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Abstract

This guidance document provides harmonised and flexible methodologies to apply scientific criteria and
prioritisation methods for grouping chemicals into assessment groups for human risk assessment of
combined exposure to multiple chemicals. In the context of EFSA's risk assessments, the problem
formulation step defines the chemicals to be assessed in the terms of reference usually through
regulatory criteria often set by risk managers based on legislative requirements. Scientific criteria such
as hazard-driven criteria can be used to group these chemicals into assessment groups. In this
guidance document, a framework is proposed to apply hazard-driven criteria for grouping of chemicals
into assessment groups using mechanistic information on toxicity as the gold standard where available
(i.e. common mode of action or adverse outcome pathway) through a structured weight of evidence
approach. However, when such mechanistic data are not available, grouping may be performed using
a common adverse outcome. Toxicokinetic data can also be useful for grouping, particularly when
metabolism information is available for a class of compounds and common toxicologically relevant
metabolites are shared. In addition, prioritisation methods provide means to identify low-priority
chemicals and reduce the number of chemicals in an assessment group. Prioritisation methods include
combined risk-based approaches, risk-based approaches for single chemicals and exposure-driven
approaches. Case studies have been provided to illustrate the practical application of hazard-driven
criteria and the use of prioritisation methods for grouping of chemicals in assessment groups.
Recommendations for future work are discussed.

© 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf
of European Food Safety Authority.

Keywords: harmonised methodologies, human risk assessment, combined exposure to multiple
chemicals, scientific criteria, grouping, assessment groups, dose addition

Requestor: EFSA
Question number: EFSA-Q-2019-00517
Correspondence: sc.secretariat@efsa.europa.eu

www.efsa.europa.eu/efsajournal EFSA Journal 2021;19(12):7033

W) Check for updates


http://crossmark.crossref.org/dialog/?doi=10.2903%2Fj.efsa.2021.7033&domain=pdf&date_stamp=2021-12-17

‘ J& EFSA Journal

Guidance on scientific criteria to group chemicals into assessment groups

Panel members: Simon John More, Vasileios Bampidis, Diane Benford, Susanne Hougaard Bennekou,
Claude Bragard, Thorhallur Ingi Halldorsson, Antonio F Hernandez-Jerez, Konstantinos Koutsoumanis,
Claude Lambré Hanspeter Naegeli, Josef R Schlatter, Vittorio Silano, Sgren Saxmose, Nielsen, Dieter
Schrenk, Dominique Turck and Maged Younes.

Declarations of interest: The declarations of interest of all scientific experts active in EFSA's work
are available at https://ess.efsa.europa.eu/doi/doiweb/doisearch.

Acknowledgments: The Scientific Committee wishes to thank the following: Paola Manini and Luc
Mohimont for the support provided to this scientific output, and Gianluca Rossi for editing all figures
within the guidance.

Suggested citation: EFSA Scientific Committee, More SJ, Bampidis V, Benford D, Bragard C,
Hernandez-Jerez A, Bennekou SH, Halldorsson TI, Koutsoumanis KP, Lambré C, Machera K, Naegeli H,
Nielsen SS, Schlatter JR, Schrenk D, Silano V, Turck D, Younes M, Benfenati E, Crépet A, Te Biesebeek
JD, Testai E, Dujardin B, Dorne JLCM and Hogstrand C, 2021. Guidance Document on Scientific criteria
for grouping chemicals into assessment groups for human risk assessment of combined exposure to
multiple chemicals. EFSA Journal 2021;19(12):7033, 37 pp. https://doi.org/10.2903/j.efsa.2021.7033

ISSN: 1831-4732

© 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf
of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License,
which permits use and distribution in any medium, provided the original work is properly cited and no
modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety AL
efsa ] Authority, a European agency funded by the European Union. G

www.efsa.europa.eu/efsajournal 2 EFSA Journal 2021;19(12):7033


https://ess.efsa.europa.eu/doi/doiweb/doisearch
https://doi.org/10.2903/j.efsa.2021.7033
http://creativecommons.org/licenses/by-nd/4.0/

‘ Jt EFSA Journal

Guidance on scientific criteria to group chemicals into assessment groups

Summary

Human health assessment of combined exposure to multiple chemicals (‘chemical mixtures’) is a
challenging topic for scientists, risk assessors and risk managers alike due to the complexity of the
problem formulation, the large number of chemicals potentially involved, their toxicological profiles and
human exposure patterns to these chemicals. In 2019, EFSA’s Scientific Committee (SC) published the
MIXTOX guidance document on ‘harmonised methodologies for human health, animal health and
ecological risk assessment of combined exposure to multiple chemicals’. MIXTOX supports the
harmonisation of methodologies for risk assessment of combined exposure to multiple chemicals
through whole mixture and component-based approaches. These methods can be implemented across
EFSA's sectors in a fit for purpose manner depending on the question, regulatory context, data
availability, time and resources available.

The present guidance document explores the use of scientific criteria for grouping of chemicals into
assessment groups for human health in the context of the component-based approach. The Scientific
Committee acknowledges that it is not feasible to start a risk assessment from the whole universe of
chemicals. In practice, legal requirements or specific concerns often predefine the chemicals to be
assessed together and the assessment is restricted in the terms of reference (ToR) to specific groups
of chemicals (e.g. plant protection products, contaminants). Thus, the group of chemicals or its
components are identified and the grouping is often based on pragmatic considerations, regulatory
criteria and scientific criteria. Then available hazard data are collected, and preliminary assessment
groups can be formed. Regulatory criteria are most often set by risk managers in the ToR, based on
legislative requirements and may provide a preliminary assessment group based on a common
regulatory domain. Scientific criteria for grouping are hazard-driven and use similarity of toxicological
and toxicokinetic properties for each individual chemical under consideration. Prioritisation methods
also support grouping to filter the number of chemicals to be considered for grouping through
pragmatic means, particularly when resources are limited. These methods are risk-based or exposure-
driven and provide options to identify chemicals which contribute only marginally to the combined risk.
Such chemicals are referred to as ‘low-priority chemicals’ and may be excluded from further grouping.

The application of hazard-driven criteria for grouping requires a weight of evidence (WoE) approach
to assemble, weigh and integrate the available lines of evidence on toxicity. A framework is proposed
to apply hazard-driven criteria for grouping chemicals into assessment groups using mechanistic
information on toxicity as the gold standard while also considering toxic potency and toxicokinetic
features (e.g. body burden). In practice, the lowest uncertainty in grouping can be achieved when
knowledge on an adverse outcome pathway (AOP) is available, followed by knowledge on a mode of
action (MoA) for the chemicals under evaluation. Grouping using phenomenological effects or target
organ/system toxicity is linked to higher uncertainty. Data-poor chemicals (i.e. no or scant toxicological
information) can be included in an assessment group along with data-rich members using ‘in vitro or in
silico bridging data’ as part of the battery of new approach methodologies (NAMs). However, the
resulting uncertainty is high. A generic structured WoE approach to group chemicals using MoA
information is provided in Appendix B.

Structural similarity may also be used as criteria for grouping of chemicals into assessment groups
but consideration of more than one feature (i.e. chemical class, common functional groups, common
precursor or breakdown products) should be used to increase the confidence in the assessment of
similarity of the components. There are also several software tools, such as the OECD QSAR Toolbox,
available to support the identification of related substances. Many in silico methodologies can be used
for this purpose, such as molecular docking and different machine learning tools. However, it is
essential to assess the applicability domain of each model and integrate the results from multiple
models for the prediction of the same property using WoE methods. It is also important to evaluate
both similarities and dissimilarities between chemicals particularly for the presence of specific chemical
moieties or structural features, which may impact on MoA or toxicity. Toxicokinetic data can also be
useful for grouping, particularly when metabolism information is available for a class of compounds
and common toxicologically relevant metabolites are shared.

The guidance document includes prioritisation methods to be applied when the number of
chemicals to be assessed is a priori vast and resources are limited. These provide means to reduce the
number of chemicals to be considered for grouping or within an already formed assessment group.
Therefore, chemicals which are unlikely to co-occur in humans or otherwise would contribute only
marginally to a combined risk can be considered of low-priority for grouping. Cut-off values applied for
defining such low-priority chemicals will depend on the context of the assessment, the prioritisation
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method used and should be documented and justified. These methods include combined risk- and
single risk-based approaches, and exposure-driven approaches. An account of related statistical
methods as well as practical examples are provided in Appendices C, D and E.

Recommendations for future work to test the applicability and implementation of the proposed
scientific criteria for grouping chemicals into assessment groups are made. A testing phase in relevant
EFSA Panels using specific case studies is proposed. In addition, inter-agency, Member States and
international cooperation in this area are needed to facilitate data exchange and harmonisation of
methods and tools. To support the implementation of the hazard-driven criteria, a further update of
the OpenFoodTox database and the use of OECD international harmonised standards to structure data
on chemical properties is proposed. In addition, harmonised WoE approaches should be applied to
avoid divergence across EFSA Panels in the process of grouping chemicals into assessment groups.
Finally, development and implementation of generic in silico approaches (e.g. Quantitative Structural
Activity Relationship (QSARs), physiologically based kinetic (PB-K) models) to support grouping of
chemicals are also recommended.

With regard to prioritisation methods, the Scientific Committee recommends identifying and testing
the appropriateness of cut-off values for risk metrics in the context of regulatory requirements, data
availability and number of chemicals under consideration. As a starting point, a default value of > 10%
contribution of a single chemical to the combined risk is proposed.
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1. Introduction

Human health assessment of combined exposure to multiple chemicals (“chemical mixtures”) is a
challenging topic for scientists, risk assessors and risk managers. This is due to the complexity of the
problem formulation, the large number of chemicals potentially involved, their toxicological profiles and
human exposure patterns to these chemicals. In March 2019, the Scientific Committee of EFSA
published the “guidance on harmonised methodologies for human health, animal health and ecological
risk assessment of combined exposure to multiple chemicals” (EFSA Scientific Committee, 2019). This
document supports the harmonisation of methodologies for risk assessment of combined exposure to
multiple chemicals including the setting of assessment groups for component-based approaches. The
methods described in the guidance can be implemented across EFSA's sectors in a fit-for-purpose
manner depending on the question, regulatory context, data availability, time and resources available.

A number of relevant EFSA Panel activities in this field include:

e PPR Panel and Pesticide Units: grouping of pesticide active substances into “Cumulative
Assessment Groups” (CAGs) based on specific toxicological effects and consideration of mode
of action (MoA) as far as possible (EFSA PPR Panel, 2013a,b). In September 2019, the
Pesticides Unit published Scientific Reports, which were subject to public consultation, on the
establishment of CAGs of pesticides for their effects on the nervous system and the thyroid
(EFSA, 2020a,b).

e Panel on Contaminants in the Food Chain (CONTAM): publication of a number of opinions
involving case-by-case approaches to risk assessment of multiple contaminants. Component-
based approaches have included Toxic Equivalency Factors (TEF) approaches for non-ortho
polybrominated biphenyls and several groups of marine biotoxins (EFSA CONTAM Panel, 2009,
2010).

e Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF): risk
assessment of combined exposure to rum ether [Flavouring Group Evaluation 500 (FGE.500)]
and grouping of 84 reported constituents for 12 congeneric groups allocated based on
structural and metabolic similarity (EFSA CEF Panel, 2017).

e Panel on Additives and Products or Substances used in Animal Feed (FEEDAP): A component-
based approach was applied to assess the safety of an essential oil from the seeds of Elettaria
cardamomum (L.) Maton when used as a sensory additive for all animal species as a mixture
(EFSA FEEDAP Panel, 2019).

