
 

  

 

Aalborg Universitet

Multi-Agent Dynamic Resource Allocation in 6G in-X Subnetworks with Limited
Sensing Information

Adeogun, Ramoni; Berardinelli, Gilberto

Published in:
Sensors

DOI (link to publication from Publisher):
10.3390/s22135062

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Adeogun, R., & Berardinelli, G. (2022). Multi-Agent Dynamic Resource Allocation in 6G in-X Subnetworks with
Limited Sensing Information. Sensors, 22(13), [5062]. https://doi.org/10.3390/s22135062

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.3390/s22135062
https://vbn.aau.dk/en/publications/9b33da62-7a6c-4195-859f-42d344bb337c
https://doi.org/10.3390/s22135062


Citation: Adeogun, R.; Berardinelli,

G. Multi-Agent Dynamic Resource

Allocation in 6G in-X Subnetworks

with Limited Sensing Information.

Sensors 2022, 22, 5062. https://

doi.org/10.3390/s22135062

Academic Editors: Qammer Hussain

Abbasi, Muhammad Ali Imran,

Masood Ur Rehman, Ahmad Taha,

Muhammad Usman and Shuja

Ansari

Received: 31 May 2022

Accepted: 3 July 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Multi-Agent Dynamic Resource Allocation in 6G in-X
Subnetworks with Limited Sensing Information
Ramoni Adeogun * and Gilberto Berardinelli

Department of Electronic Systems, Aalborg University, 9220 Aalborg, Denmark; gb@es.aau.dk
* Correspondence: ra@es.aau.dk; Tel.: +45-9940-7642

Abstract: In this paper, we investigate dynamic resource selection in dense deployments of the recent
6G mobile in-X subnetworks (inXSs). We cast resource selection in inXSs as a multi-objective optimiza-
tion problem involving maximization of the minimum capacity per inXS while minimizing overhead
from intra-subnetwork signaling. Since inXSs are expected to be autonomous, selection decisions are
made by each inXS based on its local information without signaling from other inXSs. A multi-agent
Q-learning (MAQL) method based on limited sensing information (SI) is then developed, resulting in
low intra-subnetwork SI signaling. We further propose a rule-based algorithm termed Q-Heuristics
for performing resource selection based on similar limited information as the MAQL method. We
perform simulations with a focus on joint channel and transmit power selection. The results indicate
that: (1) appropriate settings of Q-learning parameters lead to fast convergence of the MAQL method
even with two-level quantization of the SI, and (2) the proposed MAQL approach has significantly
better performance and is more robust to sensing and switching delays than the best baseline heuristic.
The proposed Q-Heuristic shows similar performance to the baseline greedy method at the 50th
percentile of the per-user capacity and slightly better at lower percentiles. The Q-Heuristic method
shows high robustness to sensing interval, quantization threshold and switching delay.

Keywords: 6G; reinforcement learning; in-X subnetworks; resource allocation; Q-learning; industrial
control

1. Introduction

Short-range low-power in-X subnetworks (inXSs) [1–3] are receiving attention as po-
tential radio concepts for supporting extreme communication requirements, e.g., reliability
above 99.99999, up to a 10 Gbps data rate and latencies below 100 µs. Similar extreme
connectivity requirements have also appeared in recent works on visions for 6th generation
(6G) networks [4,5]. InXSs are expected to provide seamless support for applications such
as industrial control at the sensor–actuator level, intra-vehicle control, in-body networks
and intra-avionics communications even in the absence of connectivity from a traditional
cellular network [2,6]. Clearly, these applications represent life critical use cases, necessitat-
ing the need to guarantee specified communication requirements everywhere. Such use
cases can also lead to dense scenarios (e.g., inXSs inside a large number of vehicles at a
road intersection), leading to potentially high interference levels, and hence, the need for
efficient interference management mechanisms.

