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Abstract
An efficient technique for calculating the scattering from curved metasurfaces using the
extinction theorem in conjunction with the Floquet and Fourier series expansions is
presented. Here, we treat the two‐dimensional metasurfaces that have transversal po-
larizabilities with no variation along the y‐axis. The boundary conditions at the meta-
surface are given by the generalized sheet transition conditions (GSTCs) whose
susceptibilities are given in an arbitrary local coordinate system. First, we use the
extinction theorem to provide integral equations of the scattering problem. The integral
equations involve the Green's functions, tangential electric and magnetic fields and their
normal derivatives in regions above and below the metasurface. Then, we employ the
Floquet theorem that gives us the analytical periodic Green's functions of each region.
Next, we employ the Fourier theorem to expand the tangential fields in terms of
unknown Fourier coefficients. The GSTCs and the integral equations provide equations
to be solved for the unknowns. The method can calculate scattering from both periodic
and non‐periodic metasurfaces. The technique is used to analyse different applied
problems such as carpet cloaking, illusion, and radar echo width reduction. The method
is fast and accurate and can efficiently treat metasurfaces with electrically large curved
geometries with dimensions as large as 120 times the wavelength.

1 | INTRODUCTION

Metasurfaces, two‐dimensional (2D) version of metamaterials
have advantages over volumetric, three‐dimensional (3D)
metamaterials. They are more convenient (lighter and easier to
fabricate) and generally have lower loss [1–5]. They have been
used in various applications such as cloaking [6, 7], illusion [8],
radar cross‐section (RCS) reduction, flat lens [9], thin‐film solar
cells [10, 11], far‐field sub‐wavelength and computational im-
aging [12–14] among several other applications.
Particularly, for the application of cloaking, several works

were reported. A mantle cloak aims to make a free object
coated by a metasurface invisible [15–21], while, a carpet cloak
hides an object placed on the ground. Although piece‐wise flat
metasurfaces are more convenient [7–22], they result in un-
avoidable diffraction from the edges. Therefore, curved met-
asurfaces are advantageous for the application of cloaking.

Phase gradient metasurfaces, used for cloaking or illusion,
are usually analysed using full‐wave numerical methods
[23, 24]. However, the full‐wave numerical simulation of meta‐
cells is very time‐consuming making it impractical to simulate
electrically large structures. In another approach, we can
replace the whole metasurface with a united and zero‐thickness
artificial boundary, modelled by the generalized sheet transition
conditions (GSTCs) [25, 26]. Generalized Snell's law [6, 7] can
be used to analyse a phase gradient metasurface, however, the
GSTCs provide more wave transformations including various
field magnitude, phase, and polarization in addition to the
propagation direction.
A combination of numerical methods such as finite differ-

ence time domain technique [26–29] or finite element method
(FEM) [30] with the GSTCs has been previously presented to
analyse metasurfaces. However, these approaches generally
consume a large amount of time to simulate electrically large
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metasurfaces. Integral‐equation‐based methods acquire less run
time when compared to other numerical techniques. However,
previously reported integral‐equation‐basedmethods are limited
to flat metasurfaces [31] and are not able to analyse curved
metasurfaces [32].
Here, an efficient analytical method based on the extinction

theorem integral equations is proposed to solve scattering from
curved metasurfaces modelled by the GSTCs. It deals with 2D
metasurfaces that have no variation in the y‐direction and that
have transversal polarizabilities. In the proposed approach,
susceptibilities are defined in the local coordinate system, in
contrast to some previous researches [27, 33] in which stan-
dard coordinate systems are employed. Introducing a local
coordinate system provides the ability to simulate curved
metasurfaces with arbitrary shapes. To show the capabilities of
the proposed technique, it is applied to different examples
including carpet cloaking, illusion and radar echo width (REW)
reducing electrically large curved metasurfaces with a size of
about 120 times of the wavelength. The proposed method is
capable of analyzing both periodic and non‐periodic (aperi-
odic) metasurfaces and works for both transverse electric and
transverse magnetic polarizations of the incident field.
The proposed analytical technique consists of two parts: (1)

the GSTCs that relate unknown tangential electric and mag-
netic fields above and below the metasurface boundary and (2)
the integral equations based on the extinction theorem that
provide another set of equations in terms of unknowns. The
integral equations involve periodic Green's function, given by
the Floquet expansion and also the tangential electric and
magnetic fields at the boundary, given by the Fourier series
with unknown coefficients. Unknowns are found using the
GSTCs and the integral equations.
The study is organized as follows. In Section 2, problem

geometry is introduced. Section 3 reviews GSTC modelling of
the metasurface and introduces some assumptions about the
susceptibility parameters. Section 4 introduces the integral
equations based on the extinction theorem. It provides fields
and the periodic Green's function expansions. Finally, it pro-
vides a matrix equation to be solved for the unknowns of the
problem which are the Fourier coefficients of the tangential
electric and magnetic fields. The proposed method is then
validated in Section 5. Section 6 discusses the convergence of
the approach. Section 7 provides two applications of the
proposed analysis, that is, illusion and REW reduction. Finally,
conclusions are given in Section 8.

