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Abstract 

Cold ironing (CI) is an electrification alternative in the maritime sector used to reduce shipborne 

emissions by switching from fuel to electricity when a ship docks at a port. During the ship’s berthing 

mode of operation, accurately estimating the berthing duration could assist the port operator to 

manage the berth allocation and energy scheduling optimally. However, the involvement of multiple 

input parameters with a large dataset requires a suitable handling method. Thus, this paper proposed 

a data-driven approach for ship berthing forecasting of cold ironing with various models such as 

artificial neural networks, multiple linear regression, random forest, decision tree, and extreme 

gradient boosting. Meanwhile, RMSE and MAE are two main indicators applied to assess forecasting 

accuracy. The simulation-based result shows that the artificial neural network outperforms all other 

models with the lowest error performance of RMSE (3.1343) and MAE (0.2548), suggesting its 

capability to handle nonlinearities in complex forecasting problems of port activity. The high 

accuracy of forecasting output in this study, which is berthing duration contributes to close estimation 

of two info: 1) CI power consumption and 2) departure time of the ship. This information is vital to 

the port operator to be used in the energy management system (EMS) as well as in the berth allocation 

problem (BAP). 
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Nomenclature 

Acronyms/abbreviations MLR Multiple linear regression 

MTLF Medium-term load forecasting 

AI Artificial intelligence MAE Mean absolute error 

ANN Artificial neural network MSE Mean square error 

AIS Automatic identification system RBFNN Radial basis function neural network 

AES All-electric-ship RES Renewable energy source 

BAP Berth allocation problem RF Random forest regression 

BPNN Back-propagation neural network RMSE Root mean square error 

CI Cold ironing R2 Coefficient of determination 

CISF Cold ironing ship berthing forecasting STLF Short-term load forecasting 

CO2 Carbon dioxide VSTLF Very short-term load forecasting 

EMS Energy management system XG 

Boost 

Extreme gradient boosting 

ESS Energy storage system 

ECA Emission control area  

Variables/parameters/sets GBR Gradient boosting regression 

IMO International maritime organization 

KNN K-nearest neighbor regression an MLR coefficient 

KPI Key performance indicator b Scalar parameter of ANN 

LTLF Long-term load  

forecasting 

fk(xi) The function of input k-th of the 

decision tree 

LR Linear regression xi Input samples of ANN 

LSTM Long short-term memory wi Weight elements of ANN 

ML Machine learning �̂�𝑖 The predicted value for XG Boost 

 

1.  Introduction 

Shipborne emissions from maritime transportation contribute to significant climate change, with 

shipping activities accounting for 2.5% of global CO2 emissions [1]. On the other hand, the health 

effects caused by ships’ emissions are considerable. As the alternative, cold ironing (CI) is 

implemented on the shoreside to provide electricity to the ship, replacing the polluted fuel-based 

auxiliary engines. During the idle state (berthing) of the visiting ship at port, some of the onboard 

devices and hoteling loads need the power to be maintained. Thus, only the main propulsion engines 

are turned off, while the auxiliary engines are kept on supplying the essential load, such as lighting, 

communication devices, alarm system, and crew living space. These auxiliaries’ generator mainly 

burns heavy diesel oil and emits hazardous emissions into the atmosphere during their stay [2]. Due 

to the strict sulfur control by IMO and ECA, shore-to-ship power supply or known as CI gaining 
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attention from the port operators and shipping lines to solve the emissions problem during the berthing 

mode of operation. This electrification technology supplies the onboard loads by connecting the ship 

to the shore power system allowing the auxiliary engines to be turned off and preventing emissions 

[3]. Existing installations of the CI infrastructure, such as those at the Port of Gothenburg, Port of 

Los Angeles, and Port of Stockholm, provide insight into the market acceptability of this shore-to-

ship technology [4]. It is estimated to reduce carbon emissions by 800,000 tons if all European ports 

deploy CI facilities [5]. Thus, CI implementation at ports becomes one of the progressive strategies 

toward climate neutrality by 2050 complying with the Paris Agreement's legal convention on climate 

change in 2015 [6].  

