

Aalborg Universitet

A Differentiable Neural Network Approach To Parameter Estimation Of Reverberation

Lyster, Søren Vøgg; Erkut, Cumhur

Published in:
Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

DOI (link to publication from Publisher):
10.5281/zenodo.6798156

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Lyster, S. V., & Erkut, C. (2022). A Differentiable Neural Network Approach To Parameter Estimation Of
Reverberation. In R. Michon, L. Pottier, & Y. Orlarey (Eds.), Proceedings of the 19th Sound and Music
Computing Conference, June 5-12th, 2022, Saint-Étienne (France): SMC/JIM/IFC 2022 (pp. 358-364). Sound
and Music Computing Network. Proceedings of the Sound and Music Computing Conference
https://doi.org/10.5281/zenodo.6798156

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.5281/zenodo.6798156
https://vbn.aau.dk/en/publications/0e8f314a-0339-4867-a2f8-1ac7e6967117
https://doi.org/10.5281/zenodo.6798156

A Differentiable Neural Network Approach To Parameter Estimation Of
Reverberation

Søren Vøgg Lyster
Aalborg University Copenhagen
slyste20@student.aau.dk

Cumhur Erkut
Aalborg University Copenhagen

cer@create.aau.dk

ABSTRACT

Differentiable Digital Signal Processing is a library and set
of machine learning tools that disentangle the loudness and
pitch of an audio signal for timbre transfer or for applying
digital audio effects. This paper presents a DDSP-based
neural network that incorporates a feedback delay network
plugin written in JUCE in an audio processing layer, with
the purpose of tuning a large set of reverberator parame-
ters to emulate the reverb of a target audio signal. We first
describe the implementation of the proposed network, to-
gether with its multiscale loss. We then report two experi-
ments that try to tune the reverberator plugin: a ªdarkº re-
verb where the filters are set to cut frequencies in the mid-
dle and high range, and a ªbrighterº, more metallic sound-
ing reverb with less damping. We conclude with the obser-
vations about advantages and shortcomings of the neural
network.

1. INTRODUCTION

Designing a good sounding artificial reverberator is a hard
task [1]. An algorithm with multiple filters and delay lines
can consist of a high number of adjustable parameters, and
the task of tuning these parameters by hand and ears to
achieve the desired reverberation can take hours or days,
even for a skilled audio engineer. Estimating a large num-
ber of parameters to reach a desired target is a use case
that fits well into the subject of machine learning and neu-
ral networks. We present an adaptation of a neural network
model to estimate a large set of parameters of a reverbera-
tor with the purpose of tuning that reverberator to emulate
a target reverberated audio signal.

Google’s Magenta Team recently released the Differen-
tiable Digital Signal Processing (DDSP) [2] and has pre-
sented an approach to neural networking that incorporates
audio processing in a neural network model and a multi-
scale spectral loss for audio differentiation. The loss can
then be propagated back through the model to update the
weights and change the audio generative parameters un-
til the output signal resembles the target signal. The most
prominent use of DDSP is to train a recurrent neural net-
work on audio of an instrument for it to be able to infer the

Copyright: © 2022 Søren Vøgg Lyster et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

timbre information of the given instrument and transfer it
to another audio input 1 .

With the introduction of DDSP more research has gone
into incorporating different digital signal processing ele-
ments in a differentiable neural network. Kuznetsov and
his colleagues presented multiple approaches to tuning fil-
ters using a differential neural network [3], and they have
encountered the issue of training neural networks when a
DSP element has a high probability of being unstable, e.g.,
when selecting coefficients for a biquad filter.

Extending the work of DDSP RamÂırez et al. [4] propose
using the differential signal processing to estimate parame-
ters of third-party black box audio effect plugins by incor-
porating them in the neural network. Their work has been
done on the LV2 audio plugin framework, and cases was
shown for tube amplifier emulation, artifact removal from
voiced signals, and music mastering.

Spotify’s artificial intelligence research and development
department Audio Intelligence 2 has released a utility frame-
work for hosting Virtual Studio Technology audio plugins
(VST) in Python called Pedalboard [5]. This utility eases
the use of integrating black box audio plugins in a machine
learning and neural network environment such as Tensor-
flow [6].

Our contribution to this body of work are as follows:

• Replacing the biquads of [3] with the state-variable
filters (SVFs) for stability,

• Applying the two gradient estimation methods of [4],
namely the finite differences and simultaneous per-
turbation stochastic approximation, to the SVFs and
highly recurrent structures of Feedback Delay Net-
works (FDN) [7], and

• Establishing a building block in differentiable artifi-
cial reverberation [8] between black-box and white-
box approaches.

