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Modeling Empirical Stock Market Behavior Using a Hybrid
Agent-Based Dynamical Systems Model

Daniel A. Cline1∗, Grant T. Aguinaldo1, and Christian Lemp1

1 Department of Systems Science and Industrial Engineering

Binghamton University, Binghamton, NY, USA
∗ dcline1@binghamton.edu

Abstract

We describe the development and calibration of a hybrid agent-based dynamical
systems model of the stock market that is capable of reproducing empirical mar-
ket behavior. The model consists of two types of trader agents, fundamentalists
and noise traders, as well as an opinion dynamic for the latter (optimistic vs. pes-
simistic). The trader agents switch types stochastically over time based on simple
behavioral rules. A system of ordinary differential equations is used to model the
stock price as a function of the states of the trader agents. We show that the model
can reproduce key stylized facts (e.g., volatility clustering and fat tails) while pro-
viding a behavioral interpretation of how the stock market itself can cause periods
of high volatility and large price movements, even when the economic value of the
stock grows at a constant rate.

1 Introduction

Modeling the dynamics of financial asset prices often involves tradeoffs between
tractability and empirical consistency. As we seek to capture the empirical behavior
of asset price movements, our models often become more complex and, therefore,
less tractable. Furthermore, while some models are mostly concerned with repro-
ducing empirical market behaviors, others are primarily concerned with providing
plausible explanations for the causes of these behaviors. The model proposed in this
paper seeks to accomplish both, while maintaining simplicity as much as possible.

Empirical behaviors of asset prices show remarkably similar patterns across
financial markets and asset types [1,2]. These statistical properties have come to be
known as stylized facts, some of the most notable being:
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• Uncorrelated returns: The time series of returns shows virtually no autocor-
relation for all lags greater than zero.1 However, returns are not independent.

• Volatility clustering: The variance of returns shows temporal dependence.
In particular, large changes in prices cluster together in certain time periods,
while small changes in prices cluster together in others. This manifests itself
in significant autocorrelations in the absolute values of returns. Furthermore,
the autocorrelation function is a decreasing function of the number of lags.

• Fat tails: The unconditional distribution of returns is leptokurtic with positive
excess kurtosis, meaning the tails of the distribution have much more weight
assigned to them than the tails of a normal distribution. Put simply, large
movements in price are much more common than what Gaussian noise can
produce.

• Asymmetric returns: In the case of stock markets, the unconditional dis-
tribution of returns shows negative skewness. In particular, large downward
movements in price are more common than large upward movements in price.

Due to its simplicity, geometric Brownian motion (GBM) is often used to model
the price dynamics of financial assets [3]. GBM is an equation-based model that
assumes price movements are independent and lognormally distributed (i.e., the log
returns of the time series of prices follow a normal distribution). The benefit of this
assumption is that closed-form solutions are readily available for many financial
derivatives [4]. However, from the definitions above, we see that GBM precludes
volatility clustering and fat tail behavior, so its assumptions are consistently violated
in real financial markets.

To better account for empirical market behavior, researchers have put consid-
erable effort into developing more sophisticated equation-based models that are
capable of reproducing stylized facts. Two common approaches are autoregressive
conditional heteroskedasticity (ARCH) models [5] and stochastic volatility mod-
els [6]. However, while these models are able to reproduce certain stylized facts,
they do not provide a behavioral explanation for their underlying cause.

More recently, applying agent-based models (ABM) to financial markets has
allowed for behavioral explanations of stylized facts [7–9]. In this approach, a mi-
cro model of the market is constructed with many trader agents, each following
certain rules or trading strategies, such that their simulated interactions collectively
lead to emergent macro market behaviors that are consistent with stylized facts.
This allows for plausible behavioral explanations of the underlying causes of styl-
ized facts, since traders’ actions are directly incorporated into the model. However,

1The n-lag autocorrelation coefficient for a time series rt is given by corr(rt, rt−n).
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models proposed in the literature are often quite complex, utilizing concepts such
as variable memory, percolation theory, networks, adaptive learning, classifiers, and
genetic programs.2 Due to their complexity, these models are often difficult to im-
plement and calibrate.

Weighing the tradeoffs between equation-based models and agent-based mod-
els, we sought to build a hybrid agent-based dynamical systems model where the
behaviors of discrete trader agents, following a herding mechanism originally in-
troduced to explain the feeding behavior of ants [11], are distilled into an evolving
market price using a system of ordinary differential equations to model the role of a
market maker. We show that interactions and feedbacks among these simple trader
agents lead to the emergence of macro behaviors that are statistically consistent
with stylized facts found in real market data.

