ 𝑃𝑅𝐶𝑃𝑖]

𝑛
1

∑ 𝑟𝑖(ℎ𝑎𝑦)𝑛
1

(2 − 2) 

where the term on the left side indicates the state level PRCP for hay coverage in NY. On 

the right side, i represents one of the n gridMET cells in NY, ri(hay) is the ratio of hay 

pixels (here as the target CDL pixel) over all the CDL pixels in that ith gridMET cell, and 

PRCPi is the PRCP value for that ith gridMET cell. By the same principle, values for 

other fluxes (e.g., E0) and other target crop types can be derived. A schematic diagram is 

shown in Figure 5. The same applies for SM and ET except that the resolutions of grid 

cells for the NLDAS-2 and SSEBop models are respectively 1/8 degree and 1 km, 
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resulting in different CDL pixel numbers inside them. To ensure data representativeness 

in a way that each of these grid cells (gridMET, NLDAS-2, and SSEBop) has enough 

target CDL pixels, the minimum crop pixel ratio in each grid cell is set to 0.5%. For 

example, if the ratio of hay pixels inside a gridMET cell (in NY) is less than 0.5%, the 

cell won’t be counted in the weighted averaging of the NY hay PRCP derived from 

equation (2-2).  
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Figure 5. Schematic diagram of the crop area-weighted technique. Left: the majority of 

Cropland Data Layer (CDL) in the Northeast. Middle: climate driver grid cells (dot) and 

the shapefile of a state or county (polygon). Right: CDL pixels (areas surrounded by 

color curves) inside a grid cell (center square).  



31 

 

 

Calculation of Drought Indices  

The drought indices used in this study are standardized scalars, with their sign 

indicating either dry or wet anomalies, and the offset from zero showing the severity. 

Positive values of SPI (more PRCP), SPEI (larger difference of PRCP over E0), ESSMI 

(more SM), and LERI (higher ET) indicate wetter-than-average conditions, while 

negative values indicate drier. On the other hand, positive EDDI (higher E0) means drier-

than-median conditions, negative wetter. All indices standardize the anomaly in their 

driving flux or state using the classical inverse normal approximation (Abramowitz & 

Stegun, 1964). For example, an SPI of -0.5, -1.5, and -2.5 respectively indicate the 

probability percentiles of 30.8th, 6.7th, and 0.6th, which means 30.8%, 6.7%, and 0.6% of 

the historical PRCP values are lower. However, it is their different probability 

distributions that separate the distinguishability of the natural phenomenon represented 

by these climate drivers. In most practices, PRCP records were framed into a gamma 

distribution to derive SPI (Naresh Kumar et al., 2009; H. Wu et al., 2005), while SPEI 

uses a log-logistic approach (Vicente-Serrano et al., 2010), and EDDI and LERI were 

based on the non-parametric empirical Tukey plotting position (Farahmand & 

AghaKouchak, 2015; M. T. Hobbins et al., 2016; Rangwala et al., 2019; Wilks, 2011). 

This study follows such methods of generating probability distribution of climate drivers 

to derive SPI, SPEI, EDDI. Specifically for SM, the Kernel Density Estimator (KDE; 

(Silverman, 2018)) method deriving of ESSMI detailed in (Carrão et al., 2016) has only 

been tested for South America. Since both are non-parametric empirical methods, this 

study replaces the KDE with Tukey plotting position in generating the SM index in the 
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Northeast, and names it SSMI to distinguish. As these indices are multi-scalar, they may 

be used to identify which timescales correspond best to different drought-impact metrics 

such as annual crop yield. Therefore, with the exception of LERI, all indices in this study 

were derived at seven timescales: 1-week, 2-week, 1-month, 3-month, 6-month, 9-month, 

and 1-year. For LERI, the 8-day timescale was directly used in this study after being 

applied to the crop area-weighting mentioned above. 

2.2.2. Correlating and Mapping 

The Pearson correlation coefficient (R) was used to examine how well drought 

indices track crop yields. Only the data points on the 1st and 16th day of each month are 

used in the correlation analysis to better fit the timescales shorter than one month (e.g., 1-

month EDDI on May 16th indicates the E0 anomaly from April 16th to May 15th). For hay 

in a desired state or county, a 40-year time series (1981-2020) for each drought index was 

developed (SPI, SPEI, EDDI, SSMI) with seven timescales at a twice-monthly frequency. 

This matrix of index time series was then respectively correlated with the time series of 

hay yield. A significance level of 95% (α=0.05) was used as a threshold to determine that 

the obtained linear relationship (i.e., R) between each pair of time series was significantly 

different from zero (Kendall, 1961). Based on the two-tailed t-score for a p-value of 0.05, 

an R of ±0.304 corresponds to a statistically significant correlation. Therefore, only areas 

and timescales with the |R| greater than 0.304 are presented and discussed in this study. 

The strongest correlation between each drought index and hay yield in the 

Northeast was mapped for each county so that spatial patterns of the impact of each 
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climate driver on crop yield can be drawn (section 3.1.1). In addition to showing the 

results by polygons of state and county, the CDL layers were used to mask out areas with 

no crop cover to provide better visualization for states and counties with large patches of 

sparse crop cover. Based on Figure 4 in section 2.1.2, this study focuses on hay and 

pasture as they have the most coverage in the Northeast, especially in New England. For 

the correlation analysis, only grid cells (gridMET, NLDAS-2, and LERI) with at least 

0.5% hay coverage were displayed for data representativeness. As hay is a low-volume 

crop in New England, county-level hay yield there is not available from NASS. 

Therefore, correlations were computed at the state level for New England states, but at 

the county level for NY, PA, and NJ. In addition to mapping the value of strongest 

correlations, the drought index timescale and ending month associated with those 

strongest correlations were also mapped. 

In addition to the strongest correlations in space across the Northeast, the full 

distribution of timescales and ending months (e.g., 3-month SPI ending in September 

means the accumulation of PRCP anomalies through July, August, and September) for all 

correlations are shown in the form of a heat map (section 3.1.2). 

2.3. Intra-annual Crop Responses to Droughts 

2.3.1. Crop Score and Drought Years Identification 

As noted, the pasture condition records from NASS are more detailed than for 

other crop types in the Northeast: they start in 2001 and include all nine states. The raw 
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condition data were recorded in weekly percent area in each category (e.g., according to 

the record, in the 28th week of 2020, pastureland across NY was by area 13% excellent, 

40% good, 27% fair, 16% poor, and 4% very poor). A unified standard called Crop Score 

represents overall crop conditions, following the method used in the official NASS report 

(Rosales, 2021), repeated here: 

𝐶𝑟𝑜𝑝 𝑆𝑐𝑜𝑟𝑒 =                                                                                                                         
(5 × 𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 + 4 × 𝑔𝑜𝑜𝑑 + 3 × 𝑓𝑎𝑖𝑟 + 2 × 𝑝𝑜𝑜𝑟 + 𝑣𝑒𝑟𝑦 𝑝𝑜𝑜𝑟)

100
(2 − 4)

 

Excellent, good, fair, poor, and very poor are each the percentage of pastureland area 

reported to be in that quality category. The equation yields a dimensionless value, which 

ranges from one to five, quantifying the weekly, statewide aggregate condition. Crop 

Score varies from 1, indicating all the pasturelands are “very poor,” to 5 indicating all 

“excellent,” thereby providing a comprehensive metric for the degree of pasture health. 