EFSA requests the Scientific Committee to develop a guidance document addressing scientific
criteria for the grouping of chemicals into assessment groups for human risk assessment of combined
exposure to multiple chemicals, taking into account:

e The scientific principles laid down in the recent Scientific Committee guidance on ‘harmonised
methodologies for human health, animal health and ecological risk assessment of combined
exposure to multiple chemicals’ as well as other relevant cross-cutting guidance documents
(i.e. weight of evidence, biological relevance, uncertainty).

e The need for prioritisation methodologies to accommodate risk assessments within the context
of data availability, time, and resources for the grouping of chemicals defined in the problem
formulation.

e The context of the risk assessment (pre- and post-market).

e Tiering principles and a range of fit for purpose scenarios should be developed, considering
available hazard information (e.g. reference points, specific toxicological effects in target organs,
mode of action) and exposure information. Additional considerations may be of relevance
including adverse outcome pathways (AOP), toxicokinetics and human biomonitoring.

e Relevant EFSA sectoral regulatory provisions and activities including the work on CAGs for
pesticides by the Pesticide units, relevant risk assessment activities on contaminants, any other
relevant panel (FEEDAP, FAF, CEP, NDA) and other related European activities (European
Commission, JRC, ECHA, EMA, EDC-MixRisk, EuroMix and HBM4EU Horizon 2020 projects).
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e Relevant international activities including the recent guidance documents of the OECD and the
practical approach developed during the WHO/FAO consultation to be piloted by JMPR and
JECFA in 2019. This will ensure consistency and harmonisation, provide an international
dimension to the statement, and avoid duplication of the work.

In line with EFSA’s policy on openness and transparency (EFSA, 2020c), EFSA will publish a draft
version of the scientific opinion for public consultation. Following the public consultation, the finalised
opinion will be published after adoption by the Scientific Committee together with the technical report
of the public consultation.

This activity should be delivered to the Scientific Committee by the autumn 2021.

The MIXTOX guidance document (EFSA Scientific Committee, 2019) provides general principles for
‘harmonisation of methodologies for human health, animal health and ecological risk assessments of
combined exposure to multiple chemicals’. The present guidance document provides the scientific
criteria for grouping chemicals into assessment groups for human health in the context of the
component-based approach and applies to dietary exposure. The Scientific Committee recognises that
it is not feasible to start a risk assessment of combined exposure to multiple chemicals from the whole
universe of chemicals. The Scientific Committee notes that in practice, legal requirements or specific
concerns often predefine the chemicals to be assessed together and the assessment is restricted in the
terms of reference (ToR) to specific groups of chemicals (e.g. plant protection products or chemicals in
human breast milk). Thus, the group of chemicals to be considered in an assessment by EFSA is
defined and frequently based on regulatory criteria or pragmatic considerations. The scientific criteria
for grouping chemicals into assessment groups for human health as proposed in this document
therefore relate to the predefined group of chemicals in the ToR or in problem formulation.

This guidance document provides scientific criteria for grouping chemicals into assessment groups
using harmonised and flexible stepwise procedures. These criteria will allow EFSA to conduct human
risk assessments of combined exposure to multiple chemicals using component-based approaches.
This guidance document is unconditional (i.e. required, see EFSA Scientific Committee, 2015) for the
EFSA panels and EFSA units performing combined exposure risk assessments in the food safety area.
Acknowledging the different types of questions in the problem formulation and data availability, this
document provides recommendations on the most appropriate and fit-for-purpose scientific criteria for
grouping chemicals (from a predefined group of chemicals in the ToR) into assessment groups.
Readers and users of this guidance document are assumed to be experienced in human risk
assessment of single chemicals, and emphasis is on the specific aspects to deal with grouping multiple
chemicals for combined exposure risk assessment.

2. General principles: problem formulation and grouping

In the problem formulation, it is decided whether a risk assessment of combined exposure to
multiple chemicals is required (‘gatekeeper step’) and, if so, a component-based or a whole-mixture
based approach should be followed. If the decision is to embark on a component-based approach, it
will be necessary to discuss which chemicals should be considered together in an assessment group.
In the context of EFSA’s remit, the ‘gatekeeper step’ is often outlined in the ToR, which is most often
developed by the European Commission in consultation with experts from Member States, before a
request for a risk assessment is sent to EFSA (EFSA, 2015; EFSA Scientific Committee, 2019). The
question to be addressed is then described within EFSA outputs in the ‘Interpretation of the Terms of
Reference’ section.

Component-based approaches for multiple chemicals are relevant to both regulated products (e.g.
plant protection products; feed additives; food contact materials) and contaminants in the food chain
(e.g. environmental contaminants, natural toxins, food and/or feed processing contaminants).

The general principles for the grouping of chemicals into assessment groups have been described
previously by EFSA (EFSA PPR Panel, 2013a,b; EFSA Scientific Committee, 2017, 2019) and other
scientific bodies including the WHO, US EPA, Joint Research Centre of the European Commission
and the OECD (US Environmental Protection Agency, 2007; WHO/IPCS, 2009; Meek et al.,, 2011;
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Meek, 2013; OECD, 2011, 2018; ECHA, 2012; SCHER, SCENIHR, SCCS, 2012; Bopp et al., 2015;
Solomon et al., 2016). The components to be assessed are identified within the problem formulation,
then available hazard data are collected and preliminary assessment groups can be formed (EFSA
Scientific Committee, 2019).

Criteria for grouping chemicals can be classified into regulatory and scientific criteria. Regulatory
criteria are most often set by risk managers in the ToR, based on legislative requirements and may
provide a preliminary assessment group based on a common regulatory domain. Scientific criteria for
grouping are hazard-driven and use similarity of toxicological properties for each individual chemical
under consideration in a collection of multiple chemicals. Grouping based on hazard-driven criteria
requires a weight of evidence (WoE) approach to assemble, weigh and integrate the available lines of
evidence on toxicity (i.e. MoA, AOP, phenomenological effects, target organ/system toxicity, etc.) (EFSA
Scientific Committee, 2017a). Hazard-based criteria including information on toxicity and toxicokinetics
(TK) are described in Section 3.

Prioritisation methods are included to help risk assessors to filter the number of chemicals to be
considered for grouping through pragmatic means, particularly when resources are limited. These
methods are risk-based or exposure-driven and provide options to identify chemicals which contribute
only marginally to the combined risk. In this guidance document, these chemicals are referred to as
‘low-priority chemicals’ and may be excluded from further grouping. Prioritisation methods are
described in Section 4.

3. Hazard-driven criteria

Hazard-driven criteria use the evidence on hazard i.e. toxicological properties of chemicals from
different levels of biological organisation to group chemicals into assessment groups using a WoE
approach to assemble, weigh and integrate available lines of evidence on toxicity through a structured
approach (EFSA Scientific Committee, 2017a,b; 2018a).

Traditionally, common MoA information has been used as the scientific criteria to group chemicals
into assessment groups using mechanistic information. For example, MoA information has been used
by the US-EPA for organophosphates (i.e. methamidophos, acephate, bensulide, disulfoton, malathion,
tetrachlorvinphos, trichlorfon) grouped on the basis of irreversible inhibition of acetylcholinesterase in
the central and peripheral nervous systems as a common MoA (US-EPA, 2006). Another relevant
example is the common MoA involved in the toxicity of polychlorinated dibenzo-p-dioxins,
dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls through binding and activation to
the Aryl hydrocarbon receptor (EFSA CONTAM Panel, 2018).

Toxicological processes leading to an adverse outcome can be visualised as a continuum starting
from external dose (exposure) to an internal dose at the target organ or tissue (i.e. biologically
effective dose), leading to a first interaction with the molecular targets: the so-called molecular
initiating event (MIE) under the AOP framework. This interaction triggers a downstream response
consisting of a series of key events ultimately leading to an adverse outcome. International scientific
advisory bodies have developed the MoA and AOP frameworks to describe the mechanistic basis of
toxicity and the reader is referred to the WHO, US-EPA and OECD documents for a detailed account of
these frameworks and to the glossary in this document for all definitions (WHO, 2007; Ankley et al,,
2010; EFSA PPR Panel, 2013b; Meek et al.,, 2014; OECD, 2018; EFSA Scientific Committee, 2019).
Figure 1 provides a simplified visualisation of the main differences between the MoA framework which,
includes both the TK and toxicodynamic (TD) dimensions, whereas the AOP framework only covers the
TD dimension. In an MoA analysis, TK can constitute a key event such as the metabolic bioactivation
of a chemical to a toxic metabolite (e.g. acrylamide). However, recent attempts have considered the
integration of the TK dimension within the AOP framework using the aggregate exposure pathway
(AEP) framework (Teegarden et al., 2016). In addition, an integrated AOP-AEP framework has been
proposed to organise mechanism-related information and to take into account interactions between
chemicals (see glossary for definitions) (Price et al., 2020).
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Figure 1: Conceptual representation of the mode of action and adverse outcome pathway
frameworks under the exposure-response continuum

From the MIE, the individual key events, defined as an ‘empirically observable precursor step that is
itself a necessary element of the MoA or a biologically-based marker (e.g. biomarker of effect) for such
an element’, are then incorporated into the toxicity pathway and MoA eventually leading to an adverse
effect. More details on AOPs are available in the OECD documents (Boobis, 2005; US-EPA, 2005;
OECD, 2013, 2018). Such key events should be definable from physiological and biochemical
perspectives and have a biological relevance in relation to a toxicity pathway. Risk assessors should be
able to define, observe and measure changes associated with such KEs at the molecular, cellular,
functional or morphological level to depict the physiological and biochemical basis of the toxicity
pathway and use it as basis for defining assessment groups. However, the results from the Horizon
2020 funded project EuroMix have shown that chemicals with dissimilar MoA, or triggering different
AOPs, but converging at the same adverse outcome or at downstream key events, should be included
in the same assessment group (e.g. liver steatosis). The scientific basis for this is that combined
toxicity has been best described using dose addition (Bopp et al., 2018; EFSA Scientific Committee,
2019).

Initially, AOPs have been described as a linear description of a toxicological process, leading from
an MIE to an adverse outcome through one or several key events. In practice, however, each AOP is
usually part of more complex networks (Figure 2). An AOP network provides a framework to better
represent the complexity of biological processes by studying relationships among interconnected linear
AOPs.

Indeed, whenever available, AOP information should be used to define assessment groups and for
grouping chemicals (OECD, 2018). The Scientific Committee notes that AOP information is currently
limited but in view of the international research activities through the AOP wiki (https://aopwiki.org/),
as a repository platform for AOPs, it is foreseen that such information will be increasing in the future.
Chemicals that share a common adverse outcome and their AOPs are known should be grouped
together in the same assessment group. This approach is illustrated in Figure 2 as AOP networks
which embraces a range of AOPs for different chemicals that may trigger:

a) The same AOP by interacting with the same MIE (any MIE in Figure 2);

b) Separate AOPs which then converge at any intermediate key event (e.g. MIEb to MIEe in
Figure 2);

¢) An AOP which leads to the same adverse outcome without converging at intermediate key
event from other AOPs (MIEa in Figure 2);

The Scientific Committee notes that these three categories include all chemicals with the same
adverse outcome but distinct MIEs, thus having comprehensive mechanistic understanding.
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Figure 2: Schematic representation of adverse outcome pathway networks

Such mechanistic information anchored to an MoA, AOP or its related network allows the
uncertainty of the chemical grouping to be reduced. However, if the available evidence indicates that
chemicals with a common MoA do not contribute to the combined effects based on exposure and
potency considerations, these may be excluded from the final assessment group (see prioritisation
methods, Section 4). Recently, common AOPs have been used to group liver steatosis-inducing
pesticides. An in vitro AOP-based assay toolbox provided a basis to measure MIEs and key events
including nuclear receptor activation, gene and protein expression and triglyceride accumulation
according to the proposed AOP for liver steatosis (Lichtenstein et al., 2020).