2. DESIGN

To create a neural network that can estimate reverberator
parameters by audio differentiation we need a reverberator
plugin that can be incorporated in the network structure.
Instead of finding an open-source reverberator we opted
to create a custom audio plugin since it would present the
easiest way to define exactly what parameters to expose to
the neural network.

1 https://sites.research.google/tonetransfer
2 https://research.atspotify.com/

audio-intelligence/

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

358

2.1 Feedback Delay Network

For the reverberator a feedback delay network (FDN) was
selected since it generally should be able to emulate a broad
selection of different reverberator algorithms [9] [1]. The
FDN is an algorithm emulating reverb by having multiple
delay lines with feedback through a scattering matrix [1].
A correct selection of delay lengths and scattering matrix
should be able to result in a lossless algorithm that will pro-
duce an approximation to white noise when applied with an
impulse [10].

The equations for the general FDN are shown in the fol-
lowing two equations, where x is the input, y is the output,
and si is the delayed signal state at i, with i being the index
in the number of delay lines N . A is the N ×N scattering
feedback matrix with indexes i and j. The variables c and
b are gain factors in the system. The delay in samples n for
each delay line is defined as M .

y(n) =
N∑

i=1

ci si(n) (1)

si(n+Mi) =
N∑

j=1

Aijsj(n) + bix(n) (2)

Many different solutions for implementing a feedback ma-
trix exists [10], but for now the matrix A is selected to be
a lossless Householder matrix. The matrix for a 4-channel
FDN implementation A4 can be seen in equation 3, while
an extension into a 16 channel implementation A16 can be
seen in equation 4.

A4 =
1

2

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 (3)

A16 =
1

2

A4 −A4 −A4 −A4

−A4 A4 −A4 −A4

−A4 −A4 A4 −A4

−A4 −A4 −A4 A4

 (4)

After achieving a lossless reverb, the FDN algorithm can
be extended to include frequency dependent dampening
with the introduction of filters in the delay lines. Initially
these filters were biquads, but they were later changed for
state-variable filters (SVF) [11] due to their performance
when calculating gradients. State variable filters can be
described as a series of bi-quad filters consisting of a low-
pass, a band-pass, and a high-pass filter. The benefits of
SVF over normal biquads are the easy stability conditions
of the contained filters, since they do not directly utilize
poles and zeros, but instead have a dampening coefficient
R and frequency coefficient g [3]. The stability conditions
for the SVF are R > 0 and g > 0. The equations describ-
ing the input x and output y relationship and the internal
states h1 and h2 (initialized at 0) of the SVF can be seen in
equation 5 through 10, where yLP , yBP , and yHP are the
output of each filter with cLP , cBP , and cHP being their
respective gains.

Figure 1: A diagram of the FDN algorithm implemented,
showing delay lines 1, 2, . . . , N with MN samples delay
and SVF filters, gain factors bN and cN , and the N × N
scattering feedback matrix.

yBP [n] =
g([n]− h2[n− 1]) + h1[n− 1]

1 + g(g + 2R)
(5)

yLP [n] = g yBP [n] + h2[n− 1] (6)

yHP [n] = x[n]− yLP [n]− 2RyBP [n] (7)

h1[n] = 2yBP − h1[n− 1] (8)

h2[n] = 2yLP − h2[n− 1] (9)

y[n] = cHP yHP + cBP yBP + cLP yLP (10)

The value of the delay lengths M should be mutually
prime to encourage denser echoes and avoid artifacts [10].
The delay lengths should be parameterized and exposed
to the neural network but that would require that they are
handled by some higher-level parameter since the network
is unlikely to estimate the values to be mutually prime, as
shown in earlier experiments. For this project the delay
lengths have been fixed to a set of values given in the im-
plementation of Prawda et al.’s highly flexible feedback de-
lay network [9]. A diagram of the FDN reverberator can be
seen in figure 1.

This FDN algorithm can be expressed as having 7 param-
eters for each delay line i: bi, ci, CHPi, CBPi, CLPi, gi,
andRi. Running a configuration with 16 delay lines results
in 112 exposed parameters.

