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a b s t r a c t 

Background and objective: Within medical research, cure models are useful for analyzing time-to-event 

data in the scenario where a proportion of the analyzed individuals are expected to never experience the 

event of interest. Cure models are also useful for modelling the relative survival in scenarios where a 

proportion of the individuals are expected to eventually experience a mortality rate similar to that of the 

general population. Here we present two R packages, cuRe and rstpm2 , that provide researchers with 

several tools for performing statistical inference using parametric cure models. 

Methods: Cure models are commonly used to estimate 1) the proportion of individuals that are cured and 

2) the event-time distribution of individuals who are not cured. This can be done using simple parametric 

distributions for the event-time distribution of the uncured, but our implementations also enable fitting 

of more flexible spline-based cure models. The parametric framework of both packages ensures that cure 

models for the relative survival can easily be used. 

Results: The cuRe package contains two main functions for estimating parametric mixture cure models; 

one based on simple parametric distributions (e.g. Weibull or exponential) and one utilizing a spline- 

based formulation of the cure model. The rstpm2 package enables estimation of spline-based latent 

cure models, i.e., cure models with no explicit parameters modelling the proportion of cured individuals. 

Conclusions: Through the R -packages cuRe and rstpm2 , a wide range of different parametric cure mod- 

els can be fitted. The cuRe package also contains a number of useful post-estimation procedures for 

computing the time to statistical cure and conditional probability of cure, which may spread the use of 

cure models in medical research. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cure models constitute a wide range of models that are applicable to time-to-event analysis [1] . They have traditionally been considered

hen a proportion of the subjects under follow-up are expected to never experience the event of interest. This is for instance the case

hen measuring the time from first to second birth, because some mothers will never have a second child [2] . Here, cure models can be

sed to answer questions such as: 1) what proportion of first-time mothers will never have a second child? and 2) among women who

ventually have a second child, what is the distribution of the time between births? 

Cure models may also be employed for analyzing overall survival with the goal of estimating the proportion of individuals that are

ong-term survivors [3] . In many contexts, analyzing overall survival relative to the survival in the general population from which the

ndividuals originate ( relative survival ) is of interest. The relative survival function is defined as the ratio of the overall survival to the

atched general population survival. Particularly within medical research, relative survival is commonly used to quantify net survival,

.e., the survival of a patient population in the hypothetical scenario where only deaths due the disease can occur [4] . For many medical

onditions, patient survival is inferior to that of the general population. However, for some diseases, the patient mortality rate reaches the
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2

R

ortality rate of the general population with time. In such cases, cure models are useful for estimating the proportion of patients with

xpected survival similar to that of the general population and to examine the excess mortality for those who do not experience a similar

urvival. 

Despite the early introduction of cure models, they are still not used regularly in medical research. This may be due to several reasons

ncluding challenges with interpreting estimated coefficients, the lack of well-maintained software to support the analyses, and a more

omplicated variable selection process as variables need to be selected for two sets of model parameters. 

Cure models are available through a variety of R -packages with the majority focusing on mixture cure models. The smcure package fits

emi-parametric mixture cure models based on an EM algorithm [5] . The npcure [6] and curephEM [7] packages provide functionalities

or non-parametric inference in mixture cure models. The nltm package [8] implements a method for fitting cure models in the frame-

ork of non-linear transformation models. The miCoPTCM package enables fitting of semi-parametric non-mixture (or promotion time)

ure models incorporating measurement errors in covariates. The GORCure package [9] enables fitting of mixture cure models based on

nterval-censored data, while the geecure package fits parametric and semi-parametric mixture cure models using a generalized esti-

ation equation scheme that allows for modelling of clustered time-to-event data [10] . The penPHcure package implements a variable

election procedure for mixture cure models using a penalization scheme and allows for time-varying covariates [11] . The mixcure pack-

ge fits parametric and semi-parametric cure models utilizing existing R -packages [12] , and the spduration package contains functions

or fitting parametric mixture cure models based on simple distributions such as the Weibull or log-logistic distributions. However, none

f these packages enable fitting of cure models for the relative survival function. 