Overall, this approach allows assessment groups to be set based on a common subcellular or
molecular target (MoA or AOP) (EFSA Scientific Committee, 2019).

When the grouping is based on incomplete mechanistic information, the exclusion of chemicals from
an assessment group may lead to an underestimation of the risk of combined toxicity. In this context,
grouping may nevertheless have to be based using other hazard criteria, e.g. on common adverse
outcome. The rationale that supports this approach is that different AOPs can converge on the same
adverse outcome even if they do not have any key event in common (see Figure 2, MIEa vs. MIEb-e).

When the grouping is based on a common target organ/system toxicity, many chemicals may be
included in an assessment group and may not share the same MoA. This may result in an
overestimation of the risk of combined toxicity. The Scientific Committee notes that if the chemicals
produce different adverse outcomes, there is no empirical evidence that combined toxicity would
exceed that from the individual components when chemicals are present at doses around or below
their respective no-observed adverse effect levels (NOAELs) (SCHER, SCCS, SCENIHR, 2012).

Data-poor chemicals (i.e. no or scant in vivo toxicological information) may be included in an
assessment group with data-rich members if there are ‘in vitro or in silico bridging data’ as part of
NAMs, including similar physico-chemical properties and chemical structures, as described in the
MIXTOX guidance document (EFSA Scientific Committee, 2019). For multiple chemicals, structural
similarity can also be used as criteria for grouping of chemicals into assessment groups (ECHA, 2008;
2012; EFSA FAF Panel, 2021). The consideration of more than one feature, including chemical class,
common functional groups, common precursor or breakdown products, usually increases the
confidence in the assessment of similarity of the components (ECHA, 2012). There are also several
software tools available to help in identifying structurally related substances, such as the OECD QSAR
Toolbox.
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The Scientific Committee notes that in silico models are also available which can be used for two
main purposes: to predict the effect (such as toxicity) or to group substances within a same family,
which can be used within the approach of dose addition. The availability of large collections of data
related to MIE, such as within the ToxCast and Tox21 initiatives, boosted the development of in silico
models to identify potential MIE (Gadaleta et al., 2018; Allen et al., 2020). Many in silico
methodologies and other NAMs can be used for this purpose, such as molecular docking and different
machine learning tools (Mansouri et al., 2016, 2020).

However, it is essential to assess the applicability domain of each model and integrate the
prediction results of multiple models for the prediction of toxicological properties using WoE methods.
In addition, the use of prediction results from multiple in silico models and read across are
recommended to increase the confidence and the reliability of the results for the chemicals under
consideration (EFSA Scientific Committee, 2017a; Benfenati et al., 2019). It is important to evaluate
not only similarities between chemicals but also dissimilarities, particularly for the presence of specific
chemical moieties or structural features, which may impact on MoA or toxicity. Specific open source
software for this purpose includes ToxWeight (available open source within VEGA (www.vegahub.eu)).

Figure 3 provides a hierarchical framework to apply hazard-driven criteria for the grouping of
chemicals into assessment groups using available mechanistic information (MoA or AOP) as the gold
standard (EFSA Scientific Committee, 2019). The top-down hierarchical framework supports generating
such mechanistic data and reducing uncertainty in the grouping process.

Chemicals under Consideration

Defined from terms of reference
AND Passing the gate keeper step

MOA/AOP

\ 4

Common MoA / AOP

nTarget | Ne

7
L(
: ik » 1
( 131 WS
UTlNJJc / DYSLE
4 hd 4 ¥ 4

Unknown

Include in the same Exclude from the same
Assessment Group g Assessment Group

INCREASING UNCERTAINTY

The thickest arrow indicates the gold standard hazard-driven criteria (MoA/AOP) with the lowest uncertainty.

Figure 3: Top-down hierarchical process for grouping chemicals into assessment groups using hazard-
driven criteria

If the application of the hazard-driven criteria (Figure 3) results in an unmanageably large
assessment group, the assessor can reduce the number of chemicals by applying prioritisation
methods described in Section 4. If the assessor concludes that the application of such methods is
needed, a rationale should be provided, accessibility of hazard data should be assessed and
prioritisation methods should be applied accordingly.

www.efsa.europa.eu/efsajournal 11 EFSA Journal 2021;19(12):7033


http://www.vegahub.eu

‘ Jt EFSA Journal

Guidance on scientific criteria to group chemicals into assessment groups

In data-rich situations, when the MoA or AOP is known for the group of chemicals under
assessment, this can result in (a) grouping chemicals sharing the same MoA/AoP into the same
assessment group, (b) exclusion of chemicals from the same assessment group when they do not
share the same MoA/AOP. When MoA/AOP information is scarce, lacking or unknown, the next tier is
to resort to other lines of evidence, such as whether the multiple chemicals elicit a common
phenomenological effect (e.g. impairment of immune response, cognitive development, sperm viability)
or target organ toxicity. Decreasing the level of biological organisation in this way increases the
uncertainty in the assessments and the likelihood for overestimation of the risk of combined toxicity.
Indeed, grouping using phenomenological effects and, even more, target organs as a whole is
considered a low tier approach with its inherent large uncertainty and it may imply the inclusion of
many chemicals in an assessment group. In addition, when considering the target organ toxicity, it is
important to note that not all cell populations in an organ play the same physiological role and
chemicals may target different cell subpopulations (i.e. may have different adverse outcome related to
the same organ). Hence, most organs and organ/systems exert different functions, as a result of the
specialised role of their cell subpopulations. For example, the thyroid has follicular cells and C-cells,
which show distinct features and functions, that can be targeted by different chemicals. The liver is
another example of a single organ showing multiple functions: Chemicals may selectively affect one of
these functions, depending on the type of chemical involved and its potency. Overall, the range of
adverse effects in target organ/systems as a result of chemical exposures is based on chemical
interference with key cellular functions, and depends on dose-related intensity of the chemical insults,
the cell population affected and the duration of the exposure (acute or chronic), which are key
determinants of the nature of the potential adverse outcome.

Evaluation of the hazard information is performed using a WoE approach for which the different
lines of evidence (LoEs) are assembled, weighed and integrated according to their reliability, relevance
and consistency, while considering biological relevance of the observed effects and reporting
uncertainties, as described in the relevant EFSA Guidance documents (EFSA Scientific Committee,
2017a,b; 2018a,b). For each chemical under consideration, the process initiates with collection and
organisation of the hazard information into lines of evidence (i.e. MoA, AOP, adverse outcome, critical
effect, target organ, etc.) at different levels of biological organisation (molecular, cellular, organ level,
whole organism). Methods for weighing and integrating the evidence can include qualitative
approaches (simple description), semi-quantitative methods (low, moderate, high) or quantitative
methods (probabilistic scale) (EFSA Scientific Committee, 2017a). The WOoE assessment results in
grouping chemicals into assessment groups and can be expressed as a simple qualitative description or
as a probability based on quantitative assessment. Recent examples include establishment of
cumulative assessment groups of pesticides for specific effects on the nervous system or the thyroid
using quantitative weights to assemble and integrate the lines of evidence combined with expert
knowledge elicitation and uncertainty analysis (EFSA, 2020a,b). This approach led to a probability
distribution for the total number of substances in the assessment group that actually cause the specific
effect on the nervous system or on the thyroid.

Appendix C provides an example of a generic WoE approach for the application of hazard-driven
criteria to the grouping of five contaminants into assessment groups based on MoA information.

The main feature that separates the MoA and AOP frameworks is that the former also accounts for
TK (Figure 1). This entails the consideration of absorption, distribution, metabolism and excretion
(ADME) particularly when these processes are relevant for eliciting chemical toxicity within a known
MoA (e.g. metabolic bioactivation to a toxic metabolite) in target organs and therefore governs the
biologically effective dose on which the adverse outcome at the molecular level depends. While TK
information should not be used in isolation for defining assessment groups and grouping, the
combination of TK and TD properties would provide a robust basis for depicting toxicity and grouping
chemicals, as proposed in the modified WHO MoA framework (Meek et al., 2014). Toxicokinetic data of
importance for grouping chemicals into assessment groups include: (a) chemicals that are substrates
of the same transporters; (b) chemicals producing the same metabolite(s) or are substrates of the
same enzyme isoforms (e.g. phase I or phase II xenobiotic metabolising enzymes). An example of
using toxicokinetic data is to group all 1,2-unsaturated pyrrolizidine alkaloids and their N-oxides,
because they can be metabolically converted into pyrrole metabolites, which have a genotoxic and
carcinogenic MoA on the liver as the primary target organ (EFSA CONTAM Panel, 2011). Finally,
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available toxicokinetic data (e.g. body burden, clearance, half-life, elimination rate) and models are
increasingly available and include physiologically based Kinetic (PB-K) and PB-K-dynamic (PB-K-D)
models for test species or humans. A recent guidance document has been published by the OECD to
support their use in risk assessment (OECD, 2021). These can also be used to refine grouping, if
needed, or to compare risk metrics based on internal dose (EFSA Scientific Committee, 2019) (see
Section 4, prioritisation methods).

4. Prioritisation methods for grouping chemicals into assessment
groups

For a given risk assessment of multiple chemicals, chemicals under consideration are predefined in
the ToR and problem formulation (Section 2) mainly through regulatory or pragmatic criteria. When
the number of chemicals under consideration is a priori vast and resources are limited, the assessor
has the option to filter these chemicals to be considered for grouping. In addition, identifying
chemicals of priority could be useful to risk managers to mitigate risk. This can be achieved using the
prioritisation methods described in this section.

Prioritisation methods can thus be deployed to reduce the number of chemicals to be considered
further, within an already formed assessment group. Therefore, chemicals which contribute only
marginally to a combined risk can be considered of low-priority for grouping. The marginal contribution
to a combined risk can be quantified with the identification of a cut-off value which can be applied for
defining low-priority chemicals. The different cut-off values will depend on the context of the
assessment, the prioritisation method used and should be documented and justified. Because the
prioritisation methods rely on different metrics and use different statistical methods, it is not possible
to propose a generic cut-off value suitable to all contexts. Options for different cut-off values are
proposed for each prioritisation method below. In practice, when hazard metrics are available for a
common effect or target organ, low-priority chemicals with a marginal contribution to the combined
risk can be identified and excluded from grouping using a combined risk-based approach. When
hazard metrics are only accessible for the respective critical effect, a risk-based approach for single
chemicals can be used as another prioritisation method to identify low-priority chemicals. Finally, if
hazard information is not readily accessible, an exposure-driven approach aiming at assessing co-
exposure to chemicals can be applied.

These prioritisation methods are summarised as follows:

1) Combined risk-based approach. This method can be used when hazard metrics for a common
effect or target organ are already accessible. Combined risk metrics are determined using hazard metrics
for a common effect or target organ and exposure metrics of the individual chemicals using dose addition
as the default assumption (e.g. modified hazard index, reference point index, combined margin of
exposure (MOE)). The relative contribution of each individual chemical to the combined risk (including
the uncertainty in estimates) can then be used to identify low-priority chemicals (see Figure 4). As a
starting point, the Scientific Committee recommends that any chemical contributing more than 10% to
the combined risk (cut-off value) is retained for refinement of the assessment group using hazard-driven
criteria (Section 3). However, this cut-off value might not perform well under all circumstances, e.g.
when a high number of chemicals have a contribution slightly below the cut-off value. In this case, it is
recommended to reduce the cut-off value for the individual chemicals, ensuring that the total
contribution of retained chemicals accounts for at least 90% of the combined risk.