2.2 Neural Network

To achieve the set-out goals we need a neural network that
can take a given input tensor containing audio and then out-
put a tensor to compare with the target audio. The network
should be able to update its weights by backwards propaga-
tion of gradients and loss. To incorporate the instances of
the custom reverberator VST in the neural network model
a custom audio processing layer needs to be implemented,
and to propagate gradients back through the network the
custom layer needs to implement a custom gradient func-
tion. This section will describe the different elements of
the neural network model. A diagram of the neural net-
work model can be seen in figure 2.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

359

Figure 2: The implemented neural network model consisting of the encoder estimating parameters for the audio processing
layer, the audio processing layer hosting the reverberator plugin, and the loss function returning a loss value that is propa-
gated back through the model with the gradients that are calculated for the parameters in the audio processing layer.

2.2.1 Gradient method

To be able to do the full back propagation through the
model the audio processing layer needs to estimate a gradi-
ent vector. RamÂırez et al. [4] proposes two different ways
of doing this: finite differences and simultaneous pertur-
bation stochastic approximation. Both gradient estimation
methods are implemented so they can be evaluated for this
project.

The stochastic gradient estimation with finite differences
(FD) [12] creates the gradient vector by iterating through
all the parameters θ̂ and estimating the signal difference
▽̃
FDf(θ̂), where f(.) is the neural network output driven

by the dry audio signal. The equation for estimating a sin-
gle parameter θ̂i with a fixed value ϵ and a standard basis
of size equal to the number of parameters dP indexed at
the parameter index i is shown in equation 11

▽̃
FDf(θ̂)i =

f(θ̂ + ϵdPi)− f(θ̂ − ϵdPi)
2ϵ

. (11)

This finite difference requires the plugin to generate au-
dio twice for each parameter, with the parameter θi + ϵ
and θi − ϵ, and an additional time to create an output sig-
nal. This results in 2× P + 1 computations for each batch
item per epoch (with P being the number of parameters).
For a reverberator with a long impulse response tail, this
approach may be not feasible; it is used here however as
a benchmark. Still, it is only used in the training phase
and does not have any computational demands on the re-
verbarator in run-time.

Another approach to gradient estimation is the simultane-
ous perturbation stochastic approximation (SPSA). SPSA
is encouraged when dealing with a high-dimensional prob-
lem [13] [12] and is done by creating a P -sized vector of
perturbations ∆P that contains differences for each param-
eter. In this case the vector contains −1 and 1 from a bi-
nomial distribution with p-value 0.5. The SPSA approach
only requires 2 + 1 computations compared to the 2P + 1
computations of the FD method. The gradient calculation
for a parameter with index i can be seen in equation 12.

▽̃
SPSAf(θ̂)i =

f(θ̂ + ϵ∆P)− f(θ̂ − ϵ∆P)

2ϵ∆P
i

(12)

2.2.2 Encoder

The task of the encoder is to encode an audio input into a
set of values equal the number of parameters exposed by
the reverberator plugin. Multiple different encoder mod-
els could be utilized for this task, but for simplicity the
MobileNetV2 is selected as in the DeepAFx implemen-
tation [14] [4]. The MobileNetV2 is a two-dimensional
convolutional network, so we use a logarithmic Mel Spec-
trogram layer to convert the input audio before the Mo-
bileNetV2.

2.2.3 Custom audio processing layer

The custom audio processing layer should receive an input
the size of the number of parameters. During training these
parameters will be used to generate gradients using the FD
or SPSA method. When building the layer an instance of
the VST plugin is created for each item in the given batch.
This allows us to utilize the parallelism of Tensorflow and
speed up the training. The VST plugin generates the entire
audio signal in a single run, and its internal state is reset
between each forward run. When training and calculating
the vector containing the P number of parameter gradients
the plugin is run either P × 2 + 1 times (FD) or P + 1
times (SPSA), with the internal state being reset between
each run.

2.2.4 Loss function

The loss function is an adaptation of the Multi-Scale Spec-
tral Loss implementation from DeepAFx [4]. The short
time Fourier transformation S is calculated across the au-
dio signal for each window size i in one of [1024, 512, 256],
where y is the target audio and ŷ is the output audio. The
loss sum for each window size Li is comprised of a L2
magnitude loss, the logarithmic of the L2 magnitude loss,
and a L1 magnitude loss and can be seen in 13. The current
construction of the loss is selected by iteratively testing the
model training performance.

Li = ∥Si(ŷ)− Si(y)∥2 + log(∥Si(ŷ)− Si(y)∥2)
+ ∥Si(ŷ)− Si(y)∥1

(13)

The final loss valueLtot is a summation of different losses
across the window size range N (equation 14).

