

Aalborg Universitet

Agile software development and UX design

A case study of integration by mutual adjustment

Persson, John Stouby; Bruun, Anders; Lárusdóttir, Marta Kristín; Nielsen, Peter Axel

Published in:
Information and Software Technology

DOI (link to publication from Publisher):
10.1016/j.infsof.2022.107059

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Persson, J. S., Bruun, A., Lárusdóttir, M. K., & Nielsen, P. A. (2022). Agile software development and UX
design: A case study of integration by mutual adjustment. Information and Software Technology, 152, [107059].
https://doi.org/10.1016/j.infsof.2022.107059

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1016/j.infsof.2022.107059
https://vbn.aau.dk/en/publications/92820967-d024-446a-884f-7896ba60dc6e
https://doi.org/10.1016/j.infsof.2022.107059

Information and Software Technology 152 (2022) 107059

Available online 27 August 2022
0950-5849/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Agile software development and UX design: A case study of integration by
mutual adjustment

John Stouby Persson a, Anders Bruun a,*, Marta Kristín Lárusdóttir b, Peter Axel Nielsen a

a Department of Computer Science, Aalborg University, Denmark
b Department of Computer Science, Reykjavik University, Iceland

A B S T R A C T

Context: Agility is an overarching ideal for empirically-driven software development processes that embrace change in order to improve quality, economy, and
simplicity. While the pursuit of Agility has held prominence in software practice and research for over two decades, user experience (UX) designers struggle to
integrate their work processes with agile software development.
Objective: As empirical processes are constantly evolving, so is this integration struggle for UX designers. We, therefore, present an industrial case study of how a
Danish software company integrates UX design and agile software development.
Method: We conducted a case study involving (a) one iteration of individual interviews with 10 employees (four UX designers, three software developers, two project
managers, and one solution architect) and (b) a follow-up iteration consisting of a workshop with 6 employees (three UX designers, two solution architects, and one
project manager) two years later. We analyzed how the company’s approach to integration with ’upfront design’ and ’work in parallel’ involve mutual adjustments as
opposed to assimilation or separation of UX design and software development.
Results: Our analysis shows how integration through mutual adjustments made distinct contributions to UX designers’ and software developers’ pursuit of Agility.
They experienced notably different work processes that still dealt effectively with change and contributed to quality, economy, or simplicity. Nevertheless, as shown
from a follow-up workshop two years after our first interviews, these processes were still susceptible to integration struggles over time.
Conclusion: We conclude that integration based on mutual adjustment potentially makes Agility for UX designers and software developers different and mutually
complementary. This integration contrasts with assimilation, which potentially makes their Agility mutually indistinguishably, and with separation, which makes
their Agility different and mutually competing.

1. Introduction

Making software systems easy to use has increasingly become a
prioritized goal for software development teams over the last three de
cades. Additionally, giving the users good experiences before, during,
and after using software systems has become more acknowledged.
Professionals have specialized in this focus and have many different
roles, like user experience (UX) designer, UX analyst, UX evaluator, and
UX manager [1]. In this paper, we focus on the role of UX designers. To
achieve a good user experience, UX designers struggle with influencing
software developers; and software developers struggle to stay agile
while collaborating with UX designers.

Software developers, for their part, have for more than two decades
been influenced by the Agility of software processes. This concern has
been explicit since the Agile Manifesto [2] appeared in 2001, but Lar
man and Basili [3] trace it back to much earlier. According to the state of
agile survey, the most popular agile development process is Scrum, with
over 80% of participants using that process or some deviations of the

process [4]. Other processes mentioned in the survey are Extreme Pro
gramming and Lean. Initially, agile development processes were rooted
in the software development industry, but lately, agile methodologies
are spreading across a broad range of industries [5,6]. However, the
substantial literature on agile software development does not provide an
unequivocal and standard meaning to the concept of agile processes.

UX designers, who specialize in interaction design and areas
different from the particular programming and technical development,
struggle to integrate their work into agile processes [7,8]. They may see
themselves as "add-ons" to agile development, despite their importance
to the success of software projects [9]. User-centered methods and
techniques such as comprehensive field investigation and thorough user
testing may stand in stark contrast to the quick releases of working code
valued in agile development processes. The sometimes conflicting con
cerns of software developers and UX designers are challenging for
integrating their individual efforts for the success of a shared project. To
better understand how such integration of work processes is carried out
in practice, we present a case study of this integration at a Danish

* Corresponding author.
E-mail address: bruun@cs.aau.dk (A. Bruun).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2022.107059
Received 11 December 2021; Received in revised form 13 June 2022; Accepted 26 August 2022

mailto:bruun@cs.aau.dk
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2022.107059
https://doi.org/10.1016/j.infsof.2022.107059
https://doi.org/10.1016/j.infsof.2022.107059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107059&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 152 (2022) 107059

2

software company to answer the research question:

1.1. How can integrated UX design and software development processes
maintain their agility?

With this case study, we report how integrating software develop
ment and UX design can rely on mutual adjustment with upfront design
and work in parallel. Our analysis, using Conboy’s taxonomy of Agility
[10], shows the distinct contributions to the software developers’ and
UX designers’ Agility from mutual adjustment. However, these contri
butions to Agility, revisited in a follow-up workshop in the software
company two years later, can dwindle with increased separation. With
these insights, our study contributes to the extant research on inte
grating UX design with software development based on a theoretical and
empirical grounded analysis of Agility.

The following Section 2 presents a review of the related literature on
agile software development, UX design, and the concepts of Agility and
integration. Next, Section 3 presents our case study method, including
our choice of the case set in a company with a strong profile in UX design
and agile software development and our data collection from 10 indi
vidual interviews during the first iteration, a second iteration workshop
with 6 participants, and qualitative content analysis. Our findings in
Section 4 are on their upfront design and work in parallel, followed by
insights from a workshop for reflecting on integration. We finally discuss
in Section 5 how our findings contribute to research and practice, fol
lowed by a conclusion in Section 6.

2. Related literature

2.1. Agile software development and UX design

The literature on agile software development processes initially had
little concern for research on organizational Agility [10,11] and UX
design [12]. A theoretical comparison of Scrum and Kanban’s fit for UX
activities shows that Kanban offers more flexibility and therefore fits
better for integrating UX activities into the process [13]. A recent
literature review states that the challenges of integrating UX activities
into Scrum are related to: the insufficient importance assigned to UX
activities in general; insufficient communication between UX designers
and developers; insufficient resources assigned to upfront activities in
Scrum, and customers trying to represent final users without being
aware of their real needs [14]. Another literature review states that the
challenges of integrating UX in agile development include lack of time to
perform upfront-design and tests with real users, power struggle be
tween UX designers and developers, lack of vision for the whole UX
project, difficulty to prioritize UX activities, and lack of documentation
[15]. On the contrary, Da Silva et al. [16], state that currently, there is a
complete understanding in both communities that UX activities need to
be integrated into agile development, and these can not be two separate
processes, but more work is still to be done on the tools that address the
integration of the agile and UX activities.