Despite its contribution that reducing emissions at the port during the berthing mode of operation, 

the CI system requires a substantial amount of energy from the shore power, putting pressure on the 

main grid [7]. Besides that, the ports’ inadequate electric power supply capacity may limit its potential 

for providing CI services to numerous ships that arrive at the same time. Considering the insufficiency 

of the sole reliance on the utility grid, the concept of a seaport microgrid to satisfy load requirements 

from CI and shoreside activities has emerged. The framework of a typical seaport microgrid for CI is 

illustrated in Fig. 1. 
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Fig. 1.  Seaport microgrid with cold ironing system. (Acronyms: renewable energy sources (RES), energy 

storage system (ESS), energy management system (EMS)) 

 

Microgrid and CI are two of the most prominent maritime electrification techniques showing the 

evolution of energy from diesel to electricity. The well manages coordination between the seaport 

microgrid and CI is essential to ensure the power balance and maximize resource utilization. 

Interruption in power delivery might cause a huge disruption in ports operation and result in 

considerable economical losses for related parties. To prevent any power failure, efficient energy 

management is of vital importance for multifaceted decision-making to maintain a reliable energy 

supply. Furthermore, understanding the load behavior is an essential requirement for the planning and 

operation management of seaport microgrids. However, several factors influence the dynamic load 

of CI in seaport microgrids, necessitating the deployment of advanced forecasting techniques.  

Existing studies on CI forecasting such as in [8], perform the forecasting technique by considering 

the aspect of electricity price as the forecasting output. However, forecasting CI’s electricity price 

only helps the ship owner during the voyage mode of operation for them to decide the best route to 

go for minimal operation cost. None of the available research focuses on the berth terminal itself, 

where CI is allocated and consumed. During the berthing mode of operation at the port terminal, the 

visiting ship is connected to the CI power supply on the shoreside to continuously supply the onboard 

load while waiting for the completion of loading/unloading operations. The berthing duration of the 

ship at the berth terminal during this state is important for better management of CI particularly for 

the port operator to assign the best berth allocation of the incoming ship. It is also crucial for the 

energy-related authorities in the port area to get an accurate estimation for them to face the increased 

energy demand from port activities. This is supported by the recent publication in [9] that integrate 

bilevel port microgrid scheduling incorporating cold ironing and berth allocation problem (BAP). In 

that bilevel’s methodology, both stages (BAP and microgrid’s EMS) require the ship’s berthing 

duration information. However, due to the lack of technique to acquire the info, the data used is only 

based on observation and assumption. This research gap highlighted the significance of ship berthing 

forecasting in port EMS.  

It is to be noted that demand for better management in cold ironing’s operation is strongly related 

to the behavior of its main consumer, which is ship transportation. The berthing duration of the 

incoming ship is a crucial aspect, as a longer stay at the port consumes more energy from CI and may 

cause traffic congestion as well as prolonged waiting times for other ships. Duration of berthing also 

can provide a projection of how much pollution can be prevented with the help of CI electrification. 
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From this perspective, this paper aims to forecast the berthing duration of the ship at the port terminal. 

However, accurately estimating the ship’s berthing duration is a challenging task as it is reliant on 

several factors. Understanding all the possibilities of ship-related factors is beneficial for formulating 

a good forecasting algorithm with the lowest error deviation. Among possible associated parameters 

are the type of the visiting ship, the frequency of calls per ship type, the capacity of the ship, the hour 

of arrival, the size of the ship, and the ship’s mode of operation. This initial assumption for the input-

output relationship in forecasting needs verification to clarify the logic behind all the initial 

assumptions. The main issue is a huge quantity of data and varying data for each category make it a 

complex process for accurate forecasting without appropriate approaches. Thus, data-driven 

integration is needed as it is capable to extract meaningful insights (e.g. patterns, complex relations, 

correlation variables) over huge quantities of data and generate novel outcomes with the help of 

artificial intelligence (AI). Yet, some studies are still considering non-data-driven due to the 

requirement for human resources, such as, [10], manually splitting the engine loads into five unique 

operating circumstances to execute normalized value. The drawbacks of human interference in the 

process are time-consuming and increased risk of human error during prediction [11]. With the arising 

concern mentioned above, the objective of this study is to forecast ship berthing duration for cold 

ironing by incorporating a data-driven approach to achieve the lowest error performance.  

Accordingly, this paper presents a data-driven based for cold ironing ship berthing forecasting 

(CISF) with the following contributions: 

1) This paper focuses mainly on a forecasting technique for CI systems at the berth terminal during 

a ship’s berthing mode of operation, in contrast to existing research works that incorporate a 

forecasting module as a minor component in their framework model due to CI's indirect 

engagement with other applications, which is ship’s voyage scheduling. 

