
  
 

Titre: 
Title: 

Assessing the resilience of stochastic dynamic systems under 
partial observability 

Auteurs: 
Authors: 

Jacopo Panerati, N. Schwind, S. Zeltner, K. Inoue et Giovanni 
Beltrame  

Date: 2018 

Type: Article de revue / Journal article

Référence: 
Citation: 

Panerati, J., Schwind, N., Zeltner, S., Inoue, K. & Beltrame, G. (2018). Assessing 
the resilience of stochastic dynamic systems under partial observability. PLOS 
One, 13(8), e0202337. doi:10.1371/journal.pone.0202337 

 
Document en libre accès dans PolyPublie
Open Access document in PolyPublie 

  

URL de PolyPublie: 
PolyPublie URL: https://publications.polymtl.ca/5070/  

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation: 
Terms of Use: CC BY 

 
Document publié chez l’éditeur officiel 
Document issued by the official publisher 

  

Titre de la revue: 
Journal Title: PLOS One (vol. 13, no 8)

Maison d’édition: 
Publisher: PLOS 

URL officiel: 
Official URL: https://doi.org/10.1371/journal.pone.0202337 

Mention légale: 
Legal notice: 

© 2018 Panerati et al. This is an open access article distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited

 
Ce fichier a été téléchargé à partir de PolyPublie,  
 le dépôt institutionnel de Polytechnique Montréal 

This file has been downloaded from PolyPublie, the 
 institutional repository of Polytechnique Montréal 

http://publications.polymtl.ca 

https://doi.org/10.1371/journal.pone.0202337
https://publications.polymtl.ca/5070/
https://doi.org/10.1371/journal.pone.0202337
http://creativecommons.org/licenses/by/4.0/
http://publications.polymtl.ca/


RESEARCH ARTICLE

Assessing the resilience of stochastic dynamic

systems under partial observability

Jacopo Panerati1☯*, Nicolas Schwind2☯, Stefan Zeltner3‡, Katsumi Inoue4,5‡,

Giovanni Beltrame1‡
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Abstract

Resilience is a property of major interest for the design and analysis of generic complex sys-

tems. A system is resilient if it can adjust in response to disruptive shocks, and still provide

the services it was designed for, without interruptions. In this work, we adapt a formal defini-

tion of resilience for constraint-based systems to a probabilistic framework derived from hid-

den Markov models. This allows us to more realistically model the stochastic evolution and

partial observability of many complex real-world environments. Within this framework, we

propose an efficient and exact algorithm for the inference queries required to construct

generic property checking. We show that the time complexity of this algorithm is on par with

other state-of-the-art inference queries for similar frameworks (that is, linear with respect to

the time horizon). We also provide considerations on the specific complexity of the probabi-

listic checking of resilience and its connected properties, with particular focus on resistance.

To demonstrate the flexibility of our approach and to evaluate its performance, we examine

it in four qualitative and quantitative example scenarios: (1) disaster management and dam-

age assessment; (2) macroeconomics; (3) self-aware, reconfigurable computing for aero-

space applications; and (4) connectivity maintenance in robotic swarms.

Introduction

Originally coined in the context of environmental sciences and ecological systems, resilience

has become a property of great interest for the study of complex systems. Although resilience

is not easily defined, researchers agree that it is a fundamental characteristic of those ecosys-

tems that are able to absorb extreme spikes and survive, albeit transformed. The insect popu-

lations of North-eastern American forests [1] are well-known examples of such resilient

systems.

The focus of the artificial intelligence community has been, so far, on narrowing down the

concept of resilience and formalizing it, for example in constraint-based and non-deterministic
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dynamic systems [2]. These approaches are extremely general and able to describe a plethora

of real-world systems, but they have very limited predictive power. The transition models in

non-deterministic dynamic systems resemble those of Markov chains and decision processes

but, because they do not have probability distributions associated to transitions, they do not

tell whether a future world is more likely than the others.

Succeeding in the definition and implementation of resilience has the potential to enable

the creation of “resilient by design” systems. In computing engineering, for example, networks

and robotics systems provided with resilient properties will possess the ability to absorb shocks

and to transform in response to external attacks, while still providing their services.

By choosing to study resilience in the context of hidden Markov models, we extend the

existing artificial intelligence research to take into account the unpredictability of the real

world. This is essential to make our model consistent with the idea of a “random world” pro-

posed by Holling [1]. In fact, conditional probability distributions can be seen as the stochastic

extension of non-deterministic transition functions.

The choice of hidden Markov models is, hence, manifold. They allows us to (i) capture the

unpredictability of the world’s evolution; (ii) account for the uncertainties in our perception of

the world; and (iii) reason about the passing of time. All this, while keeping the complexities of

the model and inference reasonably low. Despite their simplicity, hidden Markov models have

demonstrated to be capable tools for daunting applications. Notable examples being genome

phasing [3] and speech recognition—a task for which more complex approaches based on

deep learning started matching their performance only in recent years [4].

In this work, we also expand the previous discussion about resilience with the element of

partial observability, adding one more layer of complexity. In the end, the goal of our work is

to provide the formal and algorithmic tools to efficiently answer queries such as: “what is the

likelihood of requiring extra personnel in an emergency area over the next three days?”, “what

is the probability that a worker robot will soon become disconnected from its assigned clus-

ter?” or “with 99% confidence, what is the minimal number of neighbor links to maintain con-

nectivity in an extremely noisy network?”.

Related work

In a seminal paper from 1973, Holling introduced the concept of “resilience of ecological sys-

tems” [1]. In it, he draws a clear separation line between resilience and the more commonly

used notion of stability. Resilient systems are not those systems that simply react to imbalances

by quickly returning to equilibria. Instead, when perturbed, they are able to find new sustain-

able configurations. It is worth noting that Holling defines resilience in the context of what he

calls “the random world”: an environment that is intrinsically stochastic. Developing these

ideas, Walker et al. [5] define resilience as “the capacity of a system to absorb disturbance and

reorganize while undergoing change so as to still retain essentially the same function, struc-

ture, identity, and feedbacks”.

Computer science has often looked at biology as a source of inspiration for the development

of search algorithms, coordination mechanisms, and complex frameworks. The first attempt

to develop a formal definition of resilience exploiting the tools of artificial intelligence was pro-

vided by Överen, Willsky, and Antsaklis [6] and, successively, further developed by Baral et al.
[7] and Schwind et al. [2]. Our research is based on the formal description of the System Resil-

ience- (SR-)model introduced by Schwind et al. [2]. When compared to the existing research

[2, 7], the main distinctive trait of our work is in its integration of the ideas of probability the-

ory. Our analysis of resilience is based on the probabilistic framework of hidden Markov mod-

els (HMMs). HMMs are often employed in applications such as signal and natural language
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processing. Nonetheless, they have also proven to be fruitful descriptive tools for many other

complex dynamic systems [8].