One approach to integrating UX activities into agile development is
to fit lightweight UX activities into Scrum by using lightweight and in
cremental processes, conducting simplified think-aloud with pair test
users combined with heuristic evaluation [17]. The benefits gained by
that integration included more satisfied users; close understanding of
users and their needs; better collaboration with stakeholders; and im
provements in the development process, including reduced rework.
However, neither Scrum nor Kanban supports UX effectively, and they
refer to customers significantly more often than to users. Moreover,
many processes are tailored to the specifics of development companies,
situations, and conditions [9]; for example, having a customer on site in
the development room is neglected due to the customer’s reluctance to
commit the necessary effort or merely the absence of an identifiable
customer.

Another approach to tailoring an agile process to the integration of

UX activities involves being one iteration ahead by designing the user
interface needed for the next iteration [18]. Customer data are gathered
up front before the coding starts, design is done one sprint ahead, and
user testing is conducted in the next sprint of the coding of that func
tionality. A systematic review suggests to: (a) conduct little design up
front, (b) focus on close collaboration between UX designers and
development experts, and (c) make UX designers work one sprint ahead
of developers [19]. However, balancing the amount of upfront work and
synchronizing between UX designers and software developers is one of
the main challenges for their integration [20]. The lack of focus on us
ability and UX activities in agile software development has attracted
growing research interest [8,12,21]. UX designers may have a broad set
of responsibilities in agile projects, including sales and business devel
opment, which rely on a customer focus rather than a user-centered
focus [1]. The UX designers, among other things, struggle with mak
ing low-fidelity prototypes at the start of the project and gathering
feedback on those, getting collaboration from developers for creating
the design, having too short time within each iteration to exploit
different design options, and too little time to conduct an evaluation
with real users, [22]. Similarly, a lack of collaboration and communi
cation between UX designers and developers was noted by Kuusinen
et al. [23], and a lack of understanding of the business and customer
needs. A case study documents how UX designers constantly need to
justify UX activities and employ salesmanship at the same time to have
customers pay for the UX activities [1]. A more recent approach is to
integrate Lean UX into agile [24–26]. The Lean process complements the
disciplines of agile and UX design with the approach of validated
learning using the Lean UX cycle of build, measure, and learn. They
suggest that user tests are conducted each week to learn from the
feedback gathered from users [24]. Zorzetti et al. [26] conclude that
adopting an approach of LeanUX can bring changes in mindsets, activ
ities, practices, and techniques focusing more on the users. The teams in
the case studies from that paper recognized that using agile methods
alone did not identify whether the right product for users was built but
going through the build-measure-learn cycle added the needed under
standing of the users’ and customers’ goals and needs.

A review by Adeola Wale-Kolade et al. [12] identified seven claims
across the research literature regarding integrating software develop
ment and UX design:

1 Conduct some upfront design activities before project start.
2 Design low-fi prototypes as the basis for developing the system.
3 Perform testing between iterations.
4 Designers and developers work in parallel.
5 Usability designers should be present.
6 Usability designers should be fully integrated into the development

team.
7 End users or their proxies should be involved in the project life cycle

These claims have not escaped criticism. For example, claim 5 should
ensure UX designers are present, but with only a simple presence, the
role may be filled with other personnel. While claim 6 should ensure that
UX design concerns are always present through assimilating UX de
signers into the development team, UX designers may well identify too
closely with the software goals and lose track of UX activities and con
cerns [27]. There are many other rebuttals to these seven claims,
showing that the integration of UX activities with agile development is
not simple and that matching several concerns is necessary [12].

2.2. Theoretical framing of agility and integration

Researchers and practitioners ascribing the Agility of a software
project to the use of a particular process such as Scrum or Kanban may
exacerbate the difficulty of integrating software development and UX
design. A team may use a process labeled "Agile" in a way that does not
create flexibility, leanness, and adaptability [10]. We see Agility as

J.S. Persson et al.

Information and Software Technology 152 (2022) 107059

3

referring to software developers’ and UX designers’ effectiveness in
dealing with the inevitable changes that affect the success of a software
project. Here, we apply a general understanding of Agility, not tied to a
specific process, based on Kieran Conboy’s systematic literature review
of the concept of Agility across different disciplines [10]. Conboy pro
poses the following definition of Agility, which emphasizes the core
principles of embracing change and providing customer value: "(The)
continual readiness … to rapidly or inherently create change, proac
tively or reactively embrace change, and learn from change while
contributing to perceived customer value (economy, quality, and
simplicity) through its collective components and relationships with its
environment" [10]. Conboy translated the definition into a formative
taxonomy of Agility, stating that to be agile, a process component must:

1 contribute to at least one of the following: (i) creation of change, (ii)
proaction in advance of change, (iii) reaction to change, (iv) learning
from change;

2 contribute to at least one of and not detract from the following:
(i)perceived economy, (ii) perceived quality, (iii) perceived

simplicity;
3 be continually ready, i.e., must require minimal time and cost to

prepare the component for use.

We use this definition to investigate how one Danish software com
pany that prominently pursues both UX design and agile software
development integrates UX design activities with its software develop
ment process. While previous research has used Conboy’s theory to
distinguish contributions to Agility from project- and firm-level pro
cesses [11], we use it here to distinguish between contributions to
Agility for UX designers and software developers while still needing to
integrate their work.

We define integration as a distinct way of coordinating activities in
organizational processes. Mintzberg’s [28] seminal theory of organiza
tions distinguish five prime coordinating mechanisms: direct supervision,
standardization of work processes, standardization of skills, standardization
of outputs, and mutual adjustment. The last-mentioned coordinating
mechanism is characteristic of organizations with the structure he calls
the Adhocracy, often situated in complex and dynamic environments
[28]. A well-known situation for software companies striving for Agility.
The Adhocracy and coordinating through mutual adjustment rely on
applying diverse and sophisticated expertise as bases for building new
knowledge for innovation. Succesful mutual adjustments are the result
of informal communication between people conducting interdependent
work.

We see mutual adjustment as central to the integration of software
development and UX design. For further clarity, we distinguish inte
gration from assimilation, which relies on coordinating by direct super
vision and standardization of work processes. Moreover, we see
integration as different from separation, depending on coordination by
standardization of skills and outputs, as illustrated in Fig. 1.

Assimilation of agile development and UX design into a process unity,
with a single team acting in its own power, has bearings to agile

processes rejecting specialized roles to strive for oneness. Here, the co
ordination of work involves standardized work processes, shared norms
of what is desirable, and direct supervision. In contrast to assimilation,
separation refers to software development and UX design as acting on
one another. This twoness has bearings to pre-agile relay races involving
the coordination of specialized roles with standardized skills and out
puts, e.g., through user studies. Integration lies between assimilation and
separation, and it is an across-entities point of view [29] to avoid the
reduction into a single entity or the separation into two distinct entities.
This integration is coordinated by mutual adjustments of the work in the
situation at hand. Fig. 1 thus contrasts Mintzberg’s [28] coordinating
mechanism of mutual adjustment (integration) against the four others;
two we associate with a single-entity view (assimilation) and two with a
between-entities view (separation). We apply this understanding of
integration and combine it with Conboy’s [10] definition of Agility to
unfold the relations and social processes [29] of UX design and software
development.