Furthermore, even when individual chemicals contribute to the combined risk below the cut-off
value, these contributions may be strongly correlated (i.e. when contribution of chemical A is at its
highest, the contribution of chemical B is also at its highest). When such correlations are identified
between chemicals, it is recommended to retain those chemicals for refinement of the grouping,
regardless of their individual contributions. Several methods are available for multivariate analysis and
correlation calculations (Appendix C). One of these methods has been applied in the HORIZON 2020
EuroMix project for excluding low-priority chemicals in the assessment of multiple pesticides, with liver
steatosis as a common adverse outcome (Crépet et al., 2019; Van Voet et al., 2020). This method has
also been applied using the Chemical Mixture Calculator using an underlying hazard and exposure
database for over 200 chemicals, a range of assessment groups and several levels of risk
characterisation refinement depending on the question to be addressed (Boberg et al., 2021).
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2) Risk-based approach for single chemicals. This method aims to determine risk metrics for each
chemical under consideration and can be used when hazard metrics for the respective critical effect
are available. Individual risk metrics are calculated (e.g. hazard quotient or MOE). This approach
allows to identify low-priority chemicals which can be excluded from further assessment, when their
individual risk metric falls below a predefined cut-off value (Te Biesebeek et al., 2021)

Recently, the FAO/WHO Expert Consultation on Dietary risk assessment of chemical mixtures has
proposed a predefined cut-off value below 10% of the relevant health-based guidance value or a
calculated MOE that is above 10-fold of the adequate MOE for each individual chemical. These
predefined cut-off values have been recently explored by JECFA for the risk assessment of multiple
veterinary drug residues (diflubenzuron and halquinol) and for neither of these compounds did the
estimated dietary exposure from veterinary use exceeded 10% of the upper bound of the ADI in any
population or subpopulation (FAO/WHO, 2020). The Scientific Committee recommends the use of this
proposed cut-off value as a starting point, when experience and information for the chemicals under
consideration are limited. However, this cut-off value can be lowered on a case-by-case basis, depending
on the context of the assessment and the experience gained. The rationale for deviating from the
proposed cut-off value should be documented. Furthermore, the cut-off value needs to be considered in
relation to the protection goals defined by the risk managers. This means that when combined risks need
to be characterised at a given percentile of the exposure distribution, the cut-off value needs to be
applied to the same percentile of the exposure distributions for the individual chemicals.

3) Exposure-driven approach. This method aims to determine the probability of combined exposure
to identify and exclude low-priority chemicals for which the probability of co-exposure is low. This
method can be used in situations under which (i) hazard metrics are not available to prioritise
chemicals with methods 1 and 2; (ii) large number of chemicals have to be evaluated in a short time
frame and hazard metrics should be collected or generated subsequently. The Scientific Committee
notes that exposure-driven approaches currently have limited applications in the risk assessment
conducted by EFSA panels. This method has been so far mostly applied by national agencies (e.g.
ANSES) using probability of co-exposure patterns to identify low-priority chemicals present in (a)
breast milk (Crépet et al., in press) and total diet (Béchaux et al., 2013; Crépet et al., 2013a,b; Traoré
et al., 2016); (b) biomonitoring data in body fluids (blood and urinary) providing correlations of
internal exposure between multiple chemicals from Horizon 2020 research projects Helix and HBM4EU
(Tamayo-Uria et al., 2019; Ottenbros et al., 2021)

As for method 1, multivariate analysis and correlation calculations and their corresponding
proposed cut-off values are presented in Appendix C. This method has a drawback since potent
compounds with low co-exposure might not be considered for grouping. Therefore, the Scientific
Committee recommends its use only when methods 1 and 2 cannot be applied and associated
uncertainties should be assessed and documented.

A workflow for the application of these prioritisation methods is provided below.

When applying a prioritisation approach, exposure metrics for each chemical are required. Typically,
exposure metrics result from combining occurrence data of each chemical in different foods with
consumption data for the food items. Exposure metrics can be extracted also from previous assessments
and, depending on data availability, can range from default values (tier 0) to individual co-occurrence
data and individual consumption data (tier 3) (EFSA Scientific Committee, 2019; FAO/WHO, 2019). It is
noted that the tiers for occurrence and consumption data do not necessarily match.

Exposure metrics can also be expressed on an internal dose basis when biomonitoring data, TK
data (i.e. body burden) or TK models are available for individual chemicals in body fluids (e.g. plasma,
milk etc.). Such exposure estimates based on internal dose can be applied to each chemical under
consideration for the combined risk-based approach, the risk-based approach for single chemicals and
the exposure-driven approach (EFSA Scientific Committee, 2019).

It is important to consider the time frame of exposure and the TK of the substances to decide
whether they would co-occur and would have the potential for eliciting combined toxicity. If the
chemicals are eliminated fast from the body, the likelihood of internal co-exposure decreases with non-
concomitant exposure events. In contrast, co-exposure is very likely if persistent chemicals with long
biological half-lives such as Persistent Organic Pollutants (POPs) are within an assessment group. For
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further details, the reader is referred to Section 4 (exposure Section) of the MIXTOX guidance
document (EFSA Scientific Committee, 2019).
Figure 4 describes the workflow for the three prioritisation methods described above.
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Figure 4: Workflow for risk-based and exposure-driven prioritisation methods applied to the grouping
of chemicals into assessment groups

The starting point is either the assessment group defined using hazard-driven criteria (Section 3,
Figure 3) or the multiple chemicals defined in the ToR and passing the gate-keeper step (EFSA
Scientific Committee, 2019):

1) Combined risk metrics

Assess whether hazard metrics are available for common effect or common target organ/system for
each chemical in the assessment group or each chemical under consideration.

If No, assess the accessibility of hazard metrics for critical effects and proceed with risk metrics for
single chemicals.

If Yes, proceed with the combined risk-based approach to determine combined risk metrics, on an
external or internal dose basis, and determine the relative contribution of each chemical to the
combined risk in the assessment group as a probability. Chemicals showing an estimated contribution
to the combined risk above the predefined cut-off value, will remain in the assessment group
(Figure 4) and can either constitute the final assessment group or the assessment group can be
refined using hazard-driven criteria (Figure 3 in Section 3). In contrast, low-priority chemicals can be
excluded from the assessment group (EFSA Scientific Committee, 2019).

2) Risk metrics for single chemicals

Assess the accessibility of hazard metrics for the critical effect for each chemical in the assessment
group or each chemical under consideration.

If No, proceed with the exposure-driven approach.

If Yes, proceed and collect the available hazard metrics reflecting the critical effects for the single
chemicals and determine risk metrics as follows:
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Risk metrics for the single chemicals are typically expressed as hazard quotient (HQ), on an
external or internal exposure basis, divided by the health-based guidance value for the effect (EFSA
Scientific Committee, 2019). In the absence of a health-based guidance value, an MoE approach can
be applied as the ratio of individual reference points to the estimated human exposure. Chemicals with
a risk metric above a predefined cut-off value remain under consideration for grouping. As for the
combined risk-based approach, Figure 4 shows that these chemicals can either constitute the final
assessment group or additional hazard data may need to be collected to refine the assessment group
using hazard-driven criteria (Figure 3 in Section 3). In contrast, when the risk metric for the single
chemical is demonstrated to be low, the chemical is considered as a low-priority chemical and may be
excluded from the assessment group. The cut-off value represents a protection goal and therefore
needs to be defined by risk managers.

Appendix D provides an example of the use of risk metrics for single chemicals as a prioritisation
method for grouping pesticides with acute neurotoxic effects into assessment groups. In addition, the
example illustrates the impact of excluding low-priority compounds on the combined risk assessment
using a combined margin of exposure approach (MoEr).

3) Exposure-driven approaches

Hazard metrics may not be readily accessible for all chemicals within an assessment group or for
the chemicals under consideration. This can be an obstacle, when the risk assessment question deals
with a large number of chemicals (e.g. all contaminants in human blood or breast milk) or when the
collection or generation of hazard data for a number of chemicals is needed. This exposure-driven
approach method allows to identify chemicals that have a likelihood of co-exposure, expressed as
probability. Chemicals that have a probability of co-exposure above a predefined cut-off value would
remain under consideration for grouping. In contrast, chemicals with a low probability of co-exposure
would be considered as of low-priority for combined risk assessment and can be excluded. As for
methods 1 and 2, for chemicals remaining under consideration, Figure 4 provides two options: final
assessment group or refinement of the assessment group using hazard-driven criteria for which hazard
data will need to be retrieved or generated (Figure 3 in Section 3). A similar approach, as proposed for
the combined risk-based method, can be used for combined exposure.

An example of application of this method has been illustrated from the ANSES Pericles project
under which dietary co-exposure of the French general population to 79 pesticide residues was first
assessed using the exposure-driven approach and the pesticides contributing most to the co-exposure
were identified (Crépet et al., 2013a,b). Appendix E illustrates the use of this exposure-driven
approach as a prioritisation method for multiple contaminants from human breast milk and results are
compared with risk metrics for single chemicals (ANSES, in press).

5. Recommendations

The Scientific Committee recommends that the applicability and implementation of the proposed
scientific criteria for grouping chemicals into assessment groups as described in this guidance
document should be assessed through a testing phase in relevant EFSA panels using specific case
studies. In addition, inter-agency, Member State and international cooperation in this area are
recommended to facilitate data exchange and harmonisation of methods and tools.

Recommendations for future work to support further harmonisation of methodologies for grouping
chemicals into assessment groups using scientific criteria include:

Hazard-driven criteria

— Further update the OpenFoodTox database with systematic data collection for individual
chemicals reporting hazard metrics for specific effects, target organs, MoA, AOPs and related
properties, whenever possible. The database will support the implementation of the grouping
of chemicals into assessment groups in an efficient way.

— The use of OECD international harmonised standards to structure data on chemical properties
(i.e. OECD harmonised templates (OHT)) is recommended to:

a) Develop structured means for WOE approaches and avoid divergence for grouping
chemicals into assessment groups across EFSA Panels in the different assessments;
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b) Support integration of high throughput, in vitro and omics data generated from NAMs as
currently investigated worldwide (OECD, US EPA, EFSA) and Horizon 2020 and Horizon
Europe programmes (EuroMix, EUTOXRISK, HBM4EU, PARC, etc.). For this purpose, the
existing OHT 201 template for intermediate effects can be updated and will also provide
means to further integrate data from NAMs and improve the mechanistic basis for setting
assessment groups using data on MoA, Key Events and AOPs for multiple chemicals.

— Further develop and implement generic in silico approaches that could support grouping of
chemicals for combined toxicity (i.e. QSARs) and TK properties (i.e. TK models). This will
support the development of NAMs for grouping multiple chemicals based on (a) predictions of
the interaction between chemicals and their molecular targets, (b) predictions of toxicological
endpoints (i.e. phenomenological effects).

Prioritisation methods

— The appropriateness of cut-off values for risk metrics needs to be considered depending on
the regulatory context of the assessment (i.e. protection goals), data availability and number
of chemicals under consideration. This is particularly applicable to the default cut-off values of
10% for contribution to combined risk or to single risk metrics recommended here.

— Develop user-friendly open source tools to implement the use of prioritisation methods for risk
assessment of combined exposure to multiple chemicals. The tools would include risk-based
and exposure-driven approaches (Section 4) which can include simple deterministic as well as
probabilistic methods for which further implementation as recommended in EFSA MIXTOX
guidance (EFSA Scientific Committee, 2019).
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Appendix A — Glossary

Acceptable daily intake (ADI): The estimate of the amount of a chemical in food or drinking water,
expressed on a body weight basis that can be ingested daily over a lifetime without appreciable health
risk to the consumer. It is derived on the basis of all the known facts at the time of the evaluation
(WHO, 2009).