Two recent drought events occurred in the Northeast in the growing seasons of 

2016 and 2020. They are within the temporal range of all our data availability and are 

most relevant to the NE DEWS. These events were therefore chosen as the foci of this 

intra-annual case study. While the degradation of pasture conditions may illustrate the 

drought severity in terms of agricultural impact, the overall drought period within these 

two years was also verified by the USDM drought maps (section 3.2.1). 
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2.3.2. Time Series Comparison 

For each of the nine states in the Northeast and each of the seven timescales of 

SPI, SPEI, EDDI, and SSMI, the time series of daily index values from March 1st to 

November 30th of 2016 and 2020 were compared with the Crop Score of pasture 

conditions within the same time frame. The weekly time series of Crop Score were 

linearly interpolated to a daily frequency for better visualization and comparison to daily 

indices. One panel diagram is generated for each state and timescale. Only the results 

from 1-week to 3-month timescales in MA and PA were presented in section 3.2.2 

(Figures 13 to 20). Since only EDDI indicates dry when positive, the sign of EDDI was 

reversed to ensure that all indices below the reference line (zero) indicate drier-than-

normal. The time series of eight-day LERI are only included in diagrams of the 1-week 

timescale, with the separate data points also linearly interpolated to daily curves. Vertical 

reference lines are used to stretch through the panel diagrams to highlight such 

correspondences. The other main purpose of the time series comparison is to determine 

which timescale the dry period shown by each drought index correlates most strongly 

with pastureland degradation (declining Crop Score). In this manner we identify the most 

appropriate timescale of each climate driver regarding its agricultural drought impact in 

the Northeast.  
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3. Results 

3.1. Correlation Analysis 

3.1.1. Strongest Correlation and Timing 

Strongest Correlation Map 

Figure 6 showed the strongest R (hereafter referred to as Rmax) between hay yield 

and drought indices at the county level in NY, PA, and NJ, while at the state level for 

New England states. As followed by other figures in section 3.1, panel a), c), and e) 

represent, respectively, SPI, SPEI, and EDDI, while panel b), d), and f) represent three 

layers of SSMI. 

SPI (Figure 6a) generally showed positive Rmax across PA, the west half of NY, 

and the southern New England states. Several counties in central-western NY, western 

PA, and central-eastern PA showed values of Rmax greater than 0.6, and almost all other 

PA and western NY counties showed positive Rmax between 0.4 and 0.6. However, for 

counties immediately north and south of the Adirondack Mountains, negative Rmax were 

found with some passing -0.5. Additionally, several counties along the Hudson River 

Watershed (southeastern NY and northern NJ) also showed negative Rmax (-0.5). For New 

England states, positive Rmax exceeding 0.5 were shown for MA and CT, while weak 

negative Rmax were found for RI and ME. 
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The Rmax for SPEI indicates the connection between hay yield and the difference 

of PRCP minus E0, instead of PRCP alone. However, the spatial pattern of Rmax in the 

map for SPEI (Figure 6c) was still similar to that of SPI. For example, counties with Rmax 

greater than 0.6 were also shown in western NY, western PA, and central-eastern PA. 

This similarity also applies to counties with negative Rmax in eastern NY and northern NJ. 

For New England states, the spatial pattern of Rmax for SPEI was even closer to that for 

SPI, except for NH, in which Rmax switched from weakly positive (0.3 to 0.4) to weakly 

negative (-0.3 to 0.4).  

On the other hand, EDDI has mostly negative values of Rmax (Figure 6e) across 

the region, as higher E0 usually leads to lower yield in the presence of drought. Several 

counties in western PA and northwestern NJ showed Rmax lower than -0.6. Only scattered 

counties in NY and southern PA showed positive Rmax for EDDI. An area that 

consistently showed positive Rmax could be found in central-western NY, where five 

counties are distinct from the surroundings. For New England, Rmax for EDDI showed 

weakly negative (-0.3 to -0.5) in most states, with the exceptions of CT and NH, which 

showed positive. 

The Rmax maps for all three depths of SSMI (Figure 6b, 6d, 6f) also showed 

similar spatial patterns as for SPI, with more positive and stronger Rmax values found in 

the surface layers. With positive correlation implying that higher SM leads to more hay 

yield, large areas of positive Rmax were shown by all three depth layers in western NY, 

PA, and western NJ. Negative Rmax can be found in eastern NY and northern NJ. For the 

surface layer (0-10cm, Figure 6b), only three counties in western NY and four in PA 
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show negative Rmax. For the middle layer (10-40cm, Figure 6d), more counties in central 

NY started to show negative Rmax. For the deep layer (40-100cm, Figure 6f), more 

western and central NY counties showed negative Rmax, with the central-northern PA also 

switched to negative. Despite these areas, the spatial pattern of Rmax had a good 

consistency between the three depths across NY, PA, and NJ. For counties with such 

consistency, the magnitude of Rmax in the surface layer was slightly larger than in the 

deep layer. In New England, The Rmax for the surface layer SSMI showed positive for all 

available states (|Rmax| <0.304 in ME being insignificant). The same pattern applied for 

the middle layer, except that VT became insignificant. However, the Rmax map for the 

deep layer in New England was quite different from the upper layers: Rmax for CT 

increased to over 0.5; in MA it dropped below 0.5; in VT it switched to weakly negative 

(-0.3 to -0.4); in NH it became insignificant; and in ME it became weakly positive (0.3 to 

0.4). In general, Rmax values at the state level in New England were lower than at the 

county level in NY, PA, and NJ. Since most states in New England are much larger than 

counties, it is still unclear whether such weaker Rmax values are caused by the inherent 

weaker connection between hay and the climate or the averaging of hay yield over a 

larger group (county vs. state).  
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Figure 6. Strongest correlations (Rmax) between hay yield and drought indices at the 

county level in New York, Pennsylvania, and New Jersey, while at the state level for 

New England states.  
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Timescales and Ending Months of the Strongest Correlations 

Figure 7 and Figure 8, respectively, showed the timescales and ending months of 

the drought indices associated with the Rmax in Figure 6. In general, timescales and 

ending months associated with the Rmax exhibited strong spatial variability across the 

Northeast. In summary for all indices, two critical time windows were identified, with the 

timescales of Rmax for EDDI shorter than for others. One is the mid to late summer 

months (e.g., 1-week to 1-month timescales ending in July, 3-month timescales ending in 

August and September, and 3- to 6-month timescales ending in November and 

December), hereafter called the “late-summer type”; the other one is the mid spring 

months (e.g., 1- to 2-week timescales ending in April and 1- to 3-month timescales 

ending in June) – the “mid-spring type”. In addition, a few counties and states across the 

region had their Rmax associated with the winter or even fall of the previous year – the 

“winter type”. 

These three types were prominently shown in NY, PA, and NJ at the county level. 

For Rmax regarding SPI (Figures 7a and 8a), most PA counties with 1-week to 1-month 

timescales had their ending months in the summer. The only exceptions are the counties 

in the northeast corner of PA, which ended in September and December. PA counties 

with 3- to 6-month timescales generally had their ending month in the fall or December. 

For western NY, most counties showed 1- to 3-month timescales ending in the summer. 

