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Abstract—Extracting information from the peripheral 

nervous system with implantable devices remains a significant 

challenge that limits the advancement of closed-loop neural 

prostheses. Linear electrode arrays can record neural signals 

with both temporal and spatial selectivity, and velocity selective 

recording using the delay-and-add algorithm can enable 

classification based on fibre type. The maximum likelihood 

estimation method also measures velocity and is frequently used 

in electromyography but has never been applied to 

electroneurography. Therefore, this study compares the two 

algorithms using in-vivo recordings of electrically evoked 

compound action potentials from the ulnar nerve of a pig. The 

performance of these algorithms was assessed using the velocity 

quality factor (Q-factor), computational time and the influence 

of the number of channels. The results show that the 

performance of both algorithms is significantly influenced by the 

number of channels in the recording array, with accuracies 

ranging from 77% with only two channels to 98% for 11 

channels. Both algorithms were comparable in accuracy and Q-

factor for all channels, with the delay-and-add having a slight 

advantage in the Q-factor.  

 

I. INTRODUCTION 

Nerve cuffs are commonly used for peripheral nerve 
interfaces (PNIs), having been used for several decades [1]. 
The main advantage of cuffs over intraneural interfaces is their 
lower invasiveness and simplicity of surgical placement, 
decreasing the risk of damaging the nerve fibres and 
intraneural blood vessels. However, signals recorded using 
cuffs typically have a low signal-to-noise ratio (SNR) and thus 
can be severely affected by extraneural sources, such as 
electromyographic interference and thermal noise [2].  

Several electrode configurations have been proposed to 
reduce the influence of external signals, such as the tripolar 
configuration, which was shown to reduce reflex-EMG 
contamination by balancing the impedances of the outer rings 
[3]. However, with a single tripole configuration, the energy 
contained in the signal is recorded by a single channel, making 
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it challenging to differentiate between afferent and efferent 
signals and external noise from the nerve response. 
Alternatively, multiple-electrode cuffs (MECs) may be used to 
improve the recording capabilities of extraneural interfaces 
[4]. In addition to distinguishing between efferent and afferent 
fibres by considering the signal’s direction of propagation, the 
MEC takes advantage of the known proportional relationship 
between axon diameter and action potential conduction 
velocity, which can be obtained by dividing the distance 
between electrodes by the conduction delay. Alternatively,  
artificially delaying the observed signals and then summing 
them provides maximum response when the artificial delay 
matches the conduction delay, i.e., a velocity-selective filter 
[5]. This delay-and-add approach has been validated in frogs 
[6], pigs [7], and rats [8] for electrically evoked compound 
action potentials (eCAPs) and naturally occurring neural 
signals in the rat dorsal rootlet [9] and pig vagus nerve [10].  

Estimating conduction velocity from recordings made 
using arrays of electrodes has also been considered using 
linear [11] and two-dimensional [12] surface electrode arrays 
in electromyography. While for a MEC, the delay-and-add 
algorithm has been used, the maximum likelihood (ML) 
estimator is used for estimating motor unit conduction velocity 
in electromyography. Despite the similarities in the two 
domains, there have been no comparative studies on the 
performance of each estimation procedure. Therefore, this 
study compares the performance of the ML estimator with the 
delay-and-add algorithm for estimating the conduction 
velocity of electroneurographic (ENG) signals. 

II. METHODS 

A. Surgery 

All animal procedures were performed according to the 

Danish Veterinary and Food Administration under the 

Ministry of Food, Agriculture and Fisheries of Denmark 

(Protocol number 2017-015-0201-0137). A female Danish 

Landrace pig (37 kg) was anaesthetised with sevoflurane (1.5 

to 2.5% minimum alveolar concentration), propofol (2 
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mg/hr/kg), fentanyl (10 µg/hr/kg) and the animal was 

ventilated at 15 cycles per minute. The animal was placed in 

a supine position, and a section of approximately 20 cm of the 

ulnar nerve was exposed through the anterior forelimb. The 

nerve was then freed from surrounding tissue for the electrode 

implantation. At the end of the experiment, the animal was 

euthanised by an overdose of pentobarbital. 