Our methodology is closely connected to the sub-field of artificial intelligence that deals

with probabilistic graphical models, dynamic Bayesian networks in particular. The two most

common types of inference tasks for probabilistic graphical models—the larger family of

frameworks HMMs belong to— are marginal and maximum a posteriori estimation (i.e. the

computation of the distribution of a single variable and the most likely assignment of all vari-

ables, respectively). For these, efficient algorithms with convenient linear time-complexity

have been identified [9]. In the following, we show that these queries are not sufficient to per-

form the kind of property checking demanded by our formal definition of resilience. An ad
hoc, efficient algorithm to answer the necessary queries is detailed in S1 Appendix.

Hidden Markov models research has been prolific in multiple application domains. As we

mentioned, HMMs have been used with success for genome phasing [3] and speech recogni-

tion. Tackling the problem of modelling the duration distributions of phonemes, Johnson

noted that “a simple adjustment to HMM topologies is perhaps a more efficient solution [..]

than more complex approaches” [10]. HMMs have also proven to been effective and, equally

importantly, low complexity instruments for face recognition [11]. Because of their compact

representation, HMMs can be quickly and efficiently compared one another with the aid of

similarity measures [12]. Recent research has also exploited HMMs representation for the

resilient filtering of Markov jump systems [13, 14].

With regard to applications, resilience has been, in recent years, a topic of interest for

researchers in many different areas. Beyond ecology, these areas include economics, network-

ing, critical and real-time systems, and swarm robotics—a domain that lies at the prolific

intersection of computer engineering and biology. Researchers have been developing ways to

formalize the robustness and resilience [15, 16] of networks of robots with respect to their

most common tasks, e.g. consensus, flocking, and formation. Our work shares some terminol-

ogy with this research and can also be used to address fundamental problems of swarm robot-

ics (e.g. the one of connectivity). However, it is worth noting that the formal definition of

resilience given here is not a domain-specific one and it could be used orthogonally with that,

for example, of Saldaña et al. [16] (see the Application Scenarios section).

Resilience and resilient properties in probabilistic models

This work re-interprets a formal definition of resilience (for dynamic systems) [2] using the

probabilistic framework of hidden Markov models and enriching it with a cost function. In

this section, we recall and combine together a number of definitions that are derived from

recent research work on formal resilience in dynamic non-deterministic constraint-based

models [2, 17] and timed probabilistic models [18].

The SR-model is a theoretical framework proposed by Schwind et al. [2] that combines ele-

ments of constraint-based systems and non-deterministic dynamic systems. It gives us a for-

mal definition of resilience, as the unifying property arising from three simpler properties: 1)

resistance, 2) functionality, and 3) recoverability. The SR-model consists of two separate for-

mal descriptions for the kinematics and the dynamics of a system: the first is represented as

sequences of pairs called “state trajectories” or SSTs:

SST ¼ ðCBS0; B0Þ; ðCBS1; B1Þ; . . . ; ðCBSi; BiÞ; . . . ð1Þ

The subscript index skims through the time steps. The symbol CBSi represents a constraint-
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based system composed of a set of variables Xi and a cost function κi:

CBSi ¼ hXi ¼ fX0
i ;X

1
i ; . . . ;Xj

i ; . . .g; ki : DðXiÞ ! R
þi ð2Þ

The second element in each pair, Bi 2 DðXiÞ, represents a complete assignment of the variables

in Xi: Bi 2 R
jXij. Each SST corresponds unambiguously to a sequence of costs obtained by plug-

ging-in each Bi into its corresponding cost function κi: κ0(B0), κ1(B1), . . .. The environment

dynamics are described using non-deterministic Dynamic Systems (DSs):

DS ¼ hCBS;A;m : CBS� A! PðCBSÞi ð3Þ

where CBS represents the set of all possible constraint-based systems CBSi, A is the set of

actions available at each time step, and m is a non-deterministic transition function that, given

the current CBS and an action, returns the set of possible constraint-based systems for the next

time step.

The kinematic description of the SR-model (SSTs and sequences of costs) is central to the

formalization of resilience and it is preserved in our proposed methodology. However, we

prefer to discard the non-deterministic description of the dynamics in favor of a probabilistic

approach based on hidden Markov models. Hidden Markov models (HMMs) can be seen as

specific subset of both dynamic Bayesian networks (DBNs) and state-observation models [9].

HMMs have a single discrete state variable S and a single discrete observation variable O. A

HMM is fully specified by the probability distribution of S at time −1, P(S−1), the conditional

distribution of O given S at the same time step, P(Ot j St), and the conditional distribution of S
given S at the previous time step, P(St+1 j St) [19].

HMM ¼ hPðS� 1Þ; PðOt j StÞ; PðStþ1 j StÞi ð4Þ

HMMs are commonly used for the tasks of signal processing and speech recognition [19]

because efficient (i.e. with computational time complexity that is linear with respect to the

time horizon of the model) algorithms exist for: 1) the estimation of the probability distribu-

tion of S, also called the “hidden” variable, taking only assignments of O as input (filtering

and smoothing algorithms); and 2) the identification of the most likely sequence of assign-

ments of S.

To formalize resilient properties in the probabilistic context of a “random world”, HMMs

offer the probabilistic reasoning of DBNs and the independence assumptions of state-observa-

tion models. We chose HMMs above other frameworks such as Markov decision processes

(MDPs) and partially-observable Markov decision processes (POMDPs) because these lacked

an explicit management of time and their decision layer was deemed unnecessary for the

assessment of resilience.

