
 

  

 

Aalborg Universitet

State of health estimation of second-life lithium-ion batteries under real profile
operation

Braco, Elisa; San Martin, Idoia; Sanchis, Pablo; Ursua, Alfredo; Stroe, Daniel-Ioan

Published in:
Applied Energy

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Braco, E., San Martin, I., Sanchis, P., Ursua, A., & Stroe, D-I. (2022). State of health estimation of second-life
lithium-ion batteries under real profile operation. Applied Energy, 326.
https://www.sciencedirect.com/science/article/pii/S0306261922012491

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://vbn.aau.dk/en/publications/ad7da89b-236a-4bd8-8582-01ab38f9c482
https://www.sciencedirect.com/science/article/pii/S0306261922012491


State of health estimation of second-life lithium-ion
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Abstract

The economic viability of second-life (SL) Li-ion batteries from electric vehi-
cles (EVs) is still uncertain nowadays. Assessing the internal state of reused
cells is key not only at the repurposing stage but also during their SL opera-
tion. As an alternative of the traditional capacity tests used to this end, the
estimation of State of Health (SOH) allows to reduce the testing time and the
need of equipment, thereby reinforcing the economic success of SL batteries.
However, the estimation of SOH in real SL operation has been rarely analysed
in literature. This contribution aims thus to cover this gap, by focusing on the
experimental assessment of SOH estimation in reused modules from Nissan Leaf
EVs under two SL scenarios: a residential household with self-consumption and
a fast charge station for EVs. By means of partial charge and experimental
data from cycling and calendar ageing tests, accuracy and robustness of health
indicators is firstly assessed. Then, SOH estimation is carried out using real
profiles, covering a SOH range from 91.3 to 31 %. Offline assessment led to
RMSE values of 0.6 % in the residential profile and 0.8 % in the fast charge
station, with a reduction in testing times of 85 % compared to a full capacity
test. In order to avoid the interruption of battery operation, online assessment
in profiles was also analysed, obtaining RMSE values below 1.3 % and 3.6 %
in the in the residential and charging station scenarios, respectively. Therefore,
the feasibility of SOH estimation in SL profiles is highlighted, as it allows to
get accurate results reducing testing times or even without interrupting normal
operation.

Keywords: Lithium-ion battery, Second-life batteries, State of health
estimation, Residential storage, Fast charge station
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Nomenclature

C Capacity

CN Nominal capacity

CC Constant current

CV Constant voltage

DOD Depth of discharge

EIS Electrochemical impedance spectroscopy

EV Electric vehicle

FI Current adjustment factor for extracting conditions of PCM

FT Temperature adjustment factor for extracting conditions of PCM

FV Voltage adjustment factor for extracting conditions of PCM

FL First life

HI Health indicator

IC Incremental capacity

ICA Incremental capacity analysis

LR Linear regression

MaxAE Maximum absolute error

mid− SOC Middle state of charge in a cycle

PC Partial charge

PCC Pearson correlation coefficient

PCM Partial charging method

RMSE Root mean squared error

RPT Reference performance test

SL Second life

SOC State of charge

SOH State of health

SV R–L Support vector regression with linear kernel

SV R–RBF Support vector regression with radial basis function kernel

VS Charging starting voltage
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1. Introduction

Electric vehicle (EV) has become a major actor in the automotive sector
nowadays. The environmental problems related to traditional combustion ve-
hicles, together with government regulations and citizen awareness have con-
tributed to the expansion of EVs, a trend that is expected to continue in the
future. As a result, the demand for Li-ion EV batteries is growing year by year,
reaching 160 GWh only in 2020 [1].

The performance of Li-ion batteries are negatively affected by usage, in such
a way that their capacity and power fade. This eventually compromises EV
requirements, and as a result, automotive standards set a capacity fade of 20
to 30 % from the nominal value as withdrawal limit. Once retired from EVs,
the reuse of these batteries emerges as an alternative to direct recycling. The
resulting enlargement of lifetime represents an interesting solution both from an
environmental and economic perspective [2, 3]. Stationary applications, such as
residential storage, electric microgrids or grid integration of renewable energies,
in which energy and power requirements are less demanding than in EVs are
promising scenarios for the second life (SL) of these EV batteries [4, 5, 6, 7, 8].

However, the success of SL batteries from EVs is not yet clear nowadays,
as there are some uncertainties related to the technical and economic viability
of these systems [2, 3]. Operation and durability of SL modules [9, 10, 11],
and battery packs [12, 13] has experimentally been assessed, but there are still
doubts concerning economic feasibility.

In this context, a key aspect in SL is the assessment of the battery state. Ca-
pacity and internal resistance of reused modules may vary from the automotive
withdrawal limits when retired from EVs as a consequence of their first usage
[9, 14, 15]. Hence, it is necessary to ensure the compliance with requirements
in SL applications. Moreover, battery repurposing with similar modules allows
to reduce performance dispersion, which contributes to extend battery life and
consequently profitability. The need of characterisation is therefore clear at the
repurposing stage, but attention should also be paid during SL operation. At
advanced stages of ageing, the degradation rates of Li-ion cells accelerate, as a
consequence of a shift in the main ageing mechanisms [11]. This involves higher
risks in operation, as chances of internal short circuits increase [16]. Therefore,
the operation in SL should be restricted before this turning point. Moreover,
reused modules may suffer from uneven degradation trends even under similar
ageing conditions [11], which also confirms that the knowledge of their perfor-
mance capabilities is also needed during operation in order to ensure safety.