The R-package flexsurvcure , which builds upon the comprehensive flexsurv package [13] enables fitting of cure models based

n simple parametric distributions. Additionally, the package allows for specification of hazard rates from the general population, which

llows estimation of cure models for the relative survival function. However, the flexsurvcure package utilizes simple parametric

istributions, which may not be sufficiently flexible to yield a good model fit. 

Here, we describe the R -package cuRe , which includes a number of useful functionalities for fitting different types of cure models

or ordinary time-to-event survival functions and relative survival functions. These include cure models based on simple and composite

arametric distributions as well as spline-based cure models. We also introduce latent cure models which can be fitted using the rstpm2
ackage. These models are introduced in Section 2 . In the present article, we will only describe cure models for the relative survival

unction, but the implementation in the two packages also enable fitting of cure models for the ordinary survival distribution. In Section 3 ,

e demonstrate how cure models are fitted using the cuRe and rstpm2 packages and we conclude with a discussion in Section 4 . 

. Relative survival and cure models 

.1. Relative survival 

We consider the case where a patient population is followed until they experience the event of interest or become right-censored and

e assume that the censoring time is independent from the event time. Let T be the time to event for all patients and let S(t | z ) be

he survival function for an individual with covariate vector z . Additionally, we denote by S ∗(t | z ) the survival function of an individual

rom the general population with covariate vector z . Typically, the general population survival function can be stratified by age, sex, and

alendar year. The relative survival is the ratio of the patient survival to the general population survival, i.e.: 

 (t | z ) = 

S(t | z ) 
S ∗(t | z ) . (1) 

sing the relationship between the hazard function and the survival function, this corresponds to an additive hazards model: 

 (t | z ) = h 

∗(t | z ) + λ(t | z ) , (2) 

here h and h ∗ are the hazard functions corresponding to the patient population and the general population, respectively, while λ is

ermed the excess hazard . There is a one-to-one correspondence between R and λ. Modelling of λ has received much attention with the

ost popular choices being proportional excess hazards models [14] . For diseases where the mortality reaches the same levels as seen in

he general population, e.g., colon cancer and specific lymphoma and leukemia subtypes [15–18] , the relative survival will reach a plateau

19] . In that scenario, cure models can be used to quantify (1) the level of the plateau, and (2) the trajectory of the relative survival until

he plateau is reached. 

If a parametric distribution, such as the Weibull distribution, is specified for R (or λ), then the parameters of the distribution, θ, can be

stimated using maximum likelihood estimation. The log-likelihood function for right-censored data is given as 

 ( θ) = 

n ∑ 

i =1 

δi log 
(
h 

∗(t i | z i ) + λ(t i | z i , θ) 
)

+ log 
(
R (t i | z i , θ) 

)
, (3) 

here δi is the indicator of patient i having experienced the event of interest during the follow-up, and t i is the observed follow-up time

f patient i . Importantly, the log-likelihood function does not require any information from S ∗, but only uses h ∗(t i | z i ) , i.e., the hazard rate

n the general population at the observed follow-up time. This can be directly retrieved from national or regional life tables, which are

ften made publicly available. The Human Mortality Database provides a comprehensive archive of life tables from numerous countries

20] . Even though the likelihood function associated with the ordinary survival function is a special case of (3) , where h ∗(t i | z i ) = 0 for all

 , we will only focus on cure models for the relative survival for the remainder of this article. 