The creation of a new framework to describe the resilience of stochastic, partially observable

systems, requires, however, certain additional steps. First, we re-define the domain of the ran-

dom variables S and O as the union of the domains of the set of variables of the constraint-

based systems in CBS:

OðOÞ � OðSÞ ¼ [i DðXiÞ ð5Þ

Without loss of generality, we impose a static cost function: 8i; ki ¼ c : OðSÞ ! Rþ and we

introduce a sensor model that describes the imperfect observations of the set of variables:

PðOt j StÞ : [i DðXiÞ � [i DðXiÞ ! ½0; 1�. Because we are not interested in formulating a deci-

sion making problem, we drop the set of actions A from DS and we replace m with the condi-

tional probability distribution that describes the probability of a set of variables evolving into

Resilience of stochastic dynamic systems
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another:

PðStþ1 j StÞ : [i DðXiÞ � [i DðXiÞ ! ½0; 1� ð6Þ

Putting these elements together with an initial probability distribution

PðS0Þ : [i DðXiÞ ! ½0; 1�, our overall framework can be re-written as:

c-HMM ¼ hPðS� 1Þ; PðOt j StÞ; PðStþ1 j StÞ; c : OðSÞ ! Rþi ð7Þ

In the SR-model, resilience is a boolean property of a state trajectories SST. It can be seen as

a unifying property, combining different desirable behaviors of a dynamic system and arising

from three simpler properties of state trajectories: resistance, functionality, and recoverability

(see Fig 1).

l-resistance

The resistance property expresses the fact that a trajectory never incurs in a cost that is larger

than a fixed threshold. Therefore, this property is parameterized by this maximum acceptable

cost.

Definition 1. Given a state trajectory SST = (CBS0, B0), (CBS1, B1), . . . and a positive threshold
l 2 Rþ, SST is said to be l-resistant if and only if each cost in its corresponding cost sequence is
less than or equal to the threshold l:

kiðBiÞ � l 8kiðBiÞ 2 ðk0ðB0Þ; k1ðB1Þ; . . . ; knðBnÞ; . . .Þ ð8Þ

This property must be satisfied whenever we deal with periodic, fixed budgets.

f-functionality

The functionality property tells us if the costs of a trajectory are, on average, equal to or below

a certain threshold. As in the case of resistance, this threshold parameterizes the property.

Fig 1. Cost trajectories and their properties. The example of a cost trajectory that is 50-resistant, 27-functional, h15,

50i-recoverable, and h4, 40i-resilient, according to the Definitions 1 to 4 and the Eqs 8 to 10 provided in this work.

https://doi.org/10.1371/journal.pone.0202337.g001
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Definition 2. Given a state trajectory SST = (CBS0, B0), (CBS1, B1), . . . and a positive threshold
f 2 Rþ, SST is said to be f-functional if and only if the arithmetic average of the costs in its corre-
sponding cost sequence is less than or equal to the threshold f:

jSSTj� 1
�
XjSSTj

i¼0

kiðBiÞ � f ð9Þ

This property is important when the operations we plan and our budget have different time

granularity.

hp, qi-recoverability

The recoverability property concerns those systems in which costs over a certain threshold can

be accepted, but only as long as the system is able to return within normal conditions before

consuming a fixed, restorable, reserve.

Definition 3. Given a state trajectory SST = (CBS0, B0), (CBS1, B1), . . .., and a positive thresh-
old p 2 Rþ and a positive budget q 2 Rþ, SST is said to be hp, qi-recoverable if and only if every
time the sequence of costs exceeds the threshold, it also returns below (or at) it before the cumula-
tive offset surpasses the reserve:

8k s:t: kkðBkÞ > p;9j > k s:t: kjðBjÞ � p ^
Xj� 1

i¼k

ðkiðBiÞ � pÞ � q ð10Þ

Systems with storage abilities—and that can use resources faster than they replenish them—

are affected by this property.

hz, ri-resilience

Having explained the concepts of resistance, functionality, and recoverability, we can finally

define the resilience of SSTs as a property-aggregating property.

Definition 4. Given a state trajectory SST = (CBS0, B0), (CBS1, B1), . . .., a natural number
z 2 N�, and a positive threshold r 2 Rþ, SST is said to be hz, ri-resilient if and only if all its sub-
trajectories of length z are r-functional.

As it was observed by Schwind et al. [17], using this definition, resilience is strongly

interconnected with the three previous properties: by setting the parameter z to 1 or |SST|,

resilience becomes equivalent to r-resistance or r-functionality, respectively. Moreover,

Schwind et al. [17] proved that “a finite SST is hp, qi-recoverable if it is hz, (p + q/z)i-resilient

8z 2 {1, . . ., |SST|}”.

Complexity of efficient exact inference

In S1 Appendix, we describe how to use the c-HMM framework to define the random vari-

ables associated to trajectories of states, observations, and costs, i.e. the probabilistic analogues

of SSTs. We then show that the probability of a trajectory of costs can be derived from those

of trajectories of states. However, a major assumption of our work is that only trajectories of

observations are available to study the partially observable stochastic system. Because of this

reason, we introduce an efficient algorithm to perform the exact inference needed to find the

probability of a trajectory of states from a trajectory of observations. The algorithm is also

detailed in S1 Appendix. The most commonly used algorithms for exact inference in HMMs—

the forward algorithm, the forward-backward algorithm and the Viterbi algorithm [9]—are

all characterized by linear computational complexity. They target marginal and maximum a
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posteriori inference [19] and they are inherently suited for the processing of long chains of

input [3, 10]. Indeed, for any new inference query we intend to introduce, we must aspire to

compute it with linear time-complexity with respect to its input.

Here, we study our algorithm’s complexity starting from the consideration that its last

step requires the multiplication of three separate probability values (factors) that we called

U0, U1, U2.

We assume that querying the sensor and the transition models for any of their elements

involves a constant and negligible delay. The computation of U0 is the quickest: starting with

an initialization value of 1, we need to multiply it T times (the length of the time horizon of

the assessment or prediction of a property) by the correct entry of the sensor model. Therefore,

the time complexity of U0 is O(T). The factor U1 is obtained through |O(S)| multiplications

and |O(S)| − 1 sums— to find P(S0 = s0)—and T − 1 products by entries of the transition

model. Its time complexity is equal to O(|O(S)| + T). Finally, the algorithm in [20] has a run

time of O(|O(S)|2 � T), plus |O(S)| − 1 additions to compute U2. Hence, the computation of U2

using this algorithm is the slowest of the three. Indeed, this is also the overall time complexity

of the algorithm:

OðjOðSÞj2 � TÞ ð11Þ

We observe, in fact, that all the three factors U0, U1, and U2 are independent (from a computa-

tional point of view, not with regard to probability) and they can be can be easily computed in

parallel, with the last one strictly dominating the others.

Most importantly, we remark that, if the time horizon is much larger than the number of

states (i.e. T� |O(S)|), the probabilistic inference algorithm has an overall time complexity

dominated by O(T). This result reveals that our algorithm—despite answering the different

kind of queries we are interested in—belongs to the same time complexity class of other well-

known inference algorithms for HMMs: the forward-backward algorithm for the computation

of smoothed marginals distributions, and the Viterbi algorithm for the computation of the

most likely sequence of hidden variables [9].