2 | PROBLEM GEOMETRY

Let us consider an electrically large object on the ground. Here,
it is assumed that the structure has no variation in the y‐di-
rection (∂/∂y ≡ 0) and an obliquely incident wave illuminates
the structure (k

¯

i ¼ kixbx − kizbz). We also assume ejωt time
convention. The 2D profile is limited to a finite length of L,
and is covered by an electrically thin sheet (metasurface)
consisting of sub‐wavelength cells [9]. Figure 1 shows a peri-
odic metasurface. The profile has no change in the y‐direction

and is periodic along the x‐direction with periodicity of L. The
height profile is assumed to be an arbitrary function of z = f(x).
In this analysis, we use the local coordinate system ðbt;by; bnÞ
on the metasurface where the normal unit vector is

bn ¼ ðbz − f 0ðxÞbxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðxÞ
q

, f 0 = df(x)/dx, and the

tangential unit vector is bt ¼ by � bn [34].

3 | GSTCs MODELLING OF THE
METASURFACE

Thanks to the GSTCs, the thickness of cells can be ignored
and just macroscopic features of the surface are considered.
We consider metasurfaces with transversal polarizabilities. In
this case, the GSTCs can be written as [25]:

bn � ð �H0 − �H1Þ ¼ jωðPtbt þ PybyÞ; ð1aÞ

ð�E0 − �E1Þ � bn ¼ jωμ0ðMtbt þMybyÞ; ð1bÞ

where according to Figure 1, �E0ð �H0Þ and �E1ð �H1Þ are total
electric (magnetic) fields in region 0 and 1, respectively. Also,
Pt(Mt) and Py(My) are electric (magnetic) polarizabilities along bt
and by directions, given by

Pt
Py

� �

¼ ε0��χee
Eav
t

Eav
y

" #

þ
��χem
c0

Hav
t

Hav
y

" #

; ð2aÞ

Mt
My

� �

¼
��χme

η0

Eav
t

Eav
y

" #

þ ��χmm
Hav

t

Hav
y

" #

: ð2bÞ

where averaged fields Eav and Hav are given by
Ψav ¼ 1

2 ðΨ0 þΨ1Þ where Ψ = E, H and Ψ0 and Ψ1 are the
fields in regions 0 and 1, respectively. Here, ɛ0 is the permit-
tivity, c0 is the speed of light and η0 is the wave impedance all in
the free‐space medium. Furthermore, we assume a non‐

F I GURE 1 An electrically large object on the ground is covered by a
metasurface. Regions above and below the metasurface are called regions
0 and 1, respectively. Local coordinates are shown as bt, by and bn. L, finite
length
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gyrotropic metasurface with no cross‐polarization scattering.
Specifically, non‐gyrotropic metasurface requires χtyee ¼ χytee ¼ 0,
χtymm ¼ χytmm ¼ 0, χttem ¼ χyy

em ¼ 0 and χttme ¼ χyy
me ¼ 0 [35]. Thus,

susceptibilities are given by the following relations:

��χee ¼
χtt
ee 0
0 χyyee

� �

; ��χmm ¼
χttmm 0
0 χyymm

� �

; ð3aÞ

��χem ¼
0 χtyem

χytem 0

" #

; ��χme ¼
0 χtyme

χytme 0

" #

: ð3bÞ

where matrices in Equation (3a) are diagonal and those in
Equation (3b) are off‐diagonal.

4 | FORMULATION

According to the extinction theorem [36–38], for z > f(x) we
have:

E0yð�ρÞ − Eiyð�ρÞ

H0yð�ρÞ − Hiyð�ρÞ

0

@

1

A¼ ∫ xL
x0

∂g0p
∂n0

E0yð�ρ0Þ

H0yð�ρ0Þ

0

@

1

A

− g0p
∂
∂n0

E0yð�ρ0Þ

H0yð�ρ0Þ

0

@

1

Adl0;

ð4aÞ

0
0

� �

¼ ∫ xL
x0

∂g1p
∂n0

E1yð�ρ0Þ
H1yð�ρ0Þ

 !

− g1p
∂
∂n0

E1yð�ρ0Þ
H1yð�ρ0Þ

 !

dl0;

ð4bÞ

and for z < f(x) we have:

E1yð�ρÞ

H1yð�ρÞ

0

@

1

A ¼ − ∫ xL
x0

∂g1p
∂n0

E1yð�ρ0Þ

H1yð�ρ0Þ

0

@

1

A

− g1p
∂
∂n0

E1yð�ρ0Þ

H1yð�ρ0Þ

0

@

1

Adl0;

ð5aÞ

Eiyð�ρÞ

Hiyð�ρÞ

0

@

1

A ¼ − ∫ xL
x0

∂g0p
∂n0

E0yð�ρ0Þ

H0yð�ρ0Þ

0

@

1

A

− g0p
∂
∂n0

E0yð�ρ0Þ

H0yð�ρ0Þ

0

@

1

Adl0;

ð5bÞ

where Eiy(Hiy) is the incident electric (magnetic) field in region
0. The �ρ0 ¼ x0bx þ z0bz specifies a point on the surface and
�ρ¼ xbx þ zbz shows an observation point. The point x0 is an
arbitrary start point, xL = x0 + L is the corresponding end

point and dl0 ¼ dx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðx0Þ
q

is the differential length. The
Floquet theorem gives us the periodic Green's functions grp in
region above (r = 0) and below (r = 1) the metasurface given
by [36–39].

grpð�ρ; �ρ
0Þ ¼

−j
2L

XN

n¼−N

1
krnz

e−jknxðx−x0Þ−jkrnzjz−z0 j; ð6Þ

where knx = kix + 2nπ/L, krnz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2r − k2nx
q