Interference management via dynamic allocation (DA) of shared radio resources has
been at the forefront of wireless communication research for several years, see, e.g., [7].
Although several techniques for resource allocation have been studied, the extreme require-
ments as well as the expected ultra-dense deployments of inXSs makes the interference
problem more challenging. This has resulted in a number of published works on resource
allocation for wireless networks with uncoordinated deployment of short-range subnet-
works [8,9]. In [8], distributed heuristic algorithms were evaluated and compared with a
centralized graph coloring (CGC) baseline in dense deployments of inXSs. In [9], a super-
vised learning method for distributed channel allocation is proposed for inXSs. The works
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so far focus on only channel selection, making their applicability to other resource selection
problems such as the joint channel and power and channel aggregation considered in this
paper non-trivial. Moreover, the reliance on full sensing information (SI) by these methods
imposes significant overhead on required device capabilities (and hence, cost) as well as
radio resources for intra-subnetwork signaling.

To overcome these limitations, we conjecture that reinforcement learning (RL) meth-
ods [10–12] can be developed to perform resource selection, with potential performance
improvement over existing approaches even with only quantized information. Moreover,
an RL-based method will eliminate the offline data generation requirement for the method
in [9]. The idea is to equip each cell with an agent that learns to adapt resource usage to
changing interference conditions.

RL-based methods are becoming increasingly popular in radio resource management
(RRM) due to their ability to learn complex decision problems, e.g., allocation of multi-
dimensional transmission resources [13] in wireless systems. In particular, multi-agent
RL (MARL) is quite popular in recent times due to its capability of achieving a poten-
tially optimal distributed intelligent management of resources. The main advantages of
MARL include the ability to: (1) support heterogeneous agents with varying requirements,
(2) model local interactions among agents, and (3) distribute computation among agents. To
this end, there has been an increase in the number of works applying MARL to RRM in dif-
ferent types of wireless systems, e.g., unmanned aerial vehicle (UAV) communication [11],
multi-user cellular systems [14], Industry 4.0 device-to-device communication [15], multi-
beam satellite systems [16], integrated access and backhaul networks [17], non-orthogonal
multiple access [18], multi-cell networks [19], and joint scheduling of enhanced mobile
broadband and URLLC in 5th generation (5G) systems [20]. Other studies have applied RL
to wireless resource allocation in sensor networks for smart agriculture [21], smart ocean
federated learning-based IoT networks [15], and distributed antenna systems [22].

While these studies have shown the potential for learning reasonably good solutions
to radio resource optimization problems, they have been predominantly based on the
assumption of full environment information and some form of information exchange
among the agents. These limit their applicability in practical wireless systems where the
overhead associated with signaling of information is an important parameter to be kept at
the minimum.

We address the problem of fully distributed and dynamic selection of radio resources
for downlink transmission by inXSs operating over a finite number of shared frequency
channels. Considering the practical constraints (e.g., cost, processing power, etc.) associated
to the signaling of sensing data and channel selection decisions between devices and access
points in inXSs, we restrict resources for sensing information and decision exchange (SIDE)
to only a single bit per channel. The goal is then to develop a distributed learning method
for resource selection based on limited sensing data. Although Deep Q-learning (DQN) [17],
which relies on Deep Neural Networks (DNNs) to learn the mapping between sensing
measurements and resource selection decisions, has been popular owing to its relatively
better scalability compared to classical table-based Q-learning, the simplicity of the latter
makes it attractive for low-cost radio systems. We therefore focus on developing the
MAQL method for dynamic resource selection with lookup tables as the policy. This is
reasonable in practical wireless systems, since the size of actions and sensing measurements
is bounded by the limited available radio resources, making scalability not much of a
problem, particularly, in the case of fully distributed implementations involving only local
measurements and individual action selection.

In summary, the main contributions of this paper include the following:

• We cast the resource selection task into a non-convex multi-objective optimization
problem involving maximization of the sum capacity at each inXS subject to power,
transmission bandwidth and signaling overhead constraints.

• We develop a multi-agent Q-learning (MAQL) solution to solve the problem in a fully
distributed manner. To limit the overhead associated with intra-subnetwork signalling,



Sensors 2022, 22, 5062 3 of 15

we constrained information exchange within each inXS to a 1-bit channel and adopt a
two-level (i.e., 0 and 1) quantization of the SI.