Some counties in central-northern PA, eastern NY, and western NJ showed 1-week to 1-

month timescales ending in the spring. Additionally, a small number of scattered counties 

across the region showed 1-week to 6-month timescale ending in January and February. 
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For Rmax regarding SPEI (Figures 7c and 8c), the patterns were similar to what the SPI 

map showed, except that some counties had longer timescales ending in later months of 

the year. For Rmax regarding EDDI (Figures 7e and 8e), almost all counties across the 

region have shorter timescales than for SPI and SPEI. Most PA counties showed 1- to 2-

week timescales ending in the summer and fall. The same situation applies for NY, 

except that multiple western NY counties started to show 1- to 2-week timescales ending 

in the spring. Patterns in the surface SSMI map (Figures 7b and 8b) were similar to those 

in the SPI map, except that some eastern NY counties changed from spring into 1-week 

timescales to 1-month timescales ending in November. Another difference is that several 

adjacent counties in the southeastern corner of PA changed to ending in January and 

February. The mid-layer SSMI map (Figures 7d and 8d) is similar to the patterns of the 

surface layer, with several western PA counties changing from 1- to 3-month timescales 

ending in November to 3- to 6-month timescales ending in December, while the 

timescales for a few counties across NY ended in the preceding winter. For the deep soil 

layer (Figures 7f and 8f), more counties along the border of NY and PA changed from 

ending in summer to ending in spring. 

The three types of combination of timescales and ending months of drought 

indices associated with Rmax can also be found for New England states (also included in 

Table 1). For Rmax regarding SPI and SPEI (Figures 7a, 8a, 7c, and 8c), the late-summer 

type generally applies in CT, MA, and NH, while the mid-spring type applies in ME and 

VT. The only exception is SPEI in NH (9-month timescale ending in April), given the 

associated Rmax being almost insignificant (Rmax = -0.35). For Rmax regarding EDDI, the 
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late-summer type applies in ME, the mid-spring type applies in MA, and the winter type 

applies in CT and NH. For Rmax regarding SSMI, states with significant Rmax generally 

were in the late-summer type. Additionally, results in RI were significantly different from 

other states, likely due to its small area and potential impacts from the urban climate or 

other local factors. In summary, timescales and ending months associated with Rmax in 

the New England states span the entire year depending on the index and state. Among the 

indices, EDDI showed completely different results from the others. Across the states, the 

New England states, especially ME and VT, showed more variable results than the 

others. 

Table 1 shows the Rmax for SPI, SPEI, EDDI, and middle layer SSMI at each state 

level with the associated timescale and ending month. Correlation coefficients of |R| 

<0.304 were discarded due to the 95% significance level filter. Only the 10-40 cm SSMI 

is shown, representing the main portion of the effective root-zone depth of hay (Efetha et 

al., 2009; Irmak et al., 2007). Generally, the mid-spring and late-summer types mentioned 

above can be found for all four indices in most states, with EDDI showing shorter 

timescales than other indices for each type. The results shown for SPEI generally agreed 

with those shown for SPI except in NH, where both SPEI and SPI had Rmax values close 

to ±0.304 (around ±0.35). Additionally, the winter type was found for EDDI in CT and 

NH with timescales longer than six months.  
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Figure 7. The associated timescale of the strongest correlations (Rmax) between hay yield 

and drought indices at the county level in New York, Pennsylvania, and New Jersey, 

while at the state level for New England states.  
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Figure 8. The associated ending month of the strongest correlations (Rmax) between hay 

yield and drought indices at the county level in New York, Pennsylvania, and New 

Jersey, while at the state level for New England states. Ending months were separated 

into colors of winter (blues), spring (greens), summer (reds), and fall (yellows)  
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 SPI SPEI EDDI SSMI (10-40cm) 

 Rmax  TS MON Rmax TS MON Rmax TS MON Rmax TS MON 

CT 0.54 3mo AUG 0.53 3mo AUG 0.49 1yr FEB 0.48 3mo AUG 

ME -0.39 1mo APR -0.39 2wk APR -0.38 3mo JUL 0.295* 2wk SEP 

MA 0.60 3mo JUL 0.59 3mo JUL -0.42 1wk MAY 0.51 3mo AUG 

NH 0.36 3mo AUG -0.35 9mo APR 0.58 6mo JAN 0.42 1mo JUN 

NJ 0.36 3mo AUG -0.35 2wk AUG -0.36 2wk AUG 0.35 3mo SEP 

NY 0.45 1wk APR 0.47 1wk APR -0.40 3mo DEC 0.49 6mo SEP 

PA 0.60 3mo AUG 0.57 1mo JUL -0.47 2wk SEP 0.58 3mo SEP 

RI -0.45 1wk JAN -0.46 1wk JAN -0.47 1wk JUL 0.43 6mo DEC 

VT 0.43 1wk APR 0.40 1wk APR -0.46 2wk NOV 0.3038* 2wk MAY 

 

Table 1. The associated timescale (TS) and ending month (MON) of the strongest 

correlation (Rmax) between hay yield and SPI, SPEI, EDDI, and SSMI (10-40cm) at each 

state level in the Northeast. Insignificant Rmax (|Rmax|< 0.304, outside the 95% 

significance level) were marked by *.  
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3.1.2. Insight from Full Distribution of Correlations 

Aside from the Rmax, the distribution for a given spatial extent (i.e., state or 

county) of all correlations amongst different ending months and timescales can also 

provide useful information. The relative importance of how each combination of 

“timescale + ending month” compared to one another was visualized by this distribution. 

Suppose a correlation is stronger than its adjacent correlations in this distribution matrix 

(shown by tiles with deeper colors than their surroundings in Figures 9 and 10). The 

combination associated with this correlation is referred to as the “PEAK” in this paper. In 

Figures 9 and 10, the X and Y axes of each panel respectively represent the ending month 

and timescale, while shading in the heat maps indicates the sign and strength of the 

associated correlation. Only results at the state level for MA and PA were presented in 

this section, as signals for the other states either conveyed similar information or were too 

weak to show distinguishing features.  

Figure 9 shows the distribution of correlations between drought indices at various 

timescales and ending months and hay yield in MA. The correlation reflects the overall 

characteristics of statewide hay yield responding to drought indices. In coincidence with 

the Rmax, the PEAKs generally identified three periods in the year – mid-spring, late-

summer, and the preceding winter, with the signal around late-summer being 

significantly stronger than the other two. Three areas of strong correlations were found 

for SPI (Figure 9a): positive PEAKs for the 3-month timescale ending in July; the 1-year 

timescale ending in around July; and a negative PEAK for the 1-week to 1-month 

timescales ending in October. For the July-ending 3-month PEAK, the surrounding color 
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tiles tended to tilt to the right by showing 1- to 2-week timescales ending in June through 

the 6-month timescale ending in September, by which all pointed to some dates in around 

June and July. The distribution of correlation for SPEI (Figure 9c) was similar to that for 

SPI, except that the correlations for the 1- to 2-week timescales ending in June were 

slightly weaker. However, the correlation distribution for EDDI (Figure 9e) showed 

opposite signs from that of SPI and SPEI with similar PEAK positions. Three PEAKs 

were identified for EDDI: a negative correlation for the 1-week timescale ending in May 

and the 3-month timescale ending in July, but a positive correlation for the 1-week 

timescale ending in October. Additionally, EDDI did not show any correlation at the 

longer timescales (for the 1-year timescale ending around July, as shown by SPI and 

SPEI). In May and October, the PEAKs for EDDI were at shorter timescales than for SPI 

and SPEI (1-week vs. 1-month). All the distributions for SSMI (Figure 9b, 9d, and 9f) 

generally had their positive PEAKs at the 3-month timescale ending in July and the 1-

month timescale ending in June. Again, long timescales (9-month to 1-year timescales) 

were not shown by the SSMI.  