2) To address the uncertain number of influence factors that affect CI, this paper provides insight 

into the correlation between potential inputs and their effect on the expected output. This input-

output formulation is significant to capture the vital trend and create a high-accuracy forecasting 

model that is capable to predict future activities and suggesting necessary action in advance for 

optimal outcomes.  

3) Several data-driven forecasting methods were applied namely, artificial neural network (ANN), 

multiple linear regression (MLR), decision tree, random forest, and extreme gradient boosting (XG 

Boost). The performance analysis of these comparative methods will provide the best forecasting 

model for CISF with minimum error. 
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The rest of this paper is structured as follows. In section 2, the related research literature is presented. 

Section 3 is dedicated to describing the forecasting methodology including data pre-processing, 

correlation analysis between variables, and algorithms used in the data-driven model. Meanwhile, 

section 4 analyzed the forecasting performance for each algorithm and the finding from the simulation 

result is discussed in section 5. Finally, the significant findings of the paper are summarized in Section 

6. 

 

2. Literature review 

Many forecasting studies in the maritime sector have been performed on various applications with 

different methods including data-driven strategy. Data-driven is the powerful method of statistical 

pattern recognition paradigm from a set of data and generates high accuracy forecasting output [12]. 

Research publication from [13] implements data-driven machine learning (ML) to predict the fuel 

consumption of the ship. A set of data is trained with different ML methods including bayesian ridge, 

kernel ridge, multiple linear, and ridge regressions. An algorithm with the lowest error performance 

is used for the future forecasting of fuel consumption.  

In the case of CI, an all-electric ship (AES) is among its main consumers. A few research studies 

conduct a forecasting technique that involves CI and AES cooperation. This electrification of the ship 

generally utilized an energy storage system (ESS) to minimize both costs of operation and emission 

[14]. The ESS of the AES can be charged by using the CI facility when the ship docks at the port. 

Due to this, [15] performed the ship propulsion load forecasting with two inputs (sea state and 

distance path of the ship) to manage the ship’s route and speed with the help of CI. The ship’s load 

deviation from the forecasting output is then sub to available units of the generators/CI/ESS. This 

robust optimization technique is to ensure efficiency in AES’s energy management and provides 

optimal voyage scheduling. In comparison, despite performing an uncertainty analysis on the ship’s 

load, Zhao et al. [8] on the other hand evaluate the impact of the CI on the voyage and generation 

scheduling under stochastic CI electricity prices at a different port. More specifically, information on 

the CI electricity will assist the AES control administrator to determine the best berthing location and 

time for charging the ESS with economical practices.  

Wen S et al. [16] integrate a deep learning-based forecasting technique with four different methods 

(BPNN/RBFNN/Elman NN/LSTM) to predict day-ahead electricity prices at three different ports 

with a 12-month dataset considering different factors including various seasons, working days, and 

holidays. The simulation result shows that with the help of CI electricity price estimation, scheduling 
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the AES when the price is relatively low can greatly reduce the operational cost, sailing time, and 

emissions. Besides, some of the research studies utilize shore electricity price forecasting for the berth 

allocation problem (BAP) to minimize the total handling time, ship waiting time, and operational cost 

[9]. BAP case study in [17] integrates the synergy between seaport microgrid and CI where problem 

formulation involves shore electricity price. Meanwhile, considering the volatile nature of the 

renewable energy sources (RES) generation in port microgrids, Conte F et al. [18] use forecasting to 

estimate the RES production and compensate for the forecasting error to the available ESS. The 

compensation is applied when the forecast value exceeds the actual generation of RES, the error 

deviation is corrected by discharging energy from ESS. Similarly, when the forecasting value is less 

than the actual generation of RES, the error deviation is resolved by storing the excessive generation 

into the battery. Reliability of the generation sources from the port microgrid is significant to 

providing sustainable supply to the CI facilities, ensuring a smooth operation at the port terminal. 

Table 1 shows other research publications related to the CI case study that executes forecasting 

techniques. 

Table 1   

Forecasting strategy in the cold ironing case study. 