3. Method

Our investigation of integrated UX design and software development
processes is based on a single case study approach [30,31] to address
how these two processes maintain their Agility. A single case study is
well suited for studying a contemporary phenomenon in its real-world
context [32] to develop insights into our "how" question [33]. This
case study design also applies well when the boundary between the
phenomenon and the context is unclear, i.e., between the UX design and
software development activities and the broader organizational context
allowing their Agility. The information-based selection of a single case
[32] has the rationale of an unusually [33] high dedication to UX design
and agile software development.

3.1. The case

The case setting is a Danish software company, Mjølner Informatics,
with 100+ employees who prominently pursue both UX design and agile
software development. Mjølner Informatics as a software house develops
specialized software products for particular customers on project con
tracts. Most employees have a master’s degree related to UX, interaction
design, or software development. The customers are small and large
private companies and public organizations. Mjølner Informatics em
ployees may assist customer organizations with specialist knowledge on
time-and-materials contracts for up to several months. The Danish edi
tion of Computerworld named the company "IT comet of the year, 2015′′

in Denmark, partly because of its heavy emphasis on UX in software
development. UX designers that play crucial and managerial roles in
most projects, account for 10% of the employees.

3.2. Data collection

We collected data in two iterations. First, we conducted 10 individ
ual interviews. We interviewed four UX designers, three software

Fig. 1. The three views on the Agility of software development and UX design.

J.S. Persson et al.

Information and Software Technology 152 (2022) 107059

4

developers, two project managers, and one software architect. Each
interview lasted 45–60 min, were audio recorded, and followed Patton’s
guidelines for pragmatic interviews that aimed at getting straightforward
answers that can yield practical and useful insights [34]. We had one
interviewer and one observer from the research team during each
interview. This iteration had a threefold aim of understanding: (1) the
agile development process at the company, (2) perceptions of the UX
designers’ role in different project phases, and (3) the approach of
integrating UX design with agile software development.

The second iteration of data collection was conducted two years after
the initial interviews. We presented our preliminary findings from the
first iteration in a short paper that we shared with the case company
during a reflection session with 6 representatives from the case com
pany; three UX designers, two software architects, and one project
manager. The project manager also participated in the first iteration two
years earlier, while the other participants were new to the study. The
software architects also represented the views of software developers as
this is the typical career path with an increase in seniority within the
company. The session had a two-fold aim of 1) discussing and corrob
orating our analysis on the integration approach that was and 2) dis
cussing the integration approach that is two years later to elicit
reflections based on our findings presented in Sections 4.1 and 4.2
below. We invited the representatives to reflect on their practices [35],
combining our initial interpretation with intervention to better under
stand the case in its organizational context [36]. Two from the research
team facilitated the workshop activity by first providing a recap of our
findings from the first iteration of data collection, followed by a dis
cussion. The workshop had a duration of 2 h and was audio recorded.

3.3. Data analysis

We analyzed the data from the 10 individual interviews of the first
iteration and the reflection session with 6 participants in the second
iteration through a theory-directed qualitative content analysis [37]
using Conboy’s theory of Agility [10]. Audio recordings from the 10
individual interviews were transcribed in the online tool Dedoose,
which we also used to support the content analysis. Two members of the
research team conducted the analysis with a particular emphasis on how
the effect of integration approaches differs for software developers and
UX designers. Audio recordings and notes from the reflection session of
the second iteration were analyzed abductively to uncover the partici
pants’ views on the integration approach there was, how it is (two years
later), and how they want the approach in the future. In Mjølner Infor
matics, two process elements are essential to integrating UX design with
software development in an agile manner: upfront design and work in
parallel, which corresponds to the first claim on integrating UX design
with an agile development process from Adeola Wale-Kolade et al. [12]:
"Conduct some upfront design activities before project start" and fourth
claim: "Designers and developers work in parallel". We present these two in
Sections 4.1 and 4.2 and the findings from their workshop reflections on
these two in Section 4.3.

4. Findings

4.1. Upfront design

In the upfront design at Mjølner Informatics, the software product is
considered from various perspectives before producing any code. Here,
UX designers typically participate full-time with responsibilities of
defining system requirements, making design sketches, and designing
wireframes.

A UX designer in Mjølner Informatics is the main actor collaborating
with the customers, the users, and the system architect (an experienced
software developer). The system architect and the UX designer collab
orate on the validation of wireframes. They consider the system re
quirements linked to wireframes, which is the primary outcome of the

upfront design. One UX designer argues for this upfront design approach
by contrasting it with placing UX design one sprint ahead of software
development as follows:

It is incredibly challenging to create wireframes once development has
started. As a UX designer, I then need to work one sprint ahead. I have
experienced designing wireframes during a sprint, which is very hectic.
The results are not good. The analytic part disappears when these activ
ities are done in the sprint. I lose track and overview. I believe that there is
a need to work in an upfront manner, as we do. (UX Designer 1)

The same UX designer further explains that the one-sprint-ahead
approach can work in some cases, but it is complicated and hard to
work that way since all sorts of things happen during the sprint. Smaller
details can be designed during software development, but an overview
through designing wireframes of the whole system needs to be in place
during the upfront design period.

The goal of such upfront design is also relevant to software de
velopers. Another UX designer notes that she makes the design to a level
of completeness that allows the developers to take over. She explains:

The overall design could be a graphical design, but also flows where you,
for instance, have identified individual elements, which you then specify
further in Jira. (UX Designer 2)

When software developers take over, they are aware of the chal
lenges and necessity of UX, but some have limited knowledge of the
business aspects and the customer’s needs. Upfront design is a challenge
because the customer often wants to know the "magical price" of the
project, and the software developers need to know more about the
business aspects. This need forces UX designers to provide specific de
tails up front through UX design, which they can discuss with the
customer. A software developer explains:

At the beginning of the process, there is this "black box" known as UX
design, which is typically positioned before the "tech" phase, when de
velopers enter the project. (Developer 1)

Software developers do not perceive their limited upfront involve
ment and knowledge of what is going on in the project as problematic.
Instead, a developer states that he appreciates the defined boundaries of
UX designers working up front and developers entering the project later:

I do not know that much about the very first phase, but it is when you
define the overall UX, initial research activities, and initial designs. It
happens before developers enter the project… It is nice to join the project
when the upfront work has been done; there are some defined boundaries.
(Developer 2)

However, these defined boundaries do not remove the need for
making changes. The same software developer explains that when they
get more into development, some tasks that were identified up front no
longer fit and have to be changed. He wants to keep the focus on upfront
design with detailed wireframes and prototypes. A project manager
similarly emphasizes the need for continuous adjustments to a product
throughout a project. Adjustments to a product made in one sprint could
be made in the next sprint or later in the project. But the initial overview
in the upfront design period provides a good idea of what to do, he
comments.