Figure 10 shows the distribution of correlations between drought indices and hay 

yield in PA. The distribution heat maps indicated that correlations throughout the year in 

PA are generally stronger than in MA, with the position of PEAKs being similar. The 

largest positive PEAK for SPI (Figure 10a) was in the summer for a 1-month timescale 

ending in July to a 3-month timescale ending in September. Two other positive PEAKs, 

which could be seen as the extension of the largest PEAK, appeared for the 6-month 

timescale ending in November and the 9-month timescale ending in December. In 
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addition, a weak positive PEAK can also be identified for the 3-month timescale ending 

in January. Lastly, a weak negative PEAK was shown for the 1-month timescale ending 

in April. The correlation distribution for SPEI (Figure 10c) exhibited almost identical 

characteristics to those shown by SPI. The correlation distribution for EDDI (Figure 10e) 

only showed a weak negative value in the summer with the same type of right-tilted 

shape as mentioned for SPI. The negative PEAK of EDDI is seen at the 1-week to 1-

month timescales ending in September, a point at which SPI and SPEI PEAK had longer 

timescales (3 months). The correlation distributions for the surface- and mid-layer SSMI 

(Figure 10b and 10d) were similar, generally following those of SPI, except that the 

positive correlation ending in January had a wider range of timescales (1-week to 6-

month); no correlation was shown for long timescales (9-month to 1-year) in the summer; 

no negative correlation was shown in April. Compared to the above, the deep-layer SSMI 

(Figure 10f) lost the correlation in January and gained some at long timescales in the later 

months of the year (September through December). Another feature of all the SSMI heat 

maps is that no signal was shown for 1- to 3-month timescales ending in around October. 

Other than that, the same timescales in September and November both had positive 

correlations. 
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Figure 9. Distribution of correlations between hay yield and drought indices in 

Massachusetts, tiled by timescales (y-axis) and ending months (x-axis). Colors indicate 

the correlation (R) associated with the timescale and ending month. 

  



50 

 

 

 

Figure 10. Distribution of correlations between hay yield and drought indices in 

Pennsylvania, tiled by timescales (y-axis) and ending months (x-axis). Colors indicate the 

correlation (R) associated with the timescale and ending month. 
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3.2. Case Study of Recent Drought Years 

3.2.1. Drought and Pasture Conditions in Selected 

Years 

2016 and 2020 were selected as case study years based on the drought-category 

maps and time series for the Northeast Climate Region from the USDM. USDM is a 

collection of maps released weekly showing the existing drought conditions across the 

US. Considered the “national drought man”, USDM relies on drought-relevant 

communities across the US to synthesize and interpret data from various numeric sources 

(Svoboda et al., 2002). It takes a convergence-of-evidence approach on a wide range of 

indicators, including, but not limited to, drought indices, remotely sensed vegetation and 

SM, streamflow and snowpack records. Drought severity in the USDM is categorized 

into five levels, from abnormally (D0) to exceptionally (D4) dry. As in each member of 

the blend of drought indicators, the corresponding percentile for each level is 30-21 (D0; 

abnormally dry), 20-11 (D1; moderate drought), 10-6 (D2; severe drought), 5-3 (D3; 

extreme drought), and 2-0 (D4; exceptional drought). Maintained by the National 

Drought Mitigation Center (NDMC), the archived record starts in 2000 and is 

downloadable in various forms (https://droughtmonitor.unl.edu/Maps.aspx). 

The 20-year drought time series in the Northeast suggests that 2016 and 2020 as 

significant drought years. As summarized in Figure 11, despite the multi-year drying that 

occurred in the early years of this century, 2016 and 2020 were highlighted by >20% of 

the area in drought category D2 in summer and fall. The weeks ending 09/27/2016 and 
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10/13/2020 were the two periods when the respective droughts reached their peaks in 

terms of area in each drought category. Spatially, a large portion of the Northeast was 

estimated to be at least abnormally dry (D0) in those weeks. During the week ending 

09/27/2016, central PA, western NY, southern ME, and all southern New England were 

under severe drought (D2), with western NY and coastal New England experiencing 

extreme drought (D3). In the week of 10/13/2020, the situation was slightly better for NY 

and PA but much worse for New England: NH, MA, CT, and RI had larger areas above 

D2 than in 2016, and all of ME was above moderate drought (D1) with scattered D3. We 

therefore examined 2016 and 2020 to show the agricultural impact of various climate 

drivers for the growing season droughts. 

The progression of pasture conditions scores for each year between 1995 and 

2020 is shown in Figure 12. For CT (Figure 12a), ME (Figure 12b), MA (Figure 12c), 

NH (Figure 12d), PA (Figure 12g), and RI (Figure 12h), the curves for 2016 and 2020 

shared a typical shape: a normal spring followed by severe deterioration in the summer 

then slight improvement in the fall. This is particularly evident in MA, where, in 2016, 

the condition started from average in spring then quickly dropped below other years in 

the summer. Despite the improvement after September, the condition at the end of 2016 

was the worst among all years. This pattern was also found for 2016 in CT and both years 

(2016 and 2020) in NH, PA, and RI, except that there were milder degradation and worse 

years around 2000 in PA. For 2020 in MA, the condition started below average but had 

an improvement in the summer, after which it declined sharply, becoming the worst by 

early fall. Such a pattern was also found for 2020 in CT and both years (2016 and 2020) 
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in ME. On the other hand, in NJ (Figure 12e), 2016 and 2020 were no worse than other 

years. In NY (Figure 12f), the pasture conditions for 2016 did not deteriorate 

significantly. In VT (figure 12i), the pasture conditions for 2020 was consistently better 

than the other years. 

MA was chosen as the state for the time series comparison considering the above 

representativeness in pasture conditions patterns during 2016 and 2020 and the fact that it 

has a higher hay Rmax than other New England states (section 3.1.1). Similarly, PA was 

also chosen due to its temporal patterns for pasture conditions, hay Rmax, and size and 

location (away from New England). 
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Figure 11. (Top) USDM maps for the weeks ending 09/27/2016 and 10/13/2020, and 

(bottom) 2000 to 2021 time series of areas covered by each USDM drought category 

across the Northeast Climate Region. The 2016 and 2020 droughts were highlighted in 

red boxes. Adapted from the United States Drought Monitor 

(https://droughtmonitor.unl.edu/). 

  

https://droughtmonitor.unl.edu/
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Figure 12. Progression of state level weekly pasture conditions scores during the growing 

seasons of 1995-2020 in the Northeast. 2016 and 2020 were highlighted using red and 

yellow lines, respectively. 
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3.2.2. Time Series Comparison 

The temporal distribution of correlations shown in Section 3.1.2 generally 

reflected the significant timescales of drought indices that potentially affect crop yield in 

the Northeast. However, a detailed comparison of the correlation of crop conditions to 

different indices during drought episodes is still needed to extract the most suitable 

timescale for each crop/timescale combination. In addition, the evolution of and 

interaction between drought indices during drought events could be revealed through a 

daily or weekly time series analysis. 

Massachusetts 

Figures 13-16 demonstrated the effects of increasing timescale on the 

responsiveness of pasture conditions to the drought indices in MA during the growing 

seasons of 2016 and 2020. Notably, as the timescale increases, the drought indices that 

pasture conditions responded to most are, in order, SSMI, EDDI, then SPI. 

