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Abstract: A Microgrid (MG), like any other smart and interoperable power system, requires device-to-
device (D2D) communication structures in order to function effectively. This communication system,
however, is not immune to intentional or unintentional failures. This paper discusses the effects
of communication link failures on MG control and management and proposes solutions based on
enhancing message content to mitigate their detritus impact. In order to achieve this goal, generation
and consumption forecasting using deep learning (DL) methods at the next time steps is used. The
architecture of an energy management system (EMS) and an energy storage system (ESS) that are able
to operate in coordination is introduced and evaluated by simulation tests, which show promising
results and illustrate the efficacy of the proposed methods. It is important to mention that, in this
paper, three dissimilar topics namely MG control/management, DL-based forecasting, and D2D
communication architectures are employed and this combination is proven to be capable of achieving
the aforesaid objective.

Keywords: microgrid; machine-to-machine communication; deep learning; time series forecasting;
artificial neural networks

1. Introduction

The idea of localizing energy generation and consumption is the backbone of microgrid
(MG) philosophy. In case of grid-connected MGs, the localization concept can be beneficial
for both urban and rural power-systems by reducing energy exchange with the main
power-lines while utilizing more renewable energy resources. Minimizing power exchange
with the grid during peaks demand or supply results in important benefits [1]:

• Preventing possible and harmful over-voltage problems especially in weak-grids;
• Avoiding over-designed power-lines due to internal power balancing of the units;
• Improving grid’s power quality and contributing to better grid stability.

However, due to the inevitable occurrence of internal energy imbalances caused by
generation and consumption mismatches, power exchanges with the grid at the point
of common coupling (PCC) is unavoidable. Therefore, in most MG architectures energy
storage systems (ESS) are included to compensate for power imbalance. These ESSs are
controlled by energy management systems (EMS) that regulate the power flow optimally.
To achieve a valid operation of such a power system, communication links between these
different energy players are required. These links transmit power measurements from
different generation/consumption stations and the ESS charge status to the EMS where the
calculations are conducted and proper power references for the ESS are set and transmit-
ted [2]. The system’s normal functionality is hindered when these links malfunction.

As an idealistic prospect, the future power network can be formed by clusters of
independent MGs that are able to individually localize their generation and consumption
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by design. These MG units will be able to interoperate and exchange energy when excess
in one MG can balance a deficit in another. This, inevitably, requires energy awareness
between neighboring units through communication links. In other words, the role of
communication is not limited to be within an MG and between the individual devices but
it also plays a much wider role [3,4].

In an MG structure, if the communication links fail due to either unintentional reasons
such as natural disasters, or intentional purposes such as cyber attacks, the effects are not
just limited to poor power regulation. In fact, it can contribute to severe problems such as
MG bus voltage and frequency deviation from their reference values or milder effects such
as losing the optimal energy balance of the system. In any case, normal operation is no
longer possible without an operational communication infrastructure [5].

The communication link loss resulting complications can be mitigated if control
structures of power converters that interface the units (for instance an ESS) with the MG
buses are able to estimate their operational set-points for the next time steps. Specifically
in this case, if consumption and generation forecasting is available for a certain time
horizon the future ESS power reference can be calculated by the EMS and transmitted
to its controller in advance. These redundant information will be stored on a memory
buffer at the controller side and be utilized in case of a communication link loss occurs.
This criteria is relatively simple if the generation or consumption follow a known and
predictable pattern. For example, in the vehicle-to-grid (V2G) system described in [6] the
generation and load are based on an electric train’s acceleration and breaking due to arrivals
and departures which are precisely scheduled. By contrast, in the type of power-systems
that we are interested in this paper, such as residential MGs, it is a quite different story:
forecasting the generation that is based on renewable energy supply, which is volatile in
nature, or the consumption, that can largely vary based on the users’ decisions, is not
a trivial problem. However, there are techniques that have proved that even in these
circumstances the generation and consumption can be forecasted for a short-term time
horizons (one hour with time steps in terms of minutes). These forecasts are achieved based
on utilizing deep learning (DL) methods [1,7–12]. These related contributions mainly focus
on the forecasting aspect while in this paper we attempt to utilize such prediction methods
to enhance and rearrange the message content from the communication point of view while
investigating the potential challenges that are accompanying this approach.

In this paper, since some dissimilar, yet, related topics such as MG control, device-to-
device (D2D) communication, and DL based forecasting techniques are combined different
approaches were utilized for validation and analysis to achieve the desirable proof of
concept. In this regard, link reliability verification and latency analysis were also conducted
to show the capabilities and also limitation of the transmission system. On the other
hand, short-term and very short-term time-series forecasting was utilized to demonstrate
how to predict future time-steps for generation and production. Most importantly, a grid-
connected MG model based on the operation of grid-feeding inverters was utilized as a
base for the simulation platform so that the aforementioned transmission architecture and
the forecasting system can be integrated and the required tests can be conducted.