The data structures necessary to represent the c-HMM framework have moderate memory

requirements: P(S0) has size of O(|S|), P(OtjSt) of O(|O(S)| � |O(O)|), P(St+1jSt) of O(|O(S)|2),

and c of O(|O(S)|). The input of our inference queries consists of two vectors, a trajectory of

states s0, . . ., sT and a trajectory of observations o0, . . ., oT, having size of O(T) each. The com-

putation of U0 requires to iteratively multiply the result of a previous product and store a single

floating point value, hence, its space complexity is O(1). Similarly, the factor U1 can be com-

puted by repeatedly storing the result of successive additions and multiplications in the same

memory cells and it has space complexity of O(1). Finally, the execution of the algorithm to

find U2 [20] demands memory of O(|O(S)|), again dominating the other two factors.

As a result, the memory requirements for the computation of the probability of a trajectory

of states, given a trajectory of observations are:

1Þ model : OðjOðSÞj � jOðOÞj þ jOðSÞj2Þ

2Þ input : OðTÞ

3Þ algorithm : OðjOðSÞjÞ

ð12Þ

This also means that the space complexity of the inference algorithm itself do not depend on

the time horizon T. In most practical cases, in which T� |O(S)|, the memory bottleneck will

be represented by the memories dedicated to the storage of the input sequences s0, . . ., sT and

Resilience of stochastic dynamic systems
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o0, . . ., oT. Fig 2 shows how time and space complexity evolves with respect to the size of the

inputs.

Complexity of generic property checking

The complexity analysis in the previous section was that of an algorithm capable of computing

the probability of a trajectory of states, given an assignment of the trajectory of observations.

We have shown that this can be done, rather inexpensively, in time O(T): a result that makes

our algorithm as good as the best state-of-the-art algorithms for exact inference in HMMs.

However, probabilistic property checking in c-HMMs requires an additional step: the identifi-

cation of those trajectory of states that actually enforce a certain property. The complexity of

this step is, in general, property-dependent.

The number of all possible assignments of a trajectory of states, is equal to |O(S)|T. Unless

a number of impossible (i.e. zero-valued) states or transitions appear in the HMM in either

P(S0) or P(St+1 j St), all these assignments will have non-null probabilities. However, it can be

noted that properties are functions of (i.e. only depend on) trajectories of costs.

Proposition 1. Given a finite time horizon T and a c-HMM
hPðS0Þ; PðOt j StÞ; PðStþ1 j StÞ; c : OðSÞ ! Rþi, the number of possible assignments of the trajec-
tory of costs is equal or smaller than the cardinality of the set of trajectories of states.

Proof. This holds true as a consequence of the properties of the function c: 8q 2 {qjq =

c(s) ^ s 2 O(S)}, |c−1(q)|� 1.

On the other hand, the number of trajectories of states that share the same trajectory of

costs is:
QT

i¼1
jc� 1ðkiÞj (where ki is the cost of the state at the i-th time step). Let K � Rþ be the

set of all the costs that are images of the possible assignments of S: K = {k j k = c(s) ^ s 2 O(S)},

the largest maxk2K|c−1(k)|, the smallest the size of the search space of the trajectories of costs

Fig 2. Inference complexity. Theoretical complexity growth of the proposed inference algorithm with respect to the

time horizon T and the size of the state domain |S|. In the legend, time and space stand for time-complexity and space-

complexity, respectively.

https://doi.org/10.1371/journal.pone.0202337.g002
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were the property checking actually happens. Contrarily, if maxk2K|c−1(k)| = 1, property check-

ing over trajectories of costs is isomorphic to property checking over the assignments of trajec-

tories of states.

Bounding the probability of l-resistance

The main challenge of dealing with long time horizons T is that, as the number of possible tra-

jectories grows exponentially with their length, the subset of trajectories that satisfy a certain

(resilient or not) property might grow as well. This is also true and especially important for the

resilient property of l-resistance.

Proposition 2. This additional layer of complexity cannot really be circumvented, i.e., in gen-
eral it is not possible to preclude the exponential growth of the number of probability values that
must be evaluated to assess the probability of l-resistance.

Proof. This derives from fact that P(S1� l ^ S2� l|o1, o2) cannot be factorized into

P(S1� l|o1, o2) � P(S2� l|o1, o2) because , excluding the

application of the principles of induction through an iterative algorithm.

Instead, we can use the algorithm detailed in S1 Appendix to compute approximated proba-

bility values of l-resistance that are strictly smaller—or larger—than the actual value, i.e. plausi-

ble lower and upper bounds of P(S0� l ^ � � � ^ ST� l|o0, . . ., oT). To compute a pessimistic

estimate of this probability, we must construct new pseudo- transition and sensor models

P̂ðStþ1jStÞ; P̂ðOtjStÞ. We aggregate all the states that have cost� l or > l into two macro-states

s�l, s>l so that:

P̂ðstþ1 ¼ s�ljst ¼ s�lÞ ¼ min
i s:t: cðsiÞ � l;
j s:t: cðsjÞ � l

Pðstþ1 ¼ sijst ¼ sjÞ

P̂ðstþ1 ¼ s�ljst ¼ s>lÞ ¼ min
i s:t: cðsiÞ � l;
j s:t: cðsjÞ > l

Pðstþ1 ¼ sijst ¼ sjÞ

ð13Þ

P̂ðstþ1 ¼ s>ljst ¼ s�lÞ ¼ max
i s:t: cðsiÞ > l;
j s:t: cðsjÞ � l

Pðstþ1 ¼ sijst ¼ sjÞ

P̂ðstþ1 ¼ s>ljst ¼ s>lÞ ¼ max
i s:t: cðsiÞ > l;
j s:t: cðsjÞ > l

Pðstþ1 ¼ sijst ¼ sjÞ

ð14Þ

and, 8oj 2 O(O), we have:

P̂ðot ¼ ojjst ¼ s�lÞ ¼ min
i s:t: cðsiÞ�l

Pðot ¼ ojjst ¼ siÞ

P̂ðot ¼ ojjst ¼ s>lÞ ¼ max
i s:t: cðsiÞ>l

Pðot ¼ ojjst ¼ siÞ

ð15Þ

Plugging this new models in our algorithm, one can compute a lower bound, i.e. a value

smaller or equal, for the probability of the trajectory being l-resistant. Similarly, one can com-

pute an upper bound for the probability of resistance, using the pseudo- transition and sensor

models of s�l obtained by swapping the min and max operators in the definitions above.