As shown from the quotes above, upfront design is not used to
standardize and rigidly control the design. Instead, both UX designers
and software developers use upfront design to achieve Agility, as sum
marized in Table 1.

Upfront design helps software developers be proactive about changes
in the system’s architectural design by anticipating development risks
(see first point’s row in Table 1). This is possible thanks to coordination
with UX designers, who readily react to specification changes from the
very beginning and learn from these changes, e.g., through heavy use of
design iterations in dialog with customers and users. Upfront design
activities support initial reactions to change through a process in which

J.S. Persson et al.

Information and Software Technology 152 (2022) 107059

5

early visualizations of ideas through, e.g., paper prototyping, facilitate
specific discussions on system requirements before committing to any
program code or model implementations. UX designers’ responsibility to
identify requirements by coordinating with customers and users offers
software developers simplicity with fewer coordination needs. Also, UX
designers improve product quality through intensive communication
with customers and users. At this early stage, changes in requirements
and designs incur modest costs, which contribute to the perceived econ
omy (defined as the utilization of all resources is maximized, and no
unnecessary resources are maintained [10]). Finally, these achieve
ments of Agility are readily available to both software developers and
UX designers, mainly through the activities of the software architect and
the UX designer (see the third point’s row in Table 1).

Thus, upfront design is an example of integration through mutual
adjustment between UX design and software development. This also
transcends down to the level of specific tools where UX designers also
have editing rights in Jira. It contributes to Agility across the two
specialized activities without collapsing them into a single activity or
process. The contribution to Agility differs for UX designers and software
developers at Mjølner Informatics. As an example, the second row in
Table 1 shows that the process followed by the software developers
(represented by the architect during upfront design) provides simplicity
through a separation of concerns as they have less coordination with
users. Such coordination is more intensive in the UX design process,
which in turn increases perceived quality.

4.2. Work in parallel

The work in parallel approach in Mjølner Informatics involves soft
ware developers producing code based on the specifications elicited in
the upfront design and UX designers spending about 20% of their time
on a project while also working on other projects. The work in parallel
period starts when a development team is formed. The team typically
includes one UX designer, two to four developers, and one project
manager working in a series of iterations, each lasting three to four
weeks. The main responsibility of the UX designer during the work in
parallel period is to review and sign off implemented designs at the end
of each iteration and facilitate product evaluations with customers. The
UX designer is physically located close to the software developers for
easy access. The UX designer uses the wireframes initially designed in

the upfront design when meeting with the rest of the development team
to convey system requirements. A project manager describes this work-
in-parallel approach and argues for its necessity for efficient work as
follows:

At the beginning of the development stage, the infrastructure is set up: Jira
and a Scrum board, wireframes, graphical elements, user stories. It is then
up to the team to make the necessary refinements … If you have two
sprints n and n + 1, the UX designer is central in sprint n to prepare sprint
n + 1. They need to be ahead so that software developers have some
designs to work with; otherwise, it will not be efficient work. (Project
Manager 1)

A UX designer continues the project manager’s line of reasoning as
an aim of her design practice. She explains that while being in one sprint,
she needs to begin working on designs for the next sprints. Typically, UX
designers would aim to begin one or two sprints ahead. A software
developer elaborates on UX designers’ responsibilities:

Sometimes the UX designer assumes a reviewing role to go over our
implemented designs, and this is the case throughout the project.
(Developer 2)

The UX designer acknowledges the role’s wide range of re
sponsibilities, which implies limited prerequisite knowledge, making
frequent informal communication with developers necessary. She
stresses that the development of designs must never become top-down,
and there will be some elements that she cannot know. She further
explains:

So, we need to engage during development … I spend about one-sixth of
my time during development in projects. During development, we partic
ipate in the planning to answer questions from the developers. (UX
Designer 2)

A project manager further elaborates UX designers’ work in parallel
approach. He says that UX designers typically engage full-time in the
upfront design of the project, and then their work is phased out. He also
comments that daily collaboration with software developers is essential
since there will be some minute changes in the design until the final
semicolon is set in the code. He further explains:

This works well at Mjølner since the architect, project manager, and UX
designer are in the same building or room, so this comes naturally, also as
part of the daily Scrum meetings … The UX designer is part of the team to
ensure that requirements are met. Some would think that UX designers
create lovely designs and icons, but this is not the central part of that role.
(Project Manager 1)

As shown from the quotes above, the work in parallel approach is not
aimed at a rigid division of labor or at defending a level of control for
particular roles. Instead, both software developers and UX designers use
the work in parallel approach to achieve Agility, as summarized in
Table 2.

The work-in-parallel approach involves a UX designer meeting with
the software developers at the end of each sprint to review implemented
designs. This limited time scope of the reviews makes reactions to change
more manageable for software developers, as they do not have to
continuously cope with changes (see first point row in Table 2). On the
other hand, this enables the UX designer to focus on creating change from
the customer perspective. The structured UX input through e.g. specific
visualizations of requirements contributes to software developers’
perceived simplicity and localized efforts at specific potnts during work-in
parallel contributes to UX designers’ perceived economy of scale as this
enables them to work on multiple projects. Finally, these achievements
of Agility are readily available to both software developers and UX de
signers (see the third point’s row in Table 2). Overall, work in parallel is
integration through mutual adjustment between UX design and software
development, and it contributes to Agility in different ways for UX de
signers and software developers.

Table 1
Contributions to Agility with upfront design (based on Conboy’s [10] framework
in the left column).

Agility Software development UX design

1. A process component
must contribute to at
least one of the
following:
(i) creation of change
(ii) proaction in advance
of change
(iii) reaction to change
(iv) learning from
change

Before development, the
system architect is
proactive about changes
and anticipates
development risks.

The initial reaction to
change and learning from
change are strong with
intensive customer dialog
and no software
committed.

2. A process component
must contribute to at
least one of and not
detract from the
following:
(i) perceived economy
(ii) perceived quality
(iii) perceived simplicity

Improved simplicity
through separation of
concerns and less
coordination with users.

Perceived quality through
intensive communication
with users and customers
and a modest cost of early
changes contribute to the
perceived economy.

3. A process component
must be continually
ready, i.e., require
minimal time and cost
to prepare the
component for use.

A system architect is
available and active
throughout the project.

The UX designer
autonomously controls the
project scope.

J.S. Persson et al.

Information and Software Technology 152 (2022) 107059

6

In Mjølner Informatics, the two approaches upfront-design and work-
in-parallel to integrating UX design with software development
contribute to Agility. However, software developers’ and UX designers’
experiences differ in their dealings with change, simplicity, quality,
economy, and readiness.

⋅ Software developers use upfront design to proact in advance of
change for the sake of simplicity, whereas UX designers use upfront
design to react and learn from change for the sake of quality and
economy (Table 1).