The main contributions of this paper are listed as follows:

• The detrimental communication link failure effects on the internal energy balancing
of MG systems are investigated. The specific MG examined in this study is based on
grid-feeding inverters and operates in grid-connected mode. In this configuration, the
communication link transmits measurements from the consumption, production, and
storage stations to the EMS. Furthermore, it relays power references from the EMS to the
ESS so that the storage system can effectively contribute to minimizing the PCC power
exchange.

• Methodology of short-term load and PV-generation forecastings based on DL meth-
ods are described and numerically performed on sample datasets for a residential
MG application.
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• The details of the designed communication infrastructure are explained and evaluated
in terms of the dependency of latency values to payload size.

• A system architecture that can enhance communication message content is proposed.
The effectiveness of this system is evaluated by comparing the PCC power exchange
measurements while the communication link is operational using forecasted values
following communication link failure.

The remainder of the paper is organized as follows. Section 2 introduces the role
of communication in MG management. The effect of communication link loss on MG
performance is introduced and discussed in Section 3. Section 4 presents DL based meth-
ods for time-series forecasting. The description of the selected communication system is
provided in Section 5. Section 6 is dedicated to describe the proposed system architecture
for enhancing the communication message content. Finally, conclusion and discussions are
presented in Section 7.

2. Communication System for Residential MG Management

Figure 1 is a conceptual illustration of a combination of different communication
systems operating in coordination to manage an MG cluster-based power-system. It
consists of several modern farmhouses that can communicate through a satellite type
backhaul link due to the wide separation and possible terrain complications between
them. They are also electrically inter-connected which is not shown in the figure. By
zooming on to an individual farmhouse, which represents a residential MG, it can be
understood that distributed-generators (DGs) and loads are required to be managed by
central controllers that can be located relatively far away. That long-range requirement can
justify the utilization of LoRa, which is a low-power and long-range wireless protocol [13].

Zooming in further, the core of the residential MG can be considered as a building that
should be equipped with device-to-device (D2D) communication capabilities to supervise
indoor and outdoor smart-devices. In this case, wide coverage is no longer required
and ease of implementation and scalability are the important required characteristics that
define the selected communication protocol. ZigBee is a very good candidate for smart-
homes [14,15]. In line with the development of MG, their low level control structures
became less communication dependent and more reliant on local measurements. However,
communication is still required for the higher level of the MG control hierarchy and only
the primary level operates as communication free [16–18].

The lowest level of communication, consists of power-electronics-based converters
that interface the DGs and storage systems to the buses. These devices require access
to critical readings (namely voltage and current measurements from sensors) in order to
regulate their output characteristics based on their embedded control algorithms. This
accessibility requires other types of communication links which can be very different from
the higher levels in terms of specifications.

From a communication network point of view, the illustrated setting consists of four
levels of networks that are briefly summarized in Table 1. Those levels are device area network
(DAN), smart home area network (SHAN), microgrid area network (MAN), and finally
multimicrogrid area network (MMAN). As it can be observed, the specifications/requirements
and protocols of each of the levels differ considerably from each other.



Sensors 2022, 22, 6006 4 of 23

Communication Server

SHAN

CAN

MAN

High Throughput 

Central Controller
 

Figure 1. Multilevel communication network for a system of residential MGs for remote applications.

Table 1. Different network levels, devices, communication requirements, and protocols.

Network Level Node Types Characteristics Protocols References

DAN Device
Converters, V/I Sen-
sors, Data Loggers,
Data Acquisition

Low-Range, High-
Speed, Ultra-reliability

Can-Bus, Modbus, Inter-
bus, Profibus, Ethernet [19–21]

SHAN Smart Home
Smart Applications,
Control, Monitoring,
Processing

Heterogeneity, Scalabil-
ity, Mobility

ZigBee, WiFi, Zwave,
Bluetooth, 6LoWPAN [14,22–24]

MAN Microgrid DGs, ESSs, EV Charg-
ing

Long-Range, Indepen-
dent, Security

LoRaWAN, SigFox,
Dash7, Ingenu, NB-IoT [25–27]

MMAN Multi- Micro-
grid Energy Internet

Ultra Long-Range, Ter-
rain affected, Standard-
ization

4G, 5G, Direct to satel-
lite LPWAN [28]

3. Link Loss Effects

Based on the descriptions of the multilayer communication system provided in
Section 2 it can be understood that link failures can happen at each of the levels with
different consequences. For example, at the device level, where the acceptable level for
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latencies are very small (in the order of 10 milliseconds or less) even small delays can cause
stability problems and be very harmful. In contrast, at multimicrogrid level, a total link
failure may cause serious economic problems or voltage and frequency deviations.

