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Abstract: An unfolding of a polyhedron is a cutting along its surface such that
the surface remains connected and it can be flattened to the plane without any
overlap. An edge-unfolding is a restricted kind of unfolding, we are only allowed
to cut along the edges of the faces of the polyhedron. A polycube is a special case
of orthogonal polyhedron formed by glueing several unit cubes together face-to-
face. In the case of polycubes, the edges of all cubes are available for cuts in
edge-unfolding. We focus on one-layer polycubes and present several algorithms
to unfold some classes of them. We show that it is possible to edge-unfold any one-
layer polycube with cubic holes, thin horizontal holes and separable rectangular
holes. The question of edge-unfolding general one-layer polycubes remains open.
We also briefly study some classes of multi-layer polycubes.
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Introduction
An orthogonal polyhedron is a polyhedron whose edges are parallel to the Carte-
sian axes and whose faces meet at right angles. Each face of an orthogonal
polyhedron is parallel to one of the Cartesian coordinate planes. A polycube is
a special case of an orthogonal polyhedron. It is formed by glueing several unit
cubes together by whole faces. Polycubes are three-dimensional generalizations
of planar polyominoes. A one-layer polycube is a polycube of height 1. In other
words, the centers of all unit cubes are in one plane. One-layer polycubes with
non-zero genus have some holes in them. If the hole consists of only one missing
unit cube, we call this hole cubic.

An unfolding of a polyhedron is a cutting along its surface such that the surface
remains connected and it can be flattened to the plane without any overlap. We
usually only care about interior overlap and there may be touching edges after
unfolding to the plane. An edge-unfolding is a restricted kind of unfolding. In
this case, we can only cut along the edges of the faces of the polyhedron. It is
quite easy to show that there exist non-convex orthogonal polyhedra that cannot
be edge-unfolded [8]. We are mostly interested in edge-unfolding of polycubes.
In the case of polycubes, the edges of all cubes are available for cutting. This
means that we can cut the faces of our polyhedron along the edges of the 1 × 1
grid. Different kinds of unfolding are discussed in greater detail by O’Rourke [7]
[9].

Definition. Let P be a polycube. We define the face graph F (P) as a graph
whose vertices are the squares of the surface of P . Two vertices are connected by
an edge if the corresponding squares share an edge.

Unfolding a polycube P is equivalent to finding a suitable spanning tree of
F (P). Given a spanning tree of F (P), there is a unique way to flatten P to the
plane without cutting the spanning tree.

Definition. Let P be a polycube. We define the cube graph C(P) as a graph
whose vertices are the cubes of P . Two vertices are connected by an edge if the
corresponding cubes share a face.

Unfoldings of many classes of orthogonal polyhedra have been studied; for
example rectangle-faced orthostacks [2], orthotubes [1] or Manhattan towers [5].
There are also known edge-unfoldings of special cases of polycubes, such as well-
separated orthotrees [4]. Otrhotrees are polycubes whose cube graph forms a
tree. We briefly discuss one-layer orthotrees in Section 1.8 and show that it is
possible to unfold them into a polygon of height 3.

Theorem 1. It is possible to edge-unfold any one-layer orthotree such that the
produced polygon has height 3.

One-layer orthogonal polyhedra with arbitrary genus g can be edge-unfolded
using only 2(g − 1) additional cuts [3]. Kiou, Poon and Wei proved that it is
possible to edge-unfold one-layer polycubes with sparse cubic holes [6], which are
one-layer polycubes with cubic holes such that each connected component in a
column contains at most one hole. We generalize this result in Section 1.5 and
present an algorithm for unfolding general one-layer polycubes with cubic holes.
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Theorem 2. It is possible to edge-unfold any one-layer polycube with cubic holes.

In Sections 1.6 and 1.7 we further generalize this approach to other classes of
one-layer polycubes.

Definition. A hole is called thin horizontal if it is a rectangle of height 1.

Theorem 3. It is possible to edge-unfold any one-layer polycube with thin hori-
zontal holes.