This paper is structured as follows: In Section 2, we construct a model that
draws on findings in the behavioral and empirical finance literature to understand
how the behaviors of different types of traders can affect asset prices in a given
market. In Section 3, we describe our approach for running numerical simulations
and calibrating the model to historical data. A statistical analysis of the results is
also provided. In Section 4, we conclude with a brief discussion of our work and
directions for future work. The working code for all results in this paper can be
found on GitHub.3

2 Model

We consider a speculative market for a single stock, where buy and sell orders
are placed by multiple traders and prices are set by a market maker based on the
demand generated by the traders’ orders. The model we propose is a hybrid agent-
based dynamical systems model of the stock market, where traders are represented
by agents whose aggregate states are processed by a market maker, which takes the
form of a dynamical system with stochastic parameters. Our approach builds on the
simple model proposed in [12], which draws heavily on [11, 13, 14]. Our goal was
to construct a model that better reproduces the stylized facts found in real market
data while maintaining simplicity as much as possible.

The model consists of two types of trader agents (traders), fundamentalists and
noise traders (i.e., chartists). As in [12], each noise trader is designated either an
optimist or pessimist at any given time, and noise traders randomly switch between
the two based on a majority opinion dynamic originally proposed in [11]. Traders
also switch between fundamentalists and noise traders, and do so as a function of

2A well-known example of one such model is the Santa Fe artificial stock market [10].
3https://github.com/dcline1/MarketABM/blob/master/MarketABM.ipynb
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the divergence between the stock’s market price and its fundamental value.
At the center of the model is a market maker, who sets the market price of the

stock as a function of the excess demand generated by the traders. Similar to the
approach originally proposed in [14], the market maker is modeled as a system
of ordinary differential equations (ODE) with stochastic parameters. However, in-
stead of assuming equilibrium dynamics at each time step, we use the system of
differential equations to directly model the dynamical system through time.

2.1 Fundamental Value

We start with the fundamental value of the stock, which we take to be its true
economic value. In practice, financial analysts apply fundamental analysis (e.g.,
dividend discount models and pricing metrics, such as price-earnings ratios) to de-
termine the fundamental value of a stock. Since analysts often disagree on the true
value of a stock, the fundamental value here should be thought of as a measure of
the average of many individual estimates of the fundamental value (i.e., the market’s
overall view of the fundamental value of the stock).

While it is common in the ABM literature to take the fundamental value of the
stock to be constant through time [12, 15], this is not a realistic assumption since
stock prices tend to grow exponentially, and over the long run, market prices are
driven by the fundamental value. Therefore, in order to directly compare results
from the model with real market data, we model the fundamental value of the stock
using the following exponential function

dVt

dt
= µVt, (1)

where Vt is the fundamental value at time t and µ is the growth rate. Note that the
growth rate of the fundamental value is deterministic and constant in Eq. (1). We
chose this simplifying assumption because our goal was to study the endogenous
behavior of the market, where price movements are entirely dictated by the interac-
tions among individual traders. Allowing for stochastic growth rates would make
the model less interpretable, since attributing price movements to trader behaviors
vs. exogenous shocks to the fundamental value would be difficult. By removing
uncertainty in the fundamental value, the market itself is entirely responsible for
the stock price behavior produced by the model.

2.2 Trader Types

We consider two types of trader agents that are found in virtually every financial
market, fundamentalists and noise traders.4 Fundamentalist traders buy and sell

4These are referred to as α-traders and β-traders, respectively, in [13].

4

Northeast Journal of Complex Systems (NEJCS), Vol. 4, No. 2 [2022], Art. 1

https://orb.binghamton.edu/nejcs/vol4/iss2/1
DOI: 10.22191/nejcs/vol4/iss2/1



based on perceived mispricings in the market (i.e., whether the asset is over or un-
dervalued). They do so using information about the fundamental value of the stock
and do not consider market sentiment in their trading decisions. In contrast, noise
traders are driven by herd instincts and tend to follow the majority opinion of the
market (i.e., overall market sentiment) when making trading decisions. Herd behav-
ior, which is driven by diffusion of opinion (i.e., contagion) rather than knowledge
of market fundamentals, is well documented in the literature [16]. As in [12], we
designate each noise trader either an optimist or pessimist.