• We further develop an alternative heuristic selection method which utilizes similar
quantized information as the MAQL. The algorithm termed Q-Heuristic involves the
selection of a resource (or resources) randomly either from the list of resources in level
1 or from the list of all resources in case there are no resources in level 1.

• We apply the MAQL method to the problem of joint channel and transmit power
selection for mobile 6G in-XSs. We perform simulations in typical industrial factory
settings to evaluate performance gains relative to baseline heuristics with full infor-
mation and the proposed Q-Heuristic. Unlike existing studies on MAQL for wireless
resource management; the simulations include evaluation of the impact of delayed
sensing information, which may be inevitable in practice. Extensive evaluation of
the sensitivity of the proposed methods to the main design parameters including
quantization threshold and switching delay is also performed.

The remainder of this paper is organized as follows. The system and channel models
as well as a description of the resource allocation problem is presented in Section 2. The
proposed MAQL and Q-Heuristic methods are described in Section 3. This is followed by
performance evaluation in Section 4. Conclusions are finally drawn in Section 5.

2. System Model and Problem Formulation

We consider the downlink (DL) of a wireless network with N independent and mobile
inXSs each serving one or more devices (including sensors and actuators). The set of all
inXSs in the network and the Mn devices in the nth inXS are denoted as N = {1, . . . , N}
andMn = {1, . . . , Mn}, respectively. As illustrated in Figure 1, each inXS is equipped with
an access point (AP) which coordinates transmissions with all associated devices. The AP is
equipped with a local resource selection engine for making decisions based on local sensing
data received from its associated devices via a 1-bit SIDE link, as shown in Figure 1.

Figure 1. Illustration of DL transmission, and sensing information and resource selection decision
exchange in a single inXS.

The inXSs move following a specified mobility pattern which is determined by the
application, e.g., inXSs deployed inside mobile robots for supporting factory operations.
At any instant, transmissions within each inXS are performed over one of the K (K << N)
shared orthogonal frequency channels denoted as K = {1, . . . , K} with a transmit power
level within the range, [κmin, κmax], where κmin and κmax are the minimum and maximum
allowed transmit power levels, respectively. To simplify the problem, we restrict the
possible transmit power to a set of Z discrete levels, Z = {1, . . . , Z}. We assume that
transmissions within each inXS are orthogonal, and hence, there is no intra-subnetwork
interference. This assumption is reasonable, since the APs can be designed to allocate
orthogonal time-frequency resources to their own devices and have also been made in [1,2].
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2.1. Channel Model and Rate Expression

The radio channel between the APs and devices in the network is characterized by
three components: large scale fading, i.e., path-loss and shadowing, and the small-scale
effects. The path-loss on a link from node A to node B with distance dAB is defined
as LAB = c2d−α

AB/16π2 f 2, where c ≈ 3× 108 ms−1 is the speed of light, f is the carrier
frequency and α denotes the path-loss exponent. A correlated log-normal shadowing
model based on a 2D Gaussian random field is considered [23]. We compute the shadowing
on the link from A to B using

XAB = ln

 1− e
(
− dAB

dc

)
√

2

√
1 + e

(
− dAB

dc

) (S(A) + S(B))

, (1)

where S is a two-dimensional Gaussian random process with exponential covariance
function and dc denotes the correlation distance. The small scale fading, h, is assumed
to be Rayleigh distributed. The Jake’s Doppler model is utilized to capture the temporal
correlation of h [24].

At a given transmission instant, t, the received (or interference) power on the link
between any two nodes, e.g., from A to B, is computed as:

PAB(κA(t)) = κA(t)LAB(t)XAB(t)|hAB(t)|2, (2)

where κA(t) denotes the transmit power (in linear scale) of node A at time t. Assuming
that the nth inXS operates over a frequency channel, ck : k ∈ K at time t, the received signal
to interference and noise ratio (SINR) from its mth device can be expressed as

γnm(ck, κk(t)) =
Pnm(ck, κk

n(t))
∑i∈Ik(t) Pni(ck, κk

i (t)) + σ2
nm(t)