Definition. We call a set of rectangles separable if it satisfies the following prop-
erty. If we extend any edge of any rectangle to a line, it does not cut any other
rectangle.

Theorem 4. It is possible to edge-unfold any one-layer polycube with separable
rectangular holes.

Note that cubic holes are both thin horizontal and separable rectangular. We
study quite an opposite kind of polycubes in Section 1.4.

Definition. We say that a hole is wide if it satisfies the following property. If
there is a missing cube with a center at coordinates [x, y], then there is at least
one missing cube at coordinates [x + 1, y], [x − 1, y] and at least one missing cube
at coordinates [x, y − 1], [x, y + 1].

Theorem 5. It is possible to edge-unfold any one-layer polycube with wide holes.

Definition. A set of points in the plane is called y-convex if its intersection with
any vertical line forms a line segment.

In Section 1.9 we present an algorithm to unfold any polycubes with y-convex
holes and at most one hole in every column. This time we use a different approach
than for the other classes. Internal boundary of every hole remains connected even
after the unfolding.

Theorem 6. It is possible to edge-unfold any one-layer polycube with y-convex
holes and at most one hole in every column.

Multi-layer polycubes
We also describe some algorithms for multi-layer polycubes. In particular, we
show that it is possible to unfold stacks of one-layer orthotrees or paths given
some additional constraints.

Definition. A treestack is a polycube whose every layer (set of cubes with the
same z-coordinate) forms an orthotree.

Definition. A pathstack is a polycube whose every layer forms an orthopath.

We will discuss this in more detail in Sections 2.1 and 2.2. The classes of poly-
cubes we unfold contain polyhedra of arbitrary genus. Edge-unfolding polyhedra
with high genus is in general a very difficult problem. An example of high genus
multi-layer polycubes that can be edge-unfolded are level 1 Menger polycubes
[10].
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1. One-layer polycubes

1.1 Definitions
Let us consider a one-layer polycube P placed in the xy plane such that the
centers of all cubes have integer coordinates. The exact position of the polycube
is not important; we only need to be able to index the cubes by coordinates. By
a cube with coordinates x, y we mean a cube whose center has such coordinates.
Let us denote the set of holes H. A polycube P has a top base T and a bottom
base B. There is also an external boundary E and several internal boundaries
I = {Ih | h ∈ H}, each corresponding to some hole h. The boundaries are
formed by cyclic stripes of unit squares.

Since we are only interested in one-layer polycubes, we will display them as
2-dimensional objects. In all of the figures, we are looking at the polycube from
above, which means that we see the top base, see Figure 1.1. With respect to
that, we will be using terms such as “left”, “right”, “up” and “down” to describe
directions. For example, the boundary of a hole consists of four not necessarily
connected parts: left, right, top, and bottom.

(a) Polycube seen from
above.

(b) Polycube as a 3-dimensional
object.

Figure 1.1: Example of a polycube.

We require the surface of P to be simple, that is, every edge of P is incident
with exactly two 1 × 1 squares on the surface of P . The holes are not allowed to
“touch” each other by corners nor to “touch” the external boundary, examples of
such disallowed configurations are in Figure 1.2.

(a) Example of holes
touching.

(b) Example of a hole
touching the external
boundary.

Figure 1.2: Examples of polycubes that are not allowed.

1.2 Algorithms
We will describe several algorithms for unfolding one-layer polycubes. Let n de-
note the number of unit cubes that form P . All of the presented algorithms can
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be implemented in O(n) time if we are provided with a reasonable representa-
tion of the polycube as input (for example a sorted list of all unit cubes). We
mainly focus on the existence of the unfolding and the existence of such an al-
gorithm is more important to us than the exact implementation. However, an
implementation of all the presented algorithms should be mostly straightforward.

In many of the algorithms, it might be more natural to focus at the spanning
tree of F (P) we are constructing rather than at the actual cuts.