, kr is the wave
number in region r and 2N + 1 is the number of Floquet modes.
Sincewe are using the periodicGreen's function, weobserve that
the integrals inEquations (4) and (5) run over the finite intervalL
and not over an infinite interval. We note that an original 2D
periodic Green's function composed of Hankel functions is in
fact a slowly converging series [36]. An integral transformation
leads to a faster converging series, given by Equation (6) (see
page 501 of [36]). We also note that the number of Floquet
modes should be sufficiently large in order to have both prop-
agating and evanescentmodes to obtain correct results. Here, we
set the number of evanescent modes the same as the number of
propagating modes [41]. Finally, we remark that in order to
analyse the scattering due to the horizontal h and vertical v po-
larizations of the incident field, we use only the y‐component of
electric and magnetic fields, respectively.
We note that E0y, H0y, ∂E0y/∂n, ∂H0y/∂n, E1y, H1y, ∂E1y/

∂n, ∂H1y/∂n in Equations (4) and (5) are all unknowns. We
first use four scalar equations given by Equations (4b) and (5b)
and four scalar equations of the GSTCs given by Equations (1)
and (2) to find the eight unknowns. Next, having determined
the unknowns, the fields above and below the metasurface are
computed using Equations (4a) and (5a). Inserting Equa-
tion (6) in Equations (4a) and (4b), we respectively have:

E0y − Eiy

H0y − Hiy

� �

¼
XN

n¼−N

bn
dn

� �

e−jðknxxþk0nzzÞ; ð7aÞ

where

bn

dn

2

4

3

5¼
j

2Lk0nz
∫ x0þL
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðx0Þ
q ∂

∂n

E0y

H0y

2

4

3

5

0

@

þ jðknxf
0
ðx0Þ − k0nzÞ

E0y

H0y

2

4

3

5

1

Aej knxx
0þk0nzf ðx0Þð Þ dx0

ð7bÞ

and

0
0

� �

¼
XN

n¼−N

Bn
Dn

� �

e−jðknxxþk1nzzÞ; ð8aÞ
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where

Bn

Dn

2

4

3

5¼
−j

2Lk1nz
∫ x0þL
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðx0Þ
q ∂

∂n

E1y

H1y

2

4

3

5

0

@

þ jðknxf
0
ðx0Þ − k1nzÞ

E1y

H1y

2

4

3

5

1

Aej knxx
0þk1nzf ðx0Þð Þ dx0:

ð8bÞ

Similarly, inserting Equation (6) in Equations (5a) and (5b),
we respectively have:

E1y
H1y

� �

¼
XN

n¼−N

An
Cn

� �

e−jðknxx−k1nzzÞ; ð9aÞ

where

An

Cn

2

4

3

5¼
−j

2Lk1nz
∫ x0þL
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðx0Þ
q ∂

∂n

E1y

H1y

2

4

3

5

0

@

þ jðknxf
0
ðx0Þ þ k1nzÞ

E1y

H1y

2

4

3

5

1

Aej knxx
0−k1nzf ðx0Þð Þ dx0

ð9bÞ

and

− Eiy
Hiy

� �

¼
XN

n¼−N

an
cn

� �

e−jðknxx−k0nzzÞ; ð10aÞ

where

an

cn

2

4

3

5¼
j

2Lk0nz
∫ x0þL
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðx0Þ
q ∂

∂n

E0y

H0y

2

4

3

5

0

@

þ jðknxf
0
ðx0Þ þ k0nzÞ

E0y

H0y

2

4

3

5

1

Aej knxx
0−k0nzf ðx0Þð Þ dx0:

ð10bÞ

Equations (7a), (8a), (9a), and (10a) are the Floquet ex-
pansions of the y‐component of the fields. The upward and
downward going waves in region 0 are respectively given by
Equations (7a) and (10a). On the other hand, the upward and
downward going waves in region 1 are respectively given by
Equations (8a) and (9a). The Floquet coefficients of the up-
ward and downward going waves in each region are shown in
Figure 2. As shown in this figure, downward electric and

magnetic fields coefficients in region 0, an and cn, are the
Floquet expansions of the incident wave (Eiy, Hiy) as given by
Equation (10a). Also, upward electric and magnetic fields in
region 1 are equal to zero since there is no source under the
metasurface. This is given by Equation (8a).
The left‐hand side of Equations (8b) and (10b) are known.

We use Equations (8b) and (10b) along with the GSTCs to find
the unknowns E0y, H0y, ∂E0y/∂n, ∂H0y/∂n, E1y, H1y, ∂E1y/∂n,
∂H1y/∂n, first. Next, we use Equations (7b) and (9b) to
compute amplitude and phase of scattered Floquet modes (bn,
dn) and (An, Cn). Finally, the scattered fields in regions 0 and 1
are calculated using Equations (7a) and (9a), respectively. In
this regard, the y‐components of the electric and magnetic
fields on both sides of the metasurface are expanded by the
Fourier series with unknown coefficients. On the surface z0 = f
(x0), Fourier expansions of the y‐component of the fields are
given by:

E1yð�ρ0Þ
H1yð�ρ0Þ

� �

¼
XM

m¼−M

αm
γm

� �

e−jkmxx0 ; ð11aÞ

E0yð�ρ0Þ
H0yð�ρ0Þ

� �

¼
XM

m¼−M

τm
κm

� �

e−jkmxx0 ; ð11bÞ

where coefficients αm, γm, τm and κm are unknowns and M is
the truncation number for the Fourier expansions. To solve
Equations (8b) and (10b), the Green's functions and their
normal derivatives can be derived using Equation (6). Also, the
y‐components of fields in both regions (E0y, H0y, E1y, H1y) are
given by their Fourier representations, given by Equation (11).
The only terms which must be modified are the normal de-
rivatives of fields (∂E0y/∂n, ∂H0y/∂n, ∂E1y/∂n, and ∂H1y/∂n).
To this end, we first use the Maxwell equations to relate the
normal derivative of the fields to the tangential t‐components
of the fields (Hrt, Ert) in each region. After that, the t‐com-
ponents of the fields are rewritten versus the y‐components of
the fields according to GSTCs.