In this paper, we are primarily interested in the MG-level and the details of its link
failure effects will be discussed in this section. Based on the configuration of a specific
MG the role of communication in the control architecture varies. For example, in an MG
architecture based on voltage source inverters (VSIs) the secondary control is the most
recognizable point of communication interaction with MG control. This level deals with
voltage and frequency deviations caused by the primary control by restoring the reference
values. Furthermore, it contributes to proper reactive power sharing since there is a trade-
off between voltage regulation and reactive power sharing in the primary level [29,30].
In another grid-connected MG topology, that is formed of grid-feeding inverters, the
secondary control functionality is completely different. Figure 2 illustrates the difference
between the secondary-level of control for the two aforementioned types of inverter. As
it can be observed, when voltage-source and VSIs are used the secondary control inputs
are voltage/frequency references and measurements while in the grid-feeding and current
source inverters (CSIs) externally generated power references and power measurements
are transmitted to the secondary controller. As a result of this argument it can be easily
understood that the effects of communication link losses can be quite different depending
on which types of inverters are utilized.
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Figure 2. Secondary control for different types of inverters. (a) Grid-forming and VSI. (b) Grid-feeding
and CSI. The values with a star superscript represent secondary control references.

3.1. Impact of Link Failure on a Grid-Connected MG with Grid-Feeding Inverters

In order to demonstrate the effects of communication link loss on the power regulation
of a typical residential MG an experimental testbed was prepared and a test scenario was
created. The rationale behind this test was to show how an external EMS that transmits
power setpoints for the ESS, through the communication network, can contribute to a more
desirable MG internal power balancing and minimize the PCC power exchange.

In the setup, three grid-feeding 2.2 kW danfoss inverters were utilized with a shared
DC link and an AC grid-connection point of common coupling (PCC). These inverters
represent consumption, PV production, and an ESS that is considered fully charged at the
beginning of the day. In this experimental simulation consumption and PV generation
profiles were synthetically generated (based on real data) at 1-minute resolution for a
one-day time horizon.
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An external EMS that receives the power measurements from the inverters and cal-
culates and transmits proper power references for the ESS is included in our testbed.
This EMS is connected to the other devices through a message queuing telemetry trans-
port (MQTT) communication structure that was created by using micro-python enabled
microcontrollers [2]. A photo of this experimental tetstbed is provided in Figure 3.

dSPACE and 
Inverters 

Grid transformer

EMS and Profile Generator 

Data Logger

dSPACE 
graphical 
interface

Figure 3. Experimental setup.

The PCC power and energy exchange results are numerically presented by comparing
the normal scenario (with an operational communication system) with a no control scenario
that emulates communication link loss. The results are illustrated in Figure 4. A compre-
hensive descriptions of the experimental setup including the communication infrastructure
and the MG control algorithms are provided in a previously published research article by
the authors [2].

Table 2 summarizes the results, the first row represents 24 h energy values while the
power exchange root mean square error (RMSE) indicators are provided in the second row.
These RMSEs are calculated assuming that the ideal situation is zero PCC power exchange.

As it can be observed the PV production (2.145 kWh) is not enough to meet the demand
(−2.599 kWh) in the 24 h of the test period. In other words, internal energy balancing
cannot be achieved without energy exchange with the stiff-grid or utilizing an operational
ESS. In the ESS model used for this experiment [2], the initial state-of-charge (SoC) level
was assumed to be one so that it can compensate for the energy deficit effectively.

The forth and fifth columns of the table present the PCC energy exchange and power
RMSE results for two scenarios of communication link down (PCC no control) and opera-
tional communication system that transmit ESS power references generated by the external
EMS (PCC EMS). As it can be observed, if the communication link fails the daily PCC
energy exchange that is (0.019 kWh) exported to the grid will be changed to (−0.455 kWh)
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imported from the grid which represents a value of %104.2 increase. A similar affect of the
link failure can be observed on power exchange RMSE values.

Figure 4. PCC test results. Positive and negative signs indicate the direction of PCC power exchange,
import to the MG, and export from the MG, respectively.

Table 2. Comparison between base scenario and MQTT-based EMS.

PV Load PCC No Control PCC EMS %Change

Energy (kWh) 2.145 −2.599 −0.455 0.019 −104.2
Power RMSE (kW) - - 0.191 0.029 −96.8

3.2. Smart ESS for Link Loss Effects Mitigation

When the link is lost the ESS becomes disconnected from the EMS and therefore is not
able to update its setpoints. In this case the ESS can either operate with its last received setpoint
or shut down in order to prevent harmful charge/discharge operation. In either of these cases,
the optimum MG operation and internal power balancing are no longer maintained.

It is also important to mention that link-losses can happen in different parts of the
communication system with dissimilar consequences. For example, if it occurs on the
links that transmit the measurements from the inverters to the EMS and the rest of the
communication system is operating then false data will be delivered to the ESS. Here, we
are interested in investigating total communication failures and other scenarios are out of
the scope of this research.

A feasible solution to tackle this problem is to provide and load the ESS with extra
information so it can anticipate its upcoming power references. This is compatible to the
aforementioned MG structure since all the computations are performed on the external
EMS, so in order to obtain the smartness feature in the ESS, load/generation forecastings
should be performed on the EMS and extra/redundant information should be transmitted
through the communication link.