1.3 No holes
Let us start with a simple example to get familiar with the techniques we will be
using. Without holes, we only need to unfold B, T and E. The algorithm starts
with the external boundary E. The external boundary can be unfolded into a
single stripe of height 1. Let us place this stripe horizontally in the plane. We
do not cut B and T . We simply connect them to the unfolded E, each being
placed in a different half-plane. They are connected to E by the cube with the
lowest y coordinate (if there are more of them, we can choose one arbitrarily).
The resulting shape is connected, and it is easy to see that there are no overlaps.
See Figure 1.3 for an example of an unfolding of a polycube without holes.

Figure 1.3: Unfolding of a one-layer polycube without holes.

Note that this is an edge-unfolding in the standard sense, we only used cuts
along the faces of the polyhedron. We did not use any additional cuts along the
edges of the unit cubes.

1.4 Wide holes
Definition. We say that a hole is wide if it satisfies the following property. If
there is a missing cube with a center at the coordinates [x, y], then there is at
least one missing cube at the coordinates [x + 1, y], [x − 1, y] and at least one
missing cube at coordinates [x, y − 1], [x, y + 1]. In other words, there are no
interior points of two parallel faces of the same hole with distance 1.

See Figure 1.4 for an example of wide holes. We can unfold one-layer polycubes
with wide holes using the following algorithm. We start by unfolding B, T and E
in the same way as above in Section 1.3. Due to the wideness of the holes, there
is a lot of space inside B and T . For every hole h, we will unfold Ih in two steps.
In the first step, we unfold the top and the bottom faces of Ih. In the second
step, we unfold the left and the right faces of Ih. In the first step, we unfold parts
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(a) Examples of wide holes. (b) Examples of non-wide holes.

Figure 1.4: Examples of wide and non-wide holes.

of Ih into the top base T , inside the holes. There will be no overlap because the
holes are wide. The second step is almost the same, the only difference is that
we use the bottom base B instead. Figure 1.5 shows an example of an unfolding
produce by this algorithm.

Figure 1.5: Unfolding of a one-layer polycube with a wide hole.

Again, we used only cuts along the edges of P .

1.5 Cubic holes
The algorithm for unfolding one-layer polycubes with cubic holes is slightly more
complicated; we will need to cut T and B. Note that cutting T or B is necessary
to unfold even a single cubic hole. The idea is similar to the algorithm in Section
1.4, we will unfold some parts (the top and the bottom faces) of the internal
boundaries by connecting them to T and some of them (the left and the right
faces) by connecting them to B.

The beginning is still the same, we unfold the external boundary E. Now, let
us color the squares of T using orange and red. The squares whose y-coordinate
is 0 or 1 modulo 4 will be orange, the remaining ones will be red. In other words,
we are coloring pairs of rows orange and red. Example of such coloring can be
seen in Figure 1.7. Consider the connected components formed by orange or red
squares, that would be formed by cutting edges separating squares of different
colors. The leftmost and the rightmost square of every connected component
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must be incident to E. This is because the holes are cubic; they are not large
enough to separate the components.

Figure 1.6: Example of a one-layer polycube with cubic holes.

(a) Coloring of the top base. (b) Coloring of the bottom base.

Figure 1.7: Coloring of the one-layer polycube with cubic holes in Figure 1.6.

Figure 1.8: The first step of unfolding the polycube in Figure 1.6.

We will connect all the orange components to the external boundary on their
left side by their leftmost square. Analogously every red component will be
connected to the boundary by its rightmost square. An example of the current
stage of unfolding is shown in Figure 1.8. Quite simple casework shows that there
is a distance of at least 2 between any pair of connected components after placing
them in the plane next to unfolded E. Suppose that there are two stripes that
have a distance of less than two. There are two cases:

1. Both of the stripes have the same color. We can suppose without loss of
generality they are orange. Now consider where these stripes come from in
the polycube. They either come from the same pair of rows or a different
pair of rows. In the first case, the distance would have to be at least 3, in
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the second case, it would have to be at least 2, a contradiction. See Figure
1.9 for an illustration.