.2. Mixture cure models 

Among cure models, the mixture cure model is often presented as the most intuitive. It is formulated as 

 (t | z ) = π( z ) + ( 1 − π( z ) ) S u (t | z ) . (4) 
2 
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hat is, the relative survival is modelled as a mixture of two relative survival functions originating from the cured and non-cured pro-

ortion of patients, respectively; namely a constant relative survival function of 1 and a relative survival function, S u , which is estimated

rom the data. The mixture proportion π is the modelled proportion of cured individuals, which is often of primary interest. Using a

arametric formulation of both π and S u , the cure model can be fitted by optimizing (3) . For π , covariates are typically modelled lin-

arly with the use of appropriate link functions, such as logit ( π( z ) = exp 

(
z � θ

)
/ 
(
exp 

(
z � θ

)
+ 1 

)
) and cloglog (complementary log-log;

( z ) = 1 − exp 

(
−exp 

(
z � θ

))
), to ensure fitted values between 0 and 1. Simple parameteric distibutions, such as the Weibull, exponen-

ial, or log-normal distribution have been investigated for S u [21] . More complicated models, such as mixtures of Weibull and exponential

odels, mixtures of two Weibull models, the generalized modified Weibull, the generalized gamma, and the generalized exponential distri-

ution have been proposed as more flexible alternatives to the simple distributions [22–25] . Note that covariates included in the modelling

f π and S u do not need to be identical. 

A more general class of parametric mixture cure models has also been introduced [26] . This class is formulated as in (4) with the

pecification that 

 1 ( S u (t | z ) ) = η1 (t, z , θ) and g 2 ( π( z ) ) = η2 ( z , θ) , (5) 

here g 1 and g 2 are appropriately chosen link functions, preferably such that fitted values of π and S u remain between 0 and 1, while

1 and η2 denote linear predictors. This generalized cure model allows for the use of splines to model the time-effects associated with

 u , which increases model flexibility compared to the simple parametric distributions. Choosing g 1 (x ) = log ( − log (x ) ) , and modelling the

ime-effect in η1 (t, z , θ) by a restricted cubic spline function s 0 (t, γ0 ) , such that η1 (t, z , θ) = s 0 (t, γ0 ) + z � β and θ = ( γ0 , β) , we arrive

t the Royston–Parmar proportional hazards (PH) model for S u [27] . Likewise, a proportional odds model is obtained by choosing g 1 (x ) =
og (x −1 − 1) . 

.3. Latent cure models 

Another type of cure model is the latent cure model, which differs from the mixture cure models described above by not modelling

he cure proportion π( z ) explicitly [26] . In these models, the cure proportion is simply computed as the asymptote of the relative survival

unction. In particular, the relative survival is assumed to be constant after some time point, t c , i.e, π( z ) = R (t | z ) = R (t c | z ) for all time

oints after t c . Using (2) , this implies that h (t | z ) = h ∗(t | z ) , yielding λ(t | z ) = 0 for t > t c . That is, no excess mortality exists beyond t c .

he relative survival of the uncured is then obtained by assuming an underlying mixture cure model (4) , yielding 

 u (t | z ) = 

R (t | z ) − π( z ) 

1 − π( z ) 
= 

R ( t | z ) − R (t c | z ) 
1 − R (t c | z ) . (6) 

The latent cure model is formulated similarly to the generalized parametric survival model introduced by Liu et al. [28] . That is, 

 ( R (t | z ) ) = η(t, z , θ) , (7) 

here η is a linear predictor modelling the time and covariate effects similarly to η1 in (5) . Since the model is fully parametric, it can be

tted by maximizing the likelihood function in (3) . To incorporate a cure proportion into the model, η(t, z , θ) needs to be formulated such

hat it is constant after t c . However, as the previously introduced parametric distributions do not naturally incorporate such a restriction,

ther methods for modelling the time-effects in η(t, z , θ) have to be employed. In Section 3.4 we will demonstrate how this can be carried

ut using the functionalities in the rstpm2 package. 