, (3)

where Ik(t) and κk(t) denote the set of devices (or APs) transmitting on channel ck at time
t and their transmit powers, respectively. The term σ2

nm(t) is the receiver noise power
calculated as σ2

nm(t) = 10(−174+NF+10 log10(Wk)), where Wk denotes the bandwidth of ck
and NF is the receiver noise figure. Relying on the Shannon approximation, the achieved
capacity can be written as

ζnm(ck, t) ≈Wk log2(1 + γnm(ck, κk(t))). (4)

2.2. Problem Formulation

In this paper, we consider a resource allocation problem involving a fully distributed
joint channel and power selection. This problem can be defined as multi-objective optimiza-
tion tasks involving the simultaneous maximization of N objective functions, one for each
inXS. Taking the objective function as the lowest achieved capacity at each inXS (denoted
ζn = min({ζnm}Mn

m=1); ∀n ∈ N ), the problem can, formally, be defined as:

P-I : max
c,κ

ζ1(c1(t), κ1(t)), . . . , max
c,κ

ζN(cN(t), κN(t))

st: κmin ≤ κn ≤ κmax and BW(ck) = Wk ∀n, (5)

where c := {cn|n = 1, . . . , N} and κ := {κn|n = 1, . . . , N} denote the set of channel indices
and transmit powers for all inXSs, respectively. The term BW(ck) denotes the bandwidth of
channel, ck.

The problem in (5) involves the joint optimization of multiple conflicting non-convex
objective functions and is typically difficult to solve. The independence of the inXSs and
the lack of communication coupled with the desire to minimize overhead due to intra-
subnetwork signaling via quantization further aggravate the problem. We present an
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MAQL method with quantized SI for solving this problem in Section 3. An alternative
rule-based solution referred to as Q-Heuristic is also presented.

3. Resource Selection with Limited Information

We cast the joint optimization problem in (5) as a Multi-Agent Markov Decision
Process (MMDP) [25] described as the tuple {S ,A,P ,R}, where S = S1 × · · · × SN is a
set of all possible states for all inXSs referred to as state space, A = A1 × · · · × AN is the
joint action space containing all possible actions (i.e., the set of all possible combinations of
channels and power levels), R denotes the reward signal and P : S ×A× S → ∆ is the
transition function [25], where ∆ denotes the set of probability distributions over S .

In the considered MMDP, the goal of the nth agent is to find an optimal policy, π∗n,
which is based solely on its local state and action information, resulting in the so-called
Partially Observable MMDP (POMMDP) [26]. Typically, π∗n is obtained as the policy which
maximizes the total reward function [18], i.e.,

π∗t (s) = max
πt(s)∈A

{
rt(st, πt(s)) + γ ∑

s′∈S
p(st, s′)π∗t+1(s

′)

}
, (6)

where γ : 0 ≤ γ ≤ 1 denotes the discount factor. To allow mapping for all possible
state–action pairs, an alternative representation, Q(s, a), referred to as the Q-function is
commonly used. The Q-function for the nth agent is given as [25]

Qn(s, a) = rn(s, a) + γ max
a′

Qn(s′, a′). (7)

Since each agent has access to only local information, solving (7) results in a local
maximum at each subnetwork. We assume that the local maxima on each of the N agents’
Q-function is equivalent to the global maximum on the joint Q-function for the entire
network, i.e.,

arg max
a

Qπ(s, a) =

 arg maxa Q1(s, a)
...

arg maxa QN(s, a)

. (8)

According to (8), a solution to the resource selection problem can now be obtained
via local optimization at each inXS. MAQL enables a solution of the N objectives via the
simultaneous interaction of all agents with the environment. The Q-function is iteratively
estimated according to Bellman’s equation as [27]

Qn(st, a) = (1− α)Qn(st, a) + α(r(st, a)+

γ max
a′

Qn′(st+1, a
′
; π)

)
∀n, (9)

where α denotes the learning rate and rn(st, a) is the instantaneous reward received by
the agent for selecting action, a ∈ A at state st ∈ S . The policy, π(s, a) corresponds to the
conditional probability that action a is taken by an agent in state, s, and it must therefore
satisfy ∑a∈A π(s, a) = 1.