2. The stripes have different colors. Without loss of generality, we can assume
that the left stripe is orange. Let us again consider where those stripes were
before the unfolding. If they don’t come from the neighboring pair of rows,
the distance would obviously have to be at least 4. There are two remaining
(symmetric) cases: the red rows could be either above or below the orange
rows. In both of those cases, the distance is at least 2, contradiction again,
see Figure 1.10.

(a) Suppose the dis-
tance of two orange
stripes is at most 1.

(b) In the first case,
the distance after un-
folding must be at
least 3.

(c) In the second case,
the distance after un-
folding must be at
least 2.

Figure 1.9: Two orange stripes cannot be too close to each other.

(a) Suppose the dis-
tance of an orange
and red stripe is at
most 1.

(b) In the first case,
the distance after un-
folding must be at
least 2.

(c) In the second case,
the distance after un-
folding must be at
least 2.

Figure 1.10: Two stripes of different colors cannot be too close to each other.

Now, we will take every left or right face of the internal boundaries and connect
it to the only square of the already unfolded top base to which it is incident. There
are no overlaps because the connected components have a distance of at least 2
and there is enough space for two unit squares between them. See Figure 1.11.

We repeat the process for the bottom base B. This time, we color pairs of
columns instead of rows. This base and parts of holes are unfolded to the opposite
half-plane, so there will be no overlaps with previously placed parts.

1.6 Thin horizontal holes
The approach in Section 1.5 can be quite easily generalized to holes of dimensions
1 × k, but only if all of them are oriented in the same way (either all horizontal
or all vertical). In this section, we assume that all holes are horizontal.
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Figure 1.11: Unfolding of the one-layer polycube with cubic holes in Figure 1.6.

Definition. A hole is called thin horizontal if it is a rectangle of height 1.

(a) Example of a polycube with thin hori-
zontal holes. (b) Coloring of the top base.

Figure 1.12: Coloring of a one-layer polycube with thin horizontal holes.

Let us start by unfolding E, T and the longer (horizontal - top and bottom)
faces of holes in the same way as in Section 1.5. The Figures 1.13 and 1.14 show
the first two steps of the algorithm.

Figure 1.13: The first step of unfolding the polycube in Figure 1.12.

It remains to unfold the bottom base B and the short (left and right) faces
of the holes. We cannot do that in the same way as before, because if we cut
B into stripes of width 2, they would not necessarily be incident to the external
boundary. We can instead connect one face of each hole h ∈ H to one of the
two already unfolded faces of Ih. In case of holes in the orange stripes, we unfold
the right face, in case of holes in the red stripes, we unfold the left face. Let us
look at the already unfolded horizontal faces of Ih. One of the faces is unfolded
“inside” of a stripe, but the other is “outside”. For example, consider a hole in
the lower row of a red stripe: the top face of this hole is unfolded “inside” the red
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Figure 1.14: The second step of unfolding the polycube in Figure 1.12.

stripe while the bottom face is unfolded “outside” of an orange stripe. The face
unfolded outside has empty space around it and we can connect the one face of
Ih here (this face is only one 1 × 1 square). There cannot be an overlap - we are
outside a stripe, so there could only be a face of some hole or external boundary.
External boundary cannot be there because it has distance at least 1 from all
holes (and it also lies in the opposite direction than the one in which we place
the face). The same is true for holes, they are at a distance of at least 1 from
each other, so the unfolded longer faces are not next to each other. Two faces
unfolded in this step cannot overlap either because they are unfolded in the same
direction.

The last part is the bottom base B and exactly one face of every hole. This is
rather simple since all the remaining faces are just 1 × 1 squares. We can unfold
the remaining 1 × 1 faces and B in a similar fashion to unfolding wide holes 1.4.
See the Figure 1.15 for an example of the last steps.

Figure 1.15: Unfolding of the polycube in Figure 1.12.