4. Deep Learning Techniques for Load/Generation Forecasting

In this section, the criteria that can be utilized to effectively forecast demand and
generation in an MG (residential MG) is presented. As mentioned before, unlike predictable
scenarios [6], the randomness and intermittency of both the generation and consumption
in MG systems cause difficulties and uncertainties when forecasting their trends. However,
noticeable efforts have been conducted in this regard.

In [8], a method based on utilizing artificial neural networks (ANN) for short-term
load forecasting (STLF) with a 24-hours time-horizon in an MG scenario was proposed by
Hernandez et al. The prediction model of this study consists of two stages where the output
of the first stage (maximum and minimum forecasted values for the following day) were
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used by the second stage that provides the 24-hours prediction data. Wen et al. proposed a
recurrent neural network (RNN) algorithm to forecast both the PV-generation and household-
consumption in residential MGs for the following day(s). In this study, the uncertainty factor of
both the trends were explained and the importance of implementing long short-term memory
(LSTM) methodology in the RNN structure was explained [9]. Wind power and PV generation
patterns have been forecasted (for the next 24-hours) by using a multistage prediction strategy
that was composed of empirical mode decomposition (EMD) and cascade forward neural
network (CFNN) algorithms. These predictions were utilized to manage and optimize the
consumption from the demand side by providing forecasted generation curves [10]. Kong
et al. [31] explained the fundamental differences between forecasting aggregated residential
load of multiple users with forecasting a single load. They described the challenges of load
forecasting for single residential applications and proposed an LSTM-RNN framework and
validate its performance with real-world data.

4.1. LSTM-RNN Based Framework for Time-Series Forecasting

It has been proven that RNN methods are a good choice for forecasting time depending
data such as load/generation curves for MG systems [32]. An RNN operates in a similar
way to other neural networks except it has connections to the previous time-steps. In other
words, each cell receives its previous output as an additional input as well as the regular
input of the current time step [33]. Although, conventional RNN algorithms perform
well for short-term temporal data, extended sequences cause severe delays and memory
capacity problems at the learning stage [34].

LSTM method was introduced to address these problems and gradually became the
dominant RNN method for time-series forecasting [35]. The basic idea of LSTM is that at
each time sequence the NN can store and trash some memory data which is performed
by using input, output, and forget gates in the algorithm structure [9,35]. An LSTM cell
receives the cell state (Ct−1) and the output value from the previous time step which is also
called hidden state (ht−1). In addition, the cell receives a current input for each time step
(xt). The cell output for each timestep are current cell and hidden states, (Ct) and (ht). It is
useful to add, LSTM algorithm utilizes three sigmoid and two tanh non-linear activation
functions [35]. An illustration of LSTM architecture is provided in Figure 5.

LSTM CELL

TIME STEP: t-1

LSTM CELL

TIME STEP : t

LSTM CELL

TIME STEP: t+1

Ct‐1 Ct+1Ct‐2 Ct

ht‐1ht‐2 ht ht+1

C t‐1

h t‐1

C t

h t

ơ 

ơ  tanh
ơ 

tanh

ht

X t

Figure 5. LSTM-RNN cell architecture.

4.2. Simulation Results of Very Short-Term Residential Load Forecasting Using LSTM-RNN

In order to demonstrate the forecasting capabilities of LSTM-RNN a series of tests
were performed in this subsection where we attempt to conduct load forecasting, and also
in Section 4.3 to repeat the procedure, but this time for PV-generation. The rationale behind
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these tests is to prove it is possible to predict multiple future time steps of a dataset in the
form of a univariate time series by DL techniques and more specifically LSTM. As will
be further explained in the rest of the article, the parameters of the DL model should be
carefully selected in order to achieve an acceptable prediction while keeping the training
time as low as possible.

The utilized data for prediction consists of thirty hours of a typical household power
consumption generated by utilizing a stochastic model with one minute resolution as
illustrated in Figure 6 [36].

The forecasting process is achieved by training the RNN network for 29 h and predict
the remaining 60 min. The algorithm was coded in MATLAB programming environment
using its standard RNN functions. Different number of hidden units (10, 50, 100, and 300)
and epoch # (250, 500, and 2000) were used in order to examine their effects on the RMSE
values. Furthermore, two distinct methods were used for forecasting, in the first case, the
LSTM-RNN network state is updated with observed (measured) values at each prediction
while forecasted data from previous steps were used for the network state update in the
second method. The results are summarized in Table 3.

0 200 400 600 800 1000 1200 1400 1600 1800

Minutes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

P
o
w

e
r 

[W
]

Figure 6. Thirty-hour household consumption power data.

As it can be observed adding the hidden units contributes to lower RMSE values,
while extending the training time. However, in case of 300 hidden units the results are
worse than the 100 units case; this is due to overfitting of the training set. Furthermore,
increasing the epoch number significantly adds to the training elapsed time. This is more
noticeable in the case of 300 units when the training time for the 500 epoch # case increases
to 25 min and 32 s. Generally, it is safe to state that there is not a clear rule-of-thumb
to select the LSTM network parameters and utilizing grid search algorithms can help to
optimize the settings.

