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Abstract
In the power distribution network, real power loss and voltage profile man-
agement are critical issues. By providing active and reactive power support,
both of these issues can be managed. Distributed generation (DG) and capaci-
tor bank (QG) can be utilized to solve these issues. Therefore, this paper utilized
optimally placed and sized DG and capacitor (QG) to minimize losses and
improve the voltage profile. The overall problem is optimized using an upgraded
method of the fitness assignment and solution chasing based on the aggregate
approach called multi-objective whale optimization algorithm (MWOA). Wind
and solar photovoltaic sources with biomass are utilized as the DG sources with
their probabilistic outputs. The developed method is tested using two practi-
cal feeders of Bahir Dar city distribution network, Ethiopia. The results of loss
minimization and voltage profile enhancement with MWOA are compared with
multi-objective particle swam optimization (MPSO) with an equal number of
iterations to show the superiority of the developed method.

K E Y W O R D S

capacitor placement, distributed generation, loss minimization, particle swarm optimization,
whale optimization algorithm
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1 INTRODUCTION

In distribution system, voltage is stepped down; as a result, system loss is higher. According to the Electric Power Research
Institute (EPRI),1,2 the distribution loss is about 70% of all energy loss and it is even higher during peak load condi-
tions. Various researchers indicate that the distribution system has more than 13% losses of the total energy production.
Therefore, the distribution loss minimization is the major issue in the smart grid system. Various techniques are utilized
by researches to mitigate these issues such. Optimal placement of the distributed generation (DG) sources is one of the
effective techniques utilized to minimize the distribution system losses with voltage profile improvement. DG sources
incorporated solar photovoltaic (SPV) system, wind turbines, micro turbines, biomass, and so forth. For selecting the
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type of DG sources, site selection and resource assessment are performed. Further feasibility analyses of the selected DG
sources are performed for the better utilization of these sources. Optimal placement and sizing of DG sources are the
critical issues in the smart power system as these will critically minimized the system losses as well enhanced the volt-
age profile of the system. Different optimization techniques are utilized by the various researchers to optimally place and
size the DG sources. Further, load flow techniques are required to generate the input data for the optimal placement
of DG sources. Recent improved load flow techniques3,4 can be utilized to obtain input data for performing the optimal
placement problem of DG sources.

1.1 Related work

For a decade various power flow techniques with different optimization methods are utilized to perform the optimal
placement and sizing of the DG sources in the power system. From these recent technologies, some of them are crit-
ically reviewed. In Reference 5, Ali et al. used mixed-integer linear programming optimization technique to size and
place the battery-coupled distributed photovoltaic generators along with genetic algorithm. In Reference 6, Lalitha et al.
applied symbiotic organisms search technique to find and locate the DG and QG optimally. In Reference 7, Abdelaziz
et al. used flower pollination optimization technique and power loss index for the capacitor optimal location and siz-
ing and to reduce the overall cost and power loss. In Reference 8, Reddy et al. used WOA for the optimal sizing of
renewable energy resources. In Reference 9, Wang et al. used particle swam optimization (PSO) for the reactive power
optimization and sizing of the capacitor in radial distribution feeders. In Reference 10, Bhullar et al. used artificial bee
colony (ABC) and cuckoo search hybrid technique for optimal integration of multi-distributed production. In Reference
11, Xie et al. presented reactive power optimization for distribution networks based on distributed random gradient-free
algorithm. In Reference 12, Boktor et al. proposed optimal distribution power flow including shunt capacitor allocation.
In Reference 13, Elsheikh et al. proposed optimal capacitor placement and sizing for radial electric power systems. In
Reference 14, Thang and Minh proposed optimal allocation and sizing of capacitors for distribution systems reinforce-
ment. In Reference 15, Hassanzadeh Farda et al. used PSO for sizing and placement of the renewable energy-based DG
units in distribution systems by considering load growth. In Reference 16, Prakash et al. proposed an optimal siting of
capacitors in the radial distribution system using WOA. In Reference 17, Kumar et al. proposed an optimal placement
and sizing of renewable DGs and capacitor banks for radial distribution networks. In Reference 18, the same authors
developed multi-objective PSO based optimal placement of solar power DG in radial distribution network. In Refer-
ence 19, Shehata et al. used improved whale optimization algorithm to optimal place capacitor banks to get maximum
save for power loss and successful in reducing the loss without violating the constrained limits. In Reference 20, Ang
et al. utilized multi-objective whale optimization algorithm (MWOA) for real power loss and bus voltage deviation (VD)
minimizations of grid connected micro power system with non-firm small power plants. Voltage magnitude of trans-
former taps changers are utilized as control variables and successfully executed optimal power flow. In Reference 21,
Al-Ammar et al. utilized the ABC technique to solve the optimal sizing and siting problem of DG sources. In Refer-
ence 22, Roy and Das performed the optimal allocation of both active and reactive DG sources in a droop controlled
isolated microgrid system. In Reference 23, Ziad et al. proposed DG sources planning and placement by utilizing graph-
ically dependent network configuration and Archimedes optimization technique, respectively. In Reference 24, Öner
and Abur performed optima placement of DG sources against extreme events utilized the voltage stability constraints.
In Reference 25, Rafi and Dhal utilized the hybrid optimization algorithm for the optimal placement of the DG sources
with reorganization. In Reference 26, Ahmadi et al. performed optimum coordination of centralized and distributed
renewable power generation incorporating battery storage system into the electric distribution network by utilizing
multi-objective multi-verse optimization (MOMVO). In Reference 27, Tolabi et al. utilized a novel optimization algorithm,
that is, thief and police algorithm for the optimal reconfiguration and placement of the capacitor and DG sources. In
Reference 28, Routray et al. used the wake analysis for wind power production to minimize losses in the distribution
network.

1.2 Research gap

After detailed and critically analyzed the various research, different techniques are missing to incorporate the following
issues:
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• Various literatures did not utilize the practical system implementation of the proposed work.
• Different research missed a detailed cost analysis in terms of the DG sources incorporation cost.
• Much literature did not use the total feeders’ carrying capacity as a constraint to get the least power loss

1.3 Contribution of the work

This work performed the placement of the DG and capacitors (QG) units to support the unbalanced reactive power
and for the maximum active power loss reduction. Therefore, this study presented the total real power loss reduction
with voltage profile improvement of the two critical practical feeders of the Bahir Dar distribution network by optimally
quantifying and locating the DG and capacitors (QG). So, this work incorporated the practical network to find possi-
ble minimum power loss by considering the maximum network capacity limits (upper limit constraint). To perform this
research, a recent and powerful optimization technique called whale optimization algorithm (WOA)29 is used as it has a
fast convergence, large input carrying capacity and multi direction searching capability.