Year/citation Method Input data Output forecasting 

2022 [8] Not available Not available Electricity price 

2022 [9]  Not available Not available -Fix and critical ship’s 

load 

-Renewable energy 

source (RES) 

2021 [19]  Deep learning -24 hours electricity 

prices 

-Load demand 

Electricity price 

2021 [20]  -Environmental and 

Protection 

Agency (EPA) formula 

-The monitoring, 

Reporting, and 

Verification (MRV) 

formula 

-Different types of the 

ships 

-Load factor while 

hoteling 

-Auxiliary to main 

engine ratio 

Load of the ship 

2021 [21]  Feed-forward Artificial -Hourly load Load profile 
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Neural Network 

(ANN) 

-Day lagged load 

-Week lagged load 

2020 [22]  -Gradient Boosting 

Regression (GBR) 

-Random Forest 

Regression (RF) 

-BP Network (BP) 

-Linear Regression (LR)  

-K-Nearest Neighbor 

Regression (KNN)  

-Net tonnage 

-Deadweight tonnage 

-Actual weight  

-Efficiency of facilities 

Load of the ship 

 

Even though there have been several studies on the forecasting strategies associated with CI 

application, which are listed in Table 1, none of it solely focuses on the CI system itself. Mostly due 

to the indirect involvement of the CI and its implications for other maritime applications, particularly 

in the case of voyage schedules. However, it is only beneficial to the ship owner for decision-making 

during voyage mode of operation. In addition, the forecasting technique presented in the research 

publication is not mentioned in detail and no further discussion on forecasting part. Meanwhile, the 

CI system is located and consumed at the port terminal suggesting that action during the berthing 

mode of operation cannot be ignored. A suitable berth station with an adequate CI's power capacity 

must be assigned to the incoming ship as soon as it enters port. It is thus important to forecast ship 

berthing duration for further implementation in port management affairs. The following subsection 

describes the detailed methodology used for the CISF: 

3. Methodology 

3.1.  Problem description 

In this subsection, the forecasting models of the CISF are explained. All the forecasting models 

were executed by using Spider (Phyton 3.9) and Matlab interface. The model is expected to be capable 

of imitating the volatile behavior of the ship’s berthing duration with minimum error based on several 

variables. Forecasting berthing duration is beneficial to the CI’s terminal operator in two ways, 

whereas the forecasting data can be used to estimate the ship’s departure time and CI power 

consumption. Thus, any necessary action can be planned to improve ship management at the port and 

prevent unwanted event. Fig. 2. illustrates the forecasting model in the case of CISF. 
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Berthing duration has a significant impact on CI applications as it implies longer berthing hours 

consuming higher shoreside power. Identifying CI power consumption in advance gives the 

advantage to the port in scheduling the generation with economical practices. Hein K et al. [23] carry 

out day-ahead operation planning in a seaport microgrid for scheduling low-cost clean energy and 

incorporating CI to optimize port performance. The formulation to estimate the power demand of 

berthed ships by using departure time and the influence of berthing hour on CI consumption is 

explained in [24]. Besides, estimation of the ship’s departure time from CISF is necessary for optimal 

management of ship allocation to avoid traffic congestion, longer waiting time, and minimizing the 

handling duration at the terminal. Ship waiting time issues and their problem formulation with a 

different approach are discussed in [25][26][27]. Meanwhile, [28][29] formulate ‘expected departure 

ship’ as one of the important data in the BAP-solving mathematical algorithm. The proposed approach 

assists the port operator in determining the best berthing time, berthing location, and quay/yard 

equipment allocation for the arriving ship. Low accuracy of ship departure prediction could impact 

negatively on port efficiency. Thus, the CISF model with high precision assists minimal error in the 

estimation of CI consumption and ship departure time, necessitating the deployment of forecasting 

techniques as described in the following subtopic.  

 

 

Fig. 2. CISF forecasting inputs and output. 
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3.2.  Data pre-processing 

The maritime dataset for the CISF case study is obtained from Port of Aalborg’s ship tracking 

[30]. Fig. 3. shows the pattern of ship arrival at Port of Aalborg for the one-year duration from 

February 2021 until Jan 2022. There are different types of visiting ships, and the frequency of arrivals 

spikes during the summer season, especially for leisure boats. However, CISF only considers cargo 

and tanker as they consume long berthing hours, have a huge size, and make regular port calls. 

Prousalidis J et al. [31] emphasize that CI is most advantageous when applied to ships that visit the 

same port frequently. In these cases, cargo and tanker have a great potential for CI implementation 

due to their consistency of ship calling throughout the year because their supplies must be delivered 

regardless of the seasons. Fig. 3 shows the ship frequency arrival at Port of Aalborg for all types of 

ships in a one-year duration.  

 

Fig. 3. Ship frequency arrival at Port of Aalborg in one-year duration. 