Adverse effect: Change in the morphology, physiology, growth, reproduction, development or
lifespan of an organism that results in impairment of functional capacity to compensate for additional
stress or increased susceptibility to the harmful effects of other environmental influences (EFSA PPR
Panel, 2013a).

Adverse outcome pathway (AOP): Conceptually, an AOP can be viewed as a sequence of events
commencing with initial interactions of a stressor with a biomolecule in a target cell or tissue (i.e.
molecular initiating event), progressing through a dependent series of intermediate events and
culminating with an adverse outcome. AOPs are typically represented sequentially, moving from one
key event to another, as compensatory mechanisms and feedback loops are overcome (OECD, 2018).

Aggregate exposure: Exposure to the same chemical from multiple sources and by multiple routes
(OECD, 2018).

Aggregate exposure pathways (AEP): An AEP is the assemblage of existing knowledge on
biologically, chemically and physically plausible, empirically supported links between introduction of a
chemical or other stressor into the environment and its concentration at a site of action, i.e. target site
exposure as defined by the National Academy of Sciences, USA. It may be relevant to exposure
assessment, risk assessment, epidemiology or all three. The target site exposure (the terminal
outcome of the AEP), along with the molecular initiating event from the AOP, represents the point of
integration between an AEP and an AOP (Teeguarden et al., 2016).

Assessment group: Chemicals that are treated as a group by applying a common risk assessment
principle (e.g. dose addition) because these components have some characteristics in common (i.e. the
grouping criteria).

Component-based approach: An approach in which the risk of combined exposure to multiple
chemicals is assessed based on exposure and effect data of the individual components.

Cumulative assessment group (CAG): A type of assessment group in which the active substances
could plausibly act by a common mode of action, not all of which will necessarily do so (EFSA PPR
Panel, 2013a).

Dose addition: Dose is the exposure metric used in human health risk assessment. All components
in @ mixture behave as if they were dilutions of one another.

Health-based guidance value (HBGV): A numerical value derived by dividing a point of departure (a
no observed adverse effect level, benchmark dose or benchmark dose lower confidence limit) by a
composite uncertainty factor to determine a level that can be ingested over a defined time period (e.g.
lifetime or 24 h) without appreciable health risk (WHO, 2009).

Mode of action (MoA): biologically plausible sequence of key events in an organism leading to an
observed effect, commonly supported by robust experimental observations and mechanistic data. It
refers to the major steps leading to an adverse health effect following interaction of the chemical with
biological targets. It does not imply full understanding of mechanism of action at the molecular level
(EFSA PPR Panel, 2013a).

NAMs: New approach methodologies are taken in a broad context to include in silico approaches, in
chemico and in vitro assays, as well as the inclusion of information from the exposure of chemicals in
the context of hazard assessment. They also include a variety of new testing tools, such as ‘high-
throughput screening’ and *high-content methods’ e.g. genomics, proteomics, metabolomics; as well as
some ‘conventional’ methods that aim to improve understanding of toxic effects, either through
improving toxicokinetic or toxicodynamic knowledge for substances. (ECHA, Proceedings of a scientific
workshop Helsinki, 19-20 April 2016).

Probability: defined depending on philosophical perspective (1) the frequency with which samples
arise within a specified range or for a specified category; (2) quantification of uncertainty as degree of
belief on the likelihood of a particular range or category (EFSA Scientific Committee, 2018a). The latter
perspective is implied when probability is used in a weight of evidence assessment to express relative
support for possible answers.

Problem formulation: In the present document, problem formulation refers to the process of
clarifying the questions posed by the terms of reference, deciding whether and how to subdivide them,
and deciding whether they require weight of evidence assessment.
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Reference point (RP): defined point on an experimental dose response relationship for the critical
effect (i.e. the biologically relevant effect occurring at the lowest dose level). This term is synonymous
to point of departure. Reference points include the lowest or no observed adverse effect level (LOAEL/
NOAEL) or benchmark dose lower confidence limit (BDML), used to derive a reference value or MOE in
human and animal health risk assessment.

Reference value (RV): the estimated maximum dose (on a body mass basis) or concentration of an
agent to which an individual may be exposed over a specified period without appreciable risk.
Reference values are established by applying assessment factor(s) to the reference point. Examples of
reference values in human health include the acceptable daily intake (ADI) for food and feed additives,
and pesticides, tolerable upper intake levels (UL) for vitamins and minerals, and tolerable daily intake
(TDI) for contaminants and food contact materials. Examples for acute effects and operators are the
acute reference dose (ARfD) and the acceptable operator exposure level (AOEL).

Refinement: one or more changes to an initial assessment, made with the aim of reducing
uncertainty in the answer to a question. Sometimes performed as part of a ‘tiered approach’ to risk or
benefit assessment.

Relevance: The contribution a piece or line of evidence would make to answer a specified question,
if the information comprising the line of evidence was fully reliable. In other words, how close is the
quantity, characteristic or event that the evidence represents to the quantity, characteristic or event
that is required in the assessment. This includes biological relevance (EFSA Scientific Committee,
2017b) as well as relevance based on other considerations, e.g. temporal, spatial, chemical, etc.

Reliability: The extent to which the information comprising a piece or line of evidence is correct, i.e.
how closely it represents the quantity, characteristic or event to which it refers. This includes both
accuracy (degree of systematic error or bias) and precision (degree of random error).

Specific effects: Specific effects have been defined by the PPR Panel in 2013 to identify pesticides
which may be grouped into cumulative assessment groups (CAG) and further considered for
cumulative risk assessment (EFSA PPR Panel, 2013b). These specific effects have to be observed at
statistically significant and/or biologically relevant level in at least one whole organism toxicity test and
are identified based on information analysis and expert judgement aiming at excluding local effects,
non-adverse effects, effects not relevant to humans and non-specific effects (e.g. age-related or
occurring at or above the maximum tolerated dose). The unambiguous nature of the specific effects
should be evaluated as well. When the specific effect is to be used under the adverse outcome
pathway (AOP) approach as an apical outcome, it can be referred to as ‘adverse outcome’. It should
be noted that the ‘specific effect’ or the ‘adverse outcome’ not necessarily consist of a single toxicity
endpoint observed or measured in regulatory toxicology studies (e.g. acute or chronic
acetylcholinesterase inhibition), but rather sometimes may be a set of endpoints that make up an
effect of greater biological complexity (e.g. hypothyroidism or functional alterations of the motor
division of the nervous system).

Toxicodynamics: Process of interactions of toxicologically active substances with target sites in living
systems, and the biochemical and physiological consequences leading to adverse effects (EFSA PPR
Panel, 2008).

Toxicokinetics: (1) Process of the uptake of substances by the body, the biotransformation they
undergo, the distribution of the parent chemicals and/or metabolites in the tissues and their
elimination from the body over time. (2) Study of such processes (EFSA PPR Panel, 2008).

Uncertainty:A general term referring to all types of limitations in available knowledge that affect the
range and probability of possible answers to an assessment question. Available knowledge refers here
to the knowledge (evidence, data, etc.) available to assessors at the time the assessment is conducted
and within the time and resources agreed for the assessment. Sometimes uncertainty is used to refer
to a source of uncertainty (see separate definition), and sometimes to its impact on the conclusion of
an assessment (EFSA Scientific Committee, 2018a).

Uncertainty analysis: A collective term for the processes used to identify, characterise, explain and
account for sources of uncertainty (EFSA Scientific Committee, 2018a).

Variability: Heterogeneity of values over time, space or different members of a population, including
stochastic variability and controllable variability (EFSA Scientific Committee, 2018a,b).

Weight of evidence assessment: A process in which evidence is integrated to determine the relative
support for possible answers to a scientific question.

Weighing the evidence: The second of three basic steps of weight of evidence assessment that
includes deciding what considerations are relevant for weighing the evidence, deciding on the methods
to be used and applying those methods to weigh the evidence.
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Weighing: Weighing refers to the process of assessing the contribution of evidence to answering a
weight of evidence question. The basic considerations to be weighed are identified in this Guidance as
reliability, relevance and consistency of the evidence.

Weight of evidence: The extent to which evidence supports one or more possible answers to a
scientific question. Hence, ‘weight of evidence methods’ and ‘weight of evidence approach’ refer to
ways of assessing relative support for possible answers.
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Appendix B — Generic Weight of Evidence Methodology for grouping
multiple chemicals into assessment groups using hazard-driven criteria

This appendix proposes a generic example to apply the WoE approach for grouping chemicals into
assessment groups using hazard-driven criteria. For full details, the reader is referred to the WoE
Guidance document which also provides an example for setting cumulative assessment groups for
pesticides (Appendix C.2) (EFSA Scientific Committee, 2017a). Here, a generic example applicable to
most EFSA Panels dealing with chemical risk assessment is provided.

Problem formulation

EFSA is required to produce a risk assessment of combined exposure to five contaminants (A, B, C,
D, E) with common adverse outcome using a component-based approach. Each contaminant has been
previously assessed individually by EFSA and individual hazard metrics and exposure metrics are
available for risk characterisation. As described in the MIXTOX GD, the problem formulation requires a
description of the mixture, conceptual model and methodological approach to produce an analysis plan
and proceed with the risk assessment (EFSA Scientific Committee, 2019). Here, the question focuses
on the application of hazard-driven criteria for the grouping of the five contaminants into assessment
groups and does not address the whole risk assessment process.

Weight of evidence assessment

A generic approach for grouping chemicals into assessment groups using a WoE assessment is
illustrated in Figure B.1:

Grouping chemicals into
Assessment group using
Hazard-driven criteria

! .

Available Hazard Evidence Step 1: Assemble Hazard Evidence

. MoA/AOP Y Identify relevanf hazard Evidence
Select relevant hazard evidence for WoE assessment

« Common Toxicological Effect (Adverse

Group Hazard evidence into Lines of evidence

QOutcome)
- Reference point/Reference Value
« Target organ and system
« Specific effect N N
« Insilico predictions Step 2 :Welgh HaZard EVldence
« Available Assessment groups Assess reliability, relevance and consistency
Select Weighing method (descriptive, quantitative etc) Weig ht of
Define how to express conclusion for WoE assessment p
> Evidence
l Assessment

Step 3 : Integrate Hazard evidence
Assess consistency
Apply method for integration
Summarise results

!

Step 4 : Results
Reporting results
Uncertainty analysis, Data gaps
Conclusion on Assessment Group and uncertainty

Figure B.1: Generic approach for grouping chemicals into assessment groups using a WOoE
assessment
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Assembling the evidence

Hazard data for chemicals A, B, C, D and E are collected from previous EFSA assessments, available
open source databases (i.e. OpenFoodTox, US-EPA Chemistry dashboard, OECD E-chem portal, JECFA
assessments, etc.) and the peer-reviewed literature. Such data are then assembled into pieces of
evidence and lines of evidence!® including:

— Critical effect from subchronic toxicity, associated target organ and reference point (dose
response).

— Specific effects and associated target organ from subchronic toxicity studies.

— MoA information (i.e. information on key events, dose response, biochemical changes and
adverse outcome)

— From this analysis, four lines of evidence (LOES) can be assembled:

LOE1: Dose response relationships for specific effects; LOE2: Clinical evidence for the effect; LOE3:
Biochemical evidence for the effect; LOE4: Mode of action supporting the effect.