. R-package functionalities 

The R -package cuRe contains three main functions for fitting cure models. Firstly, for relative survival analyses, h ∗ is needed to compute

he likelihood function. To extract h ∗ for each individual, the general.haz function can be used. Secondly, once the general population

azard values have been obtained, cure models can be fitted with the fit.cure.model or the GenFlexCureModel function. The

it.cure.model function uses simple parametric distributions to model S u , but also allows for more complex parametric distributions,

uch as a Weibull-Weibull mixture or the generalized modified Weibull distribution [21,23] . The GenFlexCureModel function uses the

ink function-based formulation in (5) and is well suited for spline-based modelling of the time effects in S u . 

The rstpm2 package can be used to fit latent cure models. Cure models are fitted through the stpm2 function and subsequent calls

o the associated predict function enables the user to extract estimated cure proportions and the estimates of S u . 

.1. General population hazards 

For illustrative purposes, we will use the colonDC dataset from the cuRe package, which contains data on 15,564 patients diagnosed

ith colon cancer. For each patient, disease stage is categorized as either localised, regional, or distant. We exclude patients with localised

r missing disease stage, which leads to a total of 6934 patients for analysis. For compatibility with the stpm2 function presented in this

hapter, we create a dummy variable of the stage variable, stageDistant , with regional stage as reference, using the following code: 

The follow-up time, coded as FU in colonDC , measures the number of days from diagnosis until death or censoring, and the status
ariable indicates whether the follow-up time is a death time (1) or a censoring time (0). Additionally, patient age measured in days is

tored in agedays , sex is stored in the variable sex , and the diagnosis date is stored in the variable dx . 
3 
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For optimizing the likelihood function in (3) , we need the general population hazard function corresponding to each individual. The

eneral.haz function extracts the yearly general population hazard values and requires specification of the matching variables corre-

ponding to the stratification level of the applied life table. The life table is inputted as a ratetable object. Life tables from the Human

ortality Database can be loaded and formatted to a ratetable object by using the transrate.hmd function from the relsurv
ackage [20,29] . In the following, we will use the survexp.dk ratetable. Note that all covariates specified in the ratetable should be

resent in data and specified by the rmap argument. The hazard values are extracted by using the following: 

.2. Simple parametric cure models 

The fit.cure.model function is an implementation of a fitting procedure for the mixture cure model in (4) based on simple para-

etric distributions. A fully parametric mixture cure model can be fitted using the following code: 

The formula and formula.surv arguments specify the formulas for the cure proportion, π , and the survival of the uncured, S u ,

espectively. The argument formula.surv is provided as a list of formulas corresponding to the different parameters in the parametric

istribution assumed for S u . In this case, S u is modelled using the Weibull distribution (see the dist argument), S u (t) = exp 

(
−θ1 t 

θ2 
)
,

nd the first and last element of the list corresponds to θ1 and θ2 , respectively. In most cases, the parameters θ are estimated using log
s link function to ensure θ > 0 . In this particular example, θ1 is modelled by log (θ1 ) = θ1 , 0 + stage × θ1 , 1 . With θ2 being independent of

ovariates, the model for S u is a PH model. In particular, as we are fitting a cure model for the relative survival, this produces a proportional

xcess hazards model for S u . The argument link specifies the link function for π , and the general population hazard values are described

hrough the bhazard argument. If this latter argument is omitted, the cure model is fitted for the ordinary (overall) survival function. 

The summary function is used directly on the fitted cure model and yields the parameter estimates as well as standard errors, z -values

Wald-statistics), and p -values: 

The prefixes in the coefficient names indicate which term the coefficients are related to. For instance, the prefix pi indicates that the

oefficient is related to the cure proportion, π . We emphasize that the displayed estimates do not correspond to differences in π and

i ’s between regional and distant disease stage, but rather differences on the link-transformed scale. To obtain the cure proportion for a

atient with specific covariates, the predict function can be used. Here, we predict the cure rate of patients having regional and distant

isease stages: 

The predictions are supplemented by 95% confidence intervals computed using the delta method. Through the type argument, the

redict function also enables predictions on other scales such as the relative survival ( type = ‘‘surv’’ ), the relative survival of

he uncured ( type = ’’survuncured’’ ), the excess hazard ( type = ‘‘hazard’’ ), and the excess hazard of the uncured ( type
 ‘‘hazarduncured’’ ). 
4 
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Table 1 

Estimated cure rate, odds ratio, 5 year survival of the uncured and relative survival, and excess hazard ratio of the uncured for 

each of the two disease stages estimated by the three fitted mixture models with corresponding 95% confidence intervals. The 

model fit.gen.timevar estimates the excess HR as time-varying and so the excess HR is not provided. OR: Odds ratio. 