1.7 Separable rectangular holes
A slightly more general class of one-layer polycubes than the polycubes with cubic
holes can also be unfolded using a similar algorithm.

Definition. We call a set of rectangles separable if it satisfies the following prop-
erty. If we extend any edge of any rectangle to a line, it does not cut any other
rectangle (it does not contain an interior point of any other rectangle).
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See Figure 1.16 for an example of separable rectangles. One-layer polycubes
whose holes are separable rectangles can be unfolded using an algorithm very
similar to the one in Section 1.5. Note that cubic holes are trivially separable, thus
one-layer polycubes with cubic holes can also be unfolded using this algorithm.

(a) Example of separable rectangles. (b) Example of non-separable rectangles.

Figure 1.16: Examples of separable and non-separable rectangles.

Figure 1.17: Example of a one-layer polycube with separable rectangular holes.

Let us extend the edges of all rectangles that are parallel to x-axis to lines.
This creates several horizontal stripes. Analogously, we can create vertical stripes.
Instead of coloring pairs of neighboring rows or columns of T and B as in Section
1.5, we color pairs of neighboring horizontal stripes. You can see an example of
such coloring in the Figure 1.18.

(a) Coloring of the top base. (b) Coloring of the bottom base.

Figure 1.18: Coloring of the polycube in Figure 1.17.

The rest of the algorithm is the same as in Section 1.5. We consider connected
components of both colors. The leftmost and rightmost squares of connected
components are incident to E and will be connected on the left or right side
depending on their color. The distance of any pair of stripes is again at least
2 for the same reasons as in the algorithm for cubic holes. We omit the case
analysis this time. We then unfold the horizontal and vertical faces of internal
boundaries separately. Since the distance between neighboring stripes is at least
2, there are no overlaps. Figures 1.19 and 1.20 show the steps of this algorithm.
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Figure 1.19: The first step of unfolding of the polycube in Figure 1.17.

Figure 1.20: Unfolding of the polycube in Figure 1.17.

1.8 Orthotrees
Definition. Polycube P is called an orthotree if the cube graph C(P) is a tree.

The figures in this section do not contain boundaries between squares. This
way it is easier to see which squares were connected in the polycube before un-
folding.

Although the question of unfolding general orthotrees is open, it is quite easy
to unfold a one-layer orthotree. Since one-layer orthotrees have no holes, they
can be unfolded using the algorithm presented in Section 1.3, you can see this
in Figure 1.21. However, we can do something stronger. It is possible to unfold
any one-layer orthotree into a stripe of height 3. In other words, the difference
of y-coordinate of the highest and lowest points of the resulting polygon will be
exactly 3.

The algorithm starts, as always, by unfolding the external boundary E into
a single horizontal stripe. We will only focus on the top base T , the bottom
base B can be unfolded symmetrically. Almost all squares of the top base are
incident to the external boundary. Let us connect each of them to one of the
squares of the already unfolded external boundary. The square of E to which the
square of T will be connected is chosen as the first available in this order: left,
bottom, top, right. It remains to unfold the squares not incident to the external
boundary, these are the top faces the of cubes with degree 4 in C(P). Each will
be connected to its right neighbor. It is easy to see that the resulting unfolding
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Figure 1.21: Example of a one-layer orthotree and unfolding produced by the
algorithm from Section 1.3.

will have height exactly 3. See Figure 1.22 for an example.

Figure 1.22: Unfolding of the polycube in Figure 1.21 into a stripe of height 3.
We started at the top-left corner of the polycube.

Let us show that there is no overlap. The only squares that could overlap with
something are the ones which are not incident to E. Consider one such square
at the coordinates [x, y] before unfolding. This square is connected to its right
neighbor, which has the coordinates [x + 1, y]. There must be no square at the
coordinates [x+1, y−1], since the polycube is supposed to be an orthotree. Hence,
the square at the coordinates [x+1, y] is connected to E by its bottom edge. The
only possible overlap may occur with the square at coordinates [x, y −1] if it were
connected to E by its right edge. However, there is no square at the coordinates
[x − 1, y − 1], and thus the square at the coordinates [x, y − 1] is connected to E
by its left edge and there is no overlap. The situation is depicted in Figure 1.23.