Apart from the type of the ship, a nonlinear relationship is detected between the varying number 

of arrivals and departures of ships per hour, ships berthing duration, and power demand per ship as 

shown in Fig. 4.  Each of these aspects stimulates changes in the shore-to-ship power consumption 

resulting in a dynamic load behavior. Thus, considering these factors is necessary to ensure that the 

training module can imitate the desired output with minimal error. Also, the different mode of ship 

operation such as loading/unloading, maintenance, or transit, has a substantial influence on the 

berthing duration. Each mode of operation consumes a different berthing duration where 

loading/unloading activities require a longer berthing time compared to the ship’s maintenance and 

transit activities. 
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Fig. 4.  Relationship between the number of ship’s arrival/departure at each hour, berthing hours, and cold 

ironing consumption. 

Another important step in load forecasting is to identify an appropriate time horizon before 

selecting a load forecasting model. The choice is also influenced by the forecasting application and 

purpose. It can be divided into four different types of time horizons as follows [32][33]: 

1) Very short-term load forecasting (VSTLF) - A few seconds to several minutes. 

2) Short-term load forecasting (STLF) - An hour to one week. 

3) Medium-term load forecasting (MTLF) - A week to one year. 

4) Long-term load forecasting (LTLF) - More than one year.  

The time horizon used in the CISF training module is medium-term duration by using a month 

dataset where 𝑡 ∈ 1,2,3 … 672 (ℎ). Considering the ship-berthing nature that varies from a few hours 

to a few days, 672 hours timeframe is ideal for observing the pattern of CISF. The dataset has several 

input parameters (time of arrival, type of the ship, size of the ship, mode of operation, ship index 

capacity) and berthing duration is the output parameter, all of which are statistically examined as 

summarized in Table 2. The statistical analysis is used in the data cleaning process to detect the 

redundancies, outliers, null values, and missing data that might hinder the training progression. Fig. 

5. illustrates the overall process of CISF model development.  
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Table 2 

Statistical variables of the data set. 

 Arrival 

time 

(a.m/p.m) 

Cargo 

arrival 

Tanker 

arrival 

Cargo 

size 

(m2) 

Tanker 

size 

(m2) 

Cargo 

mode of 

operation 

Tanker 

mode of 

operation 

Cargo 

index 

capacity 

Tanker 

index 

capacity 

Cargo 

berthing 

(h) 

Tanker 

berthing 

(h) 

Count 672 672 672 672 672 672 672 672 672 672 672 

Mean 11.5 0.079 0.03 118.26 39.63 0.077 0.013 8.444 5.01 2.8476 0.311 

Std 6.93 0.27 0.17 498.06 544.63 0.27 0.12 59.41 65.72 15.84 2.58 

Min 0 0 0 0 0 0 0 0 0 0 0 

Max 23 1 1 5510 13152 1 1 1056 1644 264 37 

 

 

Fig. 5. CISF flow chart. 
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3.3.  Correlation analysis 

The relationship between any two variables can be assessed by using correlation analysis. Fig. 6. 

shows the mapping of Pearson correlation between input-output variables in CISF. It indicates true 

correlation exists between variables when the coefficient approaches one. Fig. 7. provides a more 

detailed statistical analysis of the association between variables including; 

• Time of arrival 

• Type of the ship 

• Size of the ship 

• Mode of operation 

• Index capacity 

• Berthing duration 

It can be observed that higher index capacity and late arrival time result in increasing the berthing 

duration. Furthermore, a linear relationship is formed between the size of the ship and the berthing 

hour. 
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Fig. 6. Pearson correlation matrix of the CISF dataset. 
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Fig. 7. The pair plot diagram of the dataset. 

3.4.  Model algorithm 

3.4.1.  Artificial Neural Network 

ANN is among the artificial intelligence (AI) techniques that have received extensive attention and 

are regarded as one of the most powerful computational tools ever developed [34]. A neural network 

is a structural system made up of three layers: an input layer, a hidden layer, and an output layer [35]. 

Meanwhile, deep learning system architectures consist of more than one hidden layer [36]. They have 

the ability to model and process nonlinear input-output relationships by analyzing historical data [37]. 
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They can also handle large and complex systems with multiple parameters, which makes them 

suitable for solving the CISF problem. One of the major concerns of these techniques is the issue of 

over-fitting, which particularly arises from the need for a large number of layers for precise output 

prediction [32]. There are n input samples denoted as x = [x1, x2, …, xn] which are assigned to the 

corresponding weights of w1 to wn and the biases vector of b. Weight elements of wi and b are scalar 

parameters that can be adjusted. The central idea underneath a neural network is that such parameters 

can be tuned to have the desired results in the output. These inputs are directed through the m hidden 

layers. Therefore, the net output function is calculated as: 

𝑦 = ∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1 + 𝑏                        (1)  

In this proposed method, ANN networks are designed with 10 number of hidden layers feeding 

with 9 inputs as illustrated in Fig. 8. As for the algorithm, Levenberg–Marquardt (LM) 

backpropagation is employed for training the network. Levenberg–Marquardt is the fastest 

algorithm that takes less computational time to train the model [33].   