The model consists of N f
t fundamentalist traders, N c

t noise traders, and N =
N f

t + N c
t traders total. Noise traders are further split into N o

t optimist traders and
Np

t pessimist traders, where N c
t = N o

t + Np
t . To avoid absorbing states, boundary

conditions are also imposed to ensure that there is at least one of each type of trader
at all times (i.e., N f

t > 0, N o
t > 0, and Np

t > 0). Note that while the total number of
traders is fixed throughout the simulation, the number of fundamentalists, optimists,
and pessimists are dynamic and change stochastically through time based on simple
behavioral rules (described in Section 2.4).

Since we ultimately wish to calibrate the model to market data, we would like
the parameters of our model to be (relatively) invariant to the total number of
traders. Therefore, rather than directly use the number of traders in our model
specification, we use the proportion of traders that are of a given type by defining
the following variables

Y f
t =

N f
t

N
, Y c

t =
N c

t

N
, Y o

t =
N o

t

N
, Y p

t =
Np

t

N
. (2)

This gives the following relationships

Y c
t = Y o

t + Y p
t ,

1 = Y f
t + Y c

t .

Note that, due to the boundary conditions, Y f
t , Y c

t , Y o
t , and Y p

t are all strictly be-
tween 0 and 1. We also define the following stochastic term based on market senti-
ment

Xt =
N o

t −Np
t

N c
t

, (3)

which is positive when there are more optimists than pessimists and negative when
there are more pessimists than optimists. Note that Xt provides a measure of the
overall mood of the market and is always strictly between −1 (pessimistic) and 1
(optimistic). Furthermore, as will be discussed in Section 2.4, the herding behavior
of noise traders imposes (stochastic) attractors on Xt at 1 and −1, with intermittent
regime switches between the two.
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2.3 Market Maker

In practice, traders submit buy and sell orders to a market maker, who executes
trades by matching orders from all traders and settles on a market price. Market
makers also maintain their own inventory of the stock, providing additional liquidity
to the market by depleting their inventory when buy orders outnumber sell orders
and by accumulating inventory when sell orders outnumber buy orders. From a
modeling standpoint, this means that the market price does not necessarily reflect a
perfect equilibrium of supply and demand among traders at all times, but rather it
tends towards equilibrium in what is known as sluggish price adjustment [13, 14].
As in [12], we use an ordinary differential equation to model the behavior of the
market marker.

Since we are most interested in returns (e.g., percentage changes in price) as
opposed to dollar value changes in price, we model the dynamics of the market
price of the stock, St, using an ODE of the following form

1

St

dSt

dt
= g(Df +Dc), (4)

where Df measures the excess demand from fundamentalists, Dc measures the ex-
cess demand from noise traders, and g(·) is an arbitrary function that controls the
speed of market clearing as a function of the total excess demand from all traders.
Here excess demand can be thought of as the number of buy orders relative to the
number of sell orders at a given time. Note that since Eq. (4) models the relative
price change (dSt/St), returns are independent of the absolute price level of the
stock.

We assume that fundamentalists buy and sell shares of stock based on perceived
mispricings in the market, measured by the relative (i.e., percentage) difference
between the market price and the fundamental value

Df = αY f
t

(
Vt − St

St

)
, (5)

where α is a measure of the volume of trades made (e.g., the number of shares
traded) by fundamentalist traders, and is fixed throughout the simulation. This is a
simplified version of the more general excess demand function given in [13] and is
similar to the excess demand function for fundamentalists given in [12]. However,
rather than use the simple difference between market price and fundamental value,
we use the relative difference so that the demand for stocks is a function of potential
rates of return and not the dollar value of the stock.5 When the fundamental value

5Eq. (5) is consistent with the mean-reversion drift term in the Ornstein–Uhlenbeck process.
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is not constant, using an absolute deviation instead of a percentage deviation will
distort demand through time, since the magnitude of the price grows as a function
of time.

Noise traders, on the other hand, trade based on their opinion about the fu-
ture. The excess demand function for noise traders proposed in [12] is of the form
βY c

t Xt, where β represents the volume (i.e., size) of trades made by noise traders
and Xt is the market sentiment index given by Eq. (3). However, this demand func-
tion assumes that demand is symmetric for optimists and pessimists, and as a result,
we found that it could not generate the large negative skewness and excess kurtosis
found in real financial markets.