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

360

Ltot =
N∑

i=0

Li (14)

2.2.5 Optimizer

As optimizer the Adam algorithm is chosen. The Adam al-
gorithm is a modification of the stochastic gradient descent
method that is easy to use and common in many newer neu-
ral networks such as DeepAFx [4] and DDSP [2].

2.2.6 Hyper-parameters

Selecting appropriate hyper-parameters for the gradient es-
timation and optimizer has been done by multiple itera-
tions and evaluations of the model. Selecting a correct
learning rate has been crucial to achieve a converging model
that does not get stuck on local minimums. An initial high
learning rate of 1 × 10−3 has been set with a callback for
iterative reduction of the learning rate to 1.6× 10−6 when
the loss plateaus over a set number of epochs. For the gra-
dient estimation the value ϵ has been set to 0.05.

3. IMPLEMENTATION

3.1 Reverberator

The FDN reverberator is implemented using JUCE 3 . JUCE
is a c++ programming framework that is highly suitable for
developing audio processing plugins. The FDN reverber-
ator is compiled as a VST3 plugin using the VST3 SDK
from Steinberg 4 . Using GitHub’s continuous integration
and development tool GitHub Actions an automated work-
flow has been utilized to compile the plugin for x86 64
Ubuntu 18.04 and publish to the neural network environ-
ment. The code is available on GitHub 5 .

The gain variables c and b, and the SVF filter variables
CLP , CBP , CHP , g, and R for each delay line are ex-
posed as parameters using the JUCE AudioProcessorVal-
ueTreeState class. This allows the neural network to tweak
those parameters. The variablesM for delay length, andA
for the scattering feedback matrix are not exposed. Since
the delay lengths benefit greatly from being mutual primes
and possibly span a large range of integers, the task of esti-
mating them directly was deemed inefficient for the neural
network. The scattering feedback matrix was chosen to be
unchangeable since it easily could cause instability in the
system. An important step in the implementation has also
been to assure that the VST3 plugin could run headless,
since we do not want to instantiate a graphical user inter-
face for each forward processing run.

3.2 Neural Network

A repository containing the implemented neural network
can also be found at Github 6 .

3 https://juce.com/
4 https://www.steinberg.net/developers/
5 https://github.com/VoggLyster/Reverberator/

tree/SMC
6 https://github.com/VoggLyster/

ReverberatorEstimator/tree/SMC

3.2.1 Model architecture

Two models have been implemented in Tensorflow with
Keras, where the first model is the decoder model estimat-
ing parameter values from an audio input seen in Table 1,
and the second model is the full differential model consist-
ing of the decoder model and the custom VST3 layer seen
in Table 2.

The log mel spectrogram layer implementation is taken
from Keunwoo Choi 7 . The multi-scale spectral loss func-
tion is adapted from the DeepAFx Github repository 8 .

3.2.2 Gradient estimation

When running the model all 112 initial parameters are set
to a value of 0.5. Unfortunately, the SPSA method does not
seem to allow the model to converge in the same manner
as FD. One reason that FD performs better than SPSA for
the FDN plugin might be the result of the SVF parameters
being highly dependent on each other, and that the effect of
changes in the 16 parallel filters are hard to distinct when
calculating gradients using this approach. This effect be-
comes more apparent when comparing the implementation
to a simplified toy model with only one filter, where SPSA
performs well.

3.3 Python Integration Using Pedalboard

Spotify’s Audio Intelligence Lab has created a Python pack-
age called Pedalboard [5] that supports hosting of VST3
and Audio Unit plugins in python. This is done by imple-
menting Python Bindings that allows for C and C++ inte-
gration in Python. The package contains functionality to
process audio, change parameters, and reset the internal
state of plugins (given that the plugin supports these func-
tions). The package also claims to be thread-safe, support-
ing multiple CPU cores, and compatible with tensor inputs.
Utilizing this package has made the implementation of the
custom reverberator plugin in a neural network possible.

3.4 Toy Model

A simplified FDN plugin with only one delay line has been
implemented to test the neural network model. This sim-
plified version consisted of only 7 parameters, greatly re-
ducing the complexity of the estimation problem. The toy
model implementation showed that a higher ϵ value used in
the gradient approximation would result in a faster conver-
gence, but with the drawback of possible tuning the SVF
parameters quickly towards instability and resulting in ex-
ploding gradients. Two short experiments were done to
verify the ability of the neural network using two target au-
dio sources generated with the simplified FDN implemen-
tation, a signal with high-frequency attenuation (ºdarkº)
and a signal with low frequency attenuation (ºbrightº). The
result is reported on in table 3.