3.1. MAQL Procedure for Dynamic Resource Selection

To find optimal estimates of the Q-functions in (9) via MAQL, we need to define the
environment, state space, action space, reward signal, policy representation and training
method. As described in Section 2, we consider a wireless environment with N independent
inXSs each with one or more devices, as illustrated in Figure 2. The remaining components
are described below.
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Figure 2. Illustration of the multi-agent RL scenario with N inXSs. (a) Multi-agent in-X Subnetwork
Scenario; (b) Dynamic joint channel and power selections.

3.1.1. State and Observation Space

In the multi-agent scenario, the state of the environment is defined by actions of all
inXSs. The achieved performance is also determined by both the known local characteris-
tics of each inXS—channel gain, occupied frequency channel, transmit power level, etc.,
and the unknown information about other inXSs. We assume that each inXS has sens-
ing capabilities for obtaining measurements of the aggregate interference power on all
channels. This assumption is reasonable, since each inXS device can be equipped with
a transceiver that is capable of continuously performing the sensing of its operational
channel as well as simultaneously listening on all other channels. We denote the SI at
time t as It

n = [It
n,1, It

n,2, . . . , It
n,K]

T ∈ R(K×1). To account for the effect of channel condition
within each inXS, we propose state representation based on the estimated SINR over all
channels denoted for the nth inXS as st

n = [st
n,1, st

n,2, . . . , st
n,K]

T , with sn,k = sd/(In,k + σ2),
where sd denotes the received signal strength of the weakest link in the inXS. To enable
Q-learning, which requires discrete state spaces, we perform a two-level quantization on
the SINR, resulting in a state dimension of |S| = 2K comprising all possible combinations
of K channels each with two levels: 0 and 1. Denoting the SINR quantization value as sth,
channel i is in state 0 if sn,i < sth and in state 1 otherwise.

3.1.2. Action Space

For the joint channel and power selection task, the action space is the list of all possible
combinations of available frequency channels and transmit power levels in the system.
With K channels and Z discrete power levels, the action selected by inXS n at time t is from
a KZ-dimensional action space comprising all possible combinations of channel and power
levels, i.e., at

n ∈ A;A = {{c1, p1}, {c1, p2}, . . . , {cK, pZ}}.

3.1.3. Reward Signal

The reward signal design is a crucial part of the RL design pipeline. This is typically
completed by considering the overall goal of the problem and how best to guide an agent
toward achieving such a goal. We assume that the communication metric to be maximized
is the capacity of the worst link and use (4) as the reward function.

3.1.4. Policy Representation

The decision-making component of any RL method requires a suitable framework for
representing what is learnt by an agent during training. This representation is generally
referred to as the policy. In this work, the policy at each inXS is represented by a 2K × |A|
lookup table containing the Q-values for all state–action pairs. This has the inherent advan-
tage of simplicity and low computation overhead, since decision making is reduced to a
simple lookup operation at any given time instant.
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3.1.5. Action Selection

Resource selection decision is made by each agent via the ε-greedy strategy defined as

at
n =

{
a random selection with probability, ε

arg maxa∈A(st
n)

Qn(st
n, a), otherwise

, (10)

where ε is the exploration probability, i.e., the probability that the agent takes random
action. During the training, ε is decayed at each step according to

ε = max
(
εmin, (εmax − εmin)/εstep

)
, (11)

where εmin and εmax denote the minimum and maximum exploration probability, respec-
tively, and εstep is the number of exploration steps.

3.1.6. Training Procedure

Due to its better training stability and fast convergence, a centralized training with
distributed execution framework which is popular in the multi-agent RL literature is adopted
in this paper. A single Q-table is then trained by simultaneously applying it to all inXSs
during the training. The procedure is described in Algorithm 1. Once the training is
completed, the Q-table is copied to all inXs for fully distributed execution.