 

     Fig. 8. Proposed ANN structure. 
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3.4.2.  Multiple Linear Regression 

Multiple linear regression (MLR) is a statistical technique that uses to investigate the relationship 

between two or more variables [38]. Equation (2) is used for MLR: 

𝑦 = 𝑎0 + 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛                    (2)

  

where 𝑎0, 𝑎1, … , 𝑎𝑛 are coefficients, y is the dependent variable, and 𝑥1, 𝑥2, … , 𝑥𝑛 are independent 

variables. In this method,  𝑎𝑛 (coefficients) are calculated as; 

𝑎𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑎)

(∑ (𝑦𝑖−𝑎0−∑ 𝑎𝑗𝑥𝑖𝑗
𝑛
𝑗=1 )

2
𝑛
𝑖=1 )

                   (3) 

 

3.4.3.  Decision Tree 

Decision Tree is a decision-making tool that works with both continuous and categorical variables 

and uses a flowchart-like tree structure. Mean square error is used to form the dividing sub-node in 

most cases. The branches represent either the conditions (decision nodes) or the outcome (end nodes). 

 

3.4.4.  Random Forest 

The random forest builds numerous subgroup decision trees from the dataset. Then, for each 

subgroup, a new tree is formed, and the process is repeated until the final prediction is made [39]. 

Each tree's predictions are collected, and the total value is averaged. 

 

3.4.5.  Extreme Gradient Boosting  

Machine learning algorithms called extreme gradient boosting (XG Boost) can be used to solve 

regression predictive modeling problems. It is based on the concept of staging the forecast, with the 

second stage focusing on minimizing the previous stage's inaccuracy. The main goal is to acquire the 

desired result with the least amount of error possible for the entire dataset. The XG Boost model is 

derived from equation (4) [40]. 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹𝐾
𝑘=1                     (4) 

where k is the number of decision-tree, 𝑓𝑘(𝑥𝑖) is the function of input in k-th decision-tree, �̂�𝑖 is the 

predicted value.  

3.5.  Performance indicator 

The performance and accuracy of the forecasting model can be measured by using the forecast’s 

key performance indicators (KPI). The most commonly used KPIs are mean absolute error (MAE), 
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mean square error (MSE), Root Mean Square Error (RMSE), and coefficient of determination (R2) 

[41], [42]. The formulations of the KPIs are given below: 

MAE =
1

𝑛
∑ |𝑦 − 𝑦′|𝑛

𝑛=1                        (5) 

MSE =
1

𝑛
∑ (𝑦 − 𝑦′)2𝑛

𝑛=1
                               (6)                              

RMSE = √
1

𝑛
∑ (𝑦 − 𝑦′)2𝑛

𝑛=1                       (7)

        

𝑅2 = 1 −
∑ (𝑦−𝑦′)2𝑛

𝑛=1

∑ (𝑦−𝑘)2𝑛
𝑛=1

                       (8)

       

where n is the number of data samples, y is the actual desired value, y’ is the predicted value, and k is 

the mean of the actual value. 

 

4.  Simulation result 

The main objective of the proposed training module is to get the target value as close as possible 

to the actual output. Simulation by using multiple methods attempts to find the algorithm that 

performs the best on the dataset for the CISF case study. A forecasting model with minimum error 

represents the high accuracy of the prediction and is capable to provide a trustworthy outcome for the 

new data. Fig. 9. shows the comparative result of the forecasting value versus the actual value from 

all proposed methods which are, ANN, MLR, random forest, XG Boost, and decision tree. The red 

dots on the graph represent the actual berthing duration of the ship, while the other colors represent 

the prediction output generated from different methods. ANN and decision tree successfully imitate 

the actual berthing duration from most of the ship’s data sample with negligible error and are ready 

to be used for forecasting. Meanwhile, it can be observed that MLR prediction is far from the actual 

value in all data samples. In the remaining techniques, a substantial proportion of the output is close 

to the real value, while some of the targets are distant from the actual value. 
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Fig. 9. Comparison CISF of the actual and prediction value for all methods. 