B. Electrode & Instrumentation 

Two nerve cuffs were produced according to the technique 

described by Haugland [13]. The tripolar stimulation cuff was 

10 mm long, with an inner diameter of 1.8 mm, and a 3 mm 

centre-to-centre distance. The recording cuff had 14 rings 

with a centre-to-centre distance of 3.5 mm. The two outer 

rings of the recording cuff were short-circuited and used as a 

reference. In addition, the animal was grounded via a 

subcutaneous stainless-steel probe connected to the epidermis 

and the amplifiers. The stimulation cuff was placed distally in 

the forelimb and the recording cuff proximally. The distance 

between the two cuffs was approximately 2.5 cm. A silicon 

sheet was placed around the recording cuff to minimise 

current leakage, and the cuff was closed with ligatures. 

The recording cuff was connected to an amplifier bank 

(CyberAmp 380, Axon Instruments Inc., Burlingame, CA, 

USA), with a gain of 80 dB. The bipolar signals were digitised 

using a PCIe-6363 and a BNC-2090 connector (National 

Instruments, Austin, TX, USA) with a sampling rate of 90 

kSs-1. The signals were bandpass filtered using a fourth-order 

Bessel filter with -3 dB frequency at 100 Hz and 10 kHz. The 

experimental setup is displayed in Fig. 1. 

 

C. Stimulation Paradigm 

A programmable stimulator (STG4008, Multichannel 

Systems, Reutlingen, Germany) was configured to produce 

trains of asymmetric charge-balanced rectangular biphasic 

pulses with amplitudes from 50 µA to 10 mA with a pulse 

width of 100 µs. The amplitude of the second phase was 10% 

of the primary phase. The inter-pulse delay was 1 s with a 

pseudo-random Gaussian interval with a maximum of 250 ms, 

and the stimulation train was repeated four times. 

D. Data Analysis 

The time-domain ENG was segmented from -1 ms pre-

stimulus to 10 ms post-stimulus. Then, each segment was 

further filtered using an eighth order Butterworth filter with 

cut-off frequencies of 300 Hz and 8 kHz. The signals were 

then analysed by the delay-and-add algorithm and the ML 

estimator. 

 

1) Delay-and-Add 

The delay-and-add algorithm converts the signal from the 

time domain into the velocity domain. The basic principle is 

that when using linear arrays of electrodes, each channel is 

delayed relative to the first channel by a time interval that 

depends on the signal conduction velocity and the electrode 

spacing. So, the delay between the first and second channel is 

2*dt, the third and the first is 3*dt, and so on. This process 

can be formulated as 

 

 

𝑉𝐷[𝑛, 𝑑𝑡] =  ∑ 𝑉𝐵𝑖[𝑛 − (𝑖 − 1) ∗ 𝑑𝑡)

𝐶

𝑖=1

 (1) 

 

where C is the number of channels and n is the current sample 

index. Consequently, by applying a range of delay values and 

summing the channels, the output signal will be maximal 

when the delay equals the quotient between the distance 

between the recording sites and the propagation velocity of 

the signal. The output signal is the intrinsic velocity spectrum 

(IVS). For a complete description of the delay-and-add 

process, see [14]. 

 

2) Maximum Likelihood Estimator 
The ML estimator works by minimising the sum of the 

mean squared errors between a reference signal and the 
average of the other resynchronised signals. A detailed 
explanation can be found in [11]. In ideal conditions, K 
observed signals are shifted versions of a signal s(t) embedded 
in independent white Gaussian noises wk(t) with equal 
variance and zero mean:  

 𝑥𝑘(𝑡) = 𝑠(𝑡 − (𝑘 − 1)∅) + 𝑤𝑘(𝑡) (2) 

 𝑘 = 1, … , 𝐾; 0 ≤ 𝑡 ≤ 𝑇  

where ∅ is the delay between adjacent channels. Hence, the 
ML estimation of the of ∅ should minimise the error 