Algorithm 1 Multi-Agent Resource Allocation with Quantized SI: Training Procedure

Input: Simulation and environment parameters, learning rate, α, discount factor, γ,
number of episodes, T, number of steps per episode, Ne, εmin, εmax
Start simulator, randomly drop cells and generate shadowing map
t = 1; ε = εmax
Initialize actions for all cells randomly and compute initial states, {sn(1)}N

n=1
Initialize Q-table, Q with zeros
for t = 1 to T do

for i = 1 to Ne do
for n = 1 to N do

Obtain state from SI sn(t)
Subnetwork n select an(t) according to (10).

end for
The joint resource selection of all subnetworks gene-
rate transitions into next states, {sn(t + 1)}N

n=1 and
immediate rewards, {rn(s(t), a)}N

n=1
Decay exploration probability using ε = max

(
εmin, (εmax − εmin)/εstep

)
for n = 1 to N do

Update Q using Q(st, a) = (1− α)Q(st, a) + α
(

r(st, a) + γ maxa′ Q
′
(st+1, a

′
; π)

)
end for

end for
end for
Output: Trained Q-table, Q
%% The table, Q is copied to all APs

3.2. Quantized Heuristic

Inspired by our initial results from the MAQL methods, we further proposed the
simple Quantized Heuristic algorithm for resource selection based on a similar 1-bit SI. The
idea is to choose a channel randomly from the list of all channels in the good state, i.e., the
state with SINR above the quantization threshold, sth. If no channel is in the good state, the
channel is chosen randomly from the list of all channels.
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4. Performance Evaluation

We now train and evaluate the performance of the MAQL approach and compare with
fixed (i.e., random assignment at initialization without dynamic updates), greedy channel
selection and Q-Heuristic using a snapshot-based procedure. Except where otherwise
stated, we consider a network with N = 20 inXSs each with a single controller serving as
the AP for a sensor–actuator pair in a 50 m × 50 m rectangular deployment area. Each inXS
move in the area follows a restricted random waypoint mobility (RRWP) with a constant
speed, v = 3 m/s. We assume that a total bandwidth B = 25 MHz is available in the system
and that the bandwidth is partitioned into K = 5 channels. Similar to [6,8], we set the
transmit power for all inXSs to −10 dBm for all algorithms except MAQL, for which we
consider a total of Z = 6 transmit power levels between −20 and −10 dBm at intervals of
2 dB, leading to a 30× 1 action space. The power difference of ±2 dB is used to ensure
reasonable granularity in transmit power levels. Other simulation parameters are shown in
Table 1. The deployment and system parameters are defined based on the settings used
in [6,8]. The propagation model as well as its parameters are selected from 3GPP documents
on channel models for industrial scenarios [28,29].

Table 1. Simulation parameters.

Deployment and System Parameters

Parameter Value

Deployment area (m2) 50 × 50
Number of controllers/inXSs, N 20
Number of devices per inXS, M 1
Cell radius (m) 3.0
Velocity, v (m/s) 3.0
Mobility model RRWP
Number of channels, K 5

Propagation and Radio Parameters

Pathloss exponent, γ 2.2
Shadowing standard deviation, σs (dB) 5.0
De-correlation distance, dc (m) 2
Lowest frequency (GHz) 3
Transmit power levels (dBm) [−20:2:−10]
Noise figure (dB) 10
Per channel bandwidth (MHz) 5

Q-Table and Simulation Settings

Action space size, |A| 30
Discount factor, γ 0.90
Learning rate, α 0.80
Number of training episodes/steps per episode 3000/200
Minimum/maximum exploration probability 0.01/0.99
Number of epsilon greedy steps 4.8× 105

Motivated by the results in [8,9], we introduced random switching delays with a
maximum value of τmax = 10 transmission intervals in the simulation. This is to minimize
ping-pong effects where multiple inXSs simultaneously switch to the same resource. Each
inXS is then allowed to switch its operational resource once every 10 transmission instants.
The specific time instant at which an inXS has the opportunity to update its transmit power
level and/or operational frequency channel is determined by a random integer between 1
and 10. The random integer is assigned to each inXS at the beginning of each snapshot. The
concept of switching delay as well as sensing interval is illustrated in Figure 3. Except where
stated otherwise, we assume perfect sensing such that measurements for making resource
selection and switching decisions are up-to-date with no errors or noise. To understand the
impact of imperfect information on achieved performance by the different techniques, we
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evaluate the algorithms with varying sensing intervals, i.e., time interval between successive
update of sensing measurements at each inXS; see the illustration in Figure 3. The results
are presented in Section 4.3.