Based on the test results a satisfactory configuration of 100 hidden units and 500 for
epoch # was chose. The two distinct sets of forecasted results are illustrated in Figure 7. As
expected, the prediction accuracy is much higher in Figure 7a (with updates) in compar-
ison with Figure 7b. However, a decent approximation is still available from the second
method. In our application, the observed values are not available since our goal is to
provide load/generation predictions for several future time-steps so the EMS can calculate
and transmit extra power references to the ESS. In other words Figure 7b represents the
forecasting scenario that will be used for our proposed framework.
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Table 3. Load forecasting RMSE values for different LSTM network hidden units and epoch #.

Hidden Units Epoch # Training
RMSE RMSE on Test Set (with Updates) RMSE on Test Set Training

Time

10 250 0.36 27.9511 91.4892 0:30
10 500 0.36 27.9075 83.9501 0:54
10 2000 0.36 27.9057 83.3967 3:22
50 250 0.23 26.7577 51.7804 0:49
50 500 0.21 26.7284 58.8833 1:33
50 2000 0.21 26.6763 58.2284 6:26
100 250 0.20 24.771 31.3054 2:00
100 500 0.18 24.8361 31.9779 3:37
100 2000 0.18 24.8239 31.4652 14:12
300 250 0.20 27.9456 58.9637 12:56
300 500 0.14 27.6778 199.3257 25:32
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Figure 7. LSTM-RNN very short-term load forecasting: 100 hidden units, 500 epoch #. (a) Updated
with observed values. (b) Updated with predicted values.
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4.3. Simulation Results of Short-Term PV Power Forecasting Using LSTM-RNN

Following the same prediction criteria as before, in this section, the LSTM-RNN
framework is used for short-term PV-power forecasting. However, the selected training
period and forecasting time-horizon are different from the previous case. This is due to the
characteristics of solar power that follow a daily-base pattern and depend on geographical
and seasonal parameters. This is in contradiction with household load trends that follow
appliances scheduled consumption or arbitrary user decisions.

A database of synthetically generated PV-power measures provided by the National
Renewable Energy Laboratory (NREL) of the U.S. Department of Energy was used for
this simulation [37]. From the database ten days (1 January 2006 to 10 January 2006) of
solar generation data corresponding to the state of Alabama were selected with 5 min
resolution, Figure 8. The LSTM-RNN was trained for 9 days and predicted PV-power for
the following day. It should be noted that solar generation strongly depends on immediate
weather conditions and phenomenon which was not considered in this simulation and
more complicated algorithms are essential for very-accurate predictions.
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Figure 8. Ten days of PV-power dataset.

The results are presented in Figure 9, where 200 hidden units and 1000 epoch # were
selected as the LSTM-RNN prediction settings. Two different trends are provided that
correspond to the two cases of network update with observed values and forecasted values
from previous time steps. Similar to the load forecasting test, when the networks is updated
with observed values, Figure 9a, the prediction accuracy is much higher, however, this
criteria is not suitable for the application of our interest as discussed in the previous section.

It is obvious that by using different LSTM-RNN parameters settings (other than the ones
of these tests) various levels of prediction accuracy can be achievable. However, performing
further tests to produce better forecasting results is out of the scope of this paper since here
we are presenting the practicality of performing sensible predictions on time dependent data
(Load/PV-Generation) by using LSTM-RNN algorithms as a proof of concept.
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Figure 9. LSTM-RNN short-term PV-generation forecasting: 200 hidden units, 1000 epoch #. (a) Up-
dated with observed values. (b) Updated with predicted values.

5. Communication Protocol and Latency

In this section, a short description of the communication messaging protocol that
is used in our MG testbed configuration accompanied by latency analysis and detailed
discussions have been provided.

5.1. Messaging Protocol

There are different application layer protocols that can be utilized for such applications.
The more famous ones are hypertext transfer protocol (HTTP), message queuing telemetry
transport (MQTT), and constrained application protocol (CoAP) [38]. MQTT, which is the se-
lected messaging protocol in our aforementioned MG architecture, is considered to be a better
candidate for device-to-device (D2D) applications due to its publish/subscribe methodology
and simpler frame structuring which means smaller headers sizes than the HTTP protocol [39].
This provides the light-weight feature of MQTT. It is necessary to mention that in our proposed
structure IEEE 802.11 (WiFi) is utilized as the physical layer protocol.
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MQTT frames consist of a fixed header (minimum one and maximum two bytes), a
variable header and payload that can theoretically be as large as 260 MB. The formatting
of MQTT messages are comprehensively explained in reference [39]. It is important to
mention that, while binary messages are also possible, normally the payload bytes are
formed by UTF-8 encoded strings in MQTT protocol. In other words, if the messages are
going to grow in size due to adding supplementary information “at least one byte” will be
added to the payload for each character. The effects of this phenomenon is investigated in
terms of latency increase, due to larger frames, and possible medium access control (MAC)
layer collisions in the next subsection.