Figure 13 shows the progression of 1-week drought indices and statewide pasture 

conditions. The Y-axis for EDDI was reversed to make all indices above the reference 

line indicate wet and below indicate dry. The most widely planted pasture species in the 

Northeast are Kentucky bluegrass, tall fescue, orchard grass, and white clover (Goslee & 

Gonet, 2018). Their potential root depths range from 40 cm to over 100 cm (Bush et al., 

2012; Evans, 1978; Lin, 1985). However, the effective root zone of pasture is typically 

one to two thirds of the deepest roots (Lacey, 2019). Thus, in this case, only the SSMI at 

the 10-40cm depth was shown. 
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Indices at the 1-week timescale generally fluctuate in a period of two weeks, 

reflecting the successive wetting and drying at the synoptic scale. In 2016, the area 

experienced two strong PRCP events (SPI above 1.0) in the spring, several weak wetting 

events (SPI around 0.5) in the summer, and a series of moderate wetting events (SPI 

ranging from 0.3 to 1.0) in the fall. In between these wetting events were dry periods 

highlighted by very low SPI (around -1.5) and high EDDI (greater than 1.5). Since SPI 

and EDDI showed the same drought signal (both showing wetting or drying) throughout 

most of 2016, the fluctuation of SPEI followed them well though tracking closer to SPI. 

There are several periods when SPI and EDDI showed disagreement (mostly normal SPI 

with high positive EDDI) as the SPEI tracked closer to SPI (late May, early July, mid 

August, and late October). From the SSMI trace, we see that the area’s SM started low 

(SSMI below -1.5) in the early spring but later recovered due to the two wetting events. 

The fluctuation of SSMI after March followed SPI and SPEI, though lagging by about 

one week. SSMI also showed a delayed response to SPI and SPEI regarding the amount 

of moisture. As a result of drying in late June, SSMI dropped below -2.0. However, with 

positive SPI and extremely weak E0 (EDDI less than -2.0) in early July, SSMI could not 

switch to positive before the next drying in late July. The same situation applied for 

August which eventually made SSMI remain negative until late October. For LERI, its 

fluctuation strictly followed the variation of SSMI before mid August. After that, little 

correspondence was observed between LERI and other indices. The pasture conditions 

started as good in the spring then had two major degradation events in the summer. Both 

events were accompanied by pre-existing SM deficits signaled by low SSMI. Further, the 

periods of degradation also overlapped with those of normal SPI and extra positive EDDI 
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and were accompanied by minimal values of LERI. In the fall, the condition experienced 

a slow recovery despite negative SSMI, however with positive SPI and LERI (we 

consider the 0 percentile LERI in April and October as invalid data points). 

Similarly, in 2020, a number of wetting processes throughout the year were 

separated by slightly longer drying periods, as shown by SPI and EDDI. Despite the 

strong wetting events in the spring and fall, SSMI remained below normal for most of the 

time from mid May to early October. The only exception was at the end of June, when 

SSMI became briefly positive, due to a strong wetting event. This short period was also 

accompanied by a recovery in LERI and in the pasture conditions. Again, SPEI better 

followed the variation of SPI than the other indices for the entire year; LERI only 

followed SSMI before August. The two major degradations of pasture matched the pre-

existing low SSMI (late July and late August). The late July degradation coincides with 

the disagreement between SPI (slightly wet signal) and EDDI (dry signal) that was 

accompanied by below-normal SSMI and low LERI. Given such degradations, the 

pasture conditions eventually recovered due to a strong wetting period in October.  

Figure 14 shows the progression of drought indices at the 2-week timescale. 

Compared to the 1-week time series, the dry and wet periods throughout the growing 

seasons of 2016 and 2020 can be more clearly identified with fewer drastic oscillations. 

Only three moderate wet periods are evident in 2016 (early April, early May, and 

October), four in 2020 (late March through early May, early July, early September, and 

mid October through mid November). Between these wetting periods were strong dry 

periods. As a result, almost every dry period caused the SSMI to decrease below -2.0 
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while each of the wet processes did not bring the SSMI above zero. SSMI correlates well 

with pastureland degradation from early summer through fall. However, SM deficits in 

the late spring seemed to have little effect on pasture health. For SPI and EDDI, periods 

of disagreement can also be identified at this timescale (e.g., mid August 2016 and late 

August 2020), when SPI showed near-normal PRCP and EDDI showed strong E0. In both 

periods, the SSMI were under recovery while the pastureland experienced major 

degradation. On the other hand, late April 2016, late May 2016, and late June 2020 are 

three dry periods when SPI showed strong PRCP deficit (SPI below -1.5) while EDDI 

showed moderate E0 (EDDI less than 1.0). Pasture conditions did not change significantly 

during these periods. 

Figure 15 shows the progression of the 1-month drought indices in MA during the 

2016 and 2020 droughts. The curves were slightly flattened with the dry and wet periods 

showing prolonged features. All periods when pastureland experienced degradation 

(summer 2016 and late summer 2020) can be correlated with drier-than-normal SPI and 

EDDI. Again, EDDI showed slightly better correspondence than SPI. In May 2016, when 

EDDI showed a wet signal while SPI showed dry, the condition did not change much. In 

August 2016, when EDDI showed a strong dry signal while SPI was near normal, pasture 

conditions degraded significantly. Another feature evident at this timescale is that SSMI 

appears to have lost its role in determining pasture conditions. SSMI remained below -1.0 

throughout most of 2016, but pasture conditions only started dropping after mid June. 

Additionally, the SSMI, which was consistently below -2.0 in June 2020, could not 

explain the short-lived, simultaneous improvement of pasture conditions. 
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Figure 16 shows the progression of 3-month drought indices across MA during 

the 2016 and 2020 droughts. At this timescale, all indices are further flattened relative to 

their 1- and 2-week and 1-month counterparts. SSMI at this timescale (remained below -

1.0 throughout both years) appears to have lost relationship to the timing of pastureland 

degradation. However, for SPI and EDDI, the curves generally match to pasture 

conditions. Two small discrepancies are evident in the EDDI time series: in early summer 

2016 pasture conditions dropped while EDDI was near-normal; and in late fall 2020 

pasture conditions improved while EDDI remained greater than 2.0. By contrast, the 

curve of SPI at this timescale matches pasture conditions much more closely. Almost 

every time once SPI dropped below -1.0 (late June 2016, late July 2020), pasture 

conditions also dropped. Once SPI increased above -1.0, pasture conditions either 

stopped degrading or improved. The time series of indices at the 6-month and longer 

timescales were also investigated in this study. However, due to the nature of the 2016 

and 2020 droughts, curves of these longer timescales turned out to be persistently below 

the zero-reference line and were flattened to such a degree that they demonstrated few 

variations. Therefore, their value in comparison to the change in pasture conditions were 

lost and are thus not presented here. 

Pennsylvania 

Figures 17-20 demonstrated the effects of increasing timescale on the 

responsiveness of pasture conditions to the drought indices in PA during the growing 

seasons of 2016 and 2020. The sequence of timescales of each drought index to which 
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pasture conditions responded most was similar as in MA – from shorter to longer 

timescales: SSMI, EDDI, then SPI. 

Figure 17 shows the progression of 1-week drought indices and pasture conditions 

in PA during the growing seasons of 2016 and 2020. Similar to the results for MA, 

indices at this timescale fluctuate in periods of two weeks, alternating between wetting 

and drying at the synoptic scale. Both years experienced a strong wetting event (SPI 

above 1.0) in late spring accompanied by weak E0 (EDDI less than -1.0), which increased 

the below-normal SSMI to a maximal value (0.5 for 2016 and 2.0 for 2020) in early May. 