HR: Hazard ratio. 

Model Stage Cure rate OR S u (5y) R (5y) Excess HR 

fit.wei Regional 41% (37–45%) 1.00 (ref.) 16% (13–20%) 50% (47–53%) 1.00 (ref.) 

Distant 10% (9–11%) 0.15 (0.13–0.19) 0% (0–0%) 10% (9–11%) 3.10 (2.73–3.52) 

fit.gen Regional 35% (29–42%) 1.00 (ref.) 25% (19–33%) 52% (49–54%) 1.00 (ref.) 

Distant 8% (7–10%) 0.17 (0.13–0.22) 1% (1–2%) 10% (9–10%) 3.22 (2.44–4.25) 

fit.gen.timevar Regional 41% (36–46%) 1.00 (ref.) 14% (8–24%) 49% (47–52%) 

Distant 8% (7–9%) 0.12 (0.10–0.16) 2% (1–3%) 9% (9–10%) 
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.3. Spline-based cure models with cuRe 

The GenFlexCureModel function fits the model formulated in (5) . Although some simple parametric cure models are included in this

eneral model formulation, the function is primarily intended for fitting cure models where the time-effects are modelled using smoothers,

uch as splines. Using this function, we fit a generalized mixture cure model: 

The argument bhazard in GenFlexCureModel is identical to the corresponding argument in fit.cure.model . The cure propor-

ion in the above mixture cure model is modelled similarly to the cure proportion in the Weibull cure model in Section 3.2 , but the cure

roportion formula is now instead specified by the cr.formula argument. The formula provides the time-invariant covariate effects

or S u , whereas time effects for S u are described in the smooth.formula argument. The survival of the uncured is modelled using the

s function, which provides the basis functions for natural cubic splines. The cuRe package also includes the function cb , which compute

he basis functions for the restricted cubic splines described by Royston and Parmar [27] . The above model for S u is thus specified as 

 1 ( S u (t | z ) ) = s 0 (x, γ0 ) + βz, (8) 

here z is an indicator of regional or distant disease stage, x = log (t) , and s 0 is a natural cubic spline with coefficients γ0 . The default link

unction, g 1 , is the log-log link function corresponding to a PH model, since no time-varying covariate effects are included. Similar to the

eibull model, this corresponds to an excess proportional hazards model with the baseline hazard modelled using natural cubic splines. 

Coefficient estimates can be displayed using the summary function: 

As the modelling of S u is now based on natural cubic splines, additional parameters (compared to the Weibull model) for the spline

erms, ns(log(FUyear), df = 3) , are included in the output. Due to the proportional excess hazard formulation of S u , the parameter

stimates for disease stage in the Weibull model fit.wei and the generalized model fit.gen can be interpreted similarly, as we will

o in Table 1 . 
5 
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Additionally, the GenFlexCureModel function enables time-varying covariate effects. These can be included in the model for S u by

lso specifying a tvc.formula argument, which controls all time-varying covariate effects: 

This specifies a mixture cure model in which S u is modelled as: 

 1 ( S u (t | z ) ) = s 0 (x, γ0 ) + s 1 (x, γ1 ) z. (9) 

hus, the coefficient corresponding to z (indicator of regional or distant disease stage) is now time-varying with the use of a natural cubic

pline, s 1 . Note, the number of knots (or degrees of freedom) of the splines for the baseline hazard and the time-varying covariate effects

o not need to be identical. 