Weighing and integrating evidence

Methods for weighing and integrating hazard evidence have been described elsewhere and include
qualitative methods (listing, best professional judgement, semi-quantitative methods (causal criteria,
logic); quantitative methods (scoring, indexing and quantification) (Linkov et al., 2009; EFSA Scientific
Committee, 2017a). The methods of choice to be applied will depend on data availability, context of
the assessment, complexity of the method, time constraints and resources and the assessor should
provide a rationale for choosing a particular method. A key aspect for weighing and integrating the
evidence is the assessment of the reliability, relevance and consistency of the evidence and the
iterative nature of the process (EFSA Scientific Committee, 2017a).

For each chemical A,B, C, D and E, a semi-quantitative scale was applied to the weighing and
integration of the four LOEs while assessing reliability, relevance and consistency of each LOE as low
(*), moderate (**) and high (***). Expert judgement was then applied to conclude on the probability
of membership to the assessment group (Table B.1).

Table B.1: Semi-quantitative WoE analysis for the grouping of chemicals A, B, C, D and E in
assessment groups

LOE,: Probability of

Chemical specificity and LOE,: LOEs: LOE,: MoA Assessment  membership

d clinical  biochemical group level to assessment

ose response
group

A **x (AO1) NA ok *** (MOA;) MoA Extremely likely
B *kx (AO1) NA oKk *xx (MOA;)  MoA (99-100%)
D **x (AO2) NA ** ** (MOA) MoA Likely (66-90%)
E ** (AO2) NA *ox ** (MOA;)  MoA

AO1: adverse outcome 1; AO2: adverse outcome 2; relative weights: Moderate (**), High (***); NA: not available; Probability
scale (EFSA Scientific Committee, 2017a): Extremely likely (99-100%), Very likely (90-99%), Likely (66-90%), as likely as not
(33-66%), Unlikely (10-33%), Very Unlikely (1-10%), extremely unlikely (0-1%).

Conclusion and summary of results

Table B.2 and Figure B.2 summarise the WoE assessment for the grouping of chemicals A, B, C
(associated with adverse outcome 1) into common assessment group MOA; and D and E (associated
with adverse outcome 2) into common assessment groups MOA,.

! Piece of evidence: A broad term used to refer to distinct elements of evidence that may be combined to form a line of
evidence, e.g. a single study, expert judgement or experience, a model or even a single observation. Line of evidence: set of
evidence of similar type (EFSA, 2015).
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Table B.2: Proposed summary table of the weight of evidence assessment to group chemicals into
common assessment groups using MoA information

Can contaminants A, B, C, D, E be grouped in common

Question assessment groups?
Assemble Select evidence Previous EFSA assessments, open source databases and open
evidence literature
Lines of evidence  LOE1: Dose response relationships for specific effects
LOE2: Clinical data for effect; LOE3: Biochemical evidence for the
effect; LOE4: Mode of action supporting the effect
Weigh the Methods Semi-quantitative scale (low, moderate, high)
evidence Results Tabular forms for the weighing of each LOE (see Table B.1)
Integrate the Methods Semi-quantitative scale/Expert judgement/Probability scale
evidence Results The WoE assessment concludes that:

— Chemicals A, B, C share a common MoA (MOA,), adverse outcome
(AO1) and can be grouped into assessment group MOA;. Expert
judgement concludes that membership to this group for A, B and
C is extremely likely (99-100%).

— Chemicals D and E share a common MoA (MOA;), adverse
outcome (AO2) and can be grouped into assessment group MOA,.
Expert judgement concludes that membership to this group for D
and E is likely (66-90%).

Clinical evidence was scarce for most chemicals and no information
was available on AOPs for A, B, C, D or E.

Contaminants A, B,C, D, E
Defined from terms of reference
AND Passing the gate keeper step

Yes for A,B,C Yes forD and E
Common MoA

A, BandC: DandE:
Assessment Assessment
Group MOA, Group MOA,

MoA; and MoA, are different modes of action (MoAs) which produce different adverse outcomes.

Figure B.2: Hazard-based criteria for grouping contaminants A, B, C, D and E in assessment groups
using MoA information
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Appendix C — Statistical methods to study the probability of combined risk
or combined exposure

The combined risk-based approach (method 1) allows to prioritise multiple chemicals for grouping
into assessment groups (Section 4) and to identify low-priority chemicals through considering the
relative contribution of each individual chemical to the combined risk. Hence, the contribution of risk
guotient of each chemical to the combined risk can be calculated and chemicals with a contribution to
a combined risk below a predefined cut-off value can be removed from the assessment group. In
addition, relationships between chemicals with regards to combined risk can also be analysed using
correlation and multivariate analyses. These statistical analyses can also be applied to an exposure-
driven approach (method 3) and are described thereafter.

A straightforward method to identify chemicals with high probability of combined risk or combined
exposure is to assess the respective correlations between the risk metrics or the exposures metrics.
Thus, those chemicals showing no or low correlations can be excluded from an assessment group.
Spearman and Pearson correlation coefficients! are commonly used to assess the strength and
direction of association between two variables. A positive correlation coefficient indicates that when
the first variable increases, the second variable increases too. Likewise, a negative correlation
coefficient indicates that when the first variable decreases, the second variable decreases too. The
closer the correlation coefficient to 1 (or to —1), the strongest the dependencies between the
variables.

As a rule of thumb, one can say that, for identifying relevant co-exposures, a correlation of
magnitude r = 0.4 or greater would usually be of relevance, with an r value above 0.6 or 0.7 being
considered strong. In that case, exclusion of chemicals from the assessment group with no or low
correlation (r < 0.4) may be justified. However, the r value to exclude chemical must be fixed on a
case-by-case basis, as for example correlations from biomonitoring data are generally lower (highest
values around 0.5) compared to those from external exposures.

Correlation analysis has been applied previously together with a clustering method to identify
multiple pesticides in the highest exposed groups of individuals (Crépet et al., 2013a,b). If for a
particular pesticide, more than 90% of the analytical results for each commodity were left-censored
i.e. lower than the limit of reporting (limit of detection (LOD) or limit of quantification (LOQ)), it was
considered not important for co-exposure calculation. Thus, a total of 79 pesticides out of over 300
were selected for the analysis. Residues of the selected pesticides were analysed in 120 raw
agricultural commodities (RACs) and in drinking water consumed by the INCA2 population (second
French national cross-sectional dietary survey). A total of 306,899 analytical results for pesticides in
different commodities corresponding to 8,364 food/residue combinations were modelled using a
histogram distribution for each combination. A clustering model was applied to divide individuals into
groups with similar patterns of co-exposure. It resulted that two groups of children and three of adults
were highly exposed compared to the other groups. After screening the correlations between
exposures to 79 pesticides, 25 pesticides with at least one correlation above 0.7 were selected.
A correlation cut-off of 0.7 was fixed by the authors to identify low-priority pesticides from the
co-exposures of the five subpopulations. Thus, seven mixtures of two to six pesticides each were
prioritised.

More recently, Pearson correlations have also been applied to study the relationships between 87
environmental exposures during pregnancy and 122 during the childhood period from biomonitoring
data of six European birth cohorts containing a total of 1,301 mother—child (6-11 years) pairs. In this
case, correlation coefficients were plotted using network visualisation and makes it possible to group
substances in 19 exposure groups (atmospheric pollutants, PBDEs, water DBPs, etc.). Then
correlations between exposure groups were studied for the overall data set and within cohorts. The
highest correlation between exposure groups was found to be 0.45. An important limitation of such
correlation methods lies in the fact that they can only detect pairwise correlations between two
chemicals (Nguyen et al. 2014).

Thus, more advanced statistical methods using multivariate analysis have been adapted to identify
prevalent chemical combinations from combined exposure (Béchaux et al., 2013; Traoré et al., 2016;
Chazelas et al., 2021; Crépet et al., in press) or combined risk (Crépet et al., 2019; Van der Voet et al.,
2020). The authors proposed to combine dimension reduction and classification/clustering techniques
to analyse interdependencies between risk or exposure for several chemicals and to define population
clusters in relation to combined risk or combined exposures to multiple chemicals. For example, the
Sparse non-negative matrix under-approximation (SNMU) has been applied to decompose the
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combined risk or combined exposure matrix into two non-negative matrices W and H, such that the
product of the two is as close as possible to the original matrix (Gillis and Plemmons, 2013). Matrix W
contains weights of chemicals per mixture, and matrix H contains the coefficients of the presence of
the mixture per individual. Chemicals with non-zero entries in each column of W indicate that the
chemicals have a positive probability to be found together. The closer to 1 the W weight, the higher
the probability of combined risk or exposure. A classification or clustering method to the matrix H is
then applied to identify cluster of individuals for which exposure to the multiple chemicals is either low
or high. With these methods, chemicals with zero or low entries in W or multiple chemicals for which
exposures were found as the lowest in clusters can be considered as low-priority chemicals. The
chemical combinations that remain under consideration for further refinement of the grouping into
assessment groups are the ones with high exposure for one or several clusters of the population or
the ones contributing to a high proportion of the variance in the overall data set.

With regard to other methods, Su et al. (2014) proposed to use copulas® to characterise
dependency structures between multiple chemicals in personal exposure measurements of volatile
organic compounds. Other methods based on frequency of co-occurrence have been applied to
identify chemical combinations. These include frequent itemset mining® which has also been applied by
Kapraun et al. (2017) to exposure and allows to count combinations of chemicals present and to
identify the most prevalent ones using the US National Health and Nutrition Examination Survey
(NHANES). Prado et al. (2019) used co-occurrence network to study frequency of combinations of
pesticides in pollen samples.

The maximum cumulative ratio (MCR) developed by Price and Han (2011) is also a common
method to prioritise chemicals as described in the MIXTOX guidance document (EFSA Scientific
Committee, 2019). MCR allows the categorisation of mixtures according to whether or not they are of
concern for toxicity and, if so, whether this is driven by one substance or multiple substances (De
Brouwere et al., 2014). The MCR is the ratio of the combined risk estimate (e.g. HI) to the highest risk
calculated for a single chemical within the assessment group (e.g. maximum HQ) and provides a
measure of whether combined risks are dominated by a single chemical or from the contribution of
multiple chemicals. An MCR of 1 for a chemical in an assessment group indicates that the combined
risk metric is dominated by a single chemical and that a combined risk assessment is not needed.
When the MCR is higher than 1, it indicates that more than one chemical contributes to the risk. At its
maximum value, the MRC equals to the number of chemicals assessed where all chemicals have an
equal contribution to the combined risk and all chemicals should be prioritised for further/refined
assessment (EFSA Scientific Committee, 2019).

2 Copulas are functions that enable us to separate the marginal distributions from the dependency structure of a given
multivariate distribution. http://www.columbia.edu/~mh2078/QRM/Copulas.pdf
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Appendix D — Risk-based approach for single chemicals as a prioritisation
method for grouping pesticides into assessment groups

Section 4 and Figure 4 describe prioritisation methods for grouping chemicals into assessment groups
using a combined risk-based approach, a risk-based approach for single chemicals and an exposure-
driven approach. The example presented here illustrates the application of a risk-based approach for
single chemicals to identify low-priority pesticides with acute effects on the nervous system.

The pesticides under consideration have been defined from the terms of reference, passed the gate
keeper step and enter the workflow (Figure 4) for prioritisation. ‘Assess the accessibility of hazard
metrics for the critical effect for each chemical in the Assessment Group or each chemical under
consideration” was answered with ‘YES’ (see description next paragraph).