 

𝑒𝑚𝑙𝑒
2 = ∑ ∑[𝑥𝑘(𝑛) − 𝑠(𝑛 − (𝑘 − 1)∅)]2

𝑁

𝑛=1

𝐾

𝑘=1

 (3) 

where, in discrete form, N is the number of samples in an 

epoch of duration T. Because s(n) is unknown, 𝑒𝑚𝑙𝑒
2  is 

minimised with an estimate ŝ(n) of s(n) 

 ŝ(𝑛) =  
1

𝐾
∑ 𝑥𝑚(𝑛 + (𝑚 − 1)∅) (4) 

 
Figure 1. Experimental setup for stimulation and recording the 

neural signals. Tripolar cuffs were used for stimulation with the 
STG 4008. A 14 ring multi-electrode cuff was used to record the 

neural signals. The recording cuff was connected to an amplifier 

bank configured for bipolar recordings and digitised at a sampling 
rate of 90 kSs-1. 

 



  

and replacing in (2). In the time domain, this process is limited 
by the sampling frequency. Therefore, the process is 
performed in the frequency domain, so no resolution limit is 
enforced [11]. In the original paper, Farina et al. proposed the 
iterative Newton method to detect the minimum error. As 
eCAPs can have multiple propagation velocities, Newton’s 
method was not used, but the error was calculated for a vector 
of velocities ranging from 0.5 to 100 ms-1 in steps of 0.5 ms-1.  

3) Comparison of Algorithms 

Three measures have been used to compare the algorithms. 

The first is accuracy: the estimated velocity compared to 

manually measuring the propagation velocity. The second 

was the velocity quality factor (Q-factor) [15], a measure of 

precision. As the two curves have different units (the IVS will 

be maximal at the matched velocity, and the ML will provide 

a minimum error for the matched velocity), they were 

normalised for displaying and comparison. The 

computational time required to obtain the velocity-domain 

signals was also measured using MATLAB running on an 

Intel i5-9600K CPU at 3.70 GHz, with 32 GB RAM. Finally, 

the influence of the number of channels was assessed. This 

was done by estimating the propagation velocity with only 

two channels and then with an increasing number of channels 

until it was measured across the 11 channels. 

III. RESULTS 

A. Results with 11 Channels 

Fig. 2 shows the eCAP response recorded with a 

stimulation amplitude of 2.5 mA, which resulted in a supra-

threshold response. The figure shows a clear eCAP 

propagating from channel 1 to channel 11. While the first 

electrode (most distal ring) had a peak-to-peak amplitude of 

627 µV, the amplitude of the last electrode was 184 µV, 

showing that amplitude decreased along with the electrode 

array. At the same time, the width of the eCAP increased. 

Finally, a propagation velocity of 57.14 ms-1 was found by 

manual measurement. The transformation from the time 

domain to the velocity domain, both for the delay-and-add 

and the ML estimator, is displayed in Fig. 3. The estimated 

conduction velocity from the delay-and-add was 56 ms-1 with 

a Q-factor of 1.89, while for the ML algorithm, the estimated 

velocity was 53.5 ms-1 with a Q-factor of 1.02. The processing 

time for the velocity transformation of the signals from Fig. 2 

was 36.86 s and 1.06 s for the ML and the delay-and-add, 

respectively.  

B. Influence of channel count  

Accuracy, precision (Q-factor) and computational time 

were measured for an increasing number of channels 

(from 2 to 11). The accuracy increased as a function of the 

number of channels. The minimum accuracy was obtained 

for only two channels in both the ML and the delay-and-

add, with values of 86.2% and 77.5%, respectively. 