Figure 1.23: If there is a square not incident to E on coordinates [x, y] (middle of
the cross), there are no squares on coordinates [x−1, y −1] and [x+1, y −1]. The
edges connecting squares of T to the boundary E in the unfolding are highlighted
in red. The squares without cubes are crossed out.

Note that not all one-layer polycubes are unfoldable into a stripe of height 3.
An example of such a polycube is a one-layer polycube whose base is a square
7 × 7, let us denote it by S7.

Theorem 7. It is impossible to unfold the polycube S7 into an orthogonal polygon
of height at most 3.

Suppose that there exists an unfolding of S7 into a stripe of height 3. Let m
be the middle square of the top base. Let H denote the horizontal faces of E and
let V denote the vertical ones. Let us say that a square touches H if it shares an
edge with a square of H or is contained in H itself; analogously for V .
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Figure 1.24: The top face of S7 with the middle square highlighted.

Now consider the subsets of the boundary of S7 with the following property.
The subset contains m, is connected after cutting and contains at least one square
touching V and at least one square touching H. Let us call the smallest such
subset C. C must contain at most one square that touches V or at most one
square that touches H. If C contained at least two squares touching H and V ,
it could not be the smallest one with the property mentioned. Suppose that C
contains at least two squares touching H and V . Since C is connected, we can
consider a spanning tree S ⊆ F (S7) on the squares of C. We can remove one
of the leaves different from m of the spanning tree S (the tree obviously has at
least two leaves) from C and it will still satisfy all the required properties, a
contradiction.

Figure 1.25: Examples of what can C look like on the band. The dashed lines
are connected to each other.

Let us without loss of generality assume that C contains only one square
touching V . This means that C does not contain any square of V , if it did, it
would have contained at least two squares touching V . C must therefore contain
only squares from T , B and H. T , B and H together form a cyclic band of width
7. C must contain the middle square of T , exactly one square at the boundary of
the band, and at least one square at the top or bottom of T . C has both height
and width at least 4 in the band. The unfolding from the band to the plane does
not change width at all. The height after the unfolding clearly is at least 4, we
can consider the shortest path from m the the top or bottom edge of T . See
examples of C in Figure 1.25.
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1.9 Y-convex holes
Definition. A set of points in the plane is called y-convex if its intersection with
any vertical line forms a line segment.

In this section, we will use slightly different methods to unfold polycubes
with y-convex holes that contain at most one hole (possibly consisting of multiple
squares) in every column. See Figure 1.26. Our approach will be slightly similar
to the algorithm used by Kiou, Poon, and Wei [6].

Let us start by unfolding the top base T , the bottom base B will be unfolded
in the same way. We will color the top base orange and red in the following way.
We consider connected components in every column. Every component is incident
to E either at the top or at the bottom because the holes are y-convex and there
is at most one hole in every column. We will color the components incident to E
at the bottom orange and the remaining components red (all of them are incident
to E at the top). See Figure 1.26 for an example of this coloring.

(a) Example of a one-layer poly-
cube with y-convex holes and with
at most one hole in every column.

(b) Colored components in the top
base.

Figure 1.26: Polycube and coloring of the top base.

The algorithm starts by unfolding E, T and B; the internal boundaries will
be connected later. We start by unfolding E to a horizontal stripe. Every orange
connected component in every column will be connected to E by its bottom and
every red component by its top. The result is depicted in Figure 1.27.

Figure 1.27: The first step of unfolding the polycube in Figure 1.26.

In the second step, we unfold the internal boundaries I of all holes. Every
internal boundary will be unfolded to a single stripe of width 1. It will be con-
nected to T by the edges of its leftmost column. The unfolded stripe will go from
the place where it is connected in the direction away from the unfolded E. See
Figure 1.27.
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Figure 1.28: The unfolding of the polycube in Figure 1.26.