Therefore, the new model and our algorithm allow to compute, with time complexity that is

linear with the length of the trajectory, an interval [Plow, Pup] that certainly contains the l-resis-

tance probability P(S0� l ^ � � � ^ ST� l|o0, . . ., oT).
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Approximate inference methodologies are widely used in the context of Bayesian networks,

dynamic Bayesian networks, and probabilistic graphical models in general. Unlike the upper

and lower bound approximation proposed above, however, most approximate inference meth-

ods for probabilistic graphical models are based on repeated randomized sampling, also

known as Monte Carlo methods or algorithms [9]. Rejection, likelihood weighting, Markov

chain, and Gibbs sampling are all approaches for Bayesian networks inference that, with cer-

tain limitations and adjustments, can be adapted to the family of dynamic nets [9]—to which

HMMs belong. In many real-world applications, approximate inference becomes necessary

when the complexity of the model renders exact inference intractable. To the contrary, we

observe that the complexity of models and inference in this work is always kept within the

realm of the exactly tractable—with the issue of unrestrained growth being circumscribed to

the number of state trajectories satisfying any specific property. Sampling, therefore, could be

used orthogonally to the proposed exact inference, as a tool to explore the space of state trajec-

tories (see S1 Appendix).

Application scenarios

To demonstrate the potential of the proposed methodology, we apply both its modelling and

probabilistic inference facets to four practical scenarios. These examples serve to demonstrate

that resilience and the resilient properties have a prominent role in several different domains.

Moreover, they show that, in the “random world” [1] we frequently encounter environments

that have non-deterministic dynamics and are observed through noisy, imperfect, or broken

sensors (i.e. partial observability). The first two qualitative examples are inspired by the

domains of disaster management and macroeconomics. The third and fourth example are

drawn from the fields of self-adaptive computing for aerospace applications and swarm

robotics, respectively, and they are used to evaluate the quantitative aspects of the proposed

approach as well.

Disaster management

When dangerous disruptive events occur, proper disaster management is crucial to protect

human lives and minimize casualties [21]. Effective disaster management cannot be decoupled

from good modelling and decision making strategies [22]. In our first application scenario, we

model a four islands archipelago X0, X1, X2, X3 (see Fig 3) that can be affected by three different

level of alert DðXiÞ ¼ a0; a1; a2—from “no intervention needed” (a0) to “emergency” (a2), pass-

ing by “some intervention needed” (a1). In this example, |O(S)| = 34 = 81. To take into account

the different speeds at which alerts escalate and get re-absorbed on each islands, we define four

transition models 8i 2 [0, 3], Pi({Xi}t+1|{Xi}t) and construct the overall probabilistic dynamics

as P(St+1|St) = P({X0, X1, X2, X3}t+1|{X0, X1, X2, X3}t) = ∏i Pi(Xt+1|Xt) (this also implies that

the alert status as independent from one another). We assume that the observations domain is

isomorphic to that of the states O(O) = O(S), that an “emergency control centre” resides on the

j-th island, and that the reliability of an observation decays exponentially with the distance it

has to travel (this is, for example, the case of a multi-hop communication network with con-

stant packet drop between any two nodes but one could also choose to plug-in any of the

more sophisticated probabilistic models found in the literature [23]). Having defined the

observation of the i-th island status as OXi and its distance from the control centre as di, then

PiðO
Xi
t ¼ apjXt ¼ aqÞ ¼ e� di if ap ¼ aq; and ð1 � e� diÞ=ðjOðOÞj � 1Þ otherwise. The overall

observation model is defined as PðOtjStÞ ¼ PðfOX0 ;OX1 ;OX2 ;OX3gtjfX0;X1;X2;X3gtÞ ¼Q
iPiðO

Xi
t jXtÞ. Functions ciðXiÞ : DðXiÞ ! N state how many resources, e.g. the number of

search and rescue teams, have to be sent to the i-th island, depending on its alert status. The
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cost function cðSÞ : OðSÞ ! N4 ¼
P

ici reveals how many resources are required to cope with

each situation in the state domain.

The numerical values in the transition and the sensor model can be found or improved

upon used historical data and expert knowledge. The emergency control centre can use them

to look at the stream of information about the alert status (or their prediction through the tran-

sition model P(St+1|St)). Performing inference on the system model allows to answer different

queries of interest. If a limited number of search and rescue teams are present on the archipel-

ago, computing the probability of the l-resistance property to hold true and making sure that it

is above a desirable threshold (e.g. p(ϕ(resistance, l))� 0.95), ensures that l is the correct num-

ber of resources to deal with the potential emergencies—should the resistance probability

drop, more resources would be necessary. Furthermore, if the archipelago can temporarily

recall an additional q resources (e.g. from a national guard), the p parameter for which the

probability of hp, q + li-recoverability is above a safe limit will tell for how many time steps

(days or months) those extra resources should be mobilized (and therefore paid, quartered,

etc.).

Macroeconomics

Probabilistic and statistical models are already widely exploited tools in the fields in economics

and finance—the latter especially. A notable example being the research on the expected

return and risk of efficient portfolios by Harry Markowitz [24]. The deterministic modelling

approach of traditional macroeconomics, on the other hand, has come to be questioned

over the last decade by the crisis of 2008 and the growing prominence of experimental and

Fig 3. Disaster management. The four island archipelago modelled in the first application scenario. For each island,

the image shows its geographical distribution, the evolving state, cost, and (partial) observation from the point of view

of the control room. This figure is similar but not identical to the one in the original submission and it is for illustrative

purposes only.

https://doi.org/10.1371/journal.pone.0202337.g003

Resilience of stochastic dynamic systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0202337 August 23, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0202337.g003
https://doi.org/10.1371/journal.pone.0202337


behavioural economics [25]. Reckoning the existence of yet many unknowns in modern mac-

roeconomics, probability theory only seems the natural development direction for models that

need to be able to account for the uncertainties of this domain and the irrationality of human

behaviours.