Figure 3. Sensing measurement updates and resource selection with both maximum switching
delay and sensing delay equal to 5. InXSs 1 and N are assigned random switching integers 2 and 3,
respectively. At initialization, all inXs perform random resource selection.

4.1. Training, Convergence and Learned Policy

Figure 4 shows the averaged reward over successive training episodes for the joint
power and channel selection problem with SINR quantization threshold, sth = 2 dB.
The averaging is performed over all steps within each episode as well as all inXSs. We
benchmark the reward with those obtained from two heuristic algorithms viz random and
greedy channel selection. The maximum transmit power of−10 dBm is used for all inXSs in
the heuristic algorithms. The figure shows that the proposed MAQL achieve convergence
after approximately 1700 episodes. At convergence, the MAQL method has marginally
better performance than the greedy selection baseline with full SI [8].
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Figure 4. Averaged reward per episode during MAQL training for joint channel and power selection
with sth = 2 dB.

To understand the actions of the Q-agents, we show the learned Q-policy at con-
vergence in Figure 5. The policy comprises the channel and transmit power pairs with
maximum Q-value at each of the 32 (25) states. The figure shows that the Q-agents converge
to a channel with a quantization level of 1 (i.e., with SINR≥ sth) for all states except for state
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1, which has no channel in level 1. As shown in the figure, the power levels of −10 dBm,
−12 dBm, −14 dBm and −18 dBm are preferred by the agents in the ratio 21:6:4:1. Two
power levels, viz, −20 dBm and −16 dBm are never chosen with full exploitation.
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Figure 5. Learned Q-policy at convergence of the MAQL training for joint channel and power
selection with sth = 2 dB.

4.2. Comparison with Benchmark Schemes

The trained Q-table is deployed at each inXS for distributed resource selection and per-
formance compared with random, greedy channel selection and the proposed Q-Heuristic.
Except for MAQL, all algorithms use the maximum transmit power of −10 dBm per
transmission as mentioned above. Figure 6 shows the empirical Cumulative Distribution
Function (CDF) of the achieved capacity per inXS with sensing-to-action time (i.e., sensing
interval) of a single time slot. The proposed MAQL method performs significantly better
than simple random selection, Q-Heuristic, and greedy selection with full SI below the
30th percentile of the capacity CDF. This performance improvement appear to have been
obtained at the expense of lower capacity above the same percentile. Despite using the
same information as MAQL, the Q-Heuristic method is only as good as the greedy baseline.
A plausible explanation for the performance improvement by the MAQL is the combined
effect of low SINR quantization threshold, sth, and utilization of different power levels.

1 10 20 30 40

Capacity per link [Mbps]

10 0

C
D

F

Random
Q-Learning
Greedy
Q-Heuristics

10−1

10−2

Figure 6. CDF of capacity per inXS with sth = 2 dB.
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4.3. Sensitivity Analysis

We now present results on sensitivity of the different techniques to quantization
threshold, sth, sensing interval, τ, and maximum switching interval.

In Figure 7, we plot the 50th (median), 10th, 5th and 1/10th percentiles of the capacity
per inXS with test quantization thresholds between 2 and 16 dB using the trained policy
shown in Figure 5. Note that the training is performed with sth = 2 dB. The figure shows
that high values of sth benefit the median of per link capacity while lower values yield
higher capacity at the lower percentiles. For instance, the highest 50th, 10th and 5th
percentiles of per inXS capacity are achieved with sth values of 12 dB, 4 dB and 2 dB,
respectively. Careful consideration should therefore be taken in setting the threshold based
on the communication theoretic targets of the system. In Figure 8, we evaluate the effect
of sth on transmit power selection. The figure indicates that increasing the quantization
threshold leads to a higher preference of actions with lower power levels, resulting in a
decrease of about ∼ 3 dB in the median transmit power level with a change in sth from 2 to
16 dB. A plausible explanation for this trend is that some of the 32 states becomes more
likely with increasing (or decreasing) value of sth.
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Figure 7. Sensitivity to quantization threshold, sth.
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Figure 9 shows the impact of sensing interval on performance of the MAQL, Q-
Heuristic and greedy schemes. In this figure, we use the achieved capacity with perfect
sensing as a baseline and plot the percentage capacity reduction with increasing sensing
interval. The results show that the proposed methods with 1-bit information are in general
less sensitive to sensing intervals than the greedy selection method. The Q-Heuristic
method exhibits the highest robustness with little or no degradation in capacity with
increasing sensing interval. Compared to greedy with up to about 80% capacity decrease,
the MAQL has only 50% degradation at a delay of 25 transmission instants. This indicates
that the proposed methods offer similar or better performance as the baseline but provide
significant overhead reduction for SI exchange as well as better robustness to sensing
intervals which may be inevitable in practice.