Since market selloffs are often accompanied by increases in trading volume
[17], we chose to model trading volume as an increasing function of pessimistic
market sentiment. To keep the function as simple as possible, we model this in-
crease in volume linearly as a function of (1 − Xt) using the following excess
demand function for noise traders

Dc = βY c
t

(
1−Xt

2

)
Xt = βY p

t Xt. (6)

Note that as the number of pessimists increases, so does (1 −Xt), which works to
push prices lower during market selloffs due to larger trade orders. Therefore, this
excess demand function induces negative skewness and high excess kurtosis in the
distribution of returns.

The price adjustment function g(Df+Dc) in Eq. (4) is often taken to be κ(Df+
Dc) for some constant κ > 0, where κ is a parameter that controls the speed of price
adjustment per unit time. For simplicity, [12] takes the limit as this price adjustment
constant goes to infinity (i.e., instantaneous market clearing), which allows them to
solve for the equilibrium price when dSt/dt = 0. In this paper, we assume that
κ is finite (i.e., sluggish price adjustment) so that the system is generally not at
equilibrium and the ODE defines a dynamical system through time.

Putting it all together, we get the following ODE for the market maker

dSt

dt
= αY f

t (Vt − St) + βY p
t StXt, (7)

where we have chosen to absorb κ into the α and β parameters to reduce the num-
ber of parameters in the model. Since Eq. (7) involves parameters that are them-
selves stochastic processes (Y f

t , Y p
t , and Xt), we simulate it using the forward Euler

method with a simulation time step ∆t corresponding to one trading day.
Note that since the first expression on the right-hand side is a mean-reverting

term, the model pulls the market price back to its fundamental value when it di-
verges too far. This is consistent with empirical findings of long-run market mean
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reversion [18]. Furthermore, the second expression on the right-hand side includes
the stochastic component Xt, which has (stochastic) attractors at 1 and −1, so it
tends to pull the market price of the stock above (below) the fundamental value
for long periods of time based on market sentiment until a regime switch reverses
sentiment and pulls the market price below (above) the fundamental value. The
recurrent regime switches between optimists and pessimists is the primary driver of
volatility clustering in the model.

2.4 Switching Behavior

We assume all traders of a given type follow the same simple rules. We also as-
sume that market information is disseminated to all traders equally (e.g., through
media reports) without consideration of trader proximity.6 Similar to [12], for each
time step, each optimist has a probability pop of switching to a pessimist and each
pessimist has a probability ppo of switching to an optimist, where the switches are
Bernoulli and are assigned the following probabilities

pop = ν1∆t
Np

t

N c
t

, ppo = ν1∆t
N o

t

N c
t

, (8)

where ν1 controls the velocity of opinion diffusion among noise traders and we
multiply by ∆t to make ν1 invariant to the size of the time step. We see from
these definitions that when the majority of noise traders are optimists (pessimists),
the few remaining pessimists (optimists) will have a relatively high probability of
switching to optimists (pessimists), while the optimists (pessimists) will have a
relatively low probability of switching to pessimists (optimists). This contagion of
opinion leads to herd behavior, as noise traders are either increasingly drawn into
an optimistic market or sell out of a pessimistic market. In other words, the system
is attracted to the states where the majority of traders are either optimists (Xt → 1)
or pessimists (Xt → −1) and there is a low probability of switching out of these
states. However, given the stochastic nature of the model, the overall opinion of the
market does occasionally switch between the two, resulting in intermittent regime
switches in market sentiment.

The number of fundamentalists and noise traders is fixed in [12]. Because of
this, the behavior of the stock price very closely mirrors the value of Xt in their
model, remaining above Vt by a roughly constant amount when Xt is close to 1
and remaining below Vt by a roughly constant amount when Xt is close to −1. We
chose to incorporate the ability of trader agents to switch between fundamentalists

6See [19] for an example of an ABM with opinion diffusion over a network.
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and noise traders based on the following transition probabilities7

pfc = ν2∆te−λρ, pcf = ν2∆t
(
1− e−λρ

)
, (9)

where pfc is the probability that a fundamentalist trader switches to a noise trader,
pcf is the probability that a noise trader switches to a fundamentalist trader, λ > 0
is a free parameter, and

ρ =
|Vt − St|

Vt

(10)

is the absolute percentage deviation of the stock price from the fundamental value.
Again, we multiply by ∆t to make ν2 invariant to the size of the time step. By allow-
ing for switching between fundamentalists and noise traders, we vary the weights
(i.e., Y f

t and Y p
t ) applied to the first and second terms on the right-hand side of

Eq. (7), which allows for richer price behavior.
Intuitively, pfc is greatest when there is no deviation from the fundamental

value, in which case there is no perceived advantage to being a fundamentalist
trader, so traders increasingly switch to noise traders. On the other hand, pcf grows
as the price diverges from the fundamental value, so noise traders increasingly
switch to fundamentalist traders to take advantage of the perceived mispricing.