It remains to show that there is no overlap. The only parts that could overlap
with something are the internal boundaries. Every unfolded internal boundary is
connected to either an orange column to the left of it or to a red column to the
right of it. Consider some hole h that has orange column to the left of it. The
only part of the top base, which could overlap with the internal boundary Ih, is
the leftmost orange column under h.

Let us look at the two neighboring orange columns — the one to the left of h
(to which Ih will be connected) and the leftmost one under h. There are 2 cases:

• The bottoms of the two columns are at the same height. In this case, there
will be no overlap because the right column must be shorter that the left
one (it is blocked from above by the hole h). See Figure 1.29.

• The bottoms of the two columns are at different heights. There will again
be no overlap since there will be a distance of at least one between the
columns after unfolding. There will be enough space between those two
columns to unfold Ih. See Figure 1.30.

(a) The configuration in the poly-
cube. (b) The configuration after unfold-

ing, there is no overlap.

Figure 1.29: The case when the bottom edges of both columns are at the same
height.

16



(a) The configuration in the poly-
cube. (b) The configuration after unfold-

ing, there is no overlap.

Figure 1.30: The case when the bottom edges of both columns are at different
heights.

For an overlap of two inner boundaries to exist, there would have to be an
orange and a red column very close to each other after the unfolding. In particular,
there would have to be a red column at distance at most 1 to the right from an
orange column. It is quite easy to see that this is impossible.

The same case analysis shows that the internal boundaries connected to the
red columns can not overlap with anything either.
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2. Multi-layer polycubes
We briefly mention algorithms for unfolding some classes of multi-layer polycubes.
Let us first define an overhang.

Definition. An overhang of size k is the following formation of cubes. There are
k + 1 cubes in a row with with the same z coordinate. Under the first k of these
cubes, there is an empty space. Under the last one, there is another cube. There
is also an empty space next to the first cube of the row.

See Figure 2.1 for an example of an overhang. Overhangs will be useful for
description of the classes we are able to unfold.

Figure 2.1: Example an overhang of size 3. We are looking at the polycube from
a side (in the direction of the x-axis). Places that must be empty are crossed out.

2.1 Treestacks
Let us repeat the definition from the introduction.

Definition. A treestack is a polycube whose every layer (set of cubes with the
same z-coordinate) forms an orthotree.

Unfortunately, we need to place some restrictions on the treestacks we will be
unfolding.

Theorem 8. There exists an edge-unfolding of every treestack that contains an
overhang of size at least 2 in every layer (except the bottom one) and in every
layer every cube has at most 3 neighbors.

(a) The treestack viewed from
above. (b) The treestack as a 3-

dimensional object.

Figure 2.2: Example of a treestack with three layers and an overhang of size at
least 2 in every layer.
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To unfold treestacks with overhang of at least 2 in every layer and degrees at
most 3, we will use the algorithm presented in Section 1.8 as a subroutine. In
the first step of the algorithm, we unfold the external boundaries of all layers and
connect them using the bottom parts of the overhangs; you can see the result
in Figure 2.3. There will be at least two rows between every pair of unfolded
external boundaries. The rest can be unfolded in the same way as in Section 1.8.
Some squares of the top and bottom bases might be missing, but this is not an
issue, it actually makes the unfolding easier. Thanks to the absence of cubes with
four neighbors, there is no overlap. If there were some squares with 4 neighbors,
they could not always be connected to their right neighbor as in Section 1.8 since
the neighbor could be missing. See an example of the unfolding in Figure 2.4.

Figure 2.3: The first step of unfolding the treestack in Figure 2.2.

Figure 2.4: Unfolding of the treestack in Figure 2.2.

2.2 Pathstacks
Definition. A pathstack is a polycube whose every layer forms an orthopath.

Theorem 9. There exists an edge-unfolding of every pathstack that contains an
overhang of size at least 1 in every layer.