F I GURE 2 Floquet coefficients of the y‐component of the downward
and upward going electric and magnetic waves are shown. Downward going
electric and magnetic fields in region 0 are respectively given by coefficients
(an, cn) and those in region 1 are given by (An, Cn). Upward going electric
and magnetic fields in region 0 are given by (bn, dn) and those in region 1
are given by (Bn, Dn)
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Using Maxwell equations, we have:

Ert ¼
jωμr
k2r

∂
∂n

Hry; ð12aÞ

Hrt ¼
−jωεr
k2r

∂
∂n

Ery; ð12bÞ

where r = 0, 1 is the region number. Next, we use GSTCs,
Equations (1a)–(2b), to relate the y‐components of the fields to
the t‐components of them as:

1 −
jk0
2

χytem −1 −
jk0
2

χytem

jωμ
2

χttmm
jωμ
2

χttmm

2

6
6
6
6
6
4

3

7
7
7
7
7
5

H0t

H1t

2

4

3

5

¼

jωε
2

χyy
ee

jωε
2

χyy
ee

1 −
jk0
2

χtyme −1 −
jk0
2

χty
me

2

6
6
6
6
6
4

3

7
7
7
7
7
5

E0y

E1y

2

4

3

5;

ð13aÞ

−
jωε
2

χtt
ee −

jωε
2

χttee

1þ
jk0
2

χytme −1þ
jk0
2

χyt
me

2

6
6
6
6
6
4

3

7
7
7
7
7
5

E0t

E1t

2

4

3

5

¼

1þ
jk0
2

χtyem −1þ
jk0
2

χtyem

−
jωμ
2

χyymm −
jωμ
2

χyymm

2

6
6
6
6
6
4

3

7
7
7
7
7
5

H0y

H1y

2

4

3

5:

ð13bÞ

Consequently, the tangential fields (Ert, Hrt) in terms of the
y‐components of the fields (Ery, Hry) in both regions (r = 0, 1)
are given as:

Ert ¼
H1y − H0y

jωεχttee
1 − ð−1Þr

jk0
2

χyt
me

� �

−
H1y þH0y

jωεχttee

jk0
2

χtyem þ ð−1Þ
rk
2
0

4
ðχtyemχytme − χtteeχ

yy
mmÞ

 !

;

ð14aÞ

Hrt ¼
E0y − E1y
jωμχttmm

1þ ð−1Þr
jk0
2

χytem

� �

þ
E1y þ E0y
jωμχtt

mm
ð−1Þr

k20
4
ðχtymeχ

yt
em − χttmmχyyee Þ −

jk0
2

χty
me

 !

:

ð14bÞ

Consequently, using Equations (11), (12) and (14), the
normal derivatives of the y‐components of the fields are given
by the following Fourier series:

∂
∂n

Ery ¼
X

m

e−jkmxx

χttmm
ðτm − αmÞ 1þ ð−1Þr

jk0
2

χytem

� ��

þ ðτm þ αmÞ ð−1Þr
k20
4
ðχty

meχ
yt
em − χttmmχyyee Þ −

jk0
2

χtyme

 !#

;

ð15aÞ

∂
∂n

Hry ¼
X

m

e−jkmxx

χttee
ðκm − γmÞ 1 − ð−1Þr

jk0
2

χytme

� ��

þ κm þ γmÞ
jk0
2

χtyem þ ð−1Þ
rk
2
0

4
ðχyt

meχ
ty
em − χyy

mmχtt
eeÞ

 ! #

:

ð15bÞ

Please note that χpq
ij ; ði; j ¼ e;mÞ; ðp; q¼ t; yÞ may be a

constant or a function of x. By substituting Fourier represen-
tations Equations (11) and (15) in Equations (8b) and (10b),
the following matrix equation is obtained:

Q1

�α
�τ
�γ
�κ

2

6
6
4

3

7
7
5¼

�a
�c
�B
�D

2

6
6
4

3

7
7
5: ð16Þ

where Q1 is a (8N + 4) � (8M + 4) matrix (see Appendix A).
The Fourier coefficients vectors are defined as �ζ ¼ ½ζ1; ζ2;
…ζ2Mþ1�

T , (ζ = α, τ, γ, κ) where [.]T denotes the transpose of
the matrix. Equation (8a) results in zero upward coefficients in
region 1 (�B¼ �D¼ ½�0�ð2Nþ1Þ�1) and according to Equa-
tion (10a), downward Floquet coefficients �a and �c are expan-
sion of −Eiy and −Hiy, respectively. Equation (16) is uniquely
solved if the number of considered Floquet modes equals the
number of Fourier terms (N = M).
From Equation (16), the Fourier coefficients (αm, γm, τm

and κm) are determined. After that, Equation (15) and the
Fourier expansions Equation (11) are substituted into Equa-
tions (7b) and (9b) to find Floquet coefficients of scattered
fields (bn, dn, An and Cn). Again, this could be represented by a
matrix equation given by:

Q2

�α
�τ
�γ
�κ

2

6
6
4

3

7
7
5¼

�b
�d
�A
�C

2

6
6
4

3

7
7
5; ð17Þ

where Q2 is a (8N + 4) � (8M + 4) matrix (see Appendix A).
Finally, using Equations (16) and (17), the reflected (bn, dn) and
transmitted (An, Cn) expansion coefficients are given by:
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�b
�d
�A
�C

2

6
6
4

3

7
7
5¼Q2Q

−1
1

�a
�c
�B
�D

2

6
6
4

3

7
7
5: ð18Þ

Having the expansion coefficients, the reflected and
transmitted fields are then calculated using Equations (7a) and
(9a), respectively.
To analyse the scattering from a single isolated structure,

we need to sufficiently increase the periodicity, L, of the
associated periodic structure and show that the solution con-
verges to that of a non‐periodic one [40, 41].