Note that pfc = pcf when e−λρ = 1− e−λρ, which gives

λ = −1

ρ
ln

1

2
. (11)

Therefore, the choice of λ determines the level of absolute percentage price de-
viation above which traders are more inclined to switch to fundamentalists from
noise traders. In other words, the choice of λ controls how far the market price will
diverge from the fundamental value before fundamentalists begin to dominate and
pull it back toward its fundamental value.

2.5 Visualization of Model

To illustrate the model’s overall dynamics, each model component is plotted over
time in Figure 1. The top plot shows the percentage of noise traders through time
who are optimists and pessimists (Y o

t /Y
c
t and Y p

t /Y
c
t , respectively). The middle

plot shows the percentage of traders through time who are fundamentalists and
noise traders (Y f

t and Y c
t , respectively). The bottom plot shows both the funda-

mental value and market price of the stock generated by the model (Vt and St,
respectively).

7See [15] for an alternative switching model based on expected payoff differentials.
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Figure 1: Daily time series dynamics of the hybrid agent-based dynamical systems model.
Top: optimists vs. pessimists, Middle: fundamentalists vs. noise traders, Bottom: simulated
stock price vs. fundamental value.

The stochastic attractor behavior of Xt in Eq. (3) is evident in the top plot, as
at any given time, the majority of noise traders are either optimists (Xt → 1) or
pessimists (Xt → −1). Note that while the dynamics of Xt are independent of the
stock price, the stock price relative to the fundamental value is highly dependent on
them. This can be seen by comparing the top and bottom plots and noting that the
stock price is generally above the fundamental value when the market is optimistic
and it is generally below the fundamental value when the market is pessimistic.

It is also evident that the number of fundamentalist traders tends to grow during
prolonged periods of market pessimism, as seen in the shaded regions, since the
heavier trading volume for pessimistic noise traders in Eq. (6) tends to depress the
market price, leading to more conversions from noise traders to fundamentalists
due to Eqs. (9) and (10). This makes intuitive sense, as there’s more incentive for
fundamentalists to take advantage of mispricing in the market when the herding
behavior of noise traders depresses the market price.
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Conversely, the number of noise traders tends to grow during prolonged periods
of market optimism, as seen in the unshaded regions, since the lighter trading vol-
ume for optimistic noise traders in Eq. (6) gives outsize weight to fundamentalist
traders in driving the price, initially keeping the market price closely aligned with
the fundamental value. But as the number of noise traders grows, their larger rela-
tive influence causes the market price to diverge further from the fundamental value
until a regime shift leads to a large drop in price. The cycle then repeats itself.

3 Numerical Results

In this section, we compare stock price behavior from (1) a historical data set, (2)
geometric Brownian motion, and (3) the hybrid agent-based dynamical systems
model proposed in this paper. By calibrating to historical data, we can directly
compare the statistical properties of all three time series and draw conclusions about
the proposed model.

3.1 Historical Returns

We used the closing prices of the SPDR S&P 500 ETF Trust (symbol, SPY) from
March 2, 2001 to January 15, 2021 for our historical data set.8 Closing prices were
converted to daily log returns as follows

rt = log

(
St

St−1

)
, (12)

where St is the stock price at time (date) t. This gave us a time series of returns
for 5,000 trading days. Summary statistics for the historical returns are given in the
SPY column of Table 1. The time series and histogram for rt are also plotted in
Figures 2(a) and 2(b), along with autocorrelation plots for rt and |rt| out to 40 lags
(days) in Figures 3(a) and 3(b).