However, SM in both years was soon depleted by the drying in late May, resulting in a 

negative SSMI throughout both summers. Despite several strong wetting events (early 

July 2016, early August 2016, mid August 2016, mid July 2020, and early August 2020) 

in both years, E0 remained above normal (EDDI greater than 0) throughout the summers. 

In the fall of both years, another wave of drying turned SSMI negative into the winter. 

Similar to MA, the progression of SPEI in both years showed a closer match to SPI than 

to EDDI. For LERI, an almost synchronized variation of LERI and SSMI can be found 

from early May to late September. This correlation was limited to early June to early 

September. For pasture conditions, periods of degradation most closely matched SSMI, 

which was persistently negative in the mid-summer. In addition, the rapid degradation in 

both years (mid July 2016 and late June 2020) were accompanied by near- or above-

normal SPI, strongly positive EDDI, and minima of SSMI and LERI. Likely due to its 

larger land area, slopes of pastureland degradation in PA were much milder and more 

prolonged than those in MA. These milder slopes further weakened the value of PRCP 
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and E0 EDDI in directing pasture conditions at this synoptic timescale regarding the 

violent oscillations of 1-week SPI and EDDI in both years. 

Figure 18 shows the progression of 2-week indices and pasture conditions in PA 

during the droughts of 2016 and 2020. The dry and wet periods mentioned above are 

evident at this timescale. Similar to the results for MA, SSMI has the closest 

correspondence to pastureland degradation. Whenever SSMI dropped below -1.0, pasture 

conditions also entered a period of degradation (mid June 2016, early September 2016, 

early November 2016, late June 2020, mid August 2020, and late September 2020). For 

EDDI, dates of maximal values (EDDI greater than 1.5) match pastureland degradation 

(late June and late July in both years). Additionally, pasture conditions improved in both 

years when EDDI showed wetting signals in the fall (early October 2016 and early 

November 2020). However, for SPI, such correspondence was not evident: 2-week SPI in 

August 2016 was repeatedly above 0.8, but pasture conditions merely stopped worsening 

instead of improving. This can also be found for early to mid August 2020 when SPI 

remained above 1.0 but pasture conditions continued to degrade. 

Figure 19 shows the 1-month indices and the pasture conditions in PA during the 

drought years of 2016 and 2020. At this timescale, all indices showed good 

correspondence to pastureland degradation. The periods in both years when degradation 

started were almost exactly when the four indices reached their first minima (maxima for 

EDDI), during mid to late June. EDDI and SSMI remained negative as pastureland 

degradation continued, so they matched more closely to pasture conditions than SPI and 
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SPEI did. As at the 2-week timescale, 1-month SPI and SPEI switched to positive in 

August of both years, but the pastureland degradation did not respond. 

Figure 20 shows the 3-month indices and the pasture conditions in PA during the 

drought years of 2016 and 2020. Similar to MA, SSMI at this timescale does not 

correspond to pastureland degradation. The 3-month SSMI in 2016 remained below -0.6 

and only decreased in late May when pasture conditions were improving. In 2020, 

pastureland degradation started when the 3-month SSMI was at its maximal (late June). 

3-month EDDI in both years also demonstrated little correspondence: pasture conditions 

started to degrade when 3-month EDDI was near normal. For 3-month SPI and SPEI, 

their pattern in 2020 also showed little correspondence to the pasture conditions. 

However, in 2016, the below-normal SPI (and SPEI) in the summer and the above-

normal SPI in October matched the pasture conditions degradation and recovery.  
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Figure 13. Time Series of 1-week drought indices (a - j) and pasture conditions (k, l) in 

Massachusetts from March to December in 2016 and 2020. 
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Figure 14. Time Series of 2-week drought indices (a - h) and pasture conditions (k, l) in 

Massachusetts from March to December in 2016 and 2020. 
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Figure 15. Time Series of 1-month drought indices (a - h) and pasture conditions (k, l) in 

Massachusetts from March to December in 2016 and 2020. 
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Figure 16. Time Series of 3-month drought indices (a - h) and pasture conditions (k, l) in 

Massachusetts from March to December in 2016 and 2020. 
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Figure 17. Time Series of 1-week drought indices (a - j) and pasture conditions (k, l) in 

Pennsylvania from March to December in 2016 and 2020. 
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Figure 18. Time Series of 2-week drought indices (a - h) and pasture conditions (k, l) in 

Pennsylvania from March to December in 2016 and 2020. 
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Figure 19. Time Series of 1-month drought indices (a - h) and pasture conditions (k, l) in 

Pennsylvania from March to December in 2016 and 2020. 
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Figure 20. Time Series of 3-month drought indices (a - h) and pasture conditions (k, l) in 

Pennsylvania from March to December in 2016 and 2020. 
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4. Discussion and Conclusion 

4.1. Discussion 

4.1.1. Correlation analysis 

This study first investigated the correlation between hay yield and different 

drought indices over the period of 1981-2020 in the Northeast and found significant 

correlations (Rmax>0.304) over much of the region. Due to the complex factors affecting 

hay yield that are not climatic in nature, a value of |R| greater than 0.5 is generally 

considered strong correlation between drought indices and agricultural production in 

many regions including the Central Plains (Peña-Gallardo et al., 2019), Northwest 

(Wurster et al., 2020), and generally across the CONUS (Lu et al., 2020). Across most 

PA, NY, and NJ counties and the southern New England states, our results for hay were 

in line with these studies, showing the strongest |R| around 0.5 for all indices. 

Large spatial variability can be found for the Rmax and its associated drought-

index timescale. In NH, ME, and several upper NY counties, the Rmax for all indices were 

either notably weaker than in other areas or insignificant. This is likely due to the uneven 

distribution of planting area within the states (Figure 4) and the different hydrologic 

conditions around the mountainous areas (Engman, 1981). Mountain snowmelt plays a 

significant role in water supplies in many regions (Qin et al., 2020; Stewart, 2009). 

Although the water cycle in the humid Northeast is driven by year-round PRCP with no 

distinct dry season, areas next to a watershed where surface water comes mostly from 



73 

 

 

mountains may still receive more influence from snowmelt, usually manifested as 

downstream processes (e.g., groundwater recharge and ecosystem feedbacks). For a 

county near mountains, hay yields may be subject to local summer PRCP and the 

snowmelt originating from nonlocal winter PRCP in the mountains, with the ratio of local 

to nonlocal PRCP remaining elusive. Since all correlation coefficients in this study were 

obtained by comparing local data only (e.g., SPI is based on PRCP filtered by local 

rainfed crop coverage), signals of the connection between hay yield and nonlocal 

snowmelt runoff were inevitably ignored. This potentially explains why counties (and 

states) surrounding mountainous areas and their main watersheds (e.g., Adirondack 

Mountains and the Hudson River) showed weaker R for all indices (Figure 6). 

The ending month of the strongest hay yield-drought index relationships also 

exhibited significant spatial variability. Though diverse, the combination of timescales 

and ending months across the Northeast were limited to four types: 1 week to 1 month 

ending in spring; 2 weeks to 3 months ending in summer; 3 to 6 months ending in fall; 

and 1 to 9 months ending in the preceding winter (Figures 7 to 8 and Table 1). Although 

these combinations generally pointed to the late spring and late summer (except the 

winter type) as displaying strong correlations, it is possible that factors not considered in 

this study (e.g., soil properties, groundwater levels, cultivation strategies) played roles in 

determining the timescales associated with the Rmax. Similar to the findings of previous 

studies on other crops (Lorenzo-Lacruz et al., 2010; Pasho et al., 2011; Vicente-Serrano 

et al., 2013; Wurster et al., 2020), we see that these factors may alter the resilience of hay 
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yield against water deficit (or surplus) either by compensating for the SM anomaly or 

directing the physiological adaptations of hay. 