Incorrect size of DG and QG may increase the system losses as compared to the base case condition. WOA is utilized
for the proper site and size of the DG. Further, it is applied to locate and size of the capacitors. Therefore, in this work,
MWOA is used for optimal sizing and siting of DG and QG. Hence, this work used a mechanism called feeder carrying
capacity limit under the constraint condition for distribution network optimization. It is mentioned that DG and QG size
can be less than the total power required by the system. Therefore, for the purpose of network security, in this work, 80%
of the total power demand is taken as the upper limit of DG and QG. The significant contributions of this work are as
follows:

• Two practical feeders of the Bahir Dar distribution network are considered and modeled to know the performance of
the real system.

• Multi-objective WOA is utilized to perform the optimal placement and sizing of the DG and QG sources in the system.
• Actual local metrological solar irradiation and wind speed data are considered to assess the energy outputs from the

DG sources.
• Total feeders’ carrying capacity is considered as limits to get the maximum possible least power loss. It is optimally

quantifying and locating the DG and QG within the network carrying capacity limit and a way of searching the possible
minimum loss from the all buses instead of searching the relative weakest bus. Here the maximum size or upper limit
of DG/QG will be decided from the limit of network carrying capacity and the program will keep the performance.

• A detailed comparative analysis of the developed MWOA method is performed using multi-objective particle swam
optimization (MPSO),30 which shows the superiority of the MWOA.

1.4 Organization

The paper is organized as follows: Section 2 discussed the background of the performed research. Section 3 presented
methodology and problem formulation. Section 4 presented the results and comparative analysis, followed by the
conclusion.

2 BACKGROUND

This section discussed the background of the study area, with selection and assessment of the DG and reactive power
supply sources for the study area is presented in this section.

2.1 SPV system

This work used the SPV system to generate active power as DG source.
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2.1.1 Power output of PV array

The out power of photo voltaic (PV) array is presented as31,32

Ppv = AC𝜂MP𝜂EGT (1)

where, Ppv represents the output of PV array, AC is the array area, 𝜂MP is the maximum power point efficiency of the array
(≈14%), 𝜂E is the efficiency of power-conditioning equipment (≈90%), and GT is the incident solar radiation on the array.

2.1.2 Solar radiation estimations

Solar declination angle (𝛿) is the angle between the earth’s equatorial plane and the earth sun line. The solar hour angle
𝜔 is the angle Earth has rotated since solar noon. The relation between these angles is given by31,32:

𝛿 = 23.45sin
(

360 284 + nd

365

)
(2)

where, 𝛿 represents solar declination angle (◦), nd is day number of the year starting at January 1st as 1, 𝜔 is (ts − 12 h).
15◦∕hr, ts is the solar time in hour, ω is a solar hour angle (◦). The value of tsis 12 h at solar noon and 13.5 h 90 min
later.31,32

sin(𝛼) = sin(𝜙)sin(𝛿) + cos(𝜙)cos(𝛿)cos(𝜔) (3)

where, 𝛼s represents the solar altitude (◦) and 𝜙 is latitude (◦).31,32

sin(𝛾s) =
[

cos(𝛿)sin(𝜔)
cos(𝛼s)

]
(4)

where, 𝛾s represents the solar azimuz (◦). The sunset/sunrise angle is given by31,32

𝜔s = cos−1(−tan𝜙tan𝛿) (5)

The solar angle of incident θi is the angle between the solar beam and normal to the solar panel, which is given by:

cos(𝜃i) = [sin𝛿sin𝜙cos𝛽 − sin𝛿cos𝜙sin𝛽cos𝛾 + cos𝛿cos𝜙cos𝛽cos𝜔 + sin𝜙sin𝛽cos𝛾cos𝜔 + cos𝛿sin𝛽sin𝛾sin𝜔] (6)

The solar constant (Gsc) is equals to1367 W/m2. The extraterrestrial irradiance on a surface at normal incidence (Gon)
can be expressed as31,32:

Gon = Gsc

[
1 + 0.033cos 2𝜋nd

365

]
(7)

The extraterrestrial irradiance incident on a horizontal plane at an arbitrary angle of incidence is expressed as.33

Go = Goncos(𝜃z) (8)

where, 𝜃z is the zenith angle between the solar beam and the vertical. 𝜃z and 𝜃 are not in the same plane.
Integrating the solar constant (extraterrestrial irradiance) over the day length gives us daily solar radiation on the

horizontal surface.31,32

Ho =
(24 × 3600

𝜋

)
Gsc

[(
1 + 0.033cos

(
360nd

365

))
×
(

cos𝜙cos𝛿sin𝜔s +
2𝛱
360

𝜔ssin𝜙sin𝛿
)]

(9)
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where, 𝛿 is declination angle (◦),and 𝜔s is sunset hour angle (◦). For Bahir Dar city the computed solar irradiance is as
follows:

Ho = 1367 ∗ [(1 + 0.033 ∗ cos
(360 ∗ 181.42

365

)
∗
(

cos 11 ∗ cos(−0.752) ∗ sin
(

89.99 + 2𝜋
360

∗ 89.99 sin 11 sin(−0.752 )
)]

= 1322.73 W
m2 .

2.1.3 Solar energy resource in Bahir Dar

Bahir Dar is located near the equator; its solar resource is of significant potential. The annual average daily radiation in
Bahir Dar reaching the ground is estimated to be 6 kWh/m2/day, which varies from a minimum of 5.26 kWh/m2/day in
July to a maximum value of 6.86 kWh/m2/day in February.34 An indirect estimation of solar radiation is performed by
ground level measurement. Table 1 presented the estimated monthly solar radiation for Bahir Dar district.

For the renewable hybrid power system design of Bahir Dar, the estimated monthly average global solar radia-
tion from the ground measured sunshine hour data from National Meteorological Service Agency, Ethiopia summa-
rized and listed in Table 2 and uses for the feasibility study of the proposed hybrid renewable energy system using
HOMER.

2.2 Wind turbine

The second distributed energy source used in this work is the wind turbine.

2.2.1 Speed and power relations

The kinetic energy of wind in joules is presented by31:

Kinetic Energy = 1
2

mV2 (10)

where, m represents mass, V is the wind speed.