3.2 Geometric Brownian Motion

The dynamics of the stock price, St, assuming geometric Brownian motion are
given by the following stochastic differential equation (SDE)

dSt = µStdt+ σStdWt, (13)

where Wt is simple Brownian motion with distribution Wt ∼ N(0, t). Comparing
this functional form to Eq. (1), we see that GBM is just an exponential with Gaus-
sian noise added. This SDE was discretized using the forward Euler method with

8https://finance.yahoo.com/quote/SPY/history?p=SPY
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Statistic SPY GBM ABM

Mean (annual) 0.0753 0.0723 0.0697
St. Dev. (annual) 0.1966 0.1975 0.1940
Skewness -0.3030 -0.0216 -0.6024
Excess Kurtosis 12.8985 -0.0637 8.2427
Jarque-Bera

Test statistic 34,737 1.2 14,457
p-value 0.0000 0.5437 0.0000

Ljung-Box(|r|, 15)
Test statistic 8,425 16.9 8,964
p-value 0.0000 0.3250 0.0000

Table 1: Time series summary statistics

a time step of ∆t = 1/252, corresponding to 252 trading days in a year (i.e., daily
time steps). The two parameters µ and σ correspond to the annualized mean and
standard deviation of St, so these parameters were set to the annualized average
return (µ = 0.0753) and standard deviation (σ = 0.1966) from our historical SPY
data set.

Summary statistics for the simulated time series of daily log returns for a 5,000
day simulation period are given in the GBM column of Table 1. The time series
and histogram of returns are also shown in Figures 2(c) and 2(d), along with the
autocorrelation plots for rt and |rt| in Figures 3(c) and 3(d).

3.3 Agent-Based Dynamical Systems Model

The full model consists of the system of ordinary differential equations given by
Eqs. (1) and (7), which we discretize using the forward Euler method with a time
step of ∆t = 1/252 (i.e., daily). An array keeps track of the type of each trader
agent, where agents can switch types every time step according to realizations of
Bernoulli random variables with probabilities given by Eqs. (8) and (9), along with
the boundary conditions given in Section 2.2.

We ran extensive numerical experiments across a wide range of parameter val-
ues to determine valid parameter ranges that produced model behavior reasonably
close to historical market data. When running these experiments, instead of speci-
fying values for ν1 and ν2 directly, we chose to specify values for ν1∆t and ν2∆t,
since these values must be between 0 and 1 to ensure Eqs. (8) and (9) give valid
probabilities. The narrowed parameter space is given in Table 2.

Given the parameter space, we sought to calibrate the model to the historical
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Figure 2: Time series and histograms of daily log returns, rt. Top: historical data set (SPY),
Middle: geometric Brownian motion (GBM), Bottom: hybrid agent-based dynamical sys-
tems model (ABM).

SPY data set in order to test its ability to replicate the stylized facts found in a
real financial market. Since our goal was to demonstrate the capabilities of the
model, rather than perfect calibration, we used a relatively simple calibration pro-
cess, which nonetheless produced promising results. More elaborate calibration
approaches for similar models can be found in [20, 21]. Bayesian optimization
methods could also be considered [22].

Our numerical experiments revealed material interdependencies among parame-
ters in the model, with various different combinations of parameter values resulting
in similar statistical behavior. Therefore, we elected to fix certain parameters in
the model and calibrate others. Specifically, we set N = 200, N f

0 = 100, and
N c

0 = 100, with an initial probability of 0.5 for designating each noise trader an
optimist or pessimist (i.e., E[N o

0 ] = E[Np
0 ] = N c

0/2).9 While the total number of

9These values are consistent with the parameters used for numerical simulations in [12, 21].
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Figure 3: Autocorrelation functions of time series of daily log returns, rt, and absolute
values of daily log returns, |rt|. Top: historical data set (SPY), Middle: geometric Brownian
motion (GBM), Bottom: hybrid agent-based dynamical systems model (ABM).

traders has some effect on model behavior, it does not materially affect the values
of other parameters in the model, since Eqs. (2) and (3) are functions of proportions
of trader types as opposed to the actual number of traders.

Since Vt drives the long-run return of the stock through the mean-reversion term
in Eq. (7), which pulls St towards Vt, we set µ in Eq. (1) equal to the annualized
average return from our historical data set (µ = 0.0753). We also fixed α = 800
and ν2∆t = 0.003.