Since the idea of this article is related to transmission link failures it is important to
provide a brief discussion about the failure rate or the reliability of the utilized communica-
tion framework. This is required to be discussed from two different points of view which
are MQTT reliability as the messaging protocol and the rest of the transmission architecture
that is conceptualized as the OSI stack:

• The reliability of the MQTT messaging protocol depends on the level of quality of
service (QoS) selected. Generally, a larger level of QoS translates to higher reliability
and QoS 1 and QoS 2 ensure the delivery of messages while increasing the latency as
a consequence of adding the number of transmissions and redundancy [2].

• MQTT works on top of TCP/IP and a compatible physical layer protocol, which in this
case is WiFi. The failure rate of this combination is totally case sensitive and depends
on lots of factors such as the size of the network, congestion issues, security level, and
power availability/stability [40].

Based on the points addressed above, it can be argued that failure rates or reliability
of a communication architecture such as MQTT depend on different factors regarding
the specific application. However, it can be stated that using higher MQTT QoS levels
removes packet loss possibilities from the application layer. Then, further down the OSI
stack, employing a stable and standard network such as WiFi can greatly contribute to
higher reliability.

In the case of the tests conducted for this study, as expected, no unintentional packet
losses or link failures were observed since MQTT QoS 1 was employed, limited users were
connected to the LAN, and also the very robust and high bandwidth IEEE 802.11ac was
employed for the link and physical layer. All the failures, that will be introduced in the
following sections were intentional to emulate poor network scenarios.

5.2. Latency Experiment with Various Payload Sizes

There are several elements that contribute to the overall end-to-end latency in a
wireless communication system. They are processing/queuing latencies, MAC latencies
and transmission latencies [41]. Among those, the transmission latencies depend on the size
of the header(s) and payload of a specific communication frame. The latency measurements
in this study are only focused on the effect of the size of the payload on the overall MQTT
latency, more comprehensive MQTT latency measurements and analysis, and also including
the effect of different MQTT QoS levels can be found in [2]. This is because it is required to
work out what will happen when an enhanced message is being sent from the EMS that
can be considerably larger than a normal message with a single payload, and finally to
determine if the time on air (ToA) of the enhanced message is acceptable. Needless to say,
if the enhanced message latencies become too large then the whole communication system
will no longer be suitable for this particular application.

An experimental testbed consisting of two PCs, where MQTT clients were created
using python-paho package, and a mosquitto MQTT broker was implemented to evaluate
the effect of changing payload size on end-to end MQTT latency. In this test, different
payloads consisting of 1, 10, 100, 1000, 2000, and 4000 numerical values (three digits) that
each of them can represent measurements or references were tested. By comparing the
transmit and receive timestamps, latency for a single transmission is calculated. An average
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value of ten iterations per each payload size produced a realistic estimation of overall
latency for different cases. The results are presented in Table 4 and Figure 10.

Table 4. Latency test results for various payload sizes.

Number of Data 1 10 100 1000 2000 4000

Latency (milliseconds) 147 151 154 161 205 291
Payload size (bytes) 21 89 418 4017 8016 16,018
TCP Segment count 1 1 1 3 6 11

Figure 10. MQTT end-to-end latency results. The effect of TCP segmentation is clearly visible on the
different measured latency values.

It can be observed from the results that for the cases of less than 1000 messages the
latencies remain fairly constant with a value of approximately 150 milliseconds. Beyond
this point, the latencies increase since the payloads need to be divided to a number of
TCP segments. It should be noted that the maximum size of a TCP segment is limited to
1500 bytes including its IP and TCP headers [42]. The payload sizes and TCP segment
counts of the MQTT frames are obtained by using Wireshark which is an open source and
widely recognized network protocol analyzer.

The following are key notes and findings regarding this experiment:

• In order to measure the latencies the transmitter and receiver clocks should be syn-
chronized. Since two separate PCs were utilized, using windows internet-time and
synchronizing them to the same time-server seems to be a feasible option. However,
in practice, this method did not provide sufficient synchronization accuracy, especially
when measuring latency in the millisecond scale. Therefore, we synchronized our tran-
sition and reception timestamps to a network time protocol (NTP) server, specifically
“pool.ntp.org”, in the python programming environment.

• The fact that latency values are relatively unaffected for payloads containing less than
1000 numeric values is not unexpected. This is because the testbed WLAN physical
protocol is IEEE 802.11n with a nominal link speed of 45 (Mbps). Comparing the scale
of this bandwidth with the size of the experimental messages payloads proves the
aforementioned fact.