T A B L E 1 Estimated monthly solar radiation for Bahir Dar district (Lat = 11.4)
Mid of
month Nd 𝜹 (◦) 𝝎s (◦) N (h) n n/N

Ho
(kW/m2/d)

NMSA
(kW/m2/d)

NASA
(kWh/m2/d)

SWERAREL
(kWh/m2/d)

Jan 15 −21.270 87.326 11.644 9.78 0.84 9.25 6.40 6.27 6.335

Feb 45 −13.620 88.336 11.778 9.85 0.836 9.85 6.79 6.86 6.885

Mar 74 −2.819 89.662 11.955 9.56 0.8 10.36 6.98 6.78 7.072

Apr 105 9.415 91.138 12.152 8.91 0.733 10.47 6.76 6.01 6.491

May 135 18.792 92.337 12.312 7.23 0.587 10.22 5.95 5.78 6.089

Jun 166 23.314 92.960 12.395 6.83 0.551 9.22 5.66 5.35 5.867

Jul 196 21.517 92.708 12.361 5.87 0.475 9.98 5.36 5.26 5.392

Aug 227 13.784 91.685 12.225 6.79 0.555 10.04 5.85 5.91 6.122

Sep 258 2.217 90.266 12.035 8.35 0.694 10.29 6.50 6.29 6.68

Oct 288 −9.599 88.839 11.845 7.83 0.661 10.34 6.13 5.39 6.108

Nov 319 −19.148 87.616 11.682 8.57 0.734 9.98 6.05 5.69 6.258

Dec 349 −23.335 87.037 11.605 9.56 0.824 9.38 6.18 6.01 6.138

Avg 181.4 −0.752 89.99 9.04 6.218 5.96 6.286
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T A B L E 2 Monthly average solar radiation

Month Clearances Daily radiation

Index (kWh/m2/d)

January 0.724 6.335

February 0.728 6.885

March 0.695 7.072

April 0.616 6.491

May 0.581 6.089

June 0.566 5.867

July 0.519 5.392

August 0.586 6.122

September 0.652 6.680

October 0.634 6.108

November 0.705 6.258

December 0.723 6.281

Average 0.640 6.281

Annual average (kWh/m2/d)

The power generated in watts is given by31:

Power = 1
2
(Mass Flow per Second)V 2 (11)

where, P represents mechanical power in the moving air (watts), 𝜌 is air density (kg/m3), A is area swept by the rotor
blades (m2), and V represents the velocity of the air (m/s).

The mechanical power output from the upstream wind is presented by,

P = 1
2
(𝜌AV)V 2 = 1

2
𝜌AV 3 (12)

where, AV represents the volumetric flow rate, and 𝜌AV represents the mass flow rate of the air in kilograms per
second. The power density of the selected area is used to compare two potential wind sites in watts per square meter and
presented by:

Specific Power of Site = 1
2
𝜌V 3 (13)

2.2.2 Wind speed distribution

The mean wind velocity is given by,

Vav = ∫
∞

0
vf(v)dv (14)

The variation in wind speed is the best described by Weibull probability distribution function f with two parameters,
the shape parameter k, and the scale parameter c. The following equation gives the probability of wind speed being v
during any time interval31:

f (u) =
(

k
c

)(u
c

)(k−1)
e−

(
u
c

)k

for 0 < u < ∞, k > 1, c > 0 (15)
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The cumulative distribution F(u) is given by,

F(u) = 1 − e
(

u
c

)k

(16)

where, u is the wind speed, k(> 0) is the shape parameter, and c(> 0) is the scale parameter of the distribution. The value
of the shape factor is varying from 1 to 4.

Vave = 𝛤

(
1 + 1

k

)
(17)

𝛤 (x) = ∫
∞

0
𝜉x−1exp(−𝜉)d𝜉 and 𝛤 (x) = 𝛤 (x + 1) = x𝛤 (x) (18)

For k = 2;

C = 2√
𝜋

Vave (19)

Average wind speed and scale factor in the equation are used to find the probability distribution using HOMER
software.

The annual average wind speed for that hour is represented by each of the 24 values of the average diurnal
profile.31

vi = v
{

1 + 𝛿cos
[(2𝜋

24

)
(i − 𝜙)

]}
(20)

2.2.3 Wind power density distributions and mean power density

The average power density is given by31:

Pwm = 1
2
𝜌C3𝛤

(
1 + 3

k

)
(21)

Vave = C𝛤
(

1 + 1
k

)
(22)

𝛤 is the gamma function and given as:

for k = 2 and 𝛤

(
1 + 3

2

)
= 3

2
∗
√
𝜋

2
= 3

√
𝜋

4
(23)

The air density varies with altitude and therefore the formula that governs is

𝜌 = 𝜌oe−
(

0.297Hm
3048

)
or 𝜌 = 𝜌o − 1.194 ∗ 10−4Hm (24)

Finally, power density for each month is given by:

Pwm = 1
2
𝜌C3 3

√
𝜋

4
(25)

The wind power density values for each month for Bahir Dar city are calculated and listed in Table 3 below, where 𝜌

equals to 1.225 kg/m3.
The energy density characteristics at a height of 50 m are presented in Table 4 below.
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T A B L E 3 Monthly wind power density

Month Bahir Dar city with k = 2

Monthly avg. wind speeds (m/s) Scale factor Power density (W/m2) [Elev. = 78 m]

January 10.1 11.4519 1222.9

February 10.1 11.3535 1191.6

March 10.1 11.3706 1197

April 10.2 11.4745 1230.1

May 10.0 11.3070 1177

June 10.0 11.2623 1163.1

July 10.0 11.3396 1187.2

August 10.2 11.4853 1233.6

September 10.1 11.3492 1190.2

October 10.2 11.4870 1234.1

November 10.1 11.4345 1217.3

December 10.1 11.3606 1193.8

Monthly annual avg. 10.1 11.3897 1203

T A B L E 4 Wind energy output category benchmark31

Wind resource category Wind level Wind power density (W/m2) Wind speed at 50 m (m/s)

Poor 1 50–200 3.5–5.6

Marginal 2 200–300 5.6–6.4

Moderate 3 300–400 6.4–7.0

Good 4 400–500 7.0–7.5

Excellent 5 500–600 7.5–8

Excellent 6 600–800 8–8.8

Excellent 7 Above 800 Above 8.8

The total area covered by marginal to excellent wind regions

T A B L E 5 Technical data for Vestas V82 wind turbine manufacturers’ data sheet

Specification for VESTAS V82 wind turbine

Available towers 59/70/78

Rotor 82 m diameter, 5.281 m2 swept area, 14.4 rpm

Cut-in wind speed 3.5 m/s

High wind speed 20 m/s

Rated power wind speed 1.65 MW at 13 m/s

Observing Table 4, the power density category of Bahir Dar city is on the seventh category, which indicates the
region, has great potential for electric power generation. The technical data of Vestas V82 wind turbine according to the
manufacturer data sheet are presented in Table 5.33

2.2.4 Wind speed–height correction

The average wind speed increases with the height is approximately 1/7th of the power for the ideal smooth plane.31
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v(z2)
v(z1)

=
(

z2

z1

)𝛼

(26)

where, V(z2) is the wind speed at the desired height of z2; v(z1) is the wind speed measured at a known height z1, and 𝛼 is
a coefficient known as the wind shear exponent. A modified formula is best suited for estimating the wind speed at hub
height.

v(zhub)
v(zanem)

=
ln

(
zhub∕zo

)
ln

(
zanem∕zo

) (27)

2.2.5 Wind power generation

As the power generated for wind turbine is given by,

P = 1
2
𝜌AV3 (28)

The air density ratio is provided by,

𝜌

𝜌o
=
(

1 − BZ
To

)g∕RB ( To

To − BZ

)
(29)