Applying the proposed modelling to the context of macroeconomics gives us a tool to

derive valuable insights this world. Assessing the resilience of a macroeconomic system is

important for multiple reasons: smoothly running economics guarantee the development, sta-

bility, and fairness of our societies. The 2008 housing market crisis proved that existing models

are not enough to protect us from rare, non-directly observable, and counterintuitively corre-

lated events [26]. The argument that macroeconomics should be revisited to deal with the

uncertainty of the real world is not new [27] and statistical model for certain phenomena have

been proposed [28]. Existing research can be leveraged by our approach by simply verifying

that the Markov property is enforced P(St+1|St). The general consensus on the yet incomplete

understanding of macroeconomics lends itself perfectly to a partially-observable modelling

approach P(Ot|St). As economists are well aware of the limitations of existing models, they

often rely on stress tests [29] to evaluate the resilience of financial institutions [30]. Stress tests

are experimental tools that go beyond statistical analysis but, for which, statistical meta-analy-

ses exist [31] and can be used to construct the observation model required by our approach.

Intuitively, the cost function of the c-HMM describing this scenario will tell which amount of

money (in cash, deposits, or bonds) a government would need to prevent a default in a certain

state. Governments, banks, and investment funds typically monitor time horizons of 5, 10

(sometimes 15, 20) years. In this context, the f-functionality property represents the amount of

funding that has be made available, on average, across multiple year budgets. The hp, qi-recov-

erability property tells how far into debt a government would have to go to recover from a cri-

sis within a fixed timeframe.

Self-adaptive computing

Self-adaptive computers possess ad hoc capabilities—e.g. sensors, actuators, and decision

making loops [32]—that allow them to express autonomous behaviours. Because they do not

require the supervision of a human operator, these systems are especially suitable for critical,

advanced applications such as space systems and robotic exploration. An autonomous com-

puter and a resilient ecological system share several properties, for example the ability to self-

protect and self-heal [33] and assessing the resilience of the first is of primary importance both

at design and run time. Previous research [34–36] proved that probabilistic models have the

potential to enable autonomous computing systems. We now demonstrate how they can be

exploited for the analysis of their resilience.

The ArduSat Payload Processor Module (ASPPM) carried by the 1U CubeSat [37] Ardu-

Sat-1 consists of one supervisor processor and 16 processing elements (PEs), and it is the ideal

platform for a modular, redundant autonomous on-board computer (OBC). The resilience of

the OBC of a spacecraft is typically enforced through the software and/or hardware replication

of its essential functionalities: (1) housekeeping (C&DH), i.e. all the software tasks contribut-

ing to the monitoring of the satellites status and the correct execution of its routine functions;

(2) the processing of the data collected by the payload of the satellite while performing its mis-

sion (Mission), e.g. running a classification algorithm over the images captured by a camera

[38]; and (3) the attitude control algorithm (ACDS), responsible for the proper orientation of

the satellite with respect to Earth and its targets, through the computation of the control signals

of the satellite actuators (e.g. reaction wheels).
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Because of the harsh toll posed by space weather (solar wind, cosmic rays) on electronics,

each of the processing elements 8i 2 [0, |PE| − 1], pei in the set PE can find itself in one of three

states: pei 2 {w, t, p}, that is, correct operation w, experiencing a transient fault state t, or per-

manent failure p. A stochastic transition model describes the ageing of a PE [34] and it is

parameterized by the impact rate of particle radiation r and the mean time to failure MTTF of

a PE. These parameters are responsible for transient and permanent faults, respectively. r is

strongly orbit-dependent and is computed with the aid of radiation models such as Creme96

and SPENVIS [39, 40]. Assuming independence among the evolution of the PEs and defining

the state of the system as S = {pei s.t. i 2 [0, |PE| − 1]}, we can generalize the transition model

[34] as follows (where W is the duration of a time step):

PðStþ1jStÞ ¼
YjPEj� 1

i¼0

Pðpetþ1jpetÞ ¼
if pei

t ¼ ðwjjtÞ: Pðpei
tþ1
Þ ¼ h

1 � r
eW=MTTF

;
r

eW=MTTF
; 1 �

1

eW=MTTF
i

if pei
t ¼ p: Pðpei

tþ1
Þ ¼ h0; 0; 1i

8
><

>:
ð16Þ

In the case of ArduSat-1, the observers of the resilient system are the ASPPM’s on board

supervisor ATmega2561 microcontroller and the external NanoMind A712C flight control

computer. Observations of each PE, however, are not perfect for two reasons: (1) errors can

slip into the observers too; and (2) transient and permanent faults are, a priori, indistinguish-

able. Our approach seamlessly models these kinds of observations with a framework that

accounts for both “partial” (in modal logic, ¬□(O(S) = O(O))) and probabilistic observability.

Having defined the observation of each PE as working or faulty, Opei 2 fw; f g, and the system

observation as the set of observation of all PEs, O ¼ fOpei s:t: i 2 ½0; jPEj � 1�g, we can use

any suitable memoryless probability distributions for the sensor model [34] (with false positive

and false negative rates of pfp, pfn):

PðOtjStÞ ¼
YjPEj� 1

i¼0

PðOpei

t jpei
tÞ ¼

if pei
t ¼ w: PðOpei

t Þ ¼ h1 � pfp; pfpi

if pei
t ¼ ðtjjpÞ: PðOpei

t Þ ¼ hpfn; 1 � pfni

8
><

>:
ð17Þ

The cost function expresses the utility [9] of a configuration, that is, the scientific data

throughput (e.g. in MBytes per orbit or per day) that a certain state configuration puts on the

downlink of the satellite’s telecommunication system. In general, this data throughput is a

function of the state of the ASPPM s 2 S, the orbit of the satellite ξ 2 X, and number/position

of ground stations ψ 2C: STðs; x;cÞ : S� X�C! Rþ. For a given low-Earth orbit �x with a

400km altitude and 51˚ inclination, and a single ground station �c in North America, we write

c�x ;�cðSÞ as the cost function of the ASPPM state as:

c�x ;�cðSÞ ¼ STðS; �x; �cÞ ¼

. . .

3:7MB=day if Si� 1 ¼ h⌀;⌀i; map : hc & dh 7! pe9;13:14; mission 7! pe2:4;6:8; acds 7! pe10:12;15:16i

2:0MB=day if Si ¼ h⌀; 4i; map : hc & dh 7! pe9;13:14; mission 7! pe2:3;6:7; acds 7! pe10:12;15:16i

1:3MB=day if Siþ1 ¼ h⌀; 4; 12i; map : hc & dh 7! pe9;13; mission 7! pe3;7; acds 7! pe10:11;15i

. . .