• The measured value of 150 milliseconds that was recorded for most of the packets
was not related to transmission latencies (due to the tiny size of frames and abundant
available bandwidth of the channel). Furthermore MAC latencies were also not
present, therefore this shared value only represents processing and queuing latencies.
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• For the previously explained application of this research, which the communication
system is designed to be used, the redundant information is planned to be in type
of power references for several future time steps. That means a number of added
numerical values in the scale of 50 or less, therefore the payload sizes will not exceed
the upper limit of this experiment.

6. Proposed EMS and ESS Architecture

Following the discussions in the previous sections regarding load and PV-generation
short-term forecastings, in this section the proposed structure of the EMS and also the ESS
power-reference controller is presented. Figure 11 illustrates the aforementioned architecture.

As it can be observed, the EMS receives load and PV-generation generation values from
the smart-house sensors through the MQTT communication system. The ESS-SoC is also
transmitted to the EMS by the same link. Depending on the particular time-step, the EMS
either calculates the immediate power reference for the ESS or perform load/PV-generation
forecastings and prepare an enhanced message that contain ESS power references for
multiple future time-steps. In this proposed architecture, assuming that the measurements
sampling rate is 1 minute, EMS forecastings are performed every 30 min with 1-hour time
horizon so that the ESS has forecasted setpoints for at least 30 min in case a communication
failure occurs immediately before a scheduled EMS forecasting.
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Figure 11. EMS and ESS Pref Controller architecture to transmit and receive enhanced power
references with redundant information.

Once these power-references are transmitted from the EMS, they will be received by
the ESS while it is subscribing to the same topic in the MQTT communication infrastructure.
In MG methodology, ESSs (similar to DGs) are controlled by power-electronics based con-
verters. The experimental testbed configuration used for this research that was explained
in Section 3.1 is based on grid-feeding inverters operating in grid-connected mode. In
such a configuration, the transmitted power references are required to be consumed by the
converter’s controller power loop to regulate the power exchange with the MG bus. This
scheme is illustrated in Figure 12.
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The EMS power-references are directly utilized to generate pulse width modulation
signals that coordinate the charge and discharge operations of the ESS. However, prior to
this step, there should be another controller that investigates the operational conditions
of the communication link and select what type of data (real time or forecasted) should
be provided to the converter’s main controller. This is described in the right hand side
block (ESS Pref Controller) of Figure 11. As it can be observed, the link health status is
first checked by performing a wait loop. If no change is detected in the received Pref (from
the EMS) for more than one minute the controller assumes a link-loss has occurred and
attempts to use the forecasted values stored in its memory storage. These predicted Prefs
were previously stored by recognizing an “enhanced EMS message” (according to its larger
size) from a normal message . The main characteristics of the proposed EMS-ESS structure
are listed bellow:

• The measurements and also EMS generated Prefs rates are every 1 min.
• The load and PV-generation forecasting’s time-horizon is one hour with 5 min resolution.
• Enhanced messages with redundant (predicted) Prefs are created every 30 min.
• Based on the experiments presented in Section 5.2 a normal message contains approxi-

mately 20 bytes while enhanced messages can be between 200 and 300 bytes in size. It
is important to mention that, the byte # uncertainties are due to the possible different
number of digits of Prefs. However, It has been proven earlier that the end-to-end latencies
do not significantly change when and increase in payload size of this scale occurs.

• When using saved data, if the Pref controller cannot find a stored Pref for a specific
instant, the value of zero is send to the ESS controller as power-reference. This happens
when the communication outage duration prolongs and all the saved values are used.

6.1. The Benefit of the Utilization of Forecast Data in the Case of a Transmission Link Loss

This study started with the conceptualization of MG communication systems, followed
by demonstrating link loss effects on the performance of a typical grid-connected MG
in terms of PCC power exchange. After that, a possible solution was proposed that
was equipping the EMS with predicted values of consumption and generation. It was
demonstrated how these predictions can be achieved by using DL techniques and after
that, by transmission latency analysis it was proven that enhanced messages with a larger
payload will not considerably affect the latency. Finally, a proposed EMS and ESS structure
was proposed to create and manage enhanced messages to mitigate link-loss failures earlier
in Section 6.

In this part, the attempt is to show by using the proposed architecture how the effects of
transmission link-loss can be mitigated in a quantifiable manner. For this purpose, the short
term load/ PV-generation forecasting results from Sections 4.2 and 4.3 were employed and
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a comparison of MG power performance in normal and faulty (communication link-losses)
situations is conducted. In other words, the power exchange pattern with the grid at the
PCC is analyzed when the ESS is operating with accurate EMS power-references originated
from real-time measurements or when the EMS calculations are based on forecasted values.

In order to achieve this goal, one-hour of load and PV-generation values with 5-min
resolution of the dataset used for experiments in Section 3.1 is selected and the differences
between consumption and generation values of the same time steps are calculated. By this
the internal power imbalance can be worked out. This process has also been conducted for
the forecasted values of the same time steps that are calculated by the methods explained in
Sections 4.2 and 4.3. The aforementioned calculated values represent the ESS power references
assuming that the instantaneous ESS-SoC value permits for a valid charge/discharge operation.