The air density under standard conditions, that is, at sea level and 15◦C is 1.22 kg/m3. The hourly generation from
wind turbine is given by,

⎧⎪⎪⎨⎪⎪⎩

Pe = 0 (u < uc)
Pe = a + buk (uc ≤ u ≤ uR)
Pe = PeR (uR ≤ u ≤ uf )
Pe = 0 (u > uf )

(30)

The coefficients a and b is given by:

a =
PeRuk

eR

uk
c − uk

R

and b = PeR

uk
R − uk

c

2.2.6 Annual wind energy production and capacity factor

The capacity factor of wind turbine is given as31:

CF =
⎧⎪⎨⎪⎩

exp

[
−
(

uc
c

)k
]
− exp

[
−
(

uR
c

)k
]

(
uR
c

)k
−
(

uc
c

) − exp

[
−
(

uF
c

)k
]⎫⎪⎬⎪⎭ (31)

By using Uc = 3 m∕s,UR = 13 m∕s,UF = 20 m∕s, and C = 10.43 m∕s, the computed value of the capacity factor is
0.466. Therefore, the annual energy production of a single wind turbine is 6,602,587.2 kWh by taking nominal rated power
as 1650 kW.31

The minimum output power from the cut in speed (i.e., 3 m/s) is 26.27 kW power. The estimated capacity factor and
annual energy production from a single Vestas V82 wind turbine are summarized in Table 6.

The estimated capacity factor indicates that all values and annual energy production are within the acceptable range
from a single Vestas V82 wind turbine.
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T A B L E 6 V82 wind turbine-estimated capacity factor and annual energy production31

District Scale factor (C) V av K CF (capacity factor) E (GWh)

BDR 11.3897 10.1 2 0.47 6.602587

2.3 Biomass energy

The third distributed energy source used in this work is the biomass energy source as it is widely available in Bahir Dar,
Ethiopia. Bahir Dar is located in the northwest of Ethiopia, where most of the country’s agricultural crops are cultivated.
Apart from huge availability of Corn, beans, teff, barley and wheat in Gojjam and Gonder cities, which are near Bahir Dar,
the forest around the city, municipal solid waste, biosolids, industrial waste, animal manures, forestry residual, landscap-
ing and tree clipping can be used as biomass resources. Figure 1 presents the Crop residue biomass resource in Gojjam,
Bahir Dar, Ethiopia.

Table 7 presented the Crop cultivation areas in the parts of Amhara region, near Bahir Dar, Ethiopia.

2.3.1 Physical properties of biomass

The content of moisture is estimated on the basis of dry and wet.35,36 On the wet basis, moisture content is calculated as
follows:

MCW = mass of water
mass of wet biomass

= hwet =
mtot − mdry

mtot
× 100% (32)

F I G U R E 1 Crop residue biomass resource in Gojjam

T A B L E 7 Crop cultivation areas in some
parts of Amhara region near Bahir Dar35,36

District Total area (h)

Yilmama Densa 99, 180

Quarit 61, 473

Gozamin 121, 807

Sinan 38, 640

Farta 107, 077

Lai-gaint 154, 866

Banja 45, 618

Guagusa-shikudad 30, 432

Awi-zone 271, 000

Sum 930, 093
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Further, the estimation of the moisture content on the dry basis is calculated as,

MCD = mass of water
mass of dry wood

= hdry =
mtot − mdry

mdry
× 100% (33)

where, mtot represents the total mass, including moisture, mdry represents the mass of the dry substance, and mtot − mdry
represents the moisture mass.

2.3.2 Heat balance in a complete combustion

Generally, the heat generated from combustion is equal to the heat required for vaporizing the available water plus heat
related to vaporize water mass and heat lost in the atmosphere. Higher heating value (HHV) and lower heating value
(LHV) are the parameters used to calculate the amount of hear from the biomass. HHV represents the heat required for
the combustion per unit mass, while LHV is the subtraction of heat related to the vaporization of the existing water and
water product from the heat required for combustion. The LHV for dry biomass is represented by,

LHVdry = HHVdry − 9Hq (34)

where, H represents hydrogen content in dry biomass, which is 5%–7% and q is water condensation heat, equals to
2.4 MJ/kg. The variation between HHV and LHV is normally equal to 1–1.5 MJ/kg. Actual amount of LHV calculated
from LHVdry is as follows:

LHV = (1 − h)LHVdry − hq = LHVdry − h(LHVdry − h(LHVdry + q)) (35)

where, h is moisture content on the wet basis.
In each ton of grain generally the ratio of dry matter at anthesis and final grin is among 1.29–1.50 t/ha. By taking an

average of 1.4 ton/ha, the total amount of biomass available is 1,302,130.2 tons. Table 8 presented the standard biomass
moisture contents.

The efficiency and capacity of power plant decrease as co firing ratio of biomass increases

Efficiency Drop = −0.4(co − fire ratio)2 + 0.12(co − fire ratio)

Pe = Pe.org =
𝜂Biomass

𝜂org
(36)

For calculating the biomass and coal needed in co-firing system is calculated as,

t.biomass
year

= Power Plant Size ∗ %Co − fire ∗ Capacity Factor ∗ 8760 h∕yr ∗ Heat Rate ∗ [HHV]−1
biomass (37)

T A B L E 8 Standard biomass moisture contents36

Matter Mwb Mdb

Bagasse 50% 100%

Barley straw 16% 19%

Corn stover 30% 42%

rice straw 67% 200%

Wheat straw 12% 14%

Forest residues 44% 78%

Primary mill residues 48% 91%

Urban wood residues 10% 14%
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In this work, the capacity factor is selected as 80%. For normal operating conditions, the total biomass required by the
power plant to generate 2.7 MW with co-firing capacity of 5%, heat rate 80% and HHV 80% is as follows:

t.biomass
year

= 2700 ∗ 0.05 ∗ 0.8 ∗ 8760 h∕yr ∗
1

0.8
= 1,182,600 t∕year

2.4 Shunt capacitor modeling

To supply reactive power support, shunt capacitor (QGs) are used. The advantages of shunt capacitors are lower cost,
improved voltage profile, and reduced losses. The maximum amount of capacitance value required can be calculated as
follows13,37:

Qmax = U × Qo (38)

where, U is an integer. In this work, U is taken as 9. Therefore, the required value of QG is 1.35 MVAr.

3 METHODOLOGY AND PROBLEM FORMULATION

This section discusses the problem formulation for the optimal placement and sizing of the DGs and QGs resources used
in this work by using MWOA.