7 https://gist.github.com/keunwoochoi/
f4854acb68acf791a49a051893bcd23b

8 https://github.com/adobe-research/DeepAFx/
blob/main/deepafx/losses.py

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

361

Layer (type) Output Shape Param #
audio input (InputLayer) [(None, 96000)] 0
log melgram layer (LogMelgramLayer) (None, 372, 128, 1) 0
input norm (BatchNormalizationLayer) (None, 372, 128, 1) 4
mobilenetv2 1.00 372 (Funtional) (None, 112) 2400880
Total params: 2,400,884
Trainable params: 2,366,770
Non-trainable params: 34,114

Table 1: Parameter model summary from Tensorflow.

Layer (type) Output Shape Param # Connected
audio input (InputLayer) [(None, 96000)] 0
parameter model (Functional) (None, 112) 2400884 audio input[0][0]

vst processor (VSTProcessor) (None) 0
audio input[0][0]
parameter model[0][0]

Total params: 2,400,884
Trainable params: 2,366,770
Non-trainable params: 34,114

Table 2: Full model summary from Tensorflow.

loss mae
1. ºdarkº 0.11432 1.9732e-4
2. ºbrightº 0.0122 7.834e-5

Table 3: Error values for two toy model experiments

4. EXPERIMENTS

To test the model two final experiments were done. Both
experiments consisted of a two second audio input and tar-
get pair at 48kHz. These pairs where created using the im-
plemented FDN reverberator plugin to ensure that a target
solution exists where the algorithms used are able to em-
ulate each-other. The first target is a ºdarkº reverb where
the filters are set to cut frequencies in the middle and high
range. The other target is a ºbrightº and more metallic
sounding reverb with less damping. For generating the
sound an impulse-like finger snap sample has been used.

To utilize the multiple GPU’s available for training a batch
size of 8 has been chosen. The batch consists of 8 input
audio tensors with the same generated input audio sample,
and 8 target audio tensors with the same generated target
audio sample.

Both experiments were run in multiple iterations with
number of epochs ranging from 500 to 1500. This was
done to be able to evaluate the performance of the model
simultaneously.

5. EVALUATION

5.1 Qualitative Evaluation

A qualitative evaluation has been done by visual inspec-
tion and by ear. The waveforms and spectrograms for the
ºdarkº and ºbrightº experiments can be seen in figures 3
and 4. In the case of estimating the parameters for the
ºdarkº reverb an audio listening inspection indicates an al-

loss mae mse
1. ºdarkº 3.12275 0.0111 0.0007
2. ºbrightº 3.92548 0.0115 0.0010

Table 4: Error values for the two experiments

most identical reverb. For the ºbrightº reverb it is possible
to hear a slightly longer decay time in the high frequency
spectrum that might be fixed with further training. By us-
ing the calculated loss, and by calculating mean-squared-
error (mse) and mean-absolute-error (mae) for target au-
dio y and output audio ŷ in equations 15 and 16, we get the
values reported in table 4.

mse =
1

n

n∑

i=1

(yi − ŷi)2 (15)

mae =

∑n
i=1 |yi − ŷi|

n
(16)

For both experiments the models were still converging
before termination, but the rate of convergence was slow.

5.2 Quantitative Evaluation

The performance of the model can be evaluated by looking
at the training time for the two experiments. The ºdarkº re-
verb trained for approximately 20 hours while the ºbrightº
reverb trained for approximately 56 hours. Both tests where
run on a 3 Titan X GPU setup with a 2.4 GHz Intel Xeon
E5 processor.

6. CONCLUSION AND FUTURE WORK

A neural network model has been created that is able to
incorporate VST3 plugins created in JUCE. This incorpo-
ration allows for parameter estimation of a custom FDN

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

362

reverberator using differentiable audio processing. The pa-
rameter estimation model has shown that it is able to con-
verge towards a set of parameters that allows the reverber-
ator to recreate a given input signal. Usable results have
been achieved when the reverberation algorithm architec-
ture has been the same for both target and generated audio.
But the rate at which the model estimates the parameters is
very slow when using the FD gradient estimation.

Two estimation examples have shown the possibilities of
the network, but also the current limitations and computa-
tional weaknesses. The first experiment gave good initial
results with a convergence towards a matching reverb. The
second experiment showed considerably more issues with
the convergence. A toy model with a simplified reverber-
ation algorithm has shown the ability to quickly estimate
parameters utilizing SPSA and a higher epsilon value, but
the gap between a single delay line implementation and a
16 delay lines implementation with 16 different filters must
be still bridged.