⋅ Software developers use work in parallel to respond to change for the
sake of simplicity, whereas UX designers use work in parallel to
create change for the benefit of an economy of scale (Table 2).

4.3. Reflecting on integration

Our final phase of inquiry revolved around presenting our findings
on the integration approach in terms of upfront design and work-in-
parallel. We wanted to provide feedback to the case company related
to our interpretations using Conboy’s theory on Agility and Mintzberg’s
coordination mechanisms as the analytical lens on their integration. As
highlighted in the previous sections, we discovered upfront design and
work-in-parallel phases in which software developers and UX designers
coordinated through mutual adjustment, representing an approach
resembling integration rather than assimilation and separation. We
asked the participants to reflect on Mjølner’s approach to encompassing
agile software development and UX design through an integration
approach. We asked them to reflect on how this approach was and the
extent to which they could recognize it through our analysis. We also
asked participants to reflect on how their agile integration approach
currently is and how they want it to look like in the future. Through this
reflection, we identified three main points.

4.3.1. Agile integration considered better the way it was
During our inquiry on reflection, it became apparent that Mjølner

transitioned into an approach resembling that of separation. One of the
architects stated that he was now much less involved in upfront design
than three years ago. In his view, the upfront design phase now seemed
overly dominated by UX designers.

"Things have happened over the past few years. Customers are no longer
willing to pay for upfront activities to the same extent. This means that we
now must send only one person, and other times we do not even send one
out because the project is defined by the customer already. In that situ
ation it is difficult to say when the upfront design starts because we are not
part of the initial exploratory phase. We need to go back to the situation
where the UX designer and architect had a high level of collaboration. I
want to be able to push back to the UX designer and vice versa to ensure
the best solution is developed… I would really like to be part of the process
rather than having to interpret others’ findings through artifacts in Jira."
(Architect 2)

This architect has the impression that there needs to be a more even
balance between the UX designers’ and architects’ responsibilities dur
ing up-front design. He found it critical that these roles mutually adjust
during this phase for enabling architects to proactively react to change
on different technical issues and risks, which are problems outside the
typical expertise area and scope of UX designers. In reasoning why the
current integration approach is that way, the architect mentioned that
the company is experiencing a shift in the market where customers now
find it too expensive to assign multiple people to conduct exploratory
upfront design activities. In the following, we deal with this point in
more detail.

4.3.2. Agile integration depends on the project and customer
Although Mjølner has transitioned into an approach resembling

separation, the architects, software developers, and UX designers in
some projects integrate by coordinating through mutual adjustments. In
such cases, a software architect is more involved during upfront design
together with a UX designer. One of the architects stated that this
particularly applies when developing software to be used in embedded
products.

Additionally, there seems to have been a shift in the role of upfront
design due to changing customer needs. This change is closely tied to the
point of Mjølner having transitioned into the separation approach. One
mentions that as an architect, he is missing the activities that go into
fundamentally understanding the domain in which developed systems
are supposed to operate. Customers are less willing to pay for such
upfront activities. Now, customers are eliciting requirements and de
signs on their own, on which basis Mjølner is now just supposed to
develop a solution. This change is corroborated by one of the UX
managers:

"I need to highlight that we are now operating in a different market.
Generally speaking, many companies now need an IT department no
matter what type of company they are. These IT departments want to
solve several of the upfront design issues on their own. This also means
that these companies, our customers, now want a higher degree of project
ownership on areas that we were responsible for in the past." (UX Man
ager 2)

As illustrated in the quote above, one of the UX managers now saw a
trend for companies to create their own IT departments that will take
many exploratory upfront design tasks, which Mjølner was formerly
hired to do. This trend influences Mjølner in terms of their UX pro
fessionals’ ability to initially react to changes and learn from these (first
point’s row in Table 1), given that the impact through, e.g., customer
dialog is reduced with increased fixation of requirements.

4.3.3. Want to transition from separation towards integration
Based on the above observations, Mjølner has transitioned from an

integration approach to separation in which software developers and UX
designers are now trying to coordinate through standardization of skills
and output. One of the UX managers mentioned that the UX designers
want the projects to be less person-dependent.:

"I believe, on behalf of the UX designers, that we have mostly worked in an
individual manner to create good relations between ourselves and

Table 2
Contributions to Agility with work-in-parallel.

Agility Software development UX design

1. A process component
must contribute to at
least one of the
following:
(i) creation of change
(ii) proaction in advance
of change
(iii) reaction to change
(iv) learning from change

UX feedback and design
changes limited to sprint
reviews make reactions to
change more manageable.

Thorough reviews and
quality control detached
from the development
team while in dialog with
customers promote the
creation of change.

2. A process component
must contribute to at
least one of and not
detract from one of the
following:
(i) perceived economy
(ii) perceived quality
(iii) perceived simplicity

Perceived simplicity
through structured
UXdesign inputs that
visualize requirements
using e.g. wireframes.

Perceived economy of scale
through localized efforts
during work-in-parallel
enables the ability to
work on multiple
projects.

3. A process component
must be continually
ready, i.e., require
minimal time and cost
to prepare the
component for use.

Readily available designs
and designers.

Reuse of UX
competencies and
insights across projects.

J.S. Persson et al.

Information and Software Technology 152 (2022) 107059

7

architects. It is probably time for us to be less dependent on individuals. It
should not be about us as UX designers to tell others what we do and what
should be done. Rather, it should be about UX designers sitting down with
architects and developers to figure out how to collaborate. It’s crucial to
have a stable set of fixpoints we can orient ourselves towards." (UX
Manager 2)

One of the software architects was also explicit on behalf of the
software developers in stating that the current separation approach is
flawed since the output is not standardized, i.e., the tools used by UX
designers during a project are highly dependent on the persons
participating. As an alternative, the architect would like to see more
widespread use of abstract design tools such as use case diagrams that
software developers can relate to. These shared artifacts and design
languages enabled coordination through mutual adjustment in the past.

"Some years ago, we had a shared toolbox between UX designers and
architects that everyone were able to apply. We had set of shared artifacts
and methods that could be used. Currently, we do not have this shared
toolbox. The set of artifacts and methods used depends heavily on the
persons involved. We want to go back to the past situation where no
matter which people we put on projects, they were able to collaborate and
knew exactly how to use the tools and methods." (Architect 2)

In summary, Mjølner is currently following an approach of separa
tion, albeit with some challenges in standardizing skills and outputs, but
they want to transition back into the how it was, i.e. integration. They
perceived a need for re-obtaining a shared language between UX de
signers and software developers. Table 3 summarizes our findings from
the reflection session in relation to Agility.