3.1 Optimal placement and sizing of DGs and QGs

The backward/forward load flow is used for performing the load flow analysis of the selected distribution network. In
the process of optimization, active and reactive powers are injected from DG and QG, respectively based on the feeder
current carrying capacity. It is less than the peak load, that is, sum of the power loss and power demand. In this work, to
make the integration and compensation safe from the reverse current flow, it is taken as 80% of the total capacity limit as a
network optimization constraint, while performing the system optimization for the radial distribution network using load
flow. The ultimate goal of this work is to minimize the aggregate active power loss with minimized VD in the distribution
network. This can be given as:

F1 = min

(
real

[ n∑
1

Si

])
(39)

F2 = min
m∑

i=1
(1 − Vi)2 (40)

where, Si = P + jQ, n and m represent the number of branches and buses, respectively.
To optimize the above objective function under constraint conditions, the power flow equation should satisfy all the

equality constraints presented below:

Psub + PDG = Ploss + Pload (41)

Qsub + Qshunt = Qloss + Qload (42)

where Psub and Qsubare the aggregate active and reactive power, injected by the sub-station into the network, PDG and
Qshunt are the gross real and reactive power, injected by the DG and QG, respectively. Ploss and Qloss are the aggre-
gate active and reactive power losses in the network. Pload and Qload are the gross active and reactive demands of the
system.
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The inequality constraints are as follows:
Voltage constraints are given by:

Vmin ≤ Vi ≤ Vmax (43)

where, Vmin is set to 0.95 and Vmax is fixed to 1.05.
Feeder integrating capacity17,18 is limited by its maximum thermal loading limit, that is,

Ili ≤ Ili,rated (44)

Location of DG (under the assumption that first bus is taken as slack bus)

2 ≤ DGposition ≤ nbuses (45)

3.2 Whale optimization algorithm (WOA)

WOA is the recent meta-heuristic algorithm developed by Mirjalili and Lewis29 in the year 2016. The whales
are highly intelligent animals. The special hunting behavior of the humpback whales inspired WOA, which pre-
fer to hunt krill or small fishes, closer to the sea surface. Humpback whales special hunting called a bubble
net-feeding method. For hunting, they swim around the prey and create distinct bubbles along a circle or nine-shaped
path.29

From the basic characteristic of hunting, the following points are observed from the WOA.

3.2.1 Encircling prey

One character of Whales predicts the current position is exact and in circles the prey. This character of social
behavior is transformed in the mathematical equation, as the current best candidate solution set in the objec-
tive function. All other social groups will try updating their position status toward the best hunter. The behavior
modeled is as:

−−−−−−→
X(t + 1) =

−−−→
X∗(t) − −→A .

−→D (46)

−→D = |−→C .
−→
X∗(t) − −→X (t)| (47)

−→A = 2.−→a .
−→r − −→a (48)

−→
C = 2.−→r (49)

where,
−→
X∗,

−→X represent the current position of best solution and position vector. Current iteration is denoted by t. −→A ,
−→
C

are coefficient vectors. −→a is directly decreased from 2 to 0. −→r is a random vector [0,1].

3.2.2 Bubble net-hunting method

In this hunting, character of whales, used two methods,

1. This time the whale encircles the prey and then shrinks from the far to the center: Here −→A ∈ [−a, a] where −→A is
decreased from 2 to 0. Position −→A is setting down at random values between [−1, 1]. The new position −→A is computed
between the previous position and the position of current best agent.
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2. Spiral position updating: The whale shows a mimic helix-shaped movement to the prey, this property of whale can be
represented in spiral equation:

−→X (t + 1) =
−→
D′.ebl. cos(2𝜋l) +

−→
X∗ (50)

Prey may use more than two paths simultaneously, when whales hunt. In this work, 50% probability (Prob) is taken
for the above two methods.

−→X (t + 1) =
⎧⎪⎨⎪⎩
−→
X∗(t) − −→A .

−→D, if Prob < 0.5
−→
D′.ebl. cos(2𝜋l) +

−→
X∗, if Prob ≥ 0.5

(51)

where, D′ = |−→X∗ − −→X (t)| the distance between whale and the prey. b is the constant, l ∈ [−1, 1]. Prob is the arbitrary
number from [0, 1]. Equation (49) presents the spiral-updating position.

3. To get the global possible optimum, updating has done with randomly

−→D = |−→C .
−−−→Xrand −

−→X | (52)

−→X (t + 1) = −−−→Xrand −
−→A .

−→D (53)

−−−→Xrand is the random whale in current iteration.

3.3 Implementation of MWOA

Here the MWOA is implemented using program algorithm with and without bound called by the same iteration and
fitness limit. This implementation is presented in Figure 2 and performed as follows:

1. On the first sequence, the whales will be initialized first.
2. After initialization of whales, it is passed within the limits of DG/QG.
3. The numbers of iterations are performed.
4. On the second sequence, it will check with the same program beyond the limits of DG/QG.
5. Search the new fitness boundary.
6. Update positions using Equations (45) and (46).
7. Lastly, the value of optimization which is the most minimum loss will be recorded.

The algorithm utilized in this work is as follows29:
Step 1: Read 80% of the peak load of the feeder.
Step 2: Initialize the population.
Step 3: Generate the population of DG/QG sizes randomly using equation population = (DG/QGmax −DG/QGmin)

× rand ()+DG/QGmin, where DG/QGmin and DG/QGmax are the minimum and maximum limits of DG/QG sizes.
Step 4: Solve the feeder-line flow.
Step 5: Find power losses for the generated population.
Step 6: If there is possible minimum power loss, search out of DG/QG limit, consider only the network limit.
Step 7: Set similar program out and call it to step 3.
Step 8: Current best solution DG and QG values with low losses.
Step 9: For updated population repeat step 6 and 7.
Step 10: If obtained losses are less, then replace current best solution with it or else go back to step 7.
Step 11: Record results if tolerance is <0.001 or go to step 2.
Step 12: By using Equations (46)–(53) update the position of whales.
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F I G U R E 2 Flowchart of MWOA algorithm

4 RESULTS AND COMPARATIVE ANALYSIS

This work performed on the Ghion and Bata feeder of the Bahir Dar distribution network. Bahir Dar substation-II has
the 230/132/15 kV and 230/66/15 kV buses, which are power sources to four feeders (i.e., Air force, Bata, Ghion and
Papyrus) and the other substation-I supply three feeders (i.e., Sematate, Boiler and Industry). For this study, two feeders,
namely, Ghion and Bata are selected because the real power losses and voltage violations at these feeders are beyond the
permissible limits. Figures 3 and 4 presented the single line diagrams of Ghion and Bata feeders, respectively. Further,
Appendix Tables A1–A5 presented the various data, related to the modeling of the selected feeders.
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F I G U R E 3 35-Bus Ghion feeder of Bahir Dar distribution system

Real power loss minimization by using integrating the active and reactive power source is applied to the two crit-
ical feeders of Bahir Dar radial distribution network. These feeders are connected from the Bahir Dar substation-II
400/230/66/15 kV bus. Feeder 5 is named as Ghion, which has 35 buses, while the other feeder named as Bata feeder has
40 buses.