8
>>>>>>>>>><

>>>>>>>>>>:

ð18Þ

In Eq 18, the shortcut h⌀; 4i is used to indicate a state in which no PE is experiencing a

transient fault, and pe4 is permanently faulty (all other PEs are assumed to work correctly);
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map specifies how the software tasks are mapped to the PEs in any given state. Fig 4 offers a

visual reference of the subset of these mappings, as in Eq 18.

To discover meaningful semantics associated to the resilient properties, we introduce a

helper (cost) function ĉðSÞ ¼ c � cðSÞ, where �c is the theoretical maximum throughput attain-

able by the satellite. Using ĉðSÞ, computing the probability distributions of f-functionality and

l-resistance reveals the expected and worst-case data throughput sent to Earth, respectively.

The property of hp, qi-recoverability can help quantify the loss of scientific data in the case of

drops in the throughput (due to faults or reconfiguration of the system). The advantage of

using the algorithm proposed in this work (see S1 Appendix) to assess these properties is the

ability to maintain the computation within reasonable time limits, even for relatively long

traces and complex models. In a search space of 316 states, 216 possible observations, and time

horizons of 10, 100, or 1000 steps, the proposed approach requires a number of arithmetic

operations in the order of 1013−15 to compute the probability of a state trajectory. The same

problem would simply be intractable by any other algorithm that requires to evaluate the 1075

entries in the conditional joint probability distribution (CJPD). Because of the exponential

growth of the CJPD, the savings are remarkable (order of 1059) even for properties that are sat-

isfied by a large (e.g. 30%) fraction of the possible state trajectories.

The potential of self-aware computing is not limited to satellites. Studying the challenges of

Mars rover operations, Gaines et al. [41] outlined a model of seven factors impacting produc-

tivity. Among non-human factors, they identified the reliability of the uplink/downlink as a

cause for “deferred” sols—i.e., Martian solar days in which the campaign objectives have to be

postponed to address unexpected issues. Indeed, they suggest “state-aware health assessment”

as one of the capabilities that shall be developed in future missions to mitigate this problem.

For example, NASA and JPL’s most recent Mars rover, Curiosity, is able to perform *5h/

sol of tactical science activities [42]. This is due to the fact that direct-to-Earth communication

is limited—by power and orbital constraints—to a few hours/day at data rates of 0.5 to 32kb/s.

Therefore, most transmissions are relayed by two sun-synchronous orbiters—Mars Recon-

naissance Orbiter, at up to 2Mb/s, and Odyssey, at 128 or 256kb/s. Each of the orbiters passes

over the rover, every sol, for a 8’-window while they can both transmit to Earth for *16h/day.

Commands are uploaded to the rover every sol during an overnight orbiter pass (or direct-

from-Earth at local midmorning). Data that are necessary to plan the activities of the following

sol are then returned via an orbiter telecom pass in the midafternoon. Non-essential informa-

tion is stored and returned during the following overnight orbiter pass [42]. As a consequence,

if the rover fails to send the required information during the correct orbiter pass, the tactical

Fig 4. Self-adaptive computing. A visual representation of three of the possible “software task”-to-“hardware resource” mappings in the state space of the 1U

CubeSat’s Arduino-based ASPPM from the third application scenario, as presented in Eq 18.

https://doi.org/10.1371/journal.pone.0202337.g004
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team might not be able to plan the activities for the following sol. This is an issue that will

aggravate in the near future, as the current fleet of sun-synchronous orbiters is replaced with

non-sun-synchronous orbiters [41].

As originally planned, Curiosity’s primary mission spanned over 669 sols. Accounting for

(i) a commissioning phase of 90 sols, (ii) 30 sols of solar conjunction, (iii) 10 sols for mainte-

nance and updates, (iv) a 20% of “not commandable” sols due to Earth-Mars phasing, and

(v) a 25% of “non-productive” sols “due to unforeseen shortfalls in mission resources [. . .] or

communication problems” [42], the rover was left with *300 sols to explore the vicinity of

the Gale crater, traverse *18km, and collect *11 samples. With hindsight, the 25% estimate

of “non-productive” sols proved to be rather conservative: the study in [41] observes that tac-

tical activities were only deferred in 3 out of 19 (16%) sols during 2014’s Pahrump Hills cam-

paign and in 1 out of 24 (4%) sols during 2015’s Artist’s Drive. Yet, self-aware computing

might have the potential to further improve performance, e.g., with the implementation of

a decision support system (DSS) on top of the self-assessment framework described in this

work.

Having associated probability values to the data throughput of a computing system

(through a model as the one in Eqs 16 to 18), a binary classification/decision system would

autonomously choose whether to use the overnight orbiter pass to (i) transmit the non-essen-

tial information (the default behaviour) or (ii) re-transmit the data required for tactical plan-

ning (when it believes that the previous transmission failed) and prevent unproductive sols.

The sensitivity and specificity of the classifier are affected by several factors (including the

noisiness of the on-board sensors and the time horizon of the assessment algorithm). How-

ever, even assuming relatively weak performance (e.g., sensitivity and specificity of 0.8) and

the conservative “deferred sol” incidence of [41], this DSS could reduce the number of unpro-

ductive sols by 3.2–12.8%. Over the course of the>1600 sols spent by Curiosity on Mars, it

means 50-to-200 extra sols of science activities, equivalent to 3-to-12 extra kilometres and

2-to-7 additional samples.

Swarm robotics

As many-robot systems, or robot swarms, become more and more pervasive, researchers must

devise new, efficient ways to control and coordinate them [43]. In the fourth practical scenario,

we test our framework in the context of the networked multi-robot system of Fig 5, where

robots move independently and have a limited communication range. We implemented a sim-

ulator for the robots’ movement and communication model, the proposed algorithm, and an

alternative reference approach based on the computation of the conditional joint probability

distribution. We remark that computing the CJPD is already a more efficient approach than

blindly expanding the entire joint probability distribution of a c-HMM. We analyze the sce-

nario with two examples: a small one with 4 robots in a 20cm by 20cm arena and a large exam-

ple with 20 robots in a 40cm by 40cm area. In both examples, robots have a diameter of 2cm

(similarly to Kilobots [44]), move on independent random walks at a speed of 2cm/s, and have

a communication range of 10cm.

As a transition model, we use the conditional probability distribution that describes the

way in which the number of neighbors R of a robot evolves over a time step of 1s: P(Rt+1|Rt).