Finally, we study the effect of switching delay on the performance of the resource
selection methods in Figure 10. In Figure 10a, we plot the CDF of capacity per link with
maximum switching delay of a single transmission interval. As a result of the simultaneous
resource switching and its associated ping-pong effects, the greedy algorithm appears to
be much worse than all other methods. This indicates that fully greedy resource selection
is detrimental to performance in scenarios where controlled switching is not possible.
Note that the performance of the MAQL is also degraded in the region below the 30th
percentile when compared to Figure 6. To further quantify the effects of switching delay,
we plot the capacity increase (in percentage) as a function of the maximum switching delay.
The capacity increase at a given maximum delay value is calculated by subtracting the
capacity value from its value with no delay. As shown in the figure, it is indeed beneficial
to minimize ping-pong effects by introducing the switching delay as stated in [9]. Except
for the Q-Heuristic which appears to be quite robust to switching delay, a maximum
delay of 5 transmission intervals yields capacity increase above 100% for both MAQL and
greedy selection methods. As seen in the figure, the greedy method is much more sensitive
to switching delays than the proposed MAQL method, which exhibits quite marginal
sensitivity at the median of achieved capacity.
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Figure 9. Sensitivity of joint channel and power selection methods to sensing delay, τ with sth = 2 dB.
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Figure 10. Different percentiles of the capacity per inXS versus maximum switching delay. (a) CDF
with no switching delay; (b) Effect of switching delay.

We remark here that although the performance evaluation presented in this section is
based on 3GPP models for an industrial environment [29], it is often useful to study the
sensitivity of the new methods to variations in the wireless environment. For instance,
the MAQL method can be evaluated with environment parameters, deployment density
and/or configurations that are different from those used during the training, leading
to understanding of the ability of the proposed method to generalize to other settings.
However, such sensitivity analysis is left for future work. The methods proposed in this
paper also consider a single bit per channel which represents the lowest overhead for
signaling information about the status of each channel within each inXS. It may then be
possible to improve the performance of the proposed schemes with an increased number
of bits per channel. Since inXSs are expected to be low-cost radio devices, we believe
that the best solutions are those which require minimum signaling overhead without
significant performance degradation. Another interesting avenue for further study would
be to quantify the trade-off between performance and signaling overhead.

5. Conclusions

Multi-agent Q-learning for distributed dynamic resource selection with quantized SI
can achieve better performance to the best-known heuristics (i.e., greedy selection) with
full information in 6G in-X subnetworks. This is particularly true for the low percentile
of the capacity per link and depends on appropriate selection of the value of the SINR
quantization threshold, sth. With low sth values (e.g., between 2 and 4 dB), the MAQL
method performs better than both greedy and Q-Heuristic schemes at the 10th, 5th and
1/10th percentiles of per link capacity but worst at the 50th percentile. In contrast, higher
sth values (e.g., between 10 and 14 dB) benefit the 50th percentile of capacity per link but
suffers the lower percentiles. Simulation results have shown that the proposed lookup
table-based MAQL method exhibits fast convergence and is more robust to sensing intervals
and switching delays than greedy resource selection. A proposed alternative rule-based
scheme based on similar 1-bit SI as the MAQL offers improved robustness with similar
performance as the greedy selection baseline. Our ongoing work is investigating other
learning-based methods with the capability for optimal performance while eliminating the
need for controlled switching via the introduction of switching delays.
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