Since smaller values of λ correspond to larger price deviations in Eq. (11), noise
traders tend to dominate the simulation as λ is decreased, which leads to greater
variability in the simulated time series and larger calibration errors. Conversely,
larger values of λ correspond to smaller price deviations in Eq. (11), so fundamen-
talists tend to dominate as λ is increased, which leads to lower kurtosis. We fixed
λ = 6.9, corresponding to an absolute percentage price deviation in Eq. (11) of
ρ ≈ 0.1, or about 10%, above which fundamentalists tend to dominate, which gave
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Parameter Low High

α 700 1,000
β 100 α/2

ν1∆t 0.1 0.9
ν2∆t 0.001 0.01
λ 4 14

Table 2: Suggested ranges for model parameters

good calibration results by balancing the two.
The fixed parameter values above leave ample flexibility in the model so that

calibration only needs to be performed on two remaining parameters, β and ν1. To
adequately cover the remaining parameter space, we created the following parame-
ter sets used in our calibration

β = {100 + 25i | i = 0, 1, ..., 12},
ν1∆t = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, (14)

corresponding to the ranges given in Table 2. Finally, since we are primarily inter-
ested in returns (i.e., percentage changes in price), we set the initial values of S0

and V0 to 1. The vector of simulated prices can easily be converted to any starting
price by simply multiplying it by the desired starting price.

We define our objective function for the calibration routine as follows

f = 10e2(σ) + 0.1e2(skew) + e2(kurt) + 0.1e2(rng)

+10(ACF3(r))
2 + e2(ACF3(|r|)), (15)

where σ is the annualized standard deviation of the daily returns, skew is the skew-
ness of the daily returns, kurt is the excess kurtosis of the daily returns, rng is the
range of the daily returns (i.e., the maximum daily return over the time series minus
the minimum daily return), ACF3(r) is the average of the first 3 autocorrelations of
the daily returns time series, ACF3(|r|) is the average of the first 3 autocorrelations
of the absolute values of the daily returns time series, and e2(·) is the squared rela-
tive (i.e., percentage) error between the time series produced by the model and the
historical time series, with the historical value in the denominator. Since estimated
higher order moments like kurtosis have high variance, including the range in the
objective function resulted in a better fit in the tails. We also took the autocorrela-
tions of market returns to be zero, which is why we did not apply the error function
to ACF3(r). Note that the mean return, µ, is specified directly in the model so we
did not include it in the objective function. Finally, since the statistical measures
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are reported in different units, we chose the weights heuristically to achieve a good
fit without any one component dominating the calibration.

To avoid local minima, we performed a grid search on the cartesian product
of the sets of parameters given in Eq. (14) to find the set of parameter values that
achieved the lowest average objective function value. In order to mitigate simula-
tion bias and obtain more robust results, the model was calibrated by running 10
replications for each set of parameter values and taking the average of the objective
function value for the 10 runs, where the same set of 10 starting seeds was used
for each parameter set. For each replication, we ran the model for 6,000 time steps
with a warmup period of 1,000, where the first 1,000 days of the simulation were
discarded to avoid transient phases. This left 5,000 samples from which to calculate
the objective function for each replication, which is consistent with the size of our
historical SPY data set.

We found that the minimum average objective function value was achieved for
β = 150 and ν1∆t = 0.7. Summary statistics of the daily log returns for a single
replication of the calibrated model for a 5,000 day simulation period are given in
the ABM column of Table 1. The time series and histogram of returns are plotted in
Figures 2(e) and 2(f). The autocorrelation plots for rt and |rt| are shown in Figures
3(e) and 3(f).

3.4 Analysis of Results

We see very clear evidence of volatility clustering for the SPY and ABM time series
in Figures 2(a) and 2(e), where returns have long periods of small price movements
punctuated by bursts of much larger movements. This is contrasted with the returns
for GBM in Figure 2(c), which show uniform volatility throughout. We also see
clear evidence of fat tail (leptokurtic) behavior in that occasionally there are much
larger daily price movements for the SPY and ABM time series compared to GBM.
This is further confirmed in the histograms in Figures 2(b) and 2(f), which have
very similar shape. Note the much larger weight given to the tails compared to
the histogram for GBM returns in Figure 2(d), which are normally distributed by
construction. We can also see evidence of negative skew for SPY and ABM in
Figures 2(b) and 2(f), with more weight given to negative returns relative to positive
returns.

These observations are in line with the summary statistics in Table 1. While all
time series produced similar standard deviations for returns, only SPY and ABM
show non-trivial negative skewness and large positive kurtosis. Furthermore, given
the negligible p-values from the Jarque-Bera tests, which test for normality using
a test statistic that incorporates both skewness and kurtosis, we strongly reject the
null hypothesis that the SPY and ABM daily log returns are normally distributed.
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As expected, we fail to reject the null hypothesis for the normally distributed GBM
returns.