5 | VALIDATION

In this section, we verify the method by analysing a cloak
structure when illuminated both normally and obliquely. To
simulate such aperiodic structures by the Floquet–Fourier (FF)
method, we sufficiently increase the periodicity L.

5.1 | Example 1: Cloaking a triangular
bump, illuminated normally

Let us consider scattering fromabumpput on the perfect electric
conductor (PEC) ground. The sides of the bump are covered by
the designed metasurfaces. Cells are designed in such a way that
when the bump is illuminated by a normally incident plane wave,
the field is reflected normally as it is reflected from a flat ground
plane. Therefore, the bump would be invisible to the incident
wave. Figure 3 shows the studied structure. Here, we consider a
relatively small triangular bump with the height of
A= λ = 40mm, side angles ofψ = 30° andL≈ 15A to be able to
simulate the entire problem in the analysis systemhigh frequency
structural simulation (ANSYS HFSS) Our current available
computer (Intel Core i7‐4790K CPU with 4 GHz CPU Clock
and 16GBRAM) restricted us to simulate larger problems. Also,
the incident wave has been assumed to have a TEz (i.e. electric
field along the y‐axis) polarization.
The unit cell of themetasurfaceused in this design is shown in

Figure 4.As shown, the unit cell is a square loopwith the lengthof
a and the width of w = 0.25 mm printed on a Rogers 4003

substrate with the thickness of t= 0.813mm. Figure 4 shows the
simulated unit cell of the metasurface and its boundary condi-
tions in ANSYS HFSS. As shown in this figure, periodic
boundary conditions (PBCs) are used around the cell, and the cell
is excited by a plane wave illuminated obliquely at the θi = ±30°
with respect to the z‐axis. It should be noted that since the cells lie
on a bump with the slope of ψ = 30° (see Figure 3), a plane wave
normally incident on the bump makes an angle of θi = 30° with
respect to the normal to the cell surface. That is why in the unit
cell simulation (see Figure 4), the angle of incidence is considered
as 30°. Using the mentioned setup, the reflection scattering
parameter, S11, is computed by the ANSYSHFSS and the results
are shown in Table 1 for cells used in the cloak. According to the
table, the length of the loop a is tuned to provide proper reflec-
tion phase and amplitude, at the operation frequencyof 7.5GHz.
Having the scattering parameters calculated by ANSYS

HFSS, using Equations (1a) and (1b) the susceptibilities can be
calculated as [42]:

χttee ¼
2η0ðH0y − H1yÞ

−jk0ðE0t þ E1tÞ
; χyymm ¼

−2ðE0t − E1tÞ
jk0η0ðH0y þH1yÞ

; ð19aÞ

F I GURE 3 A 2D triangular bump with the height of A = λ = 40 mm and side angles of ψ = 30° is considered to be cloaked at normal incidence

F I GURE 4 The unit cell structure and the simulation setup. The
dimension of each cell is ℓ = 8 mm and the thickness of conductors is
80 μm. Periodic boundary conditions (PBCs) and an oblique incident field
along θi = 30° is assumed
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χyy
ee ¼

2η0ðH0t − H1tÞ

jk0ðE0y þ E1yÞ
; χttmm ¼

2ðE0y − E1yÞ
jk0η0ðH0t þH1tÞ

; ð19bÞ

where we assumed that ��χme and ��χem are negligible. Since unit
cells are symmetric, χttee ¼ χyyee and χtt

mm ¼ χyymm. Using this
symmetry relation, Equation (19) reduces to

χtt
ee ¼ χyy

ee ¼
2ð1 − S11Þ

jk0ð1þ S11Þcosθi
; ð20aÞ

χttmm ¼ χyymm ¼
2ð1þ S11Þcosθi
jk0ð1 − S11Þ

: ð20bÞ

Computed susceptibilities are listed in Table 1, for each unit
cell used in the designed cloak. Then these calculated suscepti-
bilities Equation (20) are used in the FF method to simulate
scattering from the bump. In this calculation, we use Huygen's
principle to calculate the far‐field scattered fields using the near‐
field total electric and magnetic field values. We assume an
imaginary surfaceC near and around the structure and calculate
the total fields over that by Equations (7a) and (9a). Then, the
equivalent electric and magnetic currents on C are given by

J
!
ð�r0Þ ¼ bn � H

!
ð�r0Þ and M

!
ð�r0Þ ¼ E

!
ð�r0Þ � bn where H

!
and E
!

are the total magnetic and electric fields on the curveC and bn is
the normal unit vector to the curve C. The far‐field scattered
electric field Ef f

y ð�rÞ is then given by:

Ef f
y ð�rÞ ¼ jk0∫C Mtð�r0Þbr ⋅ bn − η0Jyð�r

0Þ
� �

gð�r;�r0Þd�r0 ð21Þ

where the 2D free‐space Green's function gð�r;�r0Þ ¼
−j
4H
ð2Þ
0 ðk0RÞ, R¼ |�r − �r0| is used in which H ð2Þ0 ð:Þ is the

zeroth‐order Hankel function of the second kind and br de-
notes the observation direction.
Figure 5 (b) compares the scattered field computed by the