The state of health (SOH) of batteries can be obtained offline or online.
Offline refers to the fact that it is necessary for the battery to stop operating in
order to estimate the SOH, while online refers to the estimation of the SOH in
real operation. The SOH of Li-ion batteries is traditionally assessed by means
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of capacity and/or internal impedance tests. This generally requires several
hours of testing, as well as specific equipment. Moreover, the normal operation
of the batteries has to be interrupted to perform the tests. With regard to
reduce SL costs and procedures, SOH estimation is considered as a promising
alternative to traditional characterisation tests. This approach is based on the
identification of a parameter related to SOH, i.e., a health indicator (HI), from
which SOH can be assessed by different methods [17, 18]. Thus, from experi-
mental testing it is possible to extract HIs from direct measurements such as
impedance [19], voltage [20, 21, 22] or charging curve [10], or indirect analysis
such as incremental capacity analysis (ICA) [10, 23] or partial charging method
(PCM) [24, 25, 26]. Then, on a second stage, two main groups of methods
arise, depending on HI assessment: machine learning methods and model-based
adaptive filters. The first gathers examples such as neural networks [27] or sup-
port vector regression (SVR) algorithms [20, 22, 24], which are used to directly
evaluate HIs. Despite their accuracy, these methods are difficult to implement
online, given that operating conditions may vary from laboratory environment
and that the interruption of normal operation could be needed [28, 29]. On the
other hand, adaptive methods such as Kalman filters [30] address the internal
state variables through iteration and look-up tables with ageing data. The high
accuracy of these alternatives is counterbalanced with the complexity of the cal-
culations required, which may compromise their implementation in real systems
[17].

Thereby, the estimation of SOH with real profile operation is still a challenge
nowadays [17]. Renewable energies integration [29], frequency regulation [20, 22]
or EV operation [31] are some of the scenarios covered in previous research
works, though SOH values over 80 % are normally assessed. When it comes to
SL analysis, most research focuses on the repurposing stage [10, 14, 19, 23, 25],
covering SOH over 60 %. However, only few contributions analyse the online
operation of retired batteries during SL lifetime. In [24], the authors assessed
PCM by means of SVR in retired NMC and LFP cells under a synthetic cycling
profile, achieving RMSE below 1.9 % in a SOH range from 80 to 45 %. From its
part, [10] evaluated several HIs such as EIS, ICA or Average Fréchet Distance,
both in offline and online approaches also using synthetic cycling. In this case,
the SOH covered 94 to 62 %, obtaining mean errors of 1.5 %. Table 1 sum-
marises the main contributions identified above, which are classified according
to HI method, algorithm, application, online or offline approach and for FL or
SL batteries.

As can be seen, only few steps have been taken in SOH estimation using
SL batteries under dynamic profiles. Hence, this contribution aims to cover
this gap, by considering retired Li-ion cells from EVs, which are further aged
under real profiles. The experimental results will add valuable information for
the economic end technical viability of SL batteries. The paper is organised as
follows. Section 2 describes the experimental procedure, covering modules and
testing setup. Section 3 details the SOH estimation method, including feature
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Table 1: Research contributions targeting SOH estimation for Li-ion batteries

Ref. HI Method Algorithm Application Estimation Battery

[10]
Charging curve/
ICA/ EIS/ AFD

LR -
Offline/
Online

SL

[19] Impedance LR - Offline SL

[20] Voltage SVR
Frequency
regulation

Online FL

[21] Voltage
Multiple lin-
ear regression

- Offline FL

[22] Voltage SVR
Frequency
regulation

Offline FL

[23] ICA
Least square
regression

Frequency
regulation

Offline SL

[24] PCM SVR - Online SL

[25] PCM
Machine
learning

Repurposing
stage

Offline SL

[27] ICA
Neuronal net-
works

- Online SL

extraction and selection, as well as model development. Section 4 describes
the SL profiles analysed: a residential household with self-consumption and a
fast charging station for electric buses. The experimental results obtained are
gathered in Section 5, including HI assessment and selection and the validation
of SOH models in offline and online approaches. Finally, Section 6 draws the
main conclusions of the work.

2. Experimental setup

2.1. Module description

The experimental procedure of this contribution has been carried out with
Li-ion battery modules specially designed for automotive purposes, in particular
for Nissan Leaf EVs. Each module is formed by four pouch-type cells of nickel
and manganese oxide (LMO-NMO) cathode and graphite anode. These cells are
connected in pairs and associated in series (2s2p), i.e. the cells are configured by
series connection of two pairs of cells connected in parallel, in such a way that
three terminals are available: positive, middle point and negative. Therefore, 2p
cells are the smallest testing unit. The nominal capacity (CN ) of the modules
is 66 Ah, and their maximum, minimum, and nominal voltages are 8.3 V, 5 V,
and 7.5 V, respectively; and the CN of each pair of cells (2p) is also 66 Ah and
their maximum, minimum, and nominal voltages are 4.15 V, 2.5 V, and 3.75 V,
respectively. Fig. 1 shows the experimental setup, with the Nissan Leaf modules
connected to the battery tester, and inside the climatic chamber.

According to their previous usage, two types of modules have been tested.
On the one hand, 12 modules retired from different EVs are analysed, which
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Climatic chamber

Battery 
tester

Nissan Leaf  
modules

Figure 1: Example of Nissan Leaf modules under test and experimental test bench.

will be referred to as SL modules. The specific usage data of these SL modules
is unknown, as the manufacturer does not provide such information nowadays.
On the other hand, 5 modules which have never been used in EVs are also
analysed. Given their lack of usage, they are named as first-life (FL) modules.
In this case, they correspond to spare samples which have been stored for a long
time, and therefore may have suffered from degradation due to calendar ageing.

2.2. Experimental procedure

The experimental tests carried out in this work is divided into two groups:
reference performance tests (RPT) and ageing tests. All the experimental pro-
cedures have been performed at 2p cell level between positive and middle point
terminals. This 2p association will be hereinafter named as cell in order to ease
reading.