The algorithm for unfolding a pathstack with an overhang of size at least
one in every layer is similar to the one in Section 2.1. We unfold the external
boundaries and connect them by the overhangs as before; see Figure 2.6. The
difference is that the distance between the unfolded external boundaries could be
just one. The top and bottom faces of neighboring layers have to be unfolded
into the stripe of height one. This issue can be solved quite easily thanks to the
layers being paths.
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(a) The pathstack viewed from
above.

(b) The pathstack as a 3-
dimensional object.

Figure 2.5: Example of a pathstack with three layers and overhang of size at least
1 in every layer.

Figure 2.6: The first step of unfolding the pathstack in Figure 2.5.

Every square in the top or bottom base shares at least two edges with the
external boundary; hence, there are at least two squares in the plane to which
the square can be unfolded. Every square in the plane shares at most two edges
with the unfolded external boundaries, and hence there are at most two squares
from the top and bottom bases that could be unfolded here. The existence of
the unfolding follows from Hall’s marriage theorem. We can consider a bipartite
graph whose first part will be the squares in the plane and the other part will be
the squares of the top and the bottom base of the neighboring layers. There will
be an edge between two vertices if the corresponding square from the surface of
the polycube can be placed to the corresponding square in the plane. The degrees
of all vertices in the first part are at most two and the degrees of all vertices in
the second part are at least two. This graph satisfies the Hall’s condition and
therefore there exists a matching that covers the second part and the polycube
can thus be unfolded.

Figure 2.7: Unfolding of the pathstack in Figure 2.5.

The description of the class of pathstacks we are able to unfold is quite strange.
Perhaps the following formulation may be more useful.
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Theorem 10. There exists an edge-unfolding of every pathstack if at least one
of the ends of every path has an empty square under it.

It is easy to show that the condition above is sufficient to force the existence
of an overhang in every layer. We can simply start at the free end of the path
and go along the path until there is a cube under us (this will always happen
unless this path is the bottom one). At that point, the last straight segment of
the path forms an overhang.

Note that there exist pathstacks without an overhang. One such example are
identical paths stacked on each other. This case can be solved quite easily by
simply making the external boundary taller. There are, however, some examples
which are more difficult to deal with. One of them can be described as paths in
the shape of the letter U where every other layer is rotated by 180 degrees. You
can see this pathstack in Figure 2.8.

(a) Even layers have shape of the
letter U.

(b) Odd layers have shape of the
letter U upside down.

(c) The pathstack with 4 layers.

Figure 2.8: Example of a pathstack without overhangs.
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Conclusion
We presented several linear-time algorithms for edge-unfolding of special cases of
one-layer polycubes. The question of unfolding one-layer polycubes with arbitrary
holes remains open. Interestingly, we are able to unfold one-layer polycubes with
very small (cubic) holes and very large (wide) holes. These are, in some sense,
opposite types of one-layer polycubes. generalizing our approach to unfold other
classes of one-layer polycubes seems rather difficult since it relies on being able to
cut the top and bottom faces into stripes such that all the connected components
are incident to the external boundary.

We also showed how to unfold some classes of multi-layer polycubes. It might
be possible to generalize this approach to unfold, for example, general pathstacks
without any restrictions.
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[10] Lydie Richaume, Eric Andres, Gaëlle Largeteau-Skapin, and Rita Zrour.
Unfolding level 1 Menger polycubes of arbitrary size with help of outer faces.
In Discrete geometry for computer imagery, volume 11414 of Lecture Notes
in Comput. Sci., pages 457–468. Springer, Cham, 2019.

23

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.8196

	Introduction
	One-layer polycubes
	Definitions
	Algorithms
	No holes
	Wide holes
	Cubic holes
	Thin horizontal holes
	Separable rectangular holes
	Orthotrees
	Y-convex holes

	Multi-layer polycubes
	Treestacks
	Pathstacks

	Conclusion
	Bibliography