Using the line and load data of the selected radial distribution network, backward/forward sweep load flow is per-
formed to get the total feeder loss and initial voltage profile of the selected buses. In reasonable conditions, without any
optimization, the total active load at the Bata feeder is 1.8262 MW with 1.5353 MVAr reactive loads. Ghion feeder has
3.43257 MW active and 2.5776 MVAr reactive loads. Additionally, the initial loss at the Bata feeder is 0.1262149 MW, and
Ghion feeder is 0.3395703 MW.

In this work, for the system loss minimization, DG and QG sources are optimally sized and placed at the selected
feeders by the MWOA optimization method. MWOA results are compared with the MPSO. The method is implemented
using a MATLAB R2016 programming language with computer properties of 2.2 GHz processor and 7.58 GB RAM
with core i7. The MATLAB program code is executed using the WOA algorithm. The proposed method minimized
real power loss by optimizing the objective function under constraint conditions. For comparison, the parameters of
the controlling values of MPSO are set as: the number of iterations is equal to 100, w is equal to 0.95, Cl is equal to
2, C2 is equal 2. In the case of MWOA, the iteration is the same as MPSO and the dimensions (dm) representing the
total active power is set to one. The first bus is selected as the slack bus. The results are discussed in the following
sub-sections.



SIMACHEW et al. 17 of 27

F I G U R E 4 40-Bus Bata feeder of Bahir Dar distribution system

4.1 Ghion feeder optimization

4.1.1 Real power loss minimization

The result of the load flow provides the total real line losses as 339.5703 kW. When DG and QG are used as the
source of optimization in the Ghion feeder, as seen from Table 9, the total active power loss after MWOA opti-
mization is reduced to 22 kW. For comparative analysis, by implementing the MPSO optimization, the loss reduced
to 27 kW. From the above result, the total power saved after the implementation of MWOA is 317.6 kW while with
MPSO is 312.6 kW for Ghion feeder. Therefore, results concluded that MWOA provided better results compared
to MPSO.

T A B L E 9 Result summary of Ghion feeder buses

Method Ploss (kW) DG size QG size

Location

VavgDG QG

Load flow 339.5703 - - - - 0.96

MPSO 27 3.16 1.709 28 27 0.988

MWOA 22 1.822 0.280 16 17 0.99
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F I G U R E 5 Voltage profile improvement of the 35-bus Ghion feeder before and after the optimization

4.1.2 Voltage profile improvement

After the placement of DG and QG, the voltage profile is also upgraded. The load flow indicates that the average voltage
profile of the feeder before the optimization is about 0.961 pu. The profile after the optimal sizing and placement of DG
and QG by using MWOA is improved to 1.0258 pu while with MPSO is improved to 0.988 pu. The per branch profile of
voltage after and before the optimization is shown in Figure 5.

The minimum value of voltages, before the placement of DG and QG are 0.9436 pu (at bus 35) and 0.9437 pu (at bus
34). With the MWOA optimization of the system, which is used for the placement and size of DG and QG, the value of
voltages at the mentioned buses is improved to 1.0189 pu (at bus 35) and 1.0194 pu (at bus 34), while with the MPSO
optimization, the values of voltages are improved to 0.9955 pu (at bus 35) and 0.9960 pu (at bus 34).

Figure 5 presented the comparative analysis of voltage profiles of Ghion feeder before and after the optimization
performed using MWOA and MPSO.30

4.2 Optimization of Bata feeder

4.2.1 Real power loss minimization

The result of the load flow provides the total real line losses as 126.2149 kW. In the optimization process of the 40-bus
Bata feeder by optimally integrating DG and QG, as seen from Table 10, the aggregated active power loss calculated by
MWOA is reduced to 22.4 kW while with MPSO reduced to 51.3 kW. From the results, the total power saved after MWOA
optimization is 103.814 kW while with MPSO is 74.914 kW.

4.2.2 Voltage profile improvement of Bata feeder

After the optimal placement of DG and QG, the voltage profile of various buses the Bata feeder is improved. The average
voltage profile of the feeder before the optimization is 0.9727 pu. The voltage profile after optimally placing the DG and
QG with the help of MWOA is improved to 0.9991 pu while with MPSO, it is improved to 0.9890 pu. Figure 6 presented
the comparative analysis of voltage profiles of Bata feeder before and after the optimization, performed by MWOA and
MPSO.
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T A B L E 10 Result summary of Bata feeder buses

Method Ploss (kW) DG size QG size

Location

VavgDG QG

Load flow 126.215 - - - - 0.9727

MPSO 51.3 1.437 1.1434 25 24 0.989

MWOA 22.4 0.820 1.070 35 31 0.999

F I G U R E 6 Voltage profile improvement of the 40-bus Bata feeder before and after the optimization

4.3 Performance comparison study of existing system with MWOA and MPSO

This work optimizes the real power loss minimization problem by satisfying all the constraints. The active power loss
is reduced, and the voltage profiles are improved. It is often robust to consider feeder voltage regulation related to the
profiles of feeder voltage. Voltage profile indicates the magnitude of the voltage with respect to its location on the feeder.
One way to determine the quality of power is maintaining the receiving end voltage magnitude closer the same to the
sender end. For bring this achievement practically, the capacitor and DG are applied in this work for Bahir Dar distribution
system. The size and placement of DG and shunt capacitor are performed by MWOA which illustrated using the 35-bus
Ghion feeder and 40-bus Bata feeder, the practical feeders of the Bhir Dar distribution system. The real power losses, DG
and QG sizes with location and average voltage profile of these feeders before and after the optimization is presented in
Tables 9 and 10.

Optimal location and size of DG and QG are found with the help of MWOA and compared with MPSO. After optimiza-
tion, the power loss had reduced from 339.5703 to 22 kW in Ghion feeder and from 126.2149 to 22.4 kW in Bata feeder
using MWOA. It had reduced from 339.5703 to 27 kW in Ghion feeder and from 126.2149 to 51.3 kW in Bata feeder using
MPSO.

The algorithm developed for the power loss reduction by applying shunt compensation of capacitor and DG integra-
tion had improved the overall system voltage profile. As a result, the voltage profile before the optimization is 0.96, after
optimization with MPSO, it is improved to 0.988 pu, and after optimization with MWOA, it is improved to 0.997 pu for
Ghion feeder. The voltage profile of Bata feeder before and after optimization is 0.9726. After optimization with the MPSO
is improved to 0.989 and with MWOA improved to 0.9991 pu in Bata feeder. From the results, MWOA provided better
performance as compare to the MPSO optimization approach.
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T A B L E 11 Expected cost of DG and QG in USD/W and kVAr

Technology Investment cost ($/W) Capacitor cost ($/kVAr)

Biomass 1.5–2.5 5

Wind 0.8–1.5

Solar PV 6–8

T A B L E 12 Total investment cost

Technology Size Investment cost ($)

Biomass 2.7 (MW) 4,050,000–10,125,000

Wind 2.41 (MW) 1,928,000–2,892,000

Solar, PV 0.29 (MW) 1,740,000–13,920,000

QG 1.35 (MVAr) 6750
Total investment cost 7,724,750–26,943,750
Average of total investment cost 17,334,250

4.4 Power output from various sources

The wind power density and the capacity factor of Bahir Dar are very suitable for wind generation. Hence, two wind
turbines are considered in this study to supply the main power demand. Rest demand which is not covered by the wind
generation is supplied by solar power. The output of Vestas V82 wind turbine at average speed of 10.43 m/s is 1210 kW.
Therefore, the total generation from two wind turbines is 2410 kW.