2.2.1. Reference performance test

RPTs aim to assess the SOH of the cells. To this end, they are based on
capacity tests, consisting of two full charging-discharging cycles at C/3 within
the voltage limits of the cell. The charging procedure is constant current (CC)
until the maximum cell voltage (Vmax = 4.15 V) followed by a constant voltage
(CV) phase until a cut-off current of C/30 is reached. For its part, the discharge
procedure is CC until the minimum cell voltage is reached (Vmin = 2.5 V). The
current capacity of the cell capacity is considered as the discharged Ah during
the second cycle. The charging and discharging rate is defined according to
CN , thereby corresponding 1C = 66 A. Two types of RPTs are carried out,
depending on the testing temperature:

a) RPT25. To assess the actual state of the cell, RPT25 consist of a capacity
test carried out at a controlled ambient temperature of 25 ◦C±1 ◦C. Prior
to each RPT25, a rest time of 4 hours is set at the given temperature, so
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that the cell reaches thermo-dynamic equilibrium. Then, capacity test starts
with a CC discharge pulse at C/3 until the minimum voltage of the cell. The
capacity value obtained from this test is considered as the actual state of the
cell (C).

b) RPT45. During the cycling ageing test, periodical capacity tests are per-
formed at 45 ◦C±1 ◦C to evaluate the state of the cell. Prior to them, the cell
is discharged with a CC pulse at C/3 until the minimum voltage. After the
capacity test, the cell is CCCV charged and CC discharged at C/2 between
its voltage limits and with C/30 as cut-off current of the CV phase.

2.2.2. Ageing tests

The robustness of the HIs to ageing is analysed by means of a set of accel-
erated ageing tests. Both cycling and calendar tests are carried out, so that
different ageing conditions are covered. Moreover, a set of cells are aged under
two real profiles of SL applications.

a) Cycling. Cycling ageing is mainly influenced by temperature, cycle depth
of discharge (DOD), middle state of charge (mid-SOC) and C-rate. These
parameters do not have a linear influence on degradation, and therefore
several conditions should be tested to get representative results. The cycling
ageing matrix of this contribution targets DOD and mid-SOC, and contains
10 different conditions, with a total of 6 DOD levels performed at different
mid-SOC. All the cycling ageing tests are carried out under a controlled
ambient temperature of 45 ◦C±1 ◦C. The test starts with a 4-hour rest and
a CC discharge at C/3 until the minimum cell voltage, followed by an RPT45.
The cell is then charged at C/3 until the corresponding mid-SOC. After a
1-hour rest, the cycling sequence with CCCV charges and CC discharges at
0.7C is applied with the corresponding DOD. The cut-off current is C/30 in
all cases. Both mid-SOC and DOD are computed from the corresponding
actual capacity. Every 100 equivalent full cycles (EFC), a 1 hour rest is set,
followed by a RPT45. EFC is defined as the ratio between the Ah throughput
of the cell and twice CN . Every 4 weeks a RPT25 is performed. The complete
cycling test matrix is summarized in Table 2. As can be seen, a SL cell is
tested under each condition, except from 50–60 % SOC, where a FL cell is
used. Both in 50–100 % and 0–100 % a SL and a FL cell are aged.

b) Calendar. A SL cell is tested under calendar ageing, being stored fully
charged at a controlled temperature of 45 ◦C±1 ◦C. The test is interrupted
every 4 weeks to perform a RPT25, so that its actual SOH is assessed. After
the RPT25, the cell is fully charged at C/3 with CCCV procedure and C/30
as cut-off current.

c) SL real profiles. The real profile tests are carried out at a controlled ambi-
ent temperature of 45 ◦C±1 ◦C. A 4-hour rest is set prior to the test to ensure
thermal stability in the cells. Every 2 weeks, a RPT25 is performed. The
details about the operating conditions of the profiles are given in Section 4.
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Table 2: Cycling ageing test matrix.

Cycle depth (%) 5 10 25 50 80 100

SOC range (%)
SL

22.5–27.5 70-80 50–75 50–100 10–90 0–100

50–55 90-100

95–100

FL 50-60 50-100 0-100

A FL and a SL sample are tested under each profile. The scaling from real
scenario is carried out in terms of energy, considering the original storage
system and the energy of the cell at the beginning of the test, obtained from
RPT25.

2.2.3. Test bench

The test bench used consists of two battery testers and climatic chamber, as
shown in Fig. 1. The multichannel battery testers stand 5 V and 50 A on each
channel, with an accuracy within ±0.1 % of their full scale. The climatic cham-
bers allow a temperature range from -30 ◦C to +180 ◦C, with a measurement
precision of ±0.5 ◦C.

3. SOH estimation method

SOH is a reference of the degradation state of Li-ion batteries, and it can be
related to their capacity, energy or power capability. In this contribution, SOH
will be defined as the ratio between the actual capacity, measured in RPT25,
and the nominal value, according to Eq. (1):

SOH(%) =
C

CN
· 100 (1)

Thus, from battery operating data of temperature, voltage or current, HIs
are first identified, and in a second step they are related to SOH by means of a
model. The selection of HI depends on the estimation approach in real profiles,
as several criteria such as accuracy or extraction time can be desired. The
SOH estimation method followed in this contribution is presented in Fig. 2. As
can be seen, the procedure starts with the analysis of ageing tests. Once HI are
extracted, a complete analysis is carried out, covering three main aspects. First,
a set of factors to adjust the extraction conditions are obtained. Secondly, HIs
are assessed in terms of accuracy and extraction time, so that selection criteria
for them are defined. Finally, a SOH estimation model is developed. This
information is used in the estimation with real profiles, in such a way that after
selecting the approach (offline or online), HIs are extracted and selected with the
corresponding criteria. If necessary, the extraction conditions will be adapted so
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that they match the model. The estimation is finally carried out with the model
previously developed. The intermediate steps of the SOH estimation method
are further described in this section.

HI extraction

Analysis

Ageing tests

Selection criteriaExtraction
conditions

factors

Model

PCCExtraction
time

Real profiles

Approach?
Offline Online

HI selection

HI extraction
HI selection

HI extraction

Adapting
extraction
conditions

Estimation

END

Figure 2: Flowchart of the SOH estimation method for real profiles.

3.1. Feature extraction

3.1.1. Partial charging method

There are several HI extraction methods proposed in literature, such as ICA,
PCM, internal resistance and amount of charge of the CC and CV phase. The
choice between them is generally based on measurement easiness and accuracy.
Considering its promising results in SL batteries, PCM is selected as extraction
procedure [32]. This approach is based on the concept that the overall capacity
of a cell can be estimated from a given partial charge measured within a specific
voltage range [26]. The interest of PCM lays thereby on two reasons. First,
HIs can be easily extracted from battery operation, as only coulomb counting is
required. Secondly, PCM can be easily implemented in real operation, as charg-
ing currents are usually constant, while discharging currents are determined by
the load.