Again, coefficients can be displayed using the summary function: 

The predict function can again be used to obtain predictions for a wide range of different scales. Because the fitted models,

it.wei , fit.gen , and fit.gen.timevar , use a logit link function for the cure proportion, the odds ratio of being cured can be

etrieved by applying exp() to the coefficient estimates corresponding to the cure rate, π . The excess hazard ratio of the uncured can be

nterpreted as the degree to which colon cancer patients with distant stage also experience a worse survival within the uncured group. It

s obtained by applying exp() to the coefficients corresponding to S u , although this only applies to models with a proportional hazards for-

ulation for S u , excluding the fit.gen.timevar model. The fit.gen.timevar model demonstrates a large difference between the

ure proportion among patients with regional and distant stage, and even within uncured patients, the relative survival is worse among

atients with distant stage ( Fig. 1 ). Similar conclusions were made based on the fit.wei and fit.gen models ( Table 1 ). 

.4. Spline-based cure models with rstpm2 

The rstpm2 package contains functions for fitting a general class of parametric survival models, including the use of penalized splines.

he package can also be used for fitting latent cure models. These can be fitted using the stpm2 function: 

The call fits the model in (7) using the default log-log link function and by modelling the time-effect in the linear predictor using

atural cubic splines. Instead of using ns , the function uses an extended implementation, namely nsx . If cure = TRUE , nsx uses a

R-decomposition approach which ensures that the splines become constant beyond the last knot [26] . A similar extension, bsx , has been

ade to bs and can be found in the cuRe package. Additionally, Andersson et al. [30] altered the basis functions of the restricted cubic

plines by Royston and Parmar such that the spline becomes constant beyond its last knot. These splines are implemented in the cbc
unction of the cuRe package. The bsx and cbc functions from the cuRe package are compatible with rstpm2 package. 
6 
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Fig. 1. Relative survival (A) and relative survival of the uncured proportion of patients (B) for different disease stages, estimated using the mixture cure model 

fit.gen.timevar . 
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Similarly to the fit.gen.timevar , time-varying covariate effects can be modelled through interaction terms between covariates and

 spline on the time scale. The time-varying coefficients are explicitly specified in the tvc argument: 

When specifying the tvc argument, the time-varying coefficients are modelled using the nsx function. Estimation of the cure pro-

ortion π and the survival of the uncured S u is not explicitly performed in the latent cure models. However, since the relative survival is

estricted to be constant after the last knot, the cure proportion can be estimated as the relative survival at the boundary knot. This can

e achieved by using the predict function: 

That is, the cure proportion is approximately 50% for patients with regional stage colon cancer. The relative survival of the uncured

pecified in (6) is also available though the predict function by specifying type = ’’uncured’’ and the time point at which pre-

ictions should be made. Here, the two-year relative survival of the uncured is computed: 

The entire relative survival curve and survival curve of the uncured are displayed in Fig. 2 . It is seen from this figure that according

o both latent models, cure is reached within five years of diagnosis for almost all of the patients who are eventually cured. Both models

ttribute a large effect of disease stage on the probability of eventually being cured, with almost none of the patients having distant stage

olon cancer being cured. 

.5. Conditional probability of cure 

The cure models presented so far yield estimates of the cure proportion (probability) and the relative survival for the uncured patients.

dditionally, in some scenarios it would be useful to estimate the conditional probability of cure given survival up to a certain time point.

his is also enabled through the cuRe and rstpm2 packages. 

If we let Y be a stochastic variable taking the value 1 if a patient is cured (i.e., have the same survival expectancy as the general

opulation) and 0 if uncured, we have π( z ) = P (Y = 1 | z ) . Some algebra yields the following equality: 

 (Y = 1 | T > t, z ) = 

π( z ) 

R (t | z ) . (10) 
7 
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Fig. 2. Relative survival (A) and relative survival of the uncured proportion of patients (B) for different disease stages, estimated using the latent cure models fit.lat and 

fit.lat.timevar . 