To empirically derive this model, in both examples, we performed 30 random-walk simula-

tions of 100 each, with the positions of the robots randomly initialized. For the sensor model,

we assume that communication links between neighbors can be temporarily broken with

probability d = 0.1. As a consequence, the sensor model that describes the number of robots

V that are actually visible to a robot with R neighbors follows the binomial distribution:
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P(Vt|Rt) = P(X = Vt) with X * B(Rt, d). We want to assess the probability of the following two

properties:

• Λ (l-resistance), given a series of observations over a time horizon T varying from 4 to 6,

property Λ guarantees that a robot always maintained more than l neighbors. The l parame-

ter is set to 2 in the small example and 10 in the large one.

• Θ: given a series of observations over a time horizon T varying from 4 to 6, property Θ says

that a robot lost connectivity (i.e. found itself in a position with zero neighbors) precisely

during the last timestep—and not before.

Table 1 reports the results of specific experiments, taking typical series of observations

as inputs. It is worth noting that, because the proposed one is an exact approach, the

obtained probability values are identical w.r.t. those extracted from the CJPD, while—

from the results of the experiments—it emerges that the computational time is reduced

by a factor ranging between 102 and 104. In the 4 robots/6 steps time horizon case, for exam-

ple, the computational time of the probability of property Λ is lowered from >1000s to

*0.01-0.1s.

Fig 6 compares the time delay of the proposed approach and that required by the compu-

tation of the CJPD. For large scenarios, the CJPD delay rapidly gets off the chart. The pro-

posed algorithm, instead, allows to deal with 20 robots with a comparable, but smaller, delay

than the one required by the computation of the CJPD in the 4 robots scenario. In particular,

we observe that the advantage of the proposed approach over the use of the CJPD actually

increases with the length of the time horizon and the number of robots in the scenario. Being

able to perform exact inference in only seconds in large scenarios, accounting for tens of

robots, this approach can effectively be implemented in several practical multi-robot applica-

tions, such as target tracking, area coverage, or task allocation. Unlike previous work on

Fig 5. Swarm robotics. A robotic swarm, as described in the fourth application scenario. Each robot possesses a

position, velocity, state (the number of its neighbors), and a partial observation (of its neighborhood) evolving over

time. The inference algorithm is executed locally to assess the probability of losing connectivity with respect to the rest

of the swarm at each time step.

https://doi.org/10.1371/journal.pone.0202337.g005
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resilient robot formations and partially-observable robot swarms [16], the proposed

approach does not limit the movement of the robots into configurations whose resilience

can be established a priori but rather it allows the a posteriori assessment of resilience in a

distributed fashion.

Table 1. Computational time savings yield by the proposed approach.

Observation Trajectory TO # of Robots p of Λ Computation time (s)

CJPD Proposed

[2, 2, 1, 2] 4 0.77167 3.022 0.003

[10, 10, 8, 10] 20 0.40485 n/a 1.964

[2, 2, 2, 2, 1, 2] 4 0.77033 1027.0 0.018

[10, 10, 10, 10, 8, 10] 20 0.38312 n/a 271.51

Observation Trajectory TO # of Robots p of Θ Computation time (s)

CJPD Proposed

[2, 2, 1, 0] 4 0.52712 3.059 0.005

[2, 2, 1, 0] 20 0.54640 n/a 1.354

[2, 2, 2, 2, 1, 0] 4 0.52727 1025.5 0.063

[2, 2, 2, 2, 1, 0] 20 0.53958 n/a 698.14

Experimental results from the fourth application scenario, describing a robot in the small or large swarm trying to assess the probability of properties Λ and Θ using

only local and the—possibly faulty—observations of its neighborhood.

https://doi.org/10.1371/journal.pone.0202337.t001

Fig 6. Complexity of assessing swarm robotics’ properties. Experimental assessment of the time complexity and

comparison of the scalability of the computational time of different queries for property Λ and property Θ through the

algorithm proposed in this work versus expanding the conditional join probability distribution, in the 4 robots and 20

robots scenarios.

https://doi.org/10.1371/journal.pone.0202337.g006
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Discussion

Summing up our work, we adapted the CBS/DS-based formalization of resilience given by

Schwind et al. [17] (composed of the resilient properties of resistance, functionality, and recov-

erability) to the timed probabilistic framework of hidden Markov models. To do so, we defined

the extended framework of c-HMMs. In S1 Appendix, we outline a state-of-the-art inference

algorithm able to answer the queries required for the probabilistic property checking of resil-

ience over this model. Furthermore, we studied the space- and time- complexity of this infer-

ence algorithm as well as those of property checking.

We demonstrated the practical applicability of our approach in four qualitative and quanti-

tative scenarios of growing technical complexity. In our experimental evaluation, we imple-

mented the algorithm in the Matlab-compatible scripting language GNU Octave (see the

Additional Information for the supplementary materials) and tested it in the autonomous

multi-processor computing system of a nano-satellite and in a multi-robot scenario to answer

queries about the robots’ connectivity. The experimental results show that, even in small

domains, the proposed approach is approximately (1) four orders of magnitude faster than

expanding the full conditional joint probability distribution. Furthermore, the scenarios

revealed that the proposed approach is capable of (2) modelling partial observability in a way

that deterministic models cannot grasp and (3) leading to insights about resilience that would

be, otherwise, concealed—e.g. the link between the extra resources required to probabilistically

ensure hp, qi-recoverability and the tightness of the associated deadline.

Looking forward, the opportunities for the further development of this work reside in the pos-

sible extensions of both its framework and the inference methodology. Despite having been able

to bound the space and time complexity of each trajectory’s inference query, an existing limita-

tion of our approach is that the number of trajectories satisfying any given property can greatly

vary (depending on the nature of the property itself). In this spirit, we focussed here on a concise

set of property but we recognize that, to widen applicability, approximate inference methods (for

example, those based on sampling) should be investigated further. To improve the general appli-

cability of our approach, another further step is an inference algorithm capable of dealing with

missing data in the trajectory of observations. Moreover, the c-HMM framework has the poten-

tial to be enriched with the ability to perform learning, decision making, and planning—insights

can be drawn from the existing frameworks of machine learning, decision networks, and MDPs.

Supporting information

S1 Appendix. Methods. The appendix explains in greater detail how we translated the con-

cepts and definition from the section on resilience and resilient properties into a dynamic

probabilistic model. It also discusses the differences between the three most common inference

algorithms for hidden Markov models and the inference query used in this work (the one ana-

lyzed in the section on complexity).

(PDF)

S1 Fig. Critical threshold of parametric properties. Probability distribution of the paramet-

ric resilient properties in a template scenario where 8s, c(s) 2 [0, . . ., 4]. The discontinuities

reveal the potentially critical thresholds for different properties.

(TIF)
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