The HI extracted from PCM are defined within a voltage range from 3.7 V
to 4.15 V, and with voltage intervals of 5 mV. Lower voltage values are not
considered, given that there is barely any capacity variation with voltage for
the specific chemistry under study [33]. Thereby, 45 HIs are obtained. Table 3
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gathers them, specifying their corresponding lower (Vlow) and upper (Vhigh)
voltage.

Table 3: Health indicators (HIs) extracted from PCM with their lower (Vlow) and upper
voltage (Vhigh).

Vhigh

(V)

Vlow (V)

3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10

3.75 HI 1

3.80 HI 2 HI 10

3.85 HI 3 HI 11 HI 18

3.90 HI 4 HI 12 HI 19 HI 25

3.95 HI 5 HI 13 HI 20 HI 26 HI 31

4.00 HI 6 HI 14 HI 21 HI 27 HI 32 HI 36

4.05 HI 7 HI 15 HI 22 HI 28 HI 33 HI 37 HI 40

4.10 HI 8 HI 16 HI 23 HI 29 HI 34 HI 38 HI 41 HI 43

4.15 HI 9 HI 17 HI 24 HI 30 HI 35 HI 39 HI 42 HI 44 HI 45

3.1.2. HI extraction conditions

The specific charge that can be stored in a Li-ion cell depends on measure-
ment conditions such as temperature, C-rate and charging starting voltage (VS),
as well as on the degradation level of the cell, i.e. its SOH [34]. This represents
a challenge for PCM, as the comparison between measurements under differ-
ent extraction conditions could compromise the accuracy of SOH estimation.
Hence, the adjustment of these variables is necessary if charges extracted under
different conditions are to be compared.

Fig. 3 shows an example of this issue, with cell charge under different condi-
tions of C-rate, VS , temperature, and SOH. The SOH of the cells in the figure is
65 %, otherwise specified. As an illustrative example, HI 37 is selected, i.e. the
charge measured between Vlow= 3.95 V and Vhigh= 4.05 V. A total of 6.6 Ah
were obtained within this voltage range at C/3 and 25 ◦C with a full charge
(VS = Vmin). When increasing temperature to 45 ◦C at the same C-rate and
maintaining full charge, the extracted charge is 8.9 Ah, thereby 35.1 % greater
than at 25 ◦C. On the other hand, the influence of C-rate can be compared at
45 ◦C. The measured charges of this HI are 7.6 Ah and 6.8 Ah at C/2 and 0.7C
respectively, resulting in values 14.7 % and 23.2 % lower than at C/3 at this
temperature. The effect of VS is also clear, as the HI measured is 3.9 Ah when
starting at the example shown (VS = 3.91 V), thus 64.0 % lower than with full
charge at the same temperature and current. The effect of ageing can also be
seen in this figure, as HI 37 decreases 51.7 % between 65 % and 36 % of SOH,
i.e. from 8.9 Ah to 4.3 Ah.
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Figure 3: Example of PCM with different extraction conditions detailed for HI37 (3.95 V -
4.05 V). Legend: Charging rate @ Starting charging voltage @ Temperature @ SOH.

In this contribution, the general extraction conditions for PCM are defined
as a charging at C/3, starting from the minimum cell voltage, i.e. VS = Vmin,
and at 25 ◦C. Thereby, three factors (FI , FV and FT ) are proposed to relate
the charge extracted in a given HI under random conditions q(I, VS , T ) to the
general ones, named as extraction conditions factors in Fig. 2:

a) C-rate. The charging C-rate affects polarization inside the cell, resulting in
the difference in cell capacity as a function of C-rate. In order to overcome
this issue, the factor for a given extraction current (FI) is defined according
to Eq. (2).

FI =
q(C/3, Vmin, 45)

q(I, Vmin, 45)
(2)

being q(C/3, Vmin, 45) the charge of a specific HI at C/3 and q(I, Vmin, 45)
the one at a given current I for the same HI. This adjustment factor is
obtained from RPT45 measurements in the SL and FL cells aged within 0
and 100 % SOC. Two different charging currents are available in a given
RPT45: C/3 and C/2, as described in Section b. Moreover, the first charge
of the cycling test at 0.7C is used. The assessment of these factors at a given
SOH allows to define a general expression to obtain the value of FI for a
given current I. Note that the tests have similar VS (Vmin) and temperature
(45 ◦C).

b) Voltage. Electrochemical reactions in the electrodes of a Li-ion cell take
place at specific voltage levels. Thereby, if a charge starts from a voltage
greater than that of a specific reaction, the total amount of Ah stored within
the cell voltage limits may vary. This issue becomes a problem in real profiles,
as the operating DOD depends on the load. Hence, an adjustment factor for
VS is also considered (FV ), by means of Eq. (3).

FV =
q(C/3, VS , 45)

q(C/3, Vmin, 45)
(3)
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being q(C/3, Vmin, 45) the specific HI with a complete charge. q(C/3, VS , 45)
is the charge extracted in the same HI but with a given VS . In order to assess
this factor, data from the SL cell aged between 50 and 75 % of SOC is used.
This data set is selected because the charging starting voltage is greater
than the voltage of the first peak detected from ICA in these cells (VS ≥
3.95 V) [33]. Note that extraction current (C/3) and temperature (45 ◦C)
are similar.

c) Temperature. Temperature rise promotes ionic conductivity and lowers
over-potentials of the electrodes. The ageing tests and the profiles are tested
at 45 ◦C, thereby differing from the general conditions defined. A tempera-
ture factor (FT ) is thus proposed from Eq. (4).

FT =
q(C/3, Vmin, 25)

q(C/3, Vmin, 45)
(4)

with q(C/3, Vmin, 45) as the charge extracted in a specific HI at 45 ◦C and
q(C/3, Vmin, 25) its equivalent with a charge at 25 ◦C. This factor is assessed
by means of all the cycling ageing data test available, by comparing full
charges at C/3 in RPT25 and RPT45.

Lastly, the amount of charge that can be stored within a voltage limit also
depends on the degradation state of the cells. This is implicitly assumed when
considering data sets from the ageing tests, which cover the whole SL lifetime.