To measure the performance validity, a few validation features are analyzed. Table 3 summarizes 

the accuracy level for each algorithm by using RMSE, MAE, and R2. Given the average value of 

these indicators, the ANN model has the lowest error of RMSE and MAE with 3.1343 and 0.2548, 

respectively. On the other hand, random forest and decision tree also show a good performance with 

the error measurement slightly higher than ANN. Meanwhile, the MLR technique has worse 

performance with the highest error validation, 55.43, 2.0825, and 11.51% for RMSE, MAE, and R2. 

This could be due to its nature to model the relationship between a continuous response variable. 

However, data input in CISF is more complex with a mix of the continuous, binary number, and 

categorical variables. In addition, a nonlinear relationship is detected between the input parameters 

and output parameters as illustrated in Fig. 4., which results in a dynamic pattern of berthing duration 

for each visiting ship. ANN framework allows the model to learn deep dimensions from the input and 

has the advantage of having higher accuracy in the prediction that is driven by another external 

uncertainty and involves disturbance. Because of these strengths, ANN outperforms other algorithms 

and becomes a good model for CISF in the first place. Nevertheless, these conclusions are not general 

and in other applications, the other model might show better performance.  
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Table 3 

The error performance of the forecasting approaches. 

Algorithm Type of error 

RMSE R2 (%) MAE 

ANN 3.1343 98.64 0.2548 

MLR 55.434 11.51 2.0825 

Random Forest 5.5473 91.14 0.3346 

XG Boost 9.2918 85.16 0.3661 

Decision tree 3.9369 93.71 0.2972 

 

Since ANN is selected for the best approaches in the case of CISF, the final evaluation of the 

detailed regression performance is necessary. Fig. 10. shows the regression values for training, 

validation, and testing of the CISF data set. The findings reveal that ANN’s overall performance in 

training, validation, and test is 0.98875, 0.94256, and 0.97383 respectively. Given the average value 

of 98.644% for overall performance suggest that the model is good for forecasting. As the training 

run, the error must decrease as much as possible, and training can keep continuing.  In the case of 

ANN, the MSE is decreasing along with epochs, and training stop at epoch 89 with 95 iterations. 

Forcing the training data to keep running on that zone might cause to overfitting problem. 
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Fig. 10. ANN performance for training, test, validation, and overall. 

The final training module with the lowest error performance can be used to forecast a new dataset. 

Fig. 11. shows the forecasting result from two different types of ships, which are cargo and tanker by 

using the ANN training module. It shows that most of the ships calling frequency at the port 

successfully imitates the actual value of berthing duration. It suggests that selected input variables 

are strongly related to the varying pattern of berthing duration for each visiting ship. The highest error 

performance in the case of cargo CISF is 40% meanwhile the highest error forecasting for tanker 

CISF is 38%, which might be caused by null variables that hinder the target output. In addition, the 

forecasting capability of data-driven models essentially depends on the quality of data trained. A large 

error deviation might occur at the region where the parameter’s value changes sharply.  
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Fig. 11. CISF for different types of ships by using ANN. 

5.  Discussion 

The selection input variable in this case study is based on a different perspective and may influence 

the berthing period in a different aspect. For instance, different type of ships has different 

characteristic, function, and requirement to fulfill. One of the great challenges to getting an accurate 

output is related to the uncertainty variables. The traffic of the ship calling at the port can suddenly 

change. It is undeniable that the port has the ship’s arrival information in advance with the help of an 

automatic identification system (AIS). However, there is the possibility of the sudden change in 

arrival tentative due to uncontrol events caused by weather conditions, technical problems, and 

special control requests for the fast arrival of the ship. This uncontrol event may result in a delay or 

early arrival to the port compared to the actual planning time arrival. Hour of arrival also varies the 

berthing period in which arrival at peak time might cause a longer waiting time to the ship in que 

while arriving late at night will acquire long handling operation due to the lack of manpower. Another 

aspect in consideration is the varying size of the ship. The bigger size of the ships is capable to carry 

a larger capacity of goods hence consuming more time for loading and unloading activities. However, 

some of the datasets suggest that the big size of ship berthing in a short duration. In this sense, it 

might relate to the ship’s mode of operation whereas loading/unloading activities, transit, refueling, 

and visiting port for maintenance consume different berthing hours depending on the mode of 