FF technique and the ANSYS HFSS where a very good
agreement is observed almost everywhere within the
interval − 50° < θ < + 50°. Only at angles very far from the

TABLE 1 The size of loop a in each unit cell, the associated S‐
parameters and surface susceptibilities

a(mm) |S11| ∠S11 χttee � 103 χyymm � 103

6.685 0.9359 −130.76° 31.9‐j2.8 −5.0‐j0.4

6.596 0.7992 −58.19° 8.0‐j2.1 −18.8‐j5.0

6.558 0.7735 +13.24° −1.6‐j1.9 42.2‐j47.9

6.485 0.8905 +86.56° −13.7‐j1.6 11.6‐j1.3

5.6 0.9985 +158.55° −77.6‐j0.3 2.0

j = √(−1)

F I GURE 5 (a) Simulated structure in the
ANSYS HFSS. (b) Scattering from the bump
computed by the ANSYS HFSS and the Floquet‐
Fourier (FF) method with different number of
modes (2N + 1). PBC, periodic boundary condition;
PEC, perfect electric conductor

KHATAMI ET AL. - 987



main beam, there is a distinguishable difference between the
HFSS results and the FF results due to the limited number of
cells. Ideally, if the bump size and consequently the number of
cells increases, then we expect that the difference between the
simulation results in the ANSYS HFSS and the FF vanishes.
According to Figure 5 (a), we put the 2D bump inside a

vacuum box in order to simulate the structure in ANSYS HFSS.
The length and width of the vacuum box are respectively L
(periodicity of the structure) and ℓ (dimension of the cell). The
height of the box is sufficiently large (e.g. 5λ). The boundary
conditions on the box sides, perpendicular to the y and the x axes
are PBCs and those on top and bottom of the box, perpendicular
to the z axis are the radiation boundary conditions. The plane
wave is normally illuminating the structure.
Figure 5 (b) compares HFSS simulation results with those

of the FF method for four different numbers of modes. It
shows that the FF solution does not significantly change if the
number of modes is about N = 28.

5.2 | Example 2: Cloaking a triangular
bump, illuminated obliquely

Here, we simulate the carpet cloaking problem in [7] by the FF
method. A carpet cloak with a triangular bump shape with side
angles of 21° is considered. This problem was investigated
experimentally in [7]. The structure is computationally too
large to be simulated by the HFSS. As shown in Figure 6, the
metasurface was designed such that an obliquely incident wave
with θi = 45° is reflected at θr1 = 25° and θr2 = 65° from two
sides of the bump.

Metasurface unit cells, as designed in [7], are square patches
on a grounded substrate. The susceptibility parameters are
calculated by the relation Equation (20). The metasurface is
located only on the bump and the flat surfaces at z = 0 are
assumed to be perfect conductors. In this simulation, we are
assuming the periodicity of L ≈ 205 λ and the number of
Floquet modes 2N + 1 = 415. Figure 7 shows the scattered Ey
fields using the FF method. As expected, the scattering from
the bump is along with θr = 45°. The diffraction observed at
the sides of Figure 7 are due to the periodic nature of the
structure and can be decreased by increasing the periodicity.
According to Figure 4 (b) of [43], the scattering of the bump
has two dominant components: (1) the specular direction
mode which is the stronger one and (2) the mode in the
backscattering direction which is the weaker one that (slightly)
disturbs the wave fronts, observed in Figure 7.
Figure 8 compares FF simulated scattered fields with

measured results reported in Figure 5(p) of [7] with respect to
the grazing angle ψ = 90 − θ degrees. We observe a very good
agreement between the two results for almost the entire ψ
range, 0 < ψ < 90 except near (1) the horizon where ψ < 15
and (2) normal direction where ψ > 80. The discrepancy may
be due to a couple of factors, (1) the finite periodicity, set in the
FF method, (2) inaccuracy of the synthesized susceptibilities in
modelling scattering away from the specular direction.

6 | CONVERGENCE

In this section, we want to show that by increasing the peri-
odicity the scattering converges to that of a single isolated
structure which is like a flat PEC ground. Let us assume a
Gaussian bump with f ðxÞ ¼ Ae−ðx=αÞ2 , and α = 0.2 and A = 4
λ. By putting a carpet cloak on top of the bump, we want to
have a normal reflection from a flat surface due to the normal
incident plane wave as if there was no bump.
Therefore, for each cell at (x, f(x)) of the metasurface the

scattering parameter S = ejϕ is calculated by setting
ϕ = π − 2k0f(x). Next, the susceptibilities are computed using
Equation (20). For a metasurface with the periodicity of L ≈ 66
λ, synthesized susceptibilities are shown in Figure 9.
The computed scattered fields are shown in Figure 10. As

shown, the reflected field is similar to that of a flat surface,
illustrating an excellent performance of the carpet cloak.

F I GURE 6 Triangular bump with side angles 21°, A = 9.1 λ at the
frequency of 0.75 THz, θi = 45°, θr1 = 25°, and θr2 = 65°. The unit cell of
the metasurface is shown in the top left [7]

F I GURE 7 Real part of the y‐component of the scattered electric field. The parameters are A = 9.1 λ, L ≈ 23A, f = 750 GHz and θi = θr = 45°
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According to Figure 10, carpet cloak works well in the centre
region of the structure up to about 30 λ away from the bump.
On the far two sides of the bump, similar to what we have
observed in Figure 7, there are diffractions that decrease if the
periodicity increases.