Interestingly, the ML estimator results in a better accuracy 

with less than five channels, whereas the delay-and-add 

performs better with more than five channels. For 11 

channels, the accuracy was 98.0% for the delay-and-add 

and 93.6% for the ML. The maximum Q-factor was 

observed for the delay-and-add with 11 channels (Q-

factor = 1.89), whereas for 11 channels, the Q-factor of 

the ML estimator was 1.02. The computational time 

increased for both algorithms due to the number of 

channels. For the delay-and-add, the time ranged from 

0.30 s with 2 channels to 1.06 s with 11 channels. This 

growth was significantly higher for the ML estimator, 

ranging from 0.20 s with 2 channels to 36.86 s with 11 

channels. A summary of the results for 2, 6, and 11 

channels is displayed in Table I. 

IV.  DISCUSSION 

This paper has compared the ML estimator and the delay-

and-add algorithm to investigate options for improving the 

velocity-selective recording method via a MEC placed around 

the ulnar nerve of a pig. Decoding information from the 

peripheral nervous system can be used for several purposes, 

such as controlling prostheses and providing sensory 

feedback. Moreover, classifying neural signals into fibre 

 
Figure 2. Time-domain recordings of the eCAP across 11 channels. 

An evident propagation can be seen across the channels, with 

decreasing amplitude and increasing width. Channel 7 was faulty, 
and the offset was artificially inserted for ease of visualisation. The 

amplitude of the first channel was 627 µV, while the last channel 

had an amplitude of 184 µV. 

 

 
Figure 3. Velocity-domain signals. The blue line represents the 

results from the maximum likelihood estimator, while the 
orange line represents the results from delay-and-add 

transformation (intrinsic velocity spectra). 

 



  

types can help develop closed-loop systems to target specific 

fibre groups when electrical stimulation is used.  

TABLE I. PRECISION AND Q-FACTOR FOR THE DELAY-AND-ADD AND ML FOR 

2, 6, AND 11 CHANNELS. 

# of channels 

Algorithm 

ML Delay-and-add 

Accuracy Q-factor Accuracy Q-factor 

2 86.2% 6.5e-3 77.5% 7e-3 

6 93.2% 6.6e-3 95.8% 1.21 

11 93.6% 1.02 98.0% 1.89 

 

The results suggested that the delay-and-add and the ML 

estimator provide similar and reasonable results for assessing 

conduction velocity in linear electrode arrays. The accuracy 

of both algorithms exceeded 90% when using 11 channels. In 

addition, even with only two channels, the accuracy of the ML 

estimator was 86%. 

The ML estimator had a slightly smaller Q-factor with 11 

channels, which translates directly into a reduced ability to 

distinguish fibre types with closer propagation velocities. The 

difference in the Q-factor was more pronounced between the 

two algorithms with decreasing number of channels. For 

instance, the Q-factor could not be estimated for less than 7 

channels for the ML because the normalised curves (as in Fig. 

3) had a slow decrease from the detected propagation 

velocity.   

In addition, the ML estimator had a considerably higher 

computational time, which can be a disadvantage for real-time 

applications. However, this result is not unexpected, as the 

error was measured for a high number of delay (∅) values (Eq. 

(4)). Iterative methods such as the Newton method have been 

proposed to improve computational efficiency [12]. However, 

the Newton method has not been applied in this study since 

eCAPs can have multiple conduction velocities, and the 

Newton method would provide an estimate for the minimum 

of the mean square error (i.e., one conduction velocity). 

Having one conduction velocity is a limitation of the 

present data for demonstrating the effectiveness of the 

algorithms. Further studies are needed to investigate the 

performance of the algorithms in eCAPs with multiple 

velocities and the effect of the SNR on their classification 

performance.  

V. CONCLUSION 

This work compared the ML estimation method and the 

delay-and-add algorithm to estimate the conduction velocity 

of eCAPs recorded extraneurally using nerve cuffs. The 

recordings were obtained from the ulnar nerve of a pig and 

showed a dominant conduction velocity that was detected by 

both the ML estimator and the delay-and-add methods. The 

ML estimator had better accuracy when using less than 5 

channels whereas the delay-and-add had better accuracy for 

more than 5 channels. For the Q-factor, the delay-and-add had 

slightly better results than the ML. Lastly, further analysis is 

necessary for eCAPs with multiple conduction velocities. 
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