In Table 3, the first point’s row highlights how the software archi
tects are now less involved during upfront design activities. The archi
tects and UX designers have drifted into a more reactive role with
changes in their customer market. This change has shifted the architects
and UX designers into a position of reacting to customers’ specifications
compared to the previously more collaborative and creative nature of
their roles two years prior. The second point’s row of Table 3 shows how
simplicity and economy are now perceived differently than two years
earlier, which in the way of working is perceived by the architects and
UX designers as potentially having negative consequences on quality.
The third point’s row in Table 3 outlines how the process components in
the current situation are less readily available, partly due to not being
involved during upfront design activities, but in particular also through
the challenge of individual dependencies and not having a shared design
language and toolbox. Overall, Table 3 outlines how their Agility has
become more different and separated, making their practices mutually
compete for Agility. This situation is distinctively different from the
findings from two years earlier (c.f. Tables 1 and 2), where they inte
grate their activities by mutual adjustment. Moreover, it shows that
integrating by mutual adjustments is itself susceptible to change and
that reflecting on integration helps revisit their state of agile and point
out opportunities for changing their situation.

5. Discussion

Our study aimed to address the research question: How can integrated
UX design and software development processes maintain their Agility?
Hence, we presented a case study of the integrated UX design and
software development processes at the Danish software company
Mjølner Informatics. This section discusses how our study contributes to
the extant research, its implications for practice, limitations, and future
research.

5.1. Contributions to research

Two concepts were central to our case study of agile software
development and UX design at Mjølner Informatics. The first was Agility,

for which we used Conboy’s [10] taxonomy that allowed us to be open
to the meaning of Agility in our specific case rather than judging it ac
cording to some of the many methodologies available in the literature (e.
g., [13,14,20,21]). The second was integration, which we defined as
involving mutual adjustments based on Mintzberg’s classical theory of
organizations [28] and thereby differentiated integration from other
ways of coordinating through standardization of work processes, skills, and
outputs, or direct supervision. From analyzing our case, we show how
Agility may differ for UX designers and software developers when inte
grating their efforts in a software project through upfront design (cf.
Section 4.1) and work in parallel (cf. Section 4.2). This finding con
tributes to previous research on the challenges of integrating UX into
agile processes [14] by showing how the ideals of successful integration
can be specific to the role and situation.

Next, we showed in our workshop (cf. Section 4.3) that these con
cepts also were helpful to the practitioners for reflecting on what was,
presently is, and what they want for their integration. The conceptuali
zations provided a starting point for deliberation on their practices in the
workshop. While this starting point for deliberation is more abstract by

Table 3
Contributions to Agility as is in relation to upfront design and work-in-parallel.

Agility Software development UX design

1. A process component
must contribute to at
least one of the
following:
(i) creation of change
(ii) proaction in
advance of change
(iii) reaction to change
(iv) learning from
change

Upfront Design
Involved in some
projects, but not all.
Challenging to be
proactive, no shared
design language between
software developers and
UX designers.
Work in Parallel
Drift from reacting to
changes through
collaboration with UX
design towards reacting
to handovers from
customers.

Upfront Design
Reactive to changes and
learning from change, but
not in all projects. Tool use
depends on the individual.
Work in Parallel
Drift from a role as creator
of change to more simple
reactions to changes
specified by customers.

2. A process component
must contribute to at
least one of and not
detract from one of the
following:
(i) perceived economy
(ii) perceived quality
(iii) perceived simplicity

Upfront Design
Perceived economy due to
not participating in
upfront design activities
comes at the cost of
perceived quality.
Work in Parallel
Perceived simplicity
through pre-made
specifications from
customers and UX
designers comes at the
cost of perceived quality
and economy because
some specifications are
challenging to
implement, but also
because UX output does
not provide a shared
design language.

Upfront Design
Perceived simplicity through
not having to coordinate
with an architect. In some
cases, the customer
conduct upfront design,
which contribute to
perceived simplicity and
economy, but at the cost of
perceived quality.
Work in Parallel
Perceived simplicity through
pre-made specifications
from customers (in some
projects) comes at the cost
of perceived economy and
quality by implementation
challenges.

3. A process component
must be continually
ready, i.e., require
minimal time and cost
to prepare the
component for use.

Upfront Design
Software developers and
system architects are not
always present during
upfront design activities.
Work in Parallel
Readily available
developers and
designers. Designs are
not based on a shared
design language nor
based on mutual
adjustments and are
therefore not readily
available.

Upfront Design
The UX designer is readily
available, not in all
projects, however, due to
customer autonomy in
creating specifications.
Work in Parallel
UX competencies and
insight may not necessarily
be reused across projects
due to not having a shared
design language.

J.S. Persson et al.

Information and Software Technology 152 (2022) 107059

8

focusing on the overall integration process than previous research on, e.
g., concise user stories [8] or technical debt items [38], it still allows
positioning and discussing Agility in their specific situation. We use the
three views on the Agility of software development and UX design (cf.
Fig. 1) to explain our case study at Mjølner Informatics and as a basis for
proposing the three distinct claims about Agility presented in Fig. 2.

On the left in Fig. 2, we have assimilation that involves coordinating
by standardization of work processes and direct supervision, which
potentially makes Agility for UX and software to be mutually indistin
guishable. Remnants of this view were present in our case, as UX has
been and still is a concern for the software developers and goes back to
agile methods such as Scrum [39] and extreme programming [40] that
were skeptical of technical roles beyond that of a team member.

The integration view that involves coordinating by mutual adjust
ment, which potentially makes Agility for UX and software to be
different and mutually complementary, was a central focus in our case
study. Our findings from Mjølner Informatics’ (cf. Sections 4.1 and 4.2)
substantiated this claim in practice. However, as shown in a workshop
two years after our first interviews, this integration is fragile and may
drift towards separation, as shown on the right in Fig. 2.

The separation view, which involves coordinating by standardization
of skills and outputs, potentially makes Agility for UX and software to be
different and mutually competing. Our case study found that changes in
Mjølner Informatics’ market (what Mintzberg calls a situational factor
[28]) further pushed the software developers and UX designers towards
separation. This market orientation shifted some of the UX design ac
tivities into the customer organization, which made it difficult for
Mjølner Informatics’ internal UX designers to adjust to the concerns of
the software developers. The software developers disliked this separation
from UX and requested they return to integration at our workshop.
However, a single case study like ours cannot claim that any of the three
is superior to the two others, only that they are feasible and that UX
design and software development processes may transition between
them over time.

Overall, Fig. 2 distinguishes three relationship types based on Min
tzberg’s theory of organizations [28] as having inherent views on
Agility. To unfold these views, Tables 1 and 2 (cf Sections 4.1 and 4.2)
are exemplars for analyzing the specific contributions to Agility in a
software development and UX design relationship on a more detailed
level. Table 3 (cf. Section 4.3) further shows how Conboy’s [10] tax
onomy can be useful for reflecting on maintaining Agility according to
the three claims in Fig. 2.