This study used SPI and EDDI separately to investigate the individual effects of 

PRCP and E0 on hay yield across the Northeast. Both climate drivers were shown to be 

closely related to hay yield but with the R being opposite in sign, with the Rmax of EDDI 

being negative while that of SPI was positive in most regions (high E0 leads to low yield 

and high PRCP leads to high yield). Such patterns revealed that hay yield in the region is 

more constrained by drying processes and extremes like drought than of wetting and 

flood. Many previous studies have been focused on PRCP using SPI and SPEI to 

characterize their sensitivity regarding crop yield (Peña-Gallardo et al., 2019; Wang et 

al., 2014; Zipper et al., 2016). As a drought index that simultaneously incorporates the 

variation in PRCP and E0, SPEI has been found to be more representative than other 

indices in connecting crop production with the climate drivers (Beguería et al., 2014; 

Peña-Gallardo et al., 2018; Vicente-Serrano et al., 2012). However, this study found that, 

across the Northeast, the correlation between hay yield and SPEI was similar to that of 

SPI. This is most likely because PRCP greatly exceeds E0 in the humid hydroclimate of 

the Northeast (annual average PRCP being 46 inches while E0 being 25 inches; (NRCC, 

2011)), which leads to anomalies in absolute values of PRCP being much more 

significant than those of E0. In the development of SPEI, the input variable is the 

difference of PRCP minus E0 (Vicente-Serrano et al., 2010). Therefore, regarding long-

term time series in the Northeast (forty years in this study), the signal of variations in 

PRCP in determining SPEI are much greater than those in E0, leading to the similarity in 
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Rmax between SPEI and SPI. However, the influence of E0 on the hay yield was evident as 

EDDI showed R at a similar magnitude to SPI. The only difference being that the Rmax 

for SPI tended to have longer timescales than EDDI. These results highlighted the value 

of EDDI in impacting hay yield during dry periods when PRCP is low. 

We also examined the full distribution of R at each timescale and ending month 

across the Northeast. The R shown for all indices at the 1- to 3-month timescales ending 

in the late summer are generally strong (again, R for EDDI is negative while others are 

positive). The response of hay yield to dry anomalies within such a time window is 

related to the changes in SM, which can be driven by the balance of PRCP and E0 during 

summer (Hunt et al., 2014). If this seasonality coincides in time with the key 

phenological stages of crops, the response of yield to drought is higher (Araujo et al., 

2016; Zipper et al., 2016). Hay yields in PA and MA appeared to conform to this pattern 

with key phenological stages centered around the late summer. Besides, the 1-week to 1-

month timescales ending in late spring and 6 to 9-month ending in late fall also have 

considerable values of R for all indices. These high-value areas of R outlined an overall 

right-tilting (i.e., short timescales ending earlier and long timescales ending later in the 

year) trend in the distribution graph, highlighting the hay yield responding positively to 

PRCP and SM while negatively to E0 throughout the growing season. It can be presumed 

that, for different areas in the Northeast, R within different time windows were higher 

than in summer due to the diverse hydrological conditions and planting strategies. This 

may also explain the spatial variability of the combination types (timescales and ending 

month) associated with the Rmax. In addition to the overall trend, the timescales associated 
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with high values of R were found to be shorter for EDDI and SSMI than for SPI and 

SPEI. This is in line with other studies that found that crop production tends to respond to 

PRCP at longer timescales but to E0 and SM at shorter timescales (Hunt et al., 2014; 

Wurster et al., 2020; Yamoah et al., 2000). Despite the signals indicating drought, some 

opposite R indicating water surplus can also be found with smaller magnitudes than 

drought signals. Other studies have attributed the response of crop yield to positive E0 

and negative PRCP anomalies across the CONUS to poor soil drainage (Lobell & Asner, 

2003; Wurster et al., 2020; Zipper et al., 2016). In the case of the Northeast, this issue is 

of particular interest as flooding is also common in the region. The opposite response to 

drought indices (wetting as opposed to drying) was evident in areas where the flooding in 

late spring could be disastrous to the hay yield. For example, several adjacent counties in 

western NY showed positive Rmax for EDDI at the 1- to 2-week timescale ending in 

spring, indicating that increased E0 could alleviate the waterlogging during the period and 

thus increase the hay yield. 

We also examined the correlations between hay yield and SM at different depths 

across the Northeast. Similar to the results for other indices, the overall R for all three 

layers of SSMI were strong (strongest |R| > 0.5) except for those counties and states 

neighboring mountainous regions. The temporal distribution of R in PA and MA for all 

SSMI showed a similar pattern to that of EDDI (with opposite signs) and was centered 

around 1-week to 3-month timescales ending in the summer. Such timescales are 

generally shorter than those for SPI and SPEI. As an essential water availability factor for 

crop development during the key phenological stages (Barnabás et al., 2008; Ramadas & 
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Govindaraju, 2015), SM anomalies impose almost immediate and direct physiological 

impacts on crops. So does E0, which can rapidly deplete SM during heat waves (Beguería 

et al., 2014). However, insufficient PRCP must persist for some time before it is reflected 

in reduced SM to affect crop development. Therefore, compared to EDDI and SSMI, SPI 

has relatively longer timescales when associated with hay yield. In addition, for SSMI at 

different depths, the Rmax between surface SSMI and hay yield was significantly greater 

than that of deeper SSMI. This is in line with the effective rootzone depth for hay which 

is from 0 to 40 cm (Efetha et al., 2009; Irmak et al., 2007), corresponding to the 0-10 cm 

and 10-40 cm levels we examined. This pattern was also confirmed by the temporal 

distribution of R in PA and MA, which was similar for all depths, with stronger R in the 

shallow layers. 

4.1.2. Time Series comparison 

In most New England states, pasture conditions during the droughts of 2016 and 

2020 were the worst in the last 25 years. Conditions in both years began as average in the 

spring, but experienced severe declines in the summer. This decline was also seen in PA. 

It corresponds well in time with the drought in the Northeast in both years indicated by 

USDM. This study selected MA and PA to compare the progression of pasture conditions 

in 2016 and 2020 with the contemporaneous time series of drought indices. Different 

timescales of drought indices were examined to identify the time required for drought 

signals in each climate driver to accumulate to impact pasture conditions. 
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Comparison to the SSMI showed that pasture conditions were most responsive to 

the short-range SM anomalies (1- to 2-week timescales in MA and 1-week to 1-month 

timescales in PA), the component directly related to the plant water use. Within these 

timescales, the pasture conditions correspond closely to the fluctuation of SSMI. It is 

worth noting that SSMI at these timescales was above normal in late spring in both years, 

which can be corroborated by the improvement of condition during the same time. This 

indicates that the impact of drought on pasture in these two years was limited to summer 

and fall. The above-normal SSMI was unavailable at longer timescales, by which SSMI 

was consistently below normal due to the drying anomalies throughout the year. When 

comparing SSMI to SPI and EDDI at these short timescales, we identified a clear 

response of SSMI to both, which is most likely due to the forcing of PRCP and E0 at 

synoptic scales. This response has a time lag such that variation in SSMI is around one 

week behind that in SPI and EDDI. This time lag effect is common between SM and 

meteorological forcings due to the memory of soil (Koster & Suarez, 2001; W. Wu & 

Dickinson, 2004). It lengthens the response time of pasture conditions to short-term 

anomalies in SPI and EDDI. 