The results are provided in Figure 13. In this selected time horizon, since the PV-
generation values are consistently larger than the consumption there is power excess
inside the MG which is represented by the black curve in the figure. On the other hand,
it can be observed that the forecast curve follows the pattern of the actual values in an
acceptable manner. For this time period the total internal energy imbalance inside the MG
is (0.4367 kWh) which means if an operational ESS is present in the system, (0.4367 kWh)
energy will be stored while using accurate Prefs. This is only possible if an operational
communication link between the EMS and ESS exists.

Figure 13. Internal power excess/deficit inside the MG (One hour test).

Needless to say, if forecasted values are used in the case of communication link loss,
the ESS cannot compensate fully for the internal power imbalance at every time-interval
and power exchanges with the main grid are necessary. In the case of this test, using the
forecast values by the ESS results to the storage of (0.3742 kWh) of the aforementioned
energy value, which means even if some is lost (injected into the grid) still the result is
much better compared to a situation where all of it is exported in the case of an internal
imbalance when the transmission link is down. This is the situation indicated by red arrows
in our aforementioned architecture, Figure 11.

In addition, similar results are also provided with actual and forecast data for two
and four time periods and the results are illustrated in Figures 14 and 15. It should be
noted that, in the case of these tests, the LSTM-RNN network state was updated by using
forecasted values at each time step (as explained in Section 4.2) so errors will accumulate
when the time horizon is expanding. To compare these scenarios, the amount of energy
imbalance based on actual load and PV-generation values, that would be the real-time EMS
power references, in the case of an operational communication link, along with the same
references calculated by using forecast values are gathered in Table 5.

As it can be observed, although by expanding the time window the energy exchange
with the grid increases, utilizing the forecasted values is still beneficial. Otherwise, the
ESS must be shut down after a link failure, since references are no longer received, and all
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the MG internal energy imbalances which are represented by the values of the first row of
Table 5 should be compensated by the grid.

Table 5. Comparison between the PCC energy exchange for different scenarios.

One Hour Two Hours Three Hours

ESS energy (charge/discharge)
while receiving real-time data 0.4367 kWh 0.7239 kWh 1.240 kWh
ESS energy (charge/discharge)
working on forecast data 0.3742 kWh 0.6059 kWh 0.7196 kWh
Energy exchanged with
the grid (Export/import) 0.0625 kWh 0.1180 kWh 0.5204 kWh

Figure 14. Internal power excess/deficit inside the MG (Two hour test).

Figure 15. Internal power excess/deficit inside the MG (Four hour test).

6.2. System Performance Comparison for Different Link-Loss Occurring Instant

Based on the proposed EMS-ESS system explained at the beginning of Section 6, it can
be noted that there is a particular architecture for transmitting enhanced messages (every
thirty minutes with forecast data for the next hour) so it is crucial to analyze the system’s
performance for different faulty scenarios. The difference between the analysis of this
subsection with Section 6.1 is that, here, it is attempted to monitor the system performance
regarding the occurrence time of the fault, while in the former analysis it was assumed that
the ESS is loaded with forecasted setpoints for different time-windows.

Two extreme cases are considered in this part, in the first case it is assumed that the
communication link is lost for a whole hour, and this loss occurs immediately after an
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enhanced message was transmitted, therefore, the ESS has the necessary Prefs for the
next hour. Due to the availability of forecasted Prefs for the duration of the fault, the ESS
can properly operate. However, errors exist since forecasted values never exactly match
with the real measurements. Figure 16 illustrates this error at each time step which will
accumulate to a total of (0.0625 kWh) of electrical energy injected to the grid at the duration
of this communication link loss. This can also be represented in terms of PCC power
exchange RMSE (0.0273 kW) which indicates a significant improvement to the link-loss
situation with no stored ESS power setpoints where the RMSE of the same trend is as high
as (0.4464 kW).

In the second fault scenario, the link loss happens just before the scheduled enhanced
message is generated and transmitted from the EMS. Like the previous case, this fault also
lasts for an hour. Regarding the circumstances, the Pref controller memory buffer only
contains forecasted power references for the next 30 min and after that the setpoint will
be changed to zero since there are no more data available. The error between ESS power
references and the proper values that would have been generated and transmitted by the
EMS with an operational link is illustrated in Figure 17. As it can be observed there is a
sudden steep increase after 30 min, which is due to setting Pref values to zero from this
point forward. During this fault, the total amount of (0.2774 kWh) of electrical energy is
injected to the grid and the PCC power exchange RMSE is (0.3497 kW) which both are
considerably greater than the previous scenario where the forecasted values were available
for the whole communication outage period. However, the performance is still better than
the base scenario where no mitigation technique was implemented.

The two link-loss scenarios discussed above are illustratively explained in Figure 18.
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Figure 16. Error due to utilizing forecasted values, first case.
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Figure 17. Error due to utilizing forecasted values, second case.
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Figure 18. Two different cases of link losses.

7. Discussions and Conclusions