5.2. Implications for practice

Our case study has some practical implications, and we propose a
three-step inquiry to help practitioners understand integration in a
specific situation or project to realize these implications. The first step is
to identify approaches to integrating UX design with software devel
opment. Here, a project manager or someone dedicated to facilitating

Agility, such as a Scrum master, may prefer assimilation or separation
over integration (see Fig. 2). A preference for assimilation may be rooted
in the team-centric principles in the agile manifesto [2] or Scrum guide
[41] for the all-inclusive label of developers to be collectively
accountable for their work. In contrast, a preference for separation may
be rooted in the distinctions of roles and tasks from frameworks such as
the Unified Process [42]. The project manager or Scrum master can
identify approaches to integration using the previously discussed seven
claims regarding agility and UX design [12]. However, these seven
claims are not an exhaustive list; other approaches may be more specific
to the situation. The second step is to assess the contributions to Agility
for both software development and UX design. This assessment con
siders a process component’s contribution to managing change,
perceived economy, quality, and simplicity, and its continual readiness
for use [10]. Tables 1–3 present examples of such an assessment. The
third step involves reflecting on their mutual adjustments inherent to
these assessments of the situation in order to improve Agility. Our study
shows (cf. the workshop presented in Section 4.3) how this reflection is
useful for uncovering an unwanted drift toward separation; thus, we
believe that revisiting these three steps also can help proactively avoid
it.

5.3. Limitations

Our single case study of UX design and software development pro
cesses provides evidence of what is feasible for their integration and
Agility. We can not make any claims on what is preferable or effective on
a generalized level. Unfolding the concepts of Agility and Integration
with detailed empirical insights from a single case contributes to rich
ness rather than representation. Our case was not chosen to be repre
sentative of agile software development and UX design integration in
most cases but as an unusual case [32] with a Danish organization highly
dedicated to both UX and Agility. This information-oriented case se
lection for integration of Agility and UX Design implies analytical rather
than a statistical generalization. Our case study’s analytic generalization
advances theoretical concepts [33], specifically the theory of Agility, to
consider the practices of upfront design and work in parallel as potential
contributions to the Agility of UX design and software development.
This finding, although limited in terms of statistical generalizability, is
interesting because, according to earlier research, these two practices
detract from Agility in software development.

5.4. Future research

Our study points to ample opportunities for future research that
compares the effect on Agility from different approaches to integration.
Other researchers may conduct comparative case studies or surveys of
multiple organizations to determine such effects. Our findings from an
unusual case set in an organization highly dedicated to both UX and
Agility may be empirically tested by comparison with a representative

Fig. 2. Three claims about Agility for software development and UX design.

J.S. Persson et al.

Information and Software Technology 152 (2022) 107059

9

sample of organizations’ integration practices. Moreover, we found that
situational factors [28], such as the organization’s market environment,
may influence the coordination and integration of UX design and soft
ware development processes. For organizations, situational factors may
include their age and size, technical systems, environment, and power
structures [28], which could be important for explaining how they
integrate UX design and software development processes. Finally, future
research may also test the usefulness and transferability of our findings
through action research, similar to previous efforts on the challenges of
integrating UX work with agile software development [8]. A starting
point could be to test and theoretically elaborate the three steps outlined
in the previous section on implications for practice.

6. Conclusion

To answer how integrated UX design and software development
processes can maintain their Agility, we present a case study at Mjølner
Informatics’, a company highly dedicated to UX design and agile soft
ware development. We analyzed the company’s integration approaches
of upfront design and work in parallel with Conboy’s taxonomy of
Agility [10]. This analysis showed how Agility differs for the two roles
with these two integration approaches. They experienced notably
different work processes that still dealt effectively with change and
contributed to quality, economy, or simplicity. We explain that their
integration through mutual adjustment makes the Agility for UX de
signers and software developers different yet complementary. This
integration contrasts with assimilation, which potentially makes their
Agility mutually indistinguishable, and with separation, which makes
their Agility different and mutually competing.

Our follow-up workshop two years after our first interviews also
showed that the processes of upfront design and work in parallel were
susceptible to integration struggles over time. At that point, we found a
drift towards separation, making their Agility increasingly different and
mutually competing. This finding suggests practitioners should reflect
more frequently on how their integration approaches afford Agility and
to whom.

CRediT authorship contribution statement

John Stouby Persson: Conceptualization, Methodology, Visualiza
tion, Formal analysis, Investigation, Writing – original draft. Anders
Bruun: Formal analysis, Investigation, Writing – original draft, Project
administration. Marta Kristín Lárusdóttir: Investigation, Writing –
original draft, Project administration. Peter Axel Nielsen: Writing –
review & editing, Visualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] A. Bruun, M.K. Larusdottir, L. Nielsen, et al., The role of UX professionals in agile
development: a case study from industry, in: G. Berget (Ed.), Proceedings of the
10th Nordic Conference on Human-Computer Interaction, ACM, 2018,
pp. 352–363.

[2] Beck, K., Beedle, M., Van Bennekum, A. et al.: Manifesto for Agile Software
Development. (2001).

[3] C. Larman, V.R. Basili, Iterative and incremental developments. A brief history,
Computer 36 (2003) 47–56 (Long Beach Calif).

[4] Digital.ai: The 15th Annual State of Agile Report (https://Digital.Ai/Resources/Sta
te-of-Agile). (2021).

[5] S. Balaban, J. Đurašković, Agile project management as an answer to changing
environment, Eur. Proj. Manag. J. 11 (2021) 12–19.

[6] D.Ø. Madsen, The evolutionary trajectory of the agile concept viewed from a
management fashion perspective, Soc. Sci. 9 (2020) 69.

[7] M. Larusdottir, J. Gulliksen, Å. Cajander, A license to kill–improving UCSD in agile
development, J. Syst. Softw. 123 (2017) 214–222.

[8] A. Ananjeva, J.S. Persson, A. Bruun, Integrating UX work with agile development
through user stories: an action research study in a small software company, J. Syst.
Softw. 170 (2020), 110785.

[9] K. Schmitz, R. Mahapatra, S. Nerur, User engagement in the era of hybrid agile
methodology, IEEE Softw. 36 (2018) 32–40.

[10] K. Conboy, Agility from first principles: reconstructing the concept of agility in
information systems development, Inf. Syst. Res. 20 (2009) 329–354.

[11] J.S. Persson, J. Nørbjerg, P.A. Nielsen, Improving ISD agility in fast-moving
software organizations, Anonymous, in: Proceedings of the 24th European
Conference on Information Systems, AIS, İstanbul,Turkey, 2016, pp. 1–16.

[12] A. Wale-Kolade, P.A. Nielsen, T. Päivärinta, Usability work in agile systems
development practice: a systematic review. Anonymous Building Sustainable
Information Systems, Springer, 2013, pp. 569–582.

[13] E.L. Law, M.K. Lárusdóttir, Whose experience do we care about? Analysis of the
fitness of scrum and kanban to user experience, Int. J. Hum. Comput. Interact. 31
(2015) 584–602.

[14] D. Argumanis, A. Moquillaza, F. Paz, Challenges in integrating SCRUM and the
user-centered design framework: a systematic review, in: V. Agredo-Delgado, K.
O. Villalba-Condori, P.H. Ruiz (Eds.), Iberoamerican Workshop on Human-
Computer Interaction, Springer, 2020, pp. 52–62.