The assessment starts with 100 pesticides for which concentrations and occurrence patterns were
available (Van Klaveren et al., 2019). For exposure to single pesticides, the concentration in drinking
water was set at 0.1 ug (for further details, see Van Klaveren et al., 2019; EFSA, 2020a; Te Biesebeek
et al., 2021). For 96 of the 100 pesticides, acute reference doses (ARfDs) were extracted from the
OpenFoodTox database (Dorne et al., 2017) and EU-Pesticides Database.®> ARfDs were not available for
azinphos-ethyl, fonofos, permethrin and tetramethrin. The EFSA MIXTOX guidance recommends using
the lowest available ARfD of the particular cumulative assessment group (CAG) for imputation of
missing ARfDs in a cumulative risk assessment (EFSA Scientific Committee, 2019) as a conservative
approach. For pesticides without a health-based guidance values (HBGVs), Te Biesebeek et al. (2021)
suggested three approaches:

e Set additional inclusion criteria based on e.g. occurrence patterns, authorised uses and
expected consumption of foods containing the pesticides;

e Derive a tentative HBGV where possible;

e Use the lowest HBGV available as a surrogate as suggested by the Scientific Committee (2019)

Information on occurrence patterns, authorised uses was retrieved for azinphos-ethyl, fonofos,
permethrin and tetramethrin. The occurrence data of fonofos only contained analytical values below
the level of quantification, which would result into zero exposure using a cumulative exposure
calculation according to EC Tier 2018 II (Van Klaveren et al., 2019). In addition, both azinophos-ethyl
and permethrin are not authorised in the EU and showed very low percentages of potential presence
in the occurrence data (max 0.32% presence). The presence of tetramethrin, which is authorised in
the EU, was also very low in the occurrence data (maximum of 0.33% presence). Based on occurrence
patterns, authorised uses and expected low consumption of foods containing these pesticides,
pesticides with a missing ARfDs were assumed of low-priority and thus not further considered. The
assessor proceeded with prioritisation method 2: Risk metrics for single chemicals using the hazard
quotient (HQ) method.

Two prioritisation scenarios were applied for single pesticides: Hazard Quotients calculation at the
95th and 99.9th exposure percentiles, the former as a standard scenario in risk assessment and the
later as the required percentile for the human risk assessment of combined exposure to multiple
pesticides (see Te Biesebeek et al., 2021). HQs for each pesticide were calculated as the individual
ratio between the exposure to a single pesticide observed at a particular exposure percentile and the
ARfD of the relevant predefined cut-off values for identifying low-priority pesticides. The cut-offs have
been set to 1% and 10% of the ARfD corresponding to HQ values of 0.01 and 0.1, respectively (EFSA
Scientific Committee, 2019; FAO/WHO, 2019). Pesticides were prioritised and grouped according to
four different criteria:

e HQ(p95) < 0.01: low-priority pesticides which are not considered based on the 95th HQ
percentile < 0.01.

e HQ(p95) < 0.1: low-priority pesticides which are not considered based on the 95th HQ
percentile < 0.1.

e HQ(p99.9) < 0.01: low-priority pesticides which are not considered based on the 99.9th HQ
percentile < 0.01.

e HQ(p99.9) < 0.1: low-priority pesticides which are not considered based on the 99.9th HQ
percentile < 0.1.

Table D.1 illustrates the results of the prioritisation exercise.

3 https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN
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Table D.1: Overview of pesticides in the assessment group low-priority pesticides and those
remaining under consideration based on critical effects

Screening on Screening on
95th HQ percentiles 99.9th HQ percentiles
H ddri Low-priority Low-priority pesticides/
Ca_:ar_ ~ariVeN Al pesticides under consideration Pesticides/remaining remaining under
riteria under consideration consideration
HQ(P95) HQ(P95) HQ(P99.9) HQ(P99.9)
<0.01 <0.1 <0.01 <0.1
Critical Effect 100 47/53 89/11 22/78 54/46

HQ: hazard quotient.

For single pesticides with HQ values below the predefined cut-off values, at the 95th percentile of
exposure, 47 pesticides had a HQ < 0.01 and 89 pesticides had a HQ < 0.1. At the 99.9th percentile of
exposure, 22 pesticides showed a HQ < 0.01 and 54 pesticides showed a HQ < 0.1. Those were
identified as low-priority for combined risk assessment and thus not considered for further assessment.

Following the workflow of Figure 4, the pesticides were grouped using hazard-driven criteria (e.g.
common effect or common MoA/AOP). All 100 pesticides were previously grouped as pesticides that
can cause functional alterations of the motor division of the nervous system (CAG-NAM, Van Klaveren
et al, 2019). Forty-seven of these 100 pesticides can cause brain and/or erythrocyte
acetylcholinesterase (AChE) inhibition (CAG-NAN, Van Klaveren et al., 2019). Using the prioritisation
criteria listed above, the CAG-NAM contained 53 high priority pesticides with a HQ > 0.01 at the 95th
percentile, the CAG-NAN contained 28 high priority pesticides with an HQ > 0.01. For the HQ(p95)
< 0.1, the criteria resulted into a CAG-NAM and CAG-NAN with 11 and 7 priority pesticides,
respectively. See Table D.2.

Table D.3 shows that CAG-NAM and CAG-NAN contained 78 and 26 high priority pesticides with a
HQ > 0.01 at the 99th percentile, while the CAG-NAM and CAG-NAN contained the number of 46 and
17 pesticides with a HQ > 0.1 at the 99th percentile.

Risk characterisation: impact of excluding low-priority pesticides on total margin of
exposures (MOEy)

The assessor then tested the impact of excluding low-priority pesticides on the combined risk
assessment using a combined MOEw According to the risk management principles, exposure
calculations are performed using a tiered approach. Tier 1 accounts for very conservative assumptions
that are less resourceful regarding data and computational capacity. In contrast, tier 2 is more
resourceful as it includes more refined assumptions (EFSA, 2021). Here, only the tier 2 approach was
used for the refined assessment groups compiled after the prioritisation criteria (HQ(p95) < 0.01, HQ
(p95) < 0.1, HQ(p99.9) < 0.01 and HQ(p99.9) < 0.1). The tier 2 cumulative exposure assessment used
specific NOAELs for the refined assessment group (CAG-NAN and CAG-NAM; see Te Biesebeek et al.,
2021). MOETs of 100-fold are interpreted as of low concern as detailed in MIXTOX guidance (EFSA
Scientific Committee, 2019). Table D.2 illustrates the MOETs at the 95th percentile of exposure.
Likewise, Table D.3 illustrates the MOETs for the 99.9th percentile of exposure. For comparison, both
tables also include the MOETs based on cumulative exposure assessment for all 100 CAG-NAM and all
47 CAG-NAN pesticides, thus without exclusion of low-priority chemicals, as previously described by
Van Klaveren et al. (2019).

Table D.2 shows that, compared to assessment groups containing all pesticides (thus without
exclusion of low-priority pesticides), the combined MOETs at the 95th percentile of exposure groups
based on the prioritisation criteria HQ(p95) < 0.01 (i.e. excluding low-priority substances) were larger.
For groups based on HQ(p95) < 0.1 (thus excluding low-priority pesticides), the combined MOETs at
the 95th percentile of exposure were much larger compared with assessment groups containing all
pesticides.

In contrast, Table D.3 shows that the combined MOETs at the 99.9th percentile of exposure for
assessment groups HQ(p99.9) < 0.01 and HQ(p99.9) <0.1 are equal to the assessment group
containing all pesticides. Thus, for pesticides having acute effects on the nervous system, a
prioritisation with HQs based on the 99.9th percentile did not have an impact on the cumulative
exposure.
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Total margin of exposure (MOE;) and associated uncertainties from cumulative
assessments (at the 95th percentile of exposure) for pesticides with acute effects on the
nervous system CAG-NAN (acute AChE inhibition) and CAG-NAM (functional alterations
of the motor division)

Specific effect

Total margin of exposure (MOE+)
median estimate and 95% CI
at the 95th percentile of exposure

All pesticides

under consideration

CAGs containing pesticides remaining
under consideration

European populations assessed

Tier 2 approach
for NAN
47 pesticides

HQ(p95) < 0.01®
for NAN
28 pesticides

HQ(p95) < 0.1™
for NAN
7 pesticides

Belgium — Adults

Czech Republic — Adults
Germany — Adults

Italy — Adults

Bulgaria — Other Children
France — Other Children
Netherlands — Other Children
Denmark — Toddler
Netherlands — Toddler

United Kingdom — Toddler

1,160 [1,062-1,249]
1,144 [1,030-1,235]
988 [948-1,025]
973 [626-1,261]
609 [576-636]
735 [647-791]
610 [578-647]
500 [481-521]
459 [428-489]
589 [562-613]

1,514 [1,320-1,655]
1,522 [1,273-1,659]
1,275 [1,197-1,325]
1,125 [654-1,647]
876 [820-903]
968 [825-1,080]
752 [700-799]
643 [599-688]
556 [518-601]
792 [754-827]

2,533 [2,049-2,768]
2,638 [2,028-3,002]
2,109 [1,915-2,296]
1,534 [856-2,247]
1,630 [1,504-1,748]
1,505 [1,240-1,766]
1,024 [948-1,092]
905 [834-970]
720 [671-782]
1,371 [1,249-1,454]

European populations assessed

Tier 2 approach
for NAM
100 pesticides

HQ(p95) < 0.01
for NAM
53 pesticides

HQ(p95) < 0.1
for NAM
11 pesticides

Belgium — Adults

Czech Republic — Adults
Germany — Adults

Italy — Adults

Bulgaria — Other children
France — Other children
Netherlands — Other Children
Denmark — Toddler
Netherlands — Toddler

United Kingdom — Toddler

1,306 [1,235-1,387]
1,286 [1,190-1,370]
1,142 [1,106-1,178]
1,177 [866-1,402]
636 [607-667]
763 [703-834]
725 [680-784]
454 [407-511]
566 [542-610]
578 [542-614]

1,659 [1,524-1,772]
1,676 [1,540-1,806]
1,454 [1,398-1,513]
1,335 [995-1,650]
797 [734-849]
905 [810-980]
862 [808-923]
505 [435-577]
678 [630-735]
694 [620-760]

5,800 [4,237-7,080]
6,704 [4,127-8,474]
5,546 [4,608-6,291]
2,798 [1,326-4,039]
3,635 [3,260-4,085]
3,430 [2,558-4,166]
3,234 [2,648-3,632]
3,080 [2,685-3,454]
2,468 [2,125-2,751]
3,905 [3,285-4,301]

AChE: acetylcholinesterase; CI: confidence interval; HQ: hazard quotient.