At the 1-week to 1-month timescales in PA and MA, SPI and EDDI showed 

mostly opposite trends in 2016 and 2020. This is expected, as wet weather (high PRCP) 

is often simultaneously associated with low E0 (vice versa for dry weather). However, 

several exceptions were also found when high EDDI was accompanied by normal or high 

SPI. In these cases, pasture conditions continued declining when above-normal E0 

occurred with normal PRCP but stopped declining or started improving when E0 and 
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PRCP were both strong, regardless of SM anomalies. This could be a coincidence (two 

years at two states represents a small sample size) caused by the mixing of signals as 

pasture conditions may respond to PRCP and E0 at different, longer timescales. If not, 

one assumption would be that the short-term (1- to 2-week timescale) extra PRCP during 

periods of high E0 may quickly be consumed in the plant water use to improve crop 

conditions and thus fail to cause sufficient changes in SM. However, this assumption was 

rejected because the SPEI time series almost perfectly followed the SPI curve in both 

years and both states, which indicated that the high E0 only offset a small fraction of the 

PRCP in terms of water amount. However, using EDDI alone still has value in tracking 

pastureland degradation during drought. Of all the indices at the timescales of 2-week to 

1-month, dry signals in EDDI can be best fit to the pasture conditions. This is most likely 

because E0 can directly lead to increased ET which can deplete the SM and thus 

introduce a more immediate physiological response on pasture conditions than PRCP 

(Wurster et al., 2020). SPI, on the other hand, fits best to pasture conditions at timescales 

of 1 to 3 months. As noted, SM during the late spring in both years was above normal. In 

this case, the subsequent deficit of PRCP may be offset by the residual SM excess in the 

early summer, which may lead to pasture conditions lagging the impact of PRCP as seen 

in SPI (Sánchez et al., 2016; Zhao et al., 2018). The fundamental reason for this delay is 

that the lack of PRCP can only indirectly reduce SM through accumulation over time and 

thus takes longer to force a pasture response. For timescales longer than 3 months, only 

the 6-month SPI of 2016 in PA showed good correspondence with pasture conditions. At 

such longer timescales, some indices showed temporal discrepancies relative to 

pastureland degradation; some were flattened to be consistently below normal throughout 
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the years due to the long-term dry anomalies. In general, all drought indices at timescales 

longer than 6 months failed to show any correspondence with pasture conditions in 2016 

and 2020. 

Specifically for the 1-week timescale, LERI showed dry anomaly below the 50th 

percentile for most of the summer for both years in MA and PA. The low LERI in the 

summers were in the same time windows as the pastureland degradation. This highlights 

the potential use of LERI in signaling the impact of drought on pasture health. With the 

exception of MA after August, all LERI curves correlated well with 1-week SSMI in both 

states and both years. In summary, every decline and increase in LERI corresponds to a 

simultaneous variation of SSMI. Such a degree of correspondence was seldom found 

when comparing LERI to SPI or EDDI. This suggests that, in 2016 and 2020, especially 

during the pasture’s pre-fall growing season, the variation of ET was more constrained by 

changes in SM than in PRCP or E0. This is in line with the moisture-limited situation in 

the complementary relationship (CR) between ET and E0 (see section 2.1.1, Figure 3; 

(Bouchet, 1963)), as SM becomes the major factor limiting ET during sustained drought. 

For both states in both years, the moisture-limited situation reflected by such a SM-ET 

coupling was already in place before pasture degradation started. This is mostly likely 

due to the poor SM condition in the early springs of both years and explains why little 

synchronous variation of LERI and EDDI was found (year-long moisture-limited for 

both). In drought, even humid areas like the Northeast can have periods of water 

limitation and thus act like arid areas. The validity and applicability of the CR have been 

tested for the arid and semi-arid areas across the US (M. T. Hobbins et al., 2001, 2004; 
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Huntington et al., 2011). The CR is also one of the key land-atmosphere interactions that 

formed the physical basis for EDDI (M. T. Hobbins et al., 2016). This functionality of 

EDDI was further confirmed in terms of drought impacts on crop conditions by our 

results. In both years and both states, several periods with SPI showing normal or wet 

signals were accompanied by positive EDDI (e.g., early July and mid August 2016 in 

MA, late July 2016 and late June 2020 in PA). LERI and SSMI during these periods 

either showed below normal or minimum values. Given that SPI and EDDI at the 1-week 

timescale almost always showed a similar wet/dry signal, the positive EDDI is most 

likely due to the mechanism suggested by CR. In moisture-limited situations, the energy 

that would have been used for ET was released from the surface as sensible heat. This 

interacts with the depressed vapor pressure caused by the lack of ET leading to elevated 

E0. It is worth noting that these periods coincide with the most severe stages of 

pastureland degradation. We speculate that the pre-existing SM deficit only provided the 

premise of inadequate water supply, while it was this ET-E0 dynamic that triggered the 

degradation process. Given the resilience of different crop types against drought 

(apparently low for pasture), this finding would shed light on when to expect a decline in 

crop conditions under sustained SM deficit or pre-existing drought. 

4.2. Conclusion 

Based on this study we can conclude the following: 

i) Clear, strong connections were identified between the multi-decadal crop 

yield record and the drought indices representing PRCP, E0, and SM in most areas of the 

Northeast. 
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ii) Among the strongest connections are signals indicating more PRCP brings 

more yield while higher E0 causes less yield (and vice versa). This indicates that drought 

forcing is still the primary climatic factor affecting crop yields in the Northeast, 

especially during summer and fall despite the humid nature of the region. 

iii) These connections showed substantial spatial and temporal variability in 

the Northeast. For example, crop yield tends to have a weaker response to the local 

hydroclimatic driving fluxes (PRCP, E0, and ET) and state (SM) in areas near mountain 

drainages. The impact of wet anomalies (e.g., excess PRCP and low E0) in the springs 

was also shown by drought indices. Though less than for drought, these wet anomalies 

hindered crop yield, too. 

iv) Different climate drivers affect crop conditions at different timescales. 

2016 and 2020 were the worst two years for crop conditions on record in most 

Northeastern states. In both years, the drought-driven pastureland degradation was best 

attributed to, respectively, one to two weeks of SM deficit, two weeks to one month of 

elevated E0, and one to three months of PRCP deficit. All these timescales outlined a 

critical period for pasture regarding drought, which is about one to two months starting 

from early summer. The exact numbers vary for different crop types with different 

resilience (e.g., hay yield responded to two weeks to three months of elevated E0, and 

three to six months of PRCP deficit). One thing in common is that, when impacting crop 

conditions during drought, the timescales of E0 always appeared shorter than that of 

PRCP. Such distinctions highlighted the necessity and importance of using multiple 

indices and timescales for drought monitoring. 
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v) As a drought index that was repeatedly proven to correlate better with 

vegetation production than SPI, SPEI showed highly similar results to SPI in this study. 

This is mostly due to the humid hydroclimate of the Northeast where the magnitudes of 

PRCP anomalies tend to dominate E0 anomalies. 

vi) In 2016 and 2020, the variation of ET matched most closely to that of SM, 

suggesting moisture-limited situations throughout both years. In the presence of SM 

deficits, the lack of ET was usually accompanied by enhanced E0 in both years, 

regardless of PRCP. Their co-occurrence suggests that this interaction most likely 

triggered the degradation of pastureland during the drought.  
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