[15] K. Curcio, R. Santana, S. Reinehr, et al., Usability in agile software development: a
tertiary study, Comput. Stand. Interfaces 64 (2019) 61–77.

[16] T.S. Da Silva, M.S. Silveira, F. Maurer, et al., The evolution of agile UXD, Inf. Softw.
Technol. 102 (2018) 1–5.

[17] D. Teka, Y. Dittrich, M. Kifle, Adapting lightweight user-centered design with the
scrum-based development process, Anonymous, in: Proceedings of the ACM/IEEE
Symposium on Software Engineering in Africa, 2018, pp. 35–42.

[18] D. Sy, Adapting usability investigations for agile user-centered design, J. Usability
Stud. 2 (2007) 112–132.

[19] T.S. Da Silva, A. Martin, F. Maurer, et al., User-centered design and agile methods:
a systematic review, Anonymous, in: Proceedings of the Agile Conference, IEEE,
2011, pp. 77–86.

[20] M. Brhel, H. Meth, A. Maedche, et al., Exploring principles of user-centered agile
software development: a literature review, Inf. Softw. Technol. 61 (2015) 163–181.

[21] D. Salah, R.F. Paige, P. Cairns, A systematic literature review for agile development
processes and user centred design integration, Anonymous, in: Proceedings of the
18th International Conference on Evaluation and Assessment in Software
Engineering, ACM, 2014, pp. 1–10.

[22] A.P.O. Bertholdo, F. Kon, M.A. Gerosa, Agile usability patterns for user-centered
design final stages, in: M. Kurosu (Ed.), Proceedings of the International
Conference on Human-Computer Interaction, Springer, 2016, pp. 433–444.

[23] K. Kuusinen, T. Mikkonen, S. Pakarinen, Agile user experience development in a
large software organization: good expertise but limited impact, Anonymous, in:
Proceedings of the International Conference on Human-Centred Software
Engineering, Springer, 2012, pp. 94–111.

[24] J. Pilz, J. Deutschländer, J. Thomaschewski, et al., Integrating agile human-
centered design with lean UX and scrum, Anonymous, in: Proceedings of the 17th
International Conference on Web Information Systems and Technologies, 2021,
pp. 467–473.

[25] I. Signoretti, S. Marczak, L. Salerno, et al., Boosting agile by using user-centered
design and lean startup: a case study of the adoption of the combined approach in
software development, Anonymous, in: Proceedings of the ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), IEEE,
2019, pp. 1–6.

[26] M. Zorzetti, I. Signoretti, L. Salerno, et al., Improving agile software development
using user-centered design and lean startup, Inf. Softw. Technol. 141 (2022),
106718.

[27] M. Detweiler, Managing UCD within agile projects, Interactions 14 (2007) 40–42.
[28] H. Mintzberg, Mintzberg on Management: Inside our Strange World of

Organizations, The Free Press, New York, NY, 1989.
[29] C. Morgner, Reinventing social relations and processes:john dewey and trans-

actions, in: C. Morgner (Ed.), John Dewey and the Notion of Trans-action, Springer,
2020, pp. 1–30.

[30] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research
in software engineering, Empir. Softw. Eng. 14 (2009) 131–164.

[31] J. Lazar, J.H. Feng, H. Hochheiser, Research Methods in Human-Computer
Interaction, 2nd ed., Morgan Kaufmann, Cambridge, MA, 2017.

[32] B. Flyvbjerg, Five misunderstandings about case-study research, Qual. Inq. 12
(2006) 219–245.

[33] R.K. Yin, Case Study Research and applications: Design and Methods, 6th ed., 5,
Sage Publications Inc, 2018.

[34] M.Q. Patton, Qualitative Research & Evaluation methods: Integrating Theory and
Practice, Sage Publications, 2015.

[35] D.A. Schön, The Reflective Practitioner: How Professionals Think in Action, Basic
Books, New York, NY, 1983.

[36] K. Braa, R. Vidgen, Interpretation, intervention, and reduction in the
organizational laboratory: a framework for in-context information system research,
Account. Manag. Inf. Technol. 9 (1999) 25–47.

[37] H. Hsieh, S.E. Shannon, Three approaches to qualitative content analysis, Qual.
Health Res. 15 (2005) 1277–1288.

[38] N.B. Borup, A.L.J. Christiansen, S.H. Tovgaard, et al., Deliberative technical debt
management: an action research study, in: X. Wang, A. Martini, A. Nguyen-Duc, et
al. (Eds.), Proceedings of the 12th International Conference on Software Business,
Springer, 2021, pp. 50–65.

J.S. Persson et al.

http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0001
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0001
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0001
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0001
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0003
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0003
https://Digital.Ai/Resources/State-of-Agile
https://Digital.Ai/Resources/State-of-Agile
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0005
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0005
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0006
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0006
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0007
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0007
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0008
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0008
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0008
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0009
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0009
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0010
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0010
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0011
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0011
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0011
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0012
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0013
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0013
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0013
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0015
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0015
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0016
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0016
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0017
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0017
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0017
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0018
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0018
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0019
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0019
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0019
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0020
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0020
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0021
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0021
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0021
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0021
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0022
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0022
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0022
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0024
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0026
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0026
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0026
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0027
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0028
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0028
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0029
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0029
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0029
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0030
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0030
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0031
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0031
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0032
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0032
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0033
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0033
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0034
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0034
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0035
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0035
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0036
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0036
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0036
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0037
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0037
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0038
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0038
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0038
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0038

Information and Software Technology 152 (2022) 107059

10

[39] K. Schwaber, Scrum development process, Anonymous. Business Object Design and
Implementation, Springer, 1997, pp. 117–134.

[40] Beck, K.: Extreme programming explained: embrace change. addison-wesley
professional (2000).

[41] Schwaber, K., & Sutherland, J.: The scrum guide: the definitive guide to scrum: the
rules of the game (2020).

[42] C. Larman, Agile and Iterative Development: A Manager’s Guide, Pearson
Education Inc., Boston, MA, 2004.

J.S. Persson et al.

http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0039
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0039
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0042
http://refhub.elsevier.com/S0950-5849(22)00169-0/sbref0042

	Agile software development and UX design: A case study of integration by mutual adjustment
	1 Introduction
	1.1 How can integrated UX design and software development processes maintain their agility?

	2 Related literature
	2.1 Agile software development and UX design
	2.2 Theoretical framing of agility and integration

	3 Method
	3.1 The case
	3.2 Data collection
	3.3 Data analysis

	4 Findings
	4.1 Upfront design
	4.2 Work in parallel
	4.3 Reflecting on integration
	4.3.1 Agile integration considered better the way it was
	4.3.2 Agile integration depends on the project and customer
	4.3.3 Want to transition from separation towards integration

	5 Discussion
	5.1 Contributions to research
	5.2 Implications for practice
	5.3 Limitations
	5.4 Future research

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