(a): HQ(p95) < 0.01: low-priority pesticides which are not considered based on the 95th HQ percentile < 0.01.
(b): HQ(p95) < 0.1: low-priority pesticides which are not considered based on the 95th HQ percentile < 0.1.

www.efsa.europa.eu/efsajournal

33

EFSA Journal 2021;19(12):7033



‘ Jt EFSA Journal

Guidance on scientific criteria to group chemicals into assessment groups

Table D.3: Total margin of exposure (MOE;) and associated uncertainties from cumulative
assessments (at the 99.9th percentile of exposure) for pesticides with acute effects on
the nervous system CAG-NAN (acute AChE inhibition) and CAG-NAM (functional
alterations of the motor division)

Total margin of exposure (MOE+)
median value and 95% CI
at 99.9th percentile of exposure

Specific effect

All pesticides
under consideration

CAGs containing pesticides remaining
under consideration

HQ(p99.9) < 0.01® HQ(p99.9) < 0.1

Tier 2 approach

European populations assessed

for NAN
47 pesticides

for NAN
26 pesticides

for NAN
17 pesticides

Belgium — Adults

Czech Republic — Adults
Germany — Adults

Italy — Adults

Bulgaria — Other children
France — Other children
Netherlands — Other children
Denmark — Toddler
Netherlands — Toddler
United Kingdom — Toddler

102 [72-162]
120 [87-176]
95 [73-120]
96 [75-149]
49 [36-63]
59 [46-74]
52 [45-62]
60 [50-69]
40 [33-50]
61 [47-76]

101 [71-166]
122 [90-179]
95 [76-123]
96 [76-150]
49 [36-63]
60 [47-75]
52 [45-63]
61 [50-73]
41 [33-50]
62 [48-78]

106 [75-178]
130 [90-190]
99 [75-126]
97 [75-149]
48 [35-63]
60 [47-75]
53 [45-65]
62 [49-73]
41 [34-52]
62 [48-77]

European populations assessed

Tier 2 approach

for NAM
100 pesticides

HQ(p99.9) < 0.01

for NAM
78 pesticides

HQ(p99.9) < 0.1

for NAM
46 pesticides

Belgium — Adults

Czech Republic — Adults
Germany — Adults

Italy — Adults

Bulgaria — Other children
France — Other Children
Netherlands — Other Children
Denmark — Toddler
Netherlands — Toddler

United Kingdom — Toddler

176 [115-228]
172 [131-236]
171 [127-211]
141 [109-185]
63 [53-81]
84 [65-102]
89 [75-111]
80 [63-100]
68 [56-85]
73 [61-89]

183 [118-241]
179 [128-229]
177 [125-215]
148 [115-183]
65 [53-82]
87 [67-109]
92 [74-112]
82 [66-99]
69 [57-83]
74 [62-87]

186 [115-243]
182 [137-246]
178 [134-215]
148 [118-197]
67 [54-80]
87 [70-110]
90 [75-108]
81 [66-101]
70 [54-81]
75 [58-87]

AChE: acetylcholinesterase; CI: confidence interval; HQ: hazard quotient.

(a): HQ(p99.9) < 0.01: low-priority pesticides which are not considered based on the 99th HQ percentile < 0.01.
(b): HQ(p99.9) < 0.1: low-priority pesticides which are not considered based on the 99th HQ percentile < 0.1.

Conclusions

The example presented here for the prioritisation of pesticides having acute effects on the Nervous
System showed that the exclusion of low-priority pesticides based on HQ(p99.9) < 0.01 and HQ(p99.9)
< 0.1 has no impact on the combined MOEt at the 99.9th percentile of exposure, which is the
preferred percentile for combined exposure to pesticides. For the prioritisation based on HQ(p95)
< 0.01 and HQ(p95) < 0.1, the exclusion of low-priority pesticides has an impact on the combined
MOET at the 95th percentile of exposure, which is the preferred exposure percentile in many other
frameworks (e.g. contaminants). Therefore, this example highlights that the trigger value for chemicals
other than pesticides needs to be carefully considered. Its effectiveness will depend on several factors
(e.g. regulatory context, number of chemicals, etc.). An adequate validation of the trigger value is
therefore recommended.
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Appendix E — Exposure-driven approach as a prioritisation method for
grouping multiple contaminants from breast milk and comparison with a
risk-based approach for single chemicals

The example presented here illustrates the use of an exposure-driven approach to identify low-priority
contaminants for grouping within human breast milk as described elsewhere (Crépet et al., in press).

The chemicals under consideration have been defined from the terms of reference, passed the
gatekeeper step and enter the workflow (Figure 4) for prioritisation. The question ‘are the hazard
metrics for critical effects as defined for the Assessment Group available for all chemicals’ was
answered with 'NO'. The assessor proceeds with prioritisation method 3: ‘exposure-driven approach’.

The assessment includes 32 chemicals with positive concentrations in 180 breast milk samples from
six French lactariums (ANSES, in press; Crépet et al., in press). Using a lower bound scenario,
censored data were replaced by zero values when not detected and by the limit of detection when not
quantified (EFSA, 2010). Combined exposure for infants was calculated by multiplying each chemical
concentration with a mean consumption of breast milk of 763 mL/day and a mean body weight of
6.1 kg (EFSA Scientific Committee, 2017c). In Crépet et al. (in press), prioritisation of chemicals was
conducted by applying, the Sparse non-negative matrix under-approximation (SNMU) method to the
exposure matrix obtained (180 x 32) (Gillis and Plemmons, 2013). This resulted in a selection of 19
chemicals with high probability of combined exposure. To calculate the risk, Crépet et al. applied the
modified Reference Point Index (mRPI), a method similar to the HI yet taking specific uncertainty
factors into account for substances/effects for which no HBGVs are available (Vejdovszky et al., 2019).

In order to compare the results with the risk-based approach for single chemicals, HQs were
calculated as the individual ratio between exposure and the HBGVs for the subsample of 26 chemicals
with available HBGVs among the 32 chemicals under assessment (ANSES, in press). HBGVs were
collected from who monographs (JECFA, JMPR), EFSA, US-EPA, ATSDR and ANSES, the reader is
referred to the ANSES opinion for full details (ANSES, in press). The P95 of the HQs for each chemical
was then calculated. Similar to the example presented in Appendix C, predefined trigger values for
identifying low-priority chemicals were set at 1% and 10% of the HBGVs corresponding to P95 HQ
values of 0.01 and 0.1, respectively (EFSA Scientific Committee, 2019; FAO/WHO, 2019).

The prioritisation methods led to the selection of 19, 20 and 17 chemicals using the combined
exposure metrics, risk metrics for single chemicals (using a cut-off value of 1%) and risk metrics for
single chemicals (using a cut-off value of 10%), respectively (Table E.1).

Table E.1: Overview of prioritised chemicals in the assessment group using an exposure-driven
approach and risk-based approach for single chemicals using the trigger values of 0.01
and 0.1 for the P95 HQ

High priority chemicals

All chemicals under Chemicals with

assessment HBGV Combined RSC 1% RSC 10%
exposure P95HQ > 0.01 P95HQ > 0.1

32 26 19 20 17

HBGV: health-based guidance value; HQ: hazard quotient; RSC: risk for single chemicals.

Risk characterisation: impact of excluding low-priority contaminants on hazard index

To study the impact of excluding low-priority chemicals, the hazard index was calculated as the
sum of the HQs for all chemicals under consideration with an available HBGVs (26 chemicals) and for
the prioritised chemicals obtained with the three prioritisation methods: combined exposure metric;
risk metric for single chemicals using a cut-off of 1% (HQ > 0.01) and risk metric for single chemicals
using a cut-off value of 10% (HQ > 0.1) (Table E.2).

More than 99.8% of the HI estimated with the 26 chemicals with available HBGVs was predicted
with two risk metrics for single chemicals and 95.6% and 98.5% with the combined exposure for the
mean and the P95, respectively. Thus, exclusion of the low-priority chemicals has a very limited impact
on the HI values. Note that for the combined exposure, two chemicals with no HBGVs were identified
as prioritised chemicals, thus for this group, the HI was calculated on 17 substances instead of 19.

www.efsa.europa.eu/efsajournal 35 EFSA Journal 2021;19(12):7033



‘ Jt EFSA Journal

Guidance on scientific criteria to group chemicals into assessment groups

Table E.2: Hazard index (HI) values for the multiple contaminants in breast milk and % of HI
predicted by an exposure-driven approach and risk-based approach for single chemicals

26 chemicals Combined RSC 1% RSC 10%
with HBGVs exposure (HQ > 0.01) (HQ > 0.1)

Mean P95 Mean P95 Mean P95 Mean P95
67.98 126.4 65 1244 67.97 126.4 67.88 126.3
% of the 26 chemicals HI 95.6% 98.5% 99.98%  99.99% 99.85% 99.93%

HI: hazard index; HQ: hazard quotient; RSC: risk for single chemicals.

HI

Table E.3 shows the relative contribution of each individual chemical, expressed as percentage of the
HI for the multiple contaminants. For the three scenarios, the main contributors to the HI (i.e. indicator
polychlorinated biphenyls, dioxins and furans, perfluorooctanoic acid; hexachlorocyclohexanes) were
retained as prioritised chemicals and chemicals with low contribution were considered as low-priority
chemicals.

Table E.3: Prioritised chemicals and their percentage contribution to the hazard index of multiple
contaminants in breast milk

Contribution to HI
RSC 1% RSC 10%

Chemicals 26 chemicals (HQ > 0.01) (HQ > 0.1) Combined exposure
with HBGV 20 17 19 chemicals
chemicals chemicals
Indicator polychlorinated biphenyls 36% 36% 36% 38%
(ZPCBi)
Dioxins and furans (XPCDD/Fs) 36% 36% 36% 38%
Perfluorooctanoic acid (PFOA) 9% 9% 9% 10%
Hexachlorocyclohexanes (XHCHs) 9% 9% 9% 9%
Lead (Pb) 2.5% 2.5% 2.5% -
Lindane (y_HCH) 1.3% 1.3% 1.3% -
Trichloroethanes/dichloroethylene/ 1.2% 1.2% 1.2% 1.3%
dichloroethane (XDDT/D/E)
TAldrin-dieldrin 1.0% 1.0% 1.0% 1.1%
Chrome (Cr) 0.8% 0.8% 0.8% —
Arsenic (As) 0.6% 0.6% 0.6% 0.7%
Perfluorooctanesulfonic acid (PFOS) 0.4% 0.4% 0.4% 0.4%
Inorganic mercury (inorganic Hg) 0.4% 0.4% 0.4% 0.4%
Hexachlorobenzene (HCB) 0.3% 0.3% 0.3% 0.3%
YHeptachlor 0.2% 0.2% 0.2% 0.2%
Polybrominated diphenyl ethers 0.2% 0.2% 0.2% 0.2%
(=PBDESs)
>Chlordane-nonachlor 0.09% 0.09% 0.09% 0.09%
Brominated flame retardant (£HBCD) 0.08% 0.08% - —
Methylmercury (MeHg) 0.08% 0.08% 0.08% 0.09%
Polybrominated biphenyls (ZPBBs) 0.04% 0.04% - 0.04%
Aluminium (Al) 0.03% 0.03% - -
Nickel (Ni) 0.015% - - —
Mirex 0.005% - - 0.01%
Polybrominated diphenyl ether 209 0.0003% - - 0.0003%
(PBDE 209)
YEndosulfan 0.00005% - - -
Tetrabromobisphenol A (TBBPA) 0.00002% — - -
Endrine 0.00002% - - -
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Contribution to HI
RSC 1% RSC 10%

Chemicals 26 chemicals (HQ > 0.01) (HQ > 0.1) Combined exposure
with HBGV 20 17 19 chemicals
chemicals chemicals
Pentachlorobenzene (PeCB) - - - Retained but no HBGV
available
Perfluorohexanesulfonic acid (PFHxS) - - - Retained but no HBGV
available

HI: hazard index; RSC: risk for single chemicals; HQ: hazard quotient; HBGV: health-based guidance value.

This example shows that low-priority chemicals within the assessment group with low probability of
combined exposure can be excluded, e.g. the HI calculated only for prioritised chemicals was close to
the HI obtained from the 26 chemicals under consideration (which have a HBGV) and for those
obtained using single risk metrics.

Conclusions

The example presented here for the prioritisation of multiple chemicals in breast milk using an
exposure-driven approach shows that the exclusion of low-priority chemicals has a very limited impact
on the HI as results were close to the ones obtained with single risk metrics (1% and 10% cut-off
values). In addition, the prioritised chemicals were similar across the three scenarios and were the
main contributors to the HI. Overall, the exposure-driven approach allows to prioritise multiple
chemicals, exclude chemicals with low correlations and is of particular interest to prioritise chemicals
for which available reference values (i.e. HBGVs) have not been set.
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