Let us show that by running two simulations and assuming
two different large periodicities. Figures 11 (a and b) show the
results for the periodicity of L ≈ 100 λ and L ≈ 133 λ,
respectively. As a result, the width of the centre region, where
the reflected wave is almost ideally that of flat ground, enlarges
to about 70 λ and 90 λ, respectively. Comparison of Figures 10
and 11 clarifies that as the periodicity increases, diffraction
decreases, and the results converge to the scattering from a flat
PEC ground plane. Figure 12 compares the reflected power
from the coated bump for different periodicities and that of a
flat PEC ground. Here, we considered the scattering of the flat
PEC ground as a reference which is computed analytically. We
observe that the reflected power along the +z axis tends to that
of the flat ground as the periodicity L increases.
Table 2 shows the number of Floquet modes 2N + 1 and

the simulation run times for different periodicity values of L.
The number of segments for integrations is assumed fixed for

F I GURE 8 Comparison of the FF simulated Ey and the measured results of [7]. FF, Floquet–Fourier

F I GURE 9 Real and imaginary parts of GSTC susceptibility parameters, (a) χyy
ee ¼ −χtt

ee and (b) χyy
mm ¼ −χttmm for the Gaussian bump metasurface with

A = L/18, L = 2 m ≈ 66 λ at 10 GHz designed for normal reflection due to normal incidence. Here, in the horizontal axis t(x) is peripheral length along the

vector t (see Figure 1), given by tðxÞ ¼ ∫ x
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðξÞ
q

dξ. GSTC, generalized sheet transition conditions

F I GURE 1 0 Real part of the scattered field y‐component. The
susceptibility parameters are those shown in Figure 9. Here, L is 2 m ≈ 66 λ
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all cases to fairly compare the simulation run times. According
to Table 2, as periodicity L increases, the number of modes is
increased. The results of Table 2 also show that the proposed
method can analyse large structures in a considerably short
time. All the simulations mentioned in the table are performed
for the case of θi = θr = 0°, f = 10 GHz with the assumption
of no transmission. In other words, since the back of the meta‐
cells covered by metallic ground, no field could transmit.
Therefore, cells are one‐sided, reflecting/absorbing the inci-
dent power.

7 | APPLICATIONS

In this section, two applications of the FF analysis method: (1)
illusion and (2) REW reduction are demonstrated. Here, we
note that the GSTCs provide an appropriate model for the
design of a multi‐mode scattering metasurface rather than the
phase gradient model that provides only the zeroth‐order
mode reflection or transmission.
To synthesize a multi‐mode scattering metasurface, the

incident and scattered fields in both regions 0 and 1 are first
calculated. Then, Equation (19) is used to compute the
susceptibilities.

7.1 | Illusion

For the illusion problem, a metasurface is put on an object in
such a way that the scattering pattern of the whole structure
becomes that of an illusory scatterer. Here, we assume a flat
metasurface is put at z = f(x) = A and hides an unknown arbi-
trary object. We want to pretend that the object is a Gaussian hill
on the ground. In the synthesis problem, desired fields (also
called pretended fields) are those scattered by the hill
f ðxÞ ¼ Ae−ðx=αÞ2 where α = 0.2 and A = L/12 = 5.5λ while a
normal plane wave is illuminating the flat metasurface. It is made
of a dielectric with ɛr1 = 4. The scattering from the pretended
Gaussian hill alone, once there is no metasurface is computed
and shown in Figure 13(a). This is the desired scattered field.
For calculating the scattering from the pretended dielectric

hill, the procedure explained in Section 4 is repeated except
that the Fourier expansions of tangential fields in region 1

F I GURE 1 1 Real part of the scattered field y‐component. (a) L = 3
m ≈ 100 λ (b) L = 4 m ≈ 133 λ

F I GURE 1 2 As the periodicity L increases, the scattering from two
sides vanishes and the reflected power converges to that of a single isolated
bump covered by metasurface (which ideally acts as a flat ground)

TABLE 2 Simulation run time versus number of modes for various
periodicities, with an Intel Core i7‐4790K CPU with 4 GHz CPU clock, and
16 GB RAM

2N + 1 L(m) Number of sections in integrations Time (s)

137 2 m ≈ 66λ 1000 54.603

171 2.5 m ≈ 83λ 1000 74.930

199 3 m ≈ 100λ 1000 96.063

233 3.5 m ≈ 116λ 1000 124.954

271 4 m ≈ 133λ 1000 164.261

F I GURE 1 3 (a) Real part of the scattered field from the hill due to a
normally incident plane wave at f = 10 GHz. The hill has a Gaussian profile
with α = 0.2 height of A = L/12 and the relative permittivity ɛr1 = 4. The
periodicity is L = 2 m. (b) Real part of the scattered field from the
synthesized metasurface placed at z = A
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(Equation (11a)) is replaced by the expansion of the normal
derivatives of fields in region 0 as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 02ðxÞ
q ∂

∂n
E0yð�ρÞ
H0yð�ρÞ

� �

¼
XM

m¼−M

ξm
νm

� �

e−jkmxx: ð22Þ

where coefficients τm, κm, ξm, νm are unknowns.
Next, considering the normal incident field and the desired

ones shown in Figure 13(a), one can synthesize susceptibilities
using Equation (19). The synthesized susceptibilities are shown
in Figure 14 on the next page. Finally, the scattered fields from
the synthesized metasurface are obtained as shown in
Figure 13(b). As illustrated, calculated scattered fields in
Figure 13(b) are in an excellent agreement with the desired
ones in Figure 13(a).
The amplitudes of different scattered modes are plotted in

Figure 15(a). The relative errors of the metasurface scattering
modes bmn are given by:

REðnÞ ¼
jbmn − bpnj
jbpnj

ð23Þ

where bpn is the scattering mode of the pretended hill and n is
the Floquet mode number. Figure 15(b) shows the relative
error. As shown in this figure, the relative error for all modes is
less than 8%.