3.2. Feature selection

When selecting HI among the options available, several aspects should be
taken into account. Accuracy and robustness to ageing are generally sought,
but additional considerations depending on the estimation approach could also
be of interest, such as extraction time in case the test has to be interrupted,
or HI availability when assessing SOH online. Some of these criteria can be
analysed in advance from ageing tests, as described in Fig. 2.

The accuracy of a specific HI can be, for example, quantified by means
of Pearson Correlation Coefficient (PCC). Based on the covariance (COV ) of
two variables A and B, PCC allows to evaluate their correlation, according to
Eq. (5):

PCCA,B =
COV (A,B)

σAσB
(5)

with σA as the standard deviation of A and σB as the standard deviation of
B. PCC varies from [-1,1], with 1 meaning a perfect positive correlation and -1
a perfect negative correlation.

If assessed during lifetime, PCC allows also to determine the robustness of
HI to ageing. Hence, the proposed SOH estimation method considers the com-
putation of PCC in the calendar and cycling ageing tests, as Fig. 2 shows, so
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that a first selection criteria is obtained.

On the other hand, depending on the estimation approach in real profiles
different aspects should be considered. If offline estimation is targeted, normal
operation of the battery is interrupted to extract HIs. The duration of this
pause should be minimized in order to decrease its impact in performance, and
therefore extraction time is also a parameter of interest in this case, as pictured
in Fig. 2.

3.3. SOH model

Once the HI is selected, it is related to the overall capacity of the cell by
means of a SOH estimation model. In the choice of the specific SOH estimation
algorithm, several aspects could be discussed, such as accuracy, implementation
easiness, computational complexity or data set requirements [17]. Although Li-
ion battery ageing is in general a complex process, some HIs and SOH show an
approximately linear relationship, which can be captured by algorithms such as
linear regression (LR). This approach allows to ease modelling and mathemat-
ical procedures, and it will be used in this contribution. In order to consider
possible non-linearities, Support Vector Regression with Radial Basis kernel
(SVR-RBF) will also be applied.

To train and test the SOH model, a cross-validation procedure is followed,
so that the robustness of the model is enhanced. When it comes to data pre-
diction, if the RMSE from the training set was selected to assess the expected
prediction error, the goodness of the model would be overestimated. Therefore,
a separate validation set is drawn from the same population as the training
set, without being used for parameter estimation. The model is tested in this
remaining fold, quantifying its accuracy. This procedure is repeated k times,
being k the number of folds equally sized in which the initial data is divided.
The cross-validation error is then computed as the average of the k testing er-
rors, and the final parameters values are also computed from the average of the
k training models.

As Fig. 2 shows, the SOH estimation model is obtained from the cycling
and calendar ageing tests. Then, this model is used when assessing SOH in real
profiles.

The accuracy of SOH and estimation will be evaluated by means of root
mean square error and maximum absolute error, computed according to Eq. (6)
and (7) respectively.

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(6)
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MaxAE(%) = max

(
|SOHi − ˆSOHi|

SOHi

)
· 100 (7)

being Y the measured value, Ŷ the estimation and n the size of the sample.

4. Case studies

Two SL real profiles are assessed in this contribution: a residential household
with PV generation and a fast charge station for an electric bus. In both cases,
data from real operating conditions are used. This section describes the original
scenarios and the energy management strategies implemented. Both case studies
are simulated and adapted to cell testing levels by energy scaling, as described
in Section 2.2.2.

4.1. Case study 1: residential self-consumption

This scenario focuses on a residential household with PV generation and a
storage system. The energy management strategy of the system aims to max-
imise the self-consumption rate of the house, as well as to reduce the power
contracted from the grid. The real load data is obtained from a household
located near the city of Pamplona (Spain), which has a daily average energy
consumption of 10 kWh and a yearly peak power of 6 kW. The PV installation
provides 4.5 kWp, and real generation measurement are also considered. The
energy storage system of this scenario stands 4 kWh/4 kW.

The energy management strategy of the system has three goals. First, it is
desired to maximise self-consumption. To do so, PV power is used when avail-
able to respond demand. If there is a power excess, battery is charged, and
energy is ultimately delivered to the grid in case the battery is already fully
charged. Second, the contracted power from the grid is intended to be reduced
from 6 kW to 4 kW. Battery operating SOC is thereby restricted to values over
20 %, so that there is a margin to implement the demand peak shaving strat-
egy. Finally, bill lowering is also targeted. Spanish hourly pricing promotes
night consumption, with lower billing. Hence, a night charge is programmed in
order to respond to load demand at the beginning of the day using the battery.
Thereby, this demand is met with grid consumption shifted to the lowest elec-
tricity price range.

Fig. 4a) shows one day of current and voltage profiles evolution measured
on the SL cell tested under the residential profile at a given day as an illustra-
tive example. The real operating conditions have been scaled to cell level, as
explained in Section 2. As can be seen, the typical operation of the cell in the
residential household in a day starts with the night charge (1), followed by a
sequence of charges and discharges consequence of the combination between PV
generation and energy demand of the household (2).
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Figure 4: Cell voltage and current in a) residential profile and b) electric bus charge station
profile.

4.2. Case study 2: electric bus fast charging station

In this case, a fast charging station for electric buses is analysed. The real
installation is located in Pamplona (Spain), from which real operating data is
obtained. The charging station receives 4 buses per hour during daytime, on
working days from Monday to Saturday. The peak power demanded by the
regular charge of the buses is 215 kW, and the stationary energy storage system
stands 80 kWh.

The goal of this energy management strategy is to reduced the amount of
demanded power from the grid by the charging station from 215 kW to 85 kW
by means of a stationary storage system, in such a way that the electricity bill
of the installation is reduced and the reliability of grid operation is enhanced.
The overall performance of the system is as follows: when the station receives
an electric bus, the vehicle is charged with the maximum allowed grid power
(85 kW) and the stationary battery providing the difference required by the
load. On the other hand, if there is no bus, the stationary battery of the station
is charged from the grid with a power value depending on the available time.
This timing depends on the next bus to come to the station, and it is known in
advance from the location sent on real time by the buses. Only when it is not
possible to fully charge the stationary battery of the station with the available
time, maximum power is used. The fast charging station receives buses around
30 % of the operating time. During the remaining 70 % of the operating time,
the stationary battery located in the station is charged from the grid. Further in-
formation of the energy management strategy and its sizing can be found in [35].