Fig. 3. Conditional probability of cure for different disease stages, estimated using the mixture cure model fit.gen.timevar and the latent cure model 

fit.lat.timevar . 
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hat is, an estimate of the conditional probability of cure can be derived from the fitted cure models. If R is decreasing, the conditional

robability of cure monotonously approaches 1 as time progresses. 

For cure models obtained from the cuRe and rstpm2 packages, the conditional probability of cure can be computed by the predict
unction by specifying type = ‘‘probcure’’ : 

Here, we predict the probability of cure for a patient with regional disease stage, conditional on survival up to 2 years. Evaluating this

robability at multiple time points produces the curves in Fig. 3 . Note, for the latent cure model, the conditional probability of cure is

qual to 1 beyond t c , i.e., the time point from which R (t) is equal to π [26] . 
8 
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Combining the equality in (10) and the definition P (Y = 1 | z ) = π( z ) , the cure proportion can also be extracted by using the type =
’probcure’’ argument and specifying FUyear = 0 . 

. Discussion 

We presented functionalities in R for fitting parametric cure models applicable to both the total survival and relative survival. The cuRe
ackage contains two functions for computing parametric mixture cure models, namely fit.cure.model and GenFlexCureModel , 
hich enable modelling using a wide range of parametric distributions and splines. The implementation of parametric latent cure models

n the rstpm2 package provides a flexible framework for fitting spline-based cure models via the stpm2 function. Both packages are

vailable on the Comprehensive R Archive Network (CRAN). 

A substantial part of the cure model literature is concerned with a third type of cure models, namely promotion time cure models,

lso known as non-mixture cure models. Details on this model class can be found elsewhere [21,31] . Fitting of non-mixture cure models

s possible through both the fit.cure.model and GenFlexCureModel functions of the cuRe package. Both functions contain the

rgument type , which should be set to nmixture if a non-mixture cure model is of interest. The cuRe package also contains functions

or computing a number of useful post-estimation measures, such as likelihood ratio tests through the lrtest function, which can be

sed on nested models to assess the significance of a chunk of parameters. This can be used for testing if the model improves significantly

y including time-varying coefficients for a variable. Furthermore, functions for estimating the loss of lifetime and the time to statistical

ure, i.e., the time at which the relative survival reaches a plateau, are implemented in the package. However, the latter comes with a

umber of challenges which were outlined in our recent work [19] . 

The package does not contain functions for conducting model diagnostics as the literature on this within the cure model framework is

parse. The Cox-Snell-like residuals introduced by Scolas et al. [32] can be used, but these are not immediately applicable to cure models

or the relative survival. 

Although we have only focused on cure models for the relative survival in the present article, the cuRe and rstpm2 packages also

nable fitting of parametric cure models for the overall survival function. For the overall survival function, the cure proportion equals

he probability of never experiencing the event of interest. Within medical research, investigation of outcomes that may never occur are

ften subject to competing events, particularly death. In competing risks analyses, focus commonly changes from the survival function to

he cumulative incidence function. Thus, for many applications it would be of interest to estimate a cure proportion on the cumulative

ncidence scale instead of the survival function. For instance, it may be of interest to estimate the proportion of cancer patients that will

ever receive a disability pension. In such a case, retirement pension and death act as competing events to the primary event of interest

i.e., disability pension) [33] . The cuRe and rstpm2 packages do not at present contain functionalities for computing the cure proportion

n the cumulative incidence scale. However, the Stata command stpm2cr enables this by providing a framework for fitting spline-based

odels on the cumulative incidence function from which the cure proportion can be estimated [34] . 

Although the spline-based functionalities available through the rstpm2 package provide a flexible framework for fitting parametric

atent cure models, the use of splines requires the user to specify the number and location of the knots. To mitigate this problem, penalized

plines can be utilized as proposed by Xiu et al. [28] . Future work will include the development of penalized splines that are directly

pplicable in latent cure models. 
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