6.1 Future Work

Considering the weaknesses, it is possible to list multiple
efforts that should be made in the future to optimize the
neural network model and encourage further use. Future
work will focus on speed, loss functions, on the parame-
terization of delay and matrix of the FDN, and on the ex-
pansion of the algorithm. Using Finite Differences (FD) as
a gradient estimator has a high computational cost. This
could be optimized by creating an environment where the
SPSA method would prove useful. The convergence of
the neural network slows down greatly over time, signaling
that we might not have settled on the best hyper-parameters
for this problem. Running a hyper-parameter estimation of
the neural network is a time-consuming task but should
yield better results when moving forward. Further inves-
tigation into loss methods might be beneficial for the net-
work. There are many different approaches to utilizing loss
functions with regards to audio signals that might warrant

Figure 3: Dark reverb. Upper left figure shows the wave-
form of the output audio, upper right shows the waveform
for the target audio. Lower left shows the spectrogram of
the output audio, lower left shows the spectrogram out the
target audio.

Figure 4: Bright Reverb. Upper left figure shows the wave-
form of the output audio, upper right shows the waveform
for the target audio. Lower left shows the spectrogram of
the output audio, lower left shows the spectrogram out the
target audio.

an investigation. As the goal of this approach is to emulate
different reverberations expansion of the FDN algorithm
should be done. By exposing some high-level parameters
to the neural network would allow it to be more adaptable
to different type of reverberated signals. These high-level
parameters should be designed to give the most flexibil-
ity while still trying to enforce the rules of losslessness
and mutually prime delay lengths. Additionally, delay line
modulation would introduce time variance for better physi-
cal accuracy. With future work and extension of the project
a perceptual evaluation will also be needed to show the vi-
ability of technology.

7. REFERENCES

[1] V. Valimaki, J. D. Parker, L. Savioja, J. O. Smith,
and J. S. Abel, ªFifty years of artificial reverberation,º
IEEE Transactions on Audio, Speech, and Language
Processing, vol. 20, no. 5, pp. 1421±1448, 2012.

[2] J. H. Engel, L. Hantrakul, C. Gu, and A. Roberts,
ªDDSP: differentiable digital signal processing,º
CoRR, vol. abs/2001.04643, 2020. [Online]. Available:
https://arxiv.org/abs/2001.04643

[3] B. Kuznetsov, J. D. Parker, and F. Esqueda, ªDiffer-
entiable IIR filters for machine learning applications,º
in Proc. Int. Conf. Digital Audio Effects (eDAFx-20),
2020, pp. 297±303.

[4] M. A. MartÂınez RamÂırez, O. Wang, P. Smaragdis, and
N. J. Bryan, ªDifferentiable signal processing with
black-box audio effects,º in IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, June 2021.

[5] Spotify, ªPedalboard,º https://github.com/spotify/
pedalboard, 2021.

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, and
et al, ªTensorFlow: Large-scale machine learning

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

363

on heterogeneous systems,º 2015, software available
from tensorflow.org. [Online]. Available: https:
//www.tensorflow.org/

[7] J.-M. Jot and A. Chaigne, ªDigital delay networks for
designing artificial reverberators,º in Proc. AES Con-
vention, Feb 1991, preprint 3030.

[8] S. Lee, H.-S. Choi, and K. Lee, ªDifferentiable artifi-
cial reverberation,º arXiv, 2021.

[9] K. Prawda, S. Willemsen, S. Serafin, and V. VÈalimÈaki,
ªFlexible real-time reverberation synthesis with accu-
rate parameter control,º in 23rd International Confer-
ence on Digital Audio Effects, 2020, pp. 16±23.

[10] J. O. Smith, Physical Audio Signal Processing.
http://ccrma.stanford.edu/˜jos/-

pasp/, accessed 16/12/2021, online book, 2010
edition.

[11] A. Wishnick, ªTime-varying filters for musical appli-
cations.º in DAFx, 2014, pp. 69±76.

[12] M. C. Fu, ªStochastic gradient estimation,º Handbook
of simulation optimization, pp. 105±147, 2015.

[13] J. C. Spall, ªAn overview of the simultaneous perturba-
tion method for efficient optimization,º Johns Hopkins
apl technical digest, vol. 19, no. 4, pp. 482±492, 1998.

[14] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, ªMobilenetv2: Inverted residuals and lin-
ear bottlenecks,º in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018,
pp. 4510±4520.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

364