Fig. 4b) shows the operating voltage and current profiles of the SL tested
with the EV charge station scenario in an illustrative day. As can be seen,
there is an initial rest during the night (3), corresponding to the lack of buses in
operation. Then, it can be seen how the cell responds to several partial cycles
during the day, as a consequence of the bus traffic on the station (4). As the
figure depicts, there are more charges per day than in the residential household,
given the more dynamic character of this profile.
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5. Results and discussion

5.1. Feature identification and analysis in ageing tests

PCM is applied to the experimental data sets of the cycling and calendar
ageing tests according to the procedure described in Section 3.1.1. As explained
in Section 2.2.2, several ageing conditions are considered, so that robustness
of HIs can be assessed. Fig. 5 presents the different degradation trends of the
cells, obtained from the 86 RPT25 measurements available. As can be seen in
Fig. 5a) the SOH analysed ranges from 91.4 % to 24.5 %, thereby allowing to
assess a very wide SL lifetime range. Moreover, Fig. 5b) shows the different
ageing trends of capacity loss (∆C), defined as the ratio between the actual
capacity and its value at the beginning of the test. For example, the cell aged
with a SOC range from 0 to 100 % had 42.8 % of its initial capacity after cycling
70,770 Ah, while the one between SOC of 50 and 60 % kept 91.6 %. Hence,
comparing ∆C at this point, it was almost seven times greater when cycling
from 0 to 100 % SOC than from 50 to 60 %. In general, higher DOD levels lead
to faster degradation, and it should also be noted the differences between FL
and SL samples, with increased capacity loss in these last. On the other hand,
the cell aged under calendar conditions was stored during 600 days, covering
a SOH range from 72.3 % to 37.4 %. In total, 18 RPT25 were tracked, and
the degradation trend is depicted in Fig. 5c). After 600 days, the cell had kept
51.8 % of its initial capacity, as can be seen in Fig. 5d).

These ageing test results are used as input data for the SOH estimation
model. PCM is applied in such a way that results are sorted based on HI and
all ageing conditions mixed. In order to find an accurate and robust solution,
PCC between HI and SOH is computed for the 45 HIs by means of Eq. 5.
Fig. 6a) shows the results obtained, with the PCC value of the corresponding
HIs. High PCC values mean greater correlation between HI and SOH and age-
ing robustness, and as a result HIs will be sorted in descending order as selection
criteria. As could be expected, HIs with greater voltage range, such as HI 9 or
HI 17, show the best results, given that the measured charge is more similar to
the overall cell capacity.

As HI selection criteria for offline SOH estimation, extraction time is evalu-
ated in the 45 HIs at three SOH levels (91 %, 57 % and 40 %), being the average
results presented in Fig. 6b). As can be seen, in general the higher extraction
times correspond to greater values of PCC. This could be expected, as the more
charge used in the HI, the more time required and the more similar the HI
is to the overall capacity of the cell. It can also be seen how the extraction
time decreases as the cells age, which could be expected given the Ah counting
approached used in PCM. Hence, considering as an example HI 9, the average
values go from 129 minutes required at 91 % of SOH to 44 minutes with SOH
of 40 %. Nevertheless, the extraction time reduction is dependent on the HI,
as for example HI 45 only decreases from 20 to 10 minutes between 91 % and
40 % of SOH. Therefore, a compromise between both accuracy and extraction
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Figure 5: Experimental results of the ageing tests: cycling results in terms of a) SOH mea-
surements with the corresponding total charge throughput, b) capacity loss with total charge
throughput; calendar ageing results in terms of c) SOH measurements with the corresponding
time lapse and d) capacity loss.

time should ideally be found to select HI for offline SOH estimation.

On the other hand, online estimation may require the adjustment of the
extraction conditions. To this end, the adjustment factors FI , FV and FT are
obtained from the ageing test data, as described in Section 3.1.2. As an illus-
trative example, the values of these factors for HI 39 are depicted in Fig. 7. The
evolution of FI , computed at C/3, C/2 and 0.7C at different SOH is presented
in Fig. 7a). As can be seen, FI increases as the cell ages, especially at high
C-rates. This is in good agreement with the impact of internal resistance rise,
which leads to a faster achievement of the voltage limits of the HI and con-
sequently of lower charge extracted in the interval. In addition, other aspects
such as active material reduction and electrode failures also contribute to this
factor increasing as the cell degrades. The generalisation to other C-rates is
carried out by fitting a second-order polynomial between the measurements for
a given SOH (SOHi), as expressed in Eq. 8. The coefficients of the polynomial
expression are then computed for the different SOH levels available, so that the
influence of ageing is considered. The precise values of these coefficients can be
found in the Supplementary material. When it comes to FV and FT, an upward
tendency with ageing is found, as can be seen in Fig. 7b) which is consistent
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Figure 6: a) Pearson correlation coefficient and b) extraction time at different SOH of the 45
HIs.

with the impact of operating conditions as the cell degrades. Therefore, they
will be assessed as a look-up table for each HI depending on the specific SOH,
which can also be found in the Supplementary material.

FI(I, SOH) = a0(SOH) + a1(SOH) · I + a2(SOH) · I2 (8)

5.2. SOH estimation in real profiles

The SOH estimation method described in Section 3 is validated with the
experimental testing of a FL and a SL cell under the real operating profiles
explained in Section 4, i. e. the residential household with PV generation and
energy storage and the fast charging station for electric buses.

5.2.1. Offline

The first estimation approach is validated considering the periodical RPT
measurements in the profiles. For a given HI, the corresponding estimation
model is firstly trained and tested with the cycling and calendar ageing tests,
as explained in Section 3. On a second stage, the RPT25 measurements carried
out in the the profiles allow to obtain the HIs during the test. Considering all
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Figure 7: a) Current factor measured at C/3, C/2 and 0.7C and b) voltage and temperature
factors as a function of SOH in HI 39.

the results obtained in a given profile, HIs are sorted based on their PCC, and
used to validate the corresponding SOH estimation model.