The required solar power is (2700–2410 kW) 290 kW. The daily average solar radiation of Bahir Dar city is
6.286 kWh/m2/d. The solar irradiance computed for the Bahir Dar city is 1322.73 W/m2. The solar power output at
1322.73 W/m2 is about 190 W with this output about 1527 solar panels are required.

Biomass resource is utilized as the backup source in this work. To minimize the investment cost of the biomass, it
should be installed at 16th bus of Ghion feeder and 35th bus of Bata feeder. The total DG value calculated from MWOA
optimization is about 2.7 MW. Since biomass is utilized as back up, its value should equal to the total power demanded
from DG, that is, 2.7 MW. For normal operating conditions, the total biomass required by the power plant to generate
2.7 MW with co-firing capacity of 5%, heat rate 80% and HHV 80% are 1,182,600 tons/year.

The QG value of the two feeders after WOA optimization is 1.35 MVAr. The value of QG can be found in multiple of
150 kVAr.

4.5 Investment cost of overall system

For the development of wind, solar and biomass power plant based DG system, the investment cost and shunt capacitor
cost is summarized in Table 1131,34:

The investment cost of the system, optimized using WOA for the selected two feeders is presented in Table 12. Since
wind capacity factor is higher, it is reasonable to choose two wind turbines and the rest should be solar energy. The
biomass is used as backup source to avoid intermittence nature of wind and solar energy. Hence, it would cover all the
power supplied by solar and wind during their off condition. Further, shunt capacitor is used to supply reactive power,
required by the system.

5 CONCLUSION

Localizing the active generation and reactive power demands had reduced the power loss. In this research, multi-
objective-based WOA optimization is applied to minimize the practical system losses. In this work, two practical feeders
of the Bahir Dar distribution network was considered to perform the loss minimization as well as voltage profile improve-
ment. MWOA was compared with the MPSO, which shows the superiority of the initial one in terms of loss minimization
and voltage profile improvement. A detailed economic analysis is also presented, which shows the total investment cost
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required for the DG and capacitor bank installation. As the future enhancement of this work, maximum loading condi-
tion of the selected feeders can be incorporated to show the performance of the optimization techniques at peak loading.
Further, in whole Bahir Dar distribution network can be considered under different constraints conditions of the power
system for the better understanding of the system performance. Further, other machine learning based optimization tech-
niques can be utilized in real time manner for dynamic operation optimization of the system. The proposed work can also
be applied to other types of the multi-energy networks.38
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APPENDIX A
T A B L E A1 Power flow results of Bata feeder

Bus no Active power flow before optimization (kW) Reactive power flow before optimization (kVAr)

1 0 0

2 9.96 6.69

3 59.34 62.26

4 15.77 10.59

5 0 0

6 0 0

7 0 0

8 38 28.5

9 146.76 124.08

10 71.71 71.11

11 136.74 103.84

12 0 0

13 0 0

14 53.39 44.65

15 65.45 54.22

16 70.4 52.8

17 31.98 21.8

18 78.28 66.93

19 40.8 30.6

20 159.75 158.43

21 0 0

22 75.07 62.2

23 0 0

24 0 0

25 17.22 12.02

26 113 96.82

27 45.6 38.99

28 18.04 12.59

29 45.81 37.96

30 64.6 55.23

31 36.52 24.54

32 18.4 13.8

33 8.3 5.58

34 24.45 17.37

35 57.75 48.74

36 12.3 8.58

37 68.5 47.8

38 88 66

39 93.5 86

40 94.6 88
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T A B L E A2 Load flow results in per unit of the Bata feeder before and after optimization

Bus No Vbus (pu) before optimization Vbus (pu) after PSO optimization Vbus (pu) after WOA optimization

1 1 1 1

2 0.9847 0.9986 1.0402

3 0.9813 0.9843 1.014

4 0.9796 0.9837 1.0176

5 0.9788 0.9834 1.0212

6 0.9771 0.9827 0.9991

7 0.9741 0.9886 1.032

8 0.9715 0.9889 1.0108

9 0.9714 0.9886 1.0391

10 0.9847 0.9862 1.0469

11 0.9809 0.9812 1.007

12 0.9809 0.9812 1.0401

13 0.9764 0.9758 1.0182

14 0.9753 0.9721 1.0454

15 0.975 0.9709 1.0089

16 0.9764 0.9754 1.0217

17 0.9751 0.9797 1.0188

18 0.9743 0.9771 1

19 0.9736 0.9747 1.0321

20 0.9724 0.9705 1.0022

21 0.9741 0.986 1.0253

22 0.9707 0.9937 1.0096

23 0.9691 0.9985 1.0014

24 0.9683 1.001 1.0195

25 0.9668 1.0058 0.9974

26 0.9666 1.0051 1.0381

27 0.9707 0.9933 1.0164

28 0.9683 1.0009 0.9987

29 0.9667 1.0057 0.9999

30 0.9664 1.0061 1.0447

31 0.9662 1.0077 1.0206

32 0.9662 1.0076 1.0334

33 0.9664 1.0017 1.0275

34 0.9655 0.9984 1.0258

35 0.9653 0.9981 1.0256

36 0.9653 0.998 1.0255

37 0.9663 1.001 1.0271

38 0.9654 0.9977 1.0254

39 0.9648 0.9981 1.0242

40 0.9645 0.9983 1.0232
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T A B L E A3 Load flow results in per unit of the Ghion feeder before and after optimization

Bus number Vbus (pu) before optimization Vbus (pu) after PSO optimization Vbus (pu) after WOA optimization

1 1 1 1

2 0.9859 0.9941 1.0095

3 0.9844 0.9935 1.0107

4 0.9812 0.9924 1.0131

5 0.9749 0.9903 1.0182

6 0.9707 0.9891 1.0218

7 0.9705 0.9882 1.0226

8 0.9691 0.984 1.0278

9 0.9683 0.994 1.0095

10 0.9665 0.9887 1.0214

11 0.9658 0.9879 1.0223

12 0.9627 0.9796 1.0236

13 0.962 0.9787 1.0227

14 0.961 0.9778 1.0218

15 0.96 0.9796 1.0236

16 0.9579 0.9759 1.0451

17 0.9575 0.9743 1.0382

18 0.9572 0.9733 1.0381

19 0.9569 0.9718 1.049

20 0.9567 0.9714 1.0415

21 0.9566 0.9708 1.049

22 0.9574 0.9741 1.044

23 0.9574 0.9741 1.044

24 0.9577 0.975 1.0442

25 0.9577 0.9749 1.0441

26 0.9536 0.9978 1.0191

27 0.9509 1.0047 1.0178

28 0.9484 1.0133 1.018

29 0.9477 1.0106 1.0183

30 0.9466 1.0066 1.0195

31 0.9456 1.0027 1.0209

32 0.9449 1.0003 1.0237

33 0.9441 0.9975 1.0209

34 0.9437 0.996 1.0194

35 0.9436 0.9955 1.0189
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T A B L E A4 Bus and line data of 30 bus Ghion feeder of Bahir Dar distribution system
Sending
End