operation. Regardless of the multiple input parameters, most of the calling ships at the port can imitate 

the actual value of berthing duration with minimal error. One of the novelties in this study is by 

demonstrating the high correlation between chosen input variables to the varying pattern of berthing 

duration for each visiting ship. 
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The above-mentioned input-output relationship with a large and different number of datasets leads 

to the complexity of the forecasting process. To solve this issue, the integration of advanced 

forecasting techniques such as a data-driven approach can efficiently process the huge quantity of 

data, capture the correlation pattern, and draw an accurate conclusion. It is proven in this study 

whereby, out of five data-driven algorithms, four of them (ANN, random forest, XG Boost, and 

decision tree) showed good performance with ANN outperforming the others. In comparison to one 

of the available research studies in [20] that estimates port power demand for cold ironing application 

by using a non-data-driven method, which is environmental and protection agency (EPA)-based. This 

EPA method is based on mathematical formulation where several parameters need to be calculated 

manually. This method is beneficial when detailed measured data are not available, and thus can be 

calculated with the provided mathematical formula. Despite the promising result shown in the 

analysis, this approach is not suitable for forecasting problems with a large volume of datasets such 

as ship berthing forecasting. It will be time-consuming and have a high possibility for human error 

during calculation. In this case, data-driven is a quicker and more effective solution in clustering, 

classifying, and interpreting the given input data for high accuracy output. The comparative numerical 

results in this paper with a different model of data-driven is to find the best forecasting model for ship 

berthing duration problems. This illustrates the aim of this paper on how to take advantage of using 

data-driven for real port forecasting problems. 

Forecasting output in this study which is ship berthing duration indicating the duration of the ship 

will be at the port, the amount of CI’s power needed, and the amount of emission that can be 

prevented. Moreover, accurately forecasting the berthing duration has implications for other port 

control such as EMS and BAP. This can be explained by berthing duration will give information on 

the expected departure of the ship. The port operator uses the data as an input in the optimization 

algorithm to optimally allocate the incoming and awaiting ship to suitable berth allocation, namely 

BAP. Thus, the ship owner can reduce the waiting time at the port and get assigned to a berth terminal 

with an adequate CI capacity suitable to their ship’s power requirement. On the other hand, the 

duration of berthing also suggests how much power is needed for the berthed ship. This information 

will help energy authorities at the port to efficiently manage the EMS. The outcome from the CISF 

is not only beneficial to the port operator but also to the ship owner. In the existing research study 

such as in [8] and [19], both of them performed forecasted electricity price of the CI at a different 

port. This forecasting info assists ship owners to select the optimal voyage route to minimize the 

operation cost and navigation time by scheduling the ship to the nearest port when the CI electricity 
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price is relatively low. However, it is useful for the ship owner only during the voyage mode of 

operation. None of the existing research performs forecasting techniques at the port terminal where 

the CI system is allocated. They ignore the need for forecasting when CI is practically consumed 

which is during the berthing mode of operation. Additionally, the available CI forecasting study is 

only beneficial for decision-making from the ship owner’s perspective and neglects the port 

operator’s viewpoint. Thus, this CISF fulfills this research gap by providing forecasting output of CI 

during berthing mode of operation and is useful for both parties, ship owner and port operator. 

6. Conclusion 

CISF is one of the important frameworks for port operators, especially in management affairs. In 

this paper, a data-driven approach for CISF has been proposed and validated by simulation. In the 

first stage, statistical analysis is examined and performing cleaning process that detects the null values 

and outliers. Since the berthing duration of the ship is associated with a lot of factors, correlation 

analysis between potential inputs helps to validate the true correlation of the chosen input for CISF. 

The refined data is then fed to the five different models namely, ANN, MLR, random forest, XG 

Boost, and decision tree. The results of simulations reveal that ANN, random forest, XG Boost, and 

decision three show a good performance with RMSE 3.1343, 5.5473, 9.2918, and 3.9369 respectively. 

This suggests that ANN has the highest accuracy and lowest error performance of all forecasting 

models, thus becoming the best forecasting model for CIFS. The finding from the numerical result 

not only proves that the data-driven approach is applicable for the case of CISF, but also demonstrates 

the strong relationship between selected input variables toward forecasting output. As a limitation of 

the proposed method, it requires substantial amounts of data during the training process to ensure 

they are trained with high accuracy and imitate the real value as close as possible. However, obtaining 

a large quantity of data may not always be practical. To mitigate this problem, new approaches 

trainable with limited data should be developed.  
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