Fig. 8a) and b) show respectively the accuracy results for SOH estimation
in the residential profile and the fast charging station of the top ten HIs in
terms of PCC, sorted in descending order. Both the FL and SL samples are
considered on each case, resulting in 16 and 20 validation points on each profile.
Considering the best algorithm result for each HI, results are slightly better in
the residential profile, with RMSE values ranging from 0.6 % of HI 9 to 2.1 %
of HI 34, whereas the accuracy achieved in the fast charging profile goes from
0.8 % in HI 34 to 2.6 % in HI 1. The best results in terms of MaxAE are 1.2 %
in the residential profile (HI 9) and 2.3 % in the fast charging station (HI 34).

Therefore, a more general insight on the offline estimation results is given in
Fig. 8c), where all the measurements obtained in both profiles are mixed in the
validation. A total of 36 points are thus used. As can be seen, RMSE ranges
from 0.7 % of HI 24 to 2.8 % of HI 1. Considering MaxAE, results vary from
1.6 %, obtained in HI 24 to 8.1 % of HI 1. These differences can be explained
by a combination of their correlation with SOH, quantified from PCC and the
specific algorithm used.

As already mentioned, additional criteria could be desired for HI in offline
SOH estimation, such as extraction time. Fig. 8d) shows the average extraction
time at a SOH level of 57 %, selected as illustrative example, being both profiles
considered. As can be seen, values range from less than 2 minutes in HI 1 to
almost 74 minutes required in HI 9. In general, the greater voltage range of the
HI, the greater the extraction time required, given that Ah counting is used.
When comparing to the overall capacity test times, for this SOH, a total of 464
minutes were required. The reduction of measurement times of the proposed
method compared to capacity tests is therefore clear, with 99.6 % in HI 1 and
84.1 % in HI 9.

Another aspect to consider is the impact of algorithm choice in the SOH
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Figure 8: Validation results of the SOH models under fixed extraction conditions in terms
of RMSE and MaxAE for a) residential profile, b) fast charging station profile and c) both
profiles, d) average measurement and simulation time required at 57 % of SOH and d) example
of model training and validation with all the profile data using HI 24, detailed at high SOH.

estimation model. As shown in Fig. 8c), the best accuracy results no matter of
the profile tested are obtained by means of SVR-RBF with HI 24. To better
illustrate this case, Fig. 8e) shows the training and validation data measured in
HI 24, together with the estimation results from LR and SVR-RBF algorithms.
It can be seen how the correlation between HI and SOH has a different slope in
high SOH values. This change is best captured by SVR-RBF, thereby obtain-
ing the good accuracy results reported. However, it should also be noted that
computational times of SVR-RBF are greater than in the case of LR, as can be
seen in Fig. 8b). For the example proposed, at 57 % of SOH, SVR-RBF requires
around 6 minutes in the HI analysed for model training and testing, while LR
solves the problem in few seconds.
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5.2.2. Online

On the other hand, online estimation in profiles allows not to interfere in
the normal operation of a battery. Given the low change rate of SOH, a weekly
estimation is considered as sufficient. Hence, from the voltage measurements of
the cell in a given week, charges are first selected, with their corresponding start
and end voltages and charging current. An example of the operating voltage
in the residential household and the electric bus charge station during a day is
depicted in Fig. 4. As can be seen in the figure, the voltage profile in the fast
charging station is more dynamic, and the charging starting values are generally
greater.

Then, the voltage ranges are classified according to Table 3 so that the HIs
available are identified. The apparition of HIs depends on the voltage profile,
and therefore not all the examples gathered in the table may be available. Con-
sidering the accuracy and robustness results presented in Fig. 6a), HIs are sorted
based on their PCC, and the best option is firstly targeted. Table 4 resumes
the best three results on each profile using the FL and SL samples. The volt-
age range and PCC of the HI are also shown, together with the maximum and
minimum number of identifications per week of testing. As can be seen, in case
study 1 it is possible to use HIs with lower voltage ranges and resulting higher
PCC than in case study 2, due to the characteristics of the operating profile. It
can be seen though that the number of repetitions of a given HI is lower, as the
voltage profile is less dynamic. Comparing the number of HIs identified in the
FL and SL samples for a given profile, it should be noted that it is greater in
the SL cell. This is a consequence of the degradation state of the cells, as the
internal resistance of SL samples is greater, which result in higher voltage drops.

As explained in Section 3.1.2, it is necessary to adapt the charge measured
in a given HI in terms of current, starting charge voltage and temperature, in
order to avoid the influence of these factors and to compare HI under similar
conditions. SOH estimation models obtained from ageing tests will be also used
in this approach. In sum, considering a given Ah measurement in a HI at a
certain SOHi with current I, charging start voltage VS and at temperature T
(q(I, VS , 45, SOHi)), the input value for the SOH estimation model is obtained
from Eq. 9. It should be highlighted that the extraction conditions of the models
are C/3, full charge and 25 ◦C. The values for FI , FV and FT of the specific
HI are updated based on the previous SOH (SOHi−1), considering the values
gathered in the Supplementary material.

q(C/3, Vmin, 25, SOHi) = q(I, VS , 45, SOHi)·FI(SOHi−1)·FV (SOHi−1)·FT (SOHi−1)
(9)

Therefore, considering the available HIs in the profiles, detailed in Table 4,
and after adjusting the extraction conditions, the SOH estimation models are
validated in the SL operating profile. Fig. 9 shows an example of SOH estima-
tion in the SL samples tested under the residential profile (Fig. 9a) and the fast
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Table 4: HIs available on the real profiles from the experimental testing of the FL and SL
cells, with their voltage ranges, PCC and maximum (Max) and minimum (Min) number of
measurements per week.