Receiving
End

Conductor
Type

Length
in km Resistance(𝛀)

Reactance
in (𝛀)

Receiving
end load (kW)

Receiving
end load (kVAr)

1 2 AAC-95 1.687 0.5760 0.0845 0 0

2 3 AAC-95 0.209 0.0645 0.0095 25.60 19.20

3 4 AAC-95 0.423 0.1305 0.0191 11.62 7.80

4 5 AAC-95 0.857 0.2644 0.0388 17.62 32.90

5 6 AAC-95 0.577 0.1780 0.0261 47.15 0

6 7 AAC-95 0.085 0.0262 0.0038 0 0

7 8 AAC-95 0.457 0.1410 0.0207 0 222.30

2 9 AAC-50 0.191 0.1105 0.0130 260 20.88

6 10 AAC-50 0.430 0.2488 0.0292 29.93 28.32

7 11 AAC-50 0.170 0.0983 0.0115 68.0 51.00

8 12 AAC-50 0.897 0.5189 0.0609 130.8 88.68

12 13 AAC-50 0.229 0.1325 0.0155 43.20 32.40

13 14 AAC-50 0.334 0.1932 0.0227 108.3 72.26

12 15 AAC-50 0.474 0.2742 0.0322 164.92 141.01

8 16 AAC-50 0.944 0.5461 0.0641 0 0

16 17 AAC-50 0.221 0.1278 0.0150 0 0

17 18 AAC-50 0.204 0.1180 0.0138 51.48 44.02

18 19 AAC-50 0.345 0.1996 0.0234 55.82 46.25

19 20 AAC-50 0.174 0.1007 0.0118 92.78 76.87

20 21 AAC-50 0.344 0.1990 0.0234 73.61 60.98

17 22 AAC-50 0.180 0.1041 0.0122 99.30 79.12

17 23 AAC-50 0.399 0.2308 0.0271 69.81 51.73

16 24 AAC-50 0.791 0.4576 0.0537 33.62 23.46

24 25 AAC-50 0.179 0.1036 0.0122 17.01 11.43

6 26 AAC-50 0.2184 0.2999 0.0352 60 20

26 27 AAC-50 0.268 0.2129 0.0250 120 70

27 28 AAC-50 0.184 0.2221 0.0261 200 600

28 29 AAC-50 0.22 0.0706 0.0083 150 70

29 30 AAC-50 0.338 0.1237 0.0145 210 100

30 31 AAC-50 0.168 0.1254 0.0147 60 40

31 32 AAC-50 0.26 0.1250 0.0147 460 250

32 33 AAC-50 0.184 0.2221 0.0261 256 120

33 34 AAC-50 0.228 0.1319 0.0155 36 15

34 35 AAC-50 0.388 0.1435 0.0168 342 122

138 60
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T A B L E A5 Bus and line data of 40 bus Bata feeder of Bahir Dar distribution system
Sending
end

Receiving
end

Conductor
type

Length
in km

Resistance
(𝛀)

Reactance
in (𝛀)

Receiving
end load (kW)

Receiving
end load (kVAr)

1 2 AAC-95 1.784 0.550364 0.081071974 0 0

2 3 AAC-95 0.427 0.13173 0.019404559 9.96 6.69

3 4 AAC-95 0.229 0.070647 0.01040666 59.34 62.26

4 5 AAC-95 0.114 0.035169 0.005180608 15.77 10.59

5 6 AAC-95 0.236 0.072806 0.010724768 0 0

6 7 AAC-95 0.621 0.191579 0.028220682 0 0

7 8 AAC-95 0.543 0.167516 0.024676055 0 0

8 9 AAC-95 0.143 0.044116 0.006498482 38 28.5

2 10 AAC-50 0.336 0.194376 0.022874473 146.76 124.08

3 11 AAC-50 0.833 0.481891 0.056709632 71.71 71.11

11 12 AAC-50 0.894 0.517179 0.060862438 136.74 103.84

6 13 AAC-50 0.481 0.278259 0.032745898 0 0

13 14 AAC-50 0.297 0.171815 0.020219401 0 0

14 15 AAC-50 0.65 0.376025 0.044251213 53.39 44.65

13 16 AAC-50 0.211 0.122064 0.014364625 65.45 54.22

14 17 AAC-50 0.268 0.155038 0.018245116 70.40 52.8

17 18 AAC-50 0.324 0.187434 0.022057528 31.98 21.8

18 19 AAC-50 0.402 0.232557 0.027367673 78.28 66.93

19 20 AAC-50 0.893 0.516601 0.060794359 40.8 30.6

7 21 AAC-50 0.314 0.181649 0.02137674 159.75 158.43

8 22 AAC-50 0.326 0.188591 0.022193685 0 0

22 23 AAC-50 0.264 0.152724 0.0179728 75.07 62.2

23 24 AAC-50 0.134 0.077519 0.009122558 0 0

24 25 AAC-50 0.25 0.144625 0.017019697 0 0

25 26 AAC-50 0.21 0.121485 0.014296546 17.22 12.02

22 27 AAC-50 0.314 0.181649 0.02137674 113 96.82

24 28 AAC-50 0.188 0.108758 0.012798812 45.6 38.99

25 29 AAC-50 0.121 0.069999 0.008237534 18.04 12.59

29 30 AAC-50 0.275 0.159088 0.018721667 45.81 37.96

30 31 AAC-50 0.43 0.248755 0.02927388 64.6 55.23

31 32 AAC-50 0.33 0.190905 0.022466001 36.52 24.54

25 33 AAC-50 0.328 0.189748 0.022329843 18.4 13.8

33 34 AAC-50 0.318 0.183963 0.021649055 8.3 5.58

34 35 AAC-50 0.197 0.113965 0.013411522 24.45 17.37

35 36 AAC-50 0.242 0.139997 0.016475067 57.75 48.74

33 37 AAC-50 0.379 0.219252 0.025801861 12.3 8.58

34 38 AAC-50 0.091 0.052644 0.00619517 68.5 47.8

38 39 AAC-50 0.418 0.241813 0.028456934 88 66

39 40 AAC-50 0.727 0.42057 0.04949328 93.5 86

94.6 88.0