7.2 | Radar echo width reduction

To reduce mono‐static REW, the 2D counterpart of the RCS, is
desired to reflect the wave in directions other than the incident
one. Here, a metasurface is designed to spread the incident
plane wave power in many different directions to reduce the
mono‐static REW.

F I GURE 1 4 The GSTC susceptibilities: (a) χyyee , (b) χttmm, (c) χtt
ee and (d) χyymm synthesized for a normal incident and desired scattered fields of Figure 13.

GSTC, generalized sheet transition conditions

F I GURE 1 5 (a) Amplitude of the scattered field E0y − Eiy modes
from the metasurface of Figure 13 in terms of diffraction angles and (b) the
relative error computed by Equation (23)
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First, the scattering of a perfectly conducting bump
given by the Gaussian function f ðxÞ ¼ Ae−ðx=αÞ2 where
α = 0.2 and A = L/12 ≈ 2.77λ is analysed. To do so, the
procedure of Section 7. A is repeated except that the dielectric
boundary condition is replaced by the PEC. In the case of
PEC, electric and magnetic fields in region one are zero and
the tangential electric fields in region 0 are zero
(E0y = E0t = 0). Thus, tangential derivatives ∂/∂t of the above
fields are also zero resulting in ∂H0y/∂n = 0. Because of the
perfect electric boundary condition, τm = νm = 0. Using
Equations (10a) and (10b), scattered fields are then calculated.
Figure 16 shows the scattered electric field from the con-
ducting bump.
The REW is defined as [44].

σ2D ¼ lim
r→∞

2πr
Es

Ei

�
�
�
�

�
�
�
�

2

¼ lim
r→∞

2πr
Ps

Pi

�
�
�
�

�
�
�
�; ð24Þ

where Es (Ps) and Ei (Pi) are scattered and incident electric
fields (power densities), respectively. Since fields are expanded
in terms of Floquet coefficients, scattered and incident powers
are given by the Floquet coefficients as:

jPsj ¼
1
2
jE0tH�0y − E0yH�0tj

¼
ω
2k20

XN

n¼−N
ε0k�0nzjbnj

2
þ μ0k0nzjdnj

2� �
;

ð25aÞ

jPij ¼
ω
2k20

XN

n¼−N
ε0k�0nzjanj

2
þ μ0k0nzjcnj

2� �
: ð25bÞ

For the metallic bump, monostatic REW is 0.0738 m.
Next, a metasurface is synthesized to scatter the normal inci-
dent plane wave to six plane waves with equal amplitude in
directions of θ1 = 20°, θ2 = 30° and θ3 = 40° at planes of
ϕ1 = 0° and ϕ2 = 180°. Figure 17 shows the synthesized
susceptibilities of the metasurface. The desired scattered waves
are shown in Figure 18(a). The scattering from the bump with

the metasurface is shown in Figure 18(b). As expected, the
results of Figure 18(b) are in excellent agreement with those in
Figure 18(a).
To reduce monostatic REW, power scattered by the bump

is spread out in six directions other than the incident one. The

F I GURE 1 6 Real part of the scattered electric field the y‐component.
The surface is a periodic Gaussian metallic bump with L = 1 m and A = L/
12. The frequency is f = 10 GHz, and incidence angle is θi = 0°

F I GURE 1 7 Real and imaginary parts of GSTC susceptibility
parameters: (a) χyyee ¼ χyymm and (b) χtt

ee ¼ χttmm calculated for the Gaussian
bump with A = L/12, L = 1 m ≈ 33λ at 10 GHz for a normal incident plane
wave and desired scattered fields shown in Figure 18 (a). GSTC, generalized
sheet transition conditions

F I GURE 1 8 (a) Real part of the desired scattered field y‐component
which is a superposition of six plane waves with propagation directions
along θ1 = 20°, θ2 = 30° and θ3 = 40° at two planes ϕ1 = 0° and ϕ2 = 180°
and (b) Real part of the scattered field from the synthesized metasurface
due to the normal incident plane wave. The Gaussian profile is that
mentioned in Figure 16
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metasurface reduces the REW to 0.0069 m, which is more than
10 times smaller than that of the bump without the metasur-
face, 0.0738 m.

8 | CONCLUSION

Here, using the Extinction theorem in conjunction with the
Floquet and Fourier expansions, a new analytical method is
proposed to calculate scattering from 2D electrically large
curved metasurfaces. Initially, scattered fields were expanded in
terms of the Floquet diffracted modes. Then, by enlarging the
periodicity of the structure, couplings between adjacent
structures were reduced. Thus, the method was used to analyse
non‐periodic structures. It also uses susceptibilities to analyse
metasurfaces which are dependent on the incident angle for
each cell. It was shown that calculated patterns by the pro-
posed method are in good agreement with those of numerical
methods (i.e. FEM). The proposed FF method is fast and
efficient compared to other numerical approaches performed
by commercial software packages. To illustrate its performance,
the method was successfully used for different applications
such as carpet cloaking, illusion, and mono‐static REW
reduction. The method has the potential to be generalized for
multi‐layer metasurfaces analysis.
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APPENDICES

Floquet coefficients
Using Equations (7b), (8b), (9b), and (10b), we can write,
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