Case study Cell HI Voltage range (V) PCC Max Min

1

39 3.95 - 4.15 0.994 5 1

FL 35 3.90 - 4.15 0.993 4 1

34 3.90 - 4.10 0.993 4 1

39 3.95 - 4.15 0.994 8 2

SL 35 3.90 - 4.15 0.993 5 1

34 3.90 - 4.10 0.993 6 1

2

41 4.00 - 4.10 0.955 12 1

FL 40 4.00 - 4.05 0.947 23 1

44 4.00 - 4.15 0.888 33 17

42 4.00 - 4.15 0.997 212 3

SL 41 4.00 - 4.10 0.955 255 4

40 4.00 - 4.05 0.947 262 6

charging station profile (Fig. 9b) during the tests. As can be seen in the figure,
the HI used on each case as input for the models are HI 39 and HI 42 respec-
tively, as a result of the available voltage ranges on each case. The estimation
carried out through SVR is generally more accurate than using LR, as can be
seen especially in Fig. 9b).

Figure 9: Validation results of the SL real profiles, with SOH measured and estimated through
LR and SVR in the SL cells tested under a) the residential profile and b) the fast EV charging
station.

From the estimated values, the error considering the measured SOH was
computed weekly, and the corresponding RMSE and MaxAE for each case study
and sample were obtained. Table 5 shows the accuracy results considering LR
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and SVR in the SL profiles, detailed for each cell tested. The HI used, as well
as the number of weeks and the SOH range covered are also shown. The total
number of weeks available on each profile varies depending on the duration of the
test. Furthermore, some measurement errors were identified during the test, and
as a result the corresponding HIs tracked during these weeks were considered as
outliers. For its part, the HI selected depends on the availability during the test.
For example, in the FL cell aged under the fast charging station profile, HI41
and HI40 showed higher PCC values, as shown in Table 4. However, some weeks
they were only tracked once, and therefore HI44 was considered for estimation
so that the impact of possible measurement errors was diminished.

As can be seen, SOH estimation in the residential case study is achieved
with MaxAE below 3.2 % and RMSE of 1.6 % in the FL cell, while in SL it
improves up to RMSE of 0.9 % and MaxAE of 2.0 %. In both cells, HI 39 was
used as input data for the model. On the other hand, the estimation of SOH
in the fast charge station lead to RMSE below 3.0 % in the FL cell and 1.8 %
in the SL sample. MaxAE achieved were 6.6 % and 4.5 % respectively. The
accuracy of this case study is determined by the HI available in the profile, as
both HI 42 and HI 44 showed worse PCC than HI 39. Moreover, data used to
adjust FV , obtained from the cycling ageing tests, covered a SOH range from
67.3 % to 27.4 %, which hampers the estimation in the FL cells.

Table 5: Results from estimation in profiles under real operating conditions.

Profile Cell Nº weeks SOH (%) HI
RMSE (%) MaxAE (%)

LR SVR LR SVR

Residential
FL 17 91.3 - 78.0 39 1.62 1.63 3.15 3.58

SL 11 67.7 - 31.0 39 0.90 1.24 2.04 2.33

EV charge
station

FL 14 88.2 - 74.9 44 3.01 2.96 6.79 6.65

SL 16 69.3 - 36.0 42 2.52 1.82 5.58 4.47

Comparing between estimation algorithms, it is found that in general they
perform similarly in the residential case study, with slightly greater performance
of LR. However, when it comes to the EV fast charge station case, SVR-RBF
allows a better estimation, especially in the SL sample. As explained in the
offline assessment, this algorithm captures the non-linearity of HI with SOH,
and therefore it may be a good choice when a HI with lower PCC is used.
To have a context with other research contributions that target online SOH
estimation in SL, [24] achieved SOH online estimation with RMSE lower than
1.45 % by ageing under synthetic cycling profiles reused cells from 80 to 45 %
of SOH. From its part, [10] reached errors below 1.52 % estimating SOH in
a retired module aged also under synthetic procedures from 94 % to 62 % of
SOH. The real profiles tested in this contribution, which differ from the model,
together with the wider SOH range covered, encourages the use of this method
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to other operating profiles, given the satisfactory results achieved.

6. Conclusion

This contribution focuses on the SOH estimation in real profiles. To this
end, two promising scenarios for second-life batteries are analysed: residential
self-consumption with PV generation and a fast charging station for an electric
bus. The differences in operating conditions between both profiles allow to have
a general insight on this issue.

Partial charging method is the extraction approach selected for health in-
dicators. Robustness to ageing is assessed by means of cycling and calendar
ageing tests, with a total of 11 different ageing conditions and 13 cells tested.
As a result, a wide SOH range from 91.4 % to 24.5 % is covered, which allows
to evaluate SL lifetime completely. These data are used as input for the SOH
model, while the experimental results of two cells aged under each real profile are
used for validation. As estimation algorithms, LR and SVR-RBF are considered.

SOH estimation is assessed with both offline and online approaches. First,
from periodical RPT in both ageing tests and profiles, HIs are extracted under
similar conditions. Validation results show that it is possible to estimate SOH
in the residential profile with RMSE of 0.6 % and maximum errors of 1.2 %,
while in the fast charging station the RMSE achieved is 0.8 % and the maximum
error is 2.3 %. Time reduction compared to capacity test is 85 % in average con-
sidering the fastest HI. Therefore, accurate and robust HI are proposed, which
allow to decrease testing times significantly.

When it comes to online SOH estimation, the operating conditions of the
profiles are adapted to the RPT, by means of adjustment factors of current, volt-
age and temperature previously defined from the cycling ageing tests. Weekly
assessment results in RMSE below 1.3 % in the residential case study and 3.6 %
in the charging station. Completing the SOH range of adjustment factors is
recommended, as if validation set is within it, RMSE decreases to 1.8 % in this
case study.

Overall, the proposed SOH estimation method allows to assess SL real pro-
files under both offline and online approaches. The resulting reduction of testing
times and procedures contributes to the health assessment of retired EV batter-
ies online in their second use, thereby reinforcing the economic viability of this
market. The analysis of other operating profiles and the extrapolation to other
chemistries are regarded as further lines for this work.
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selection for state of health estimation of second-life lithium-ion batteries
under extended ageing, Journal of Energy Storage 55 (2022) 105366. doi:
https://doi.org/10.1016/j.est.2022.105366.
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