Moving on to Figure 3, from the left side, we see that all three time series
show negligible autocorrelations for daily returns. However, we again see very
clear evidence of volatility clustering for SPY and ABM in Figures 3(b) and 3(f)
with substantial autocorrelations among the absolute values of returns. So while
the returns for SPY and ABM are uncorrelated, they are certainly not independent.
We also note that the values of the autocorrelations of the absolute values of returns
align closely between SPY and ABM, where both are decreasing functions of the
number of lags. As expected, there is negligible autocorrelation among the absolute
values of returns for GBM in Figure 3(d), since GBM returns are independent by
construction.

These observations are consistent with the Ljung-Box results in Table 1, which
test for significant autocorrelations over n lags. As is standard in the empirical
finance literature, we tested for autocorrelations in the absolute values of returns,
|rt|, over n = 15 daily lags. The null hypothesis of zero autocorrelation for all n
lags is strongly rejected for SPY and ABM, but not for GBM.

Note that the above results are for a single replication of the model. To give
a more complete picture of the general behavior of the model, we also ran 100
replications of the fully calibrated model, calculated summary statistics for each
replication (i.e., each sample path), and looked at their distribution. Histograms
for the mean, standard deviation, skewness, and excess kurtosis for each of the 100
replications are plotted in Figure 4. The corresponding monte carlo statistics are
given in Table 3.

We see that the mean, standard deviation, and skewness of the historical SPY
data set all fall within the 95% confidence intervals produced by the model, while
on average the excess kurtosis generated by the model is lower than the excess kur-
tosis of the historical data set.10 Matching higher-order moments like kurtosis is
generally more difficult than lower-order moments due to high sensitivity to out-
liers. However, we do see that the model can produce excess kurtosis that matches
and even significantly exceeds the excess kurtosis of the historical SPY data set.
As these results show, the model overall is quite capable of reproducing the many
stylized facts found in real financial markets.

10For comparison, we also ran the same analysis on the functional form given in [12], specifically
dSt

dt = αY f (Vt − St)St + βY cStXt, where Y f and Y c are constants. While 95% CIs for mean
and standard deviation were similar to those produced by Eq. (7), the calibrated model produced
less pronounced average skewness (-0.1251 with a range of -0.3649 to 0.0928) and much smaller
average excess kurtosis (3.2708 with a range of 1.4156 to 6.2518).
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Figure 4: Histograms of time series statistics for 100 replications of ABM

Statistic Average 95% CI St. Dev. Min Max

Mean (annual) 0.0764 (0.0747, 0.0781) 0.0084 0.0598 0.0947
St. Dev. (annual) 0.2021 (0.1944, 0.2099) 0.0389 0.0908 0.2792
Skewness -0.3256 (-0.3509, -0.3003) 0.1269 -0.7399 -0.0470
Excess Kurtosis 6.3694 (5.7458, 6.9929) 3.1270 1.9537 16.5794

Table 3: Monte carlo statistics for 100 replications of ABM

4 Conclusion

This paper proposes an agent-based model that can accurately replicate stylized
facts in real financial market data, while allowing for a behavioral explanation of the
drivers of universal characteristics of financial markets. The model we propose uses
simple behavioral heuristics expressed through transition probabilities and trading
volumes. Central to the model is the herding behavior of noise traders, who in-
creasingly enter optimistic markets and sell out of pessimistic markets, where an
element of panic selling is captured via larger trading volumes when the market
is pessimistic. On the other hand, fundamentalist traders tend to pull the market
price back to its fundamental economic value, and they do so with greater trading
volume for larger divergences in price (i.e., higher expected returns). Furthermore,
as the market diverges from the fundamental value, noise traders become aware of
the significant mispricing and increasingly switch to fundamentalist traders, betting
the that market will revert towards its fundamental value. Finally, when the market
is close to its fundamental value, little will be gained from a reversion to market
fundamentals, so fundamentalists increasingly switch to noise traders to follow the
short-term trend.

The model reproduces empirical stock price behavior while being built on as-
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sumptions where the underlying economic value of the stock is growing at a deter-
ministic and constant rate. In other words, the model presented in this paper shows
that the market itself can cause volatility clustering, negative skew, and fat tail be-
havior, even when the fundamental value of the stock shows no such behavior.

While agent-based models are often employed in modeling complex systems,
the absence of robust methods to calibrate and validate these models is frequently
reported in the literature [23]. We took a simple approach to calibration in this
paper, but work can be undertaken to better explore the parameter space and develop
superior calibration methodologies. Furthermore, similar to [12], given the relative
simplicity of the model, work can be undertaken to develop analytical expressions
where possible, which could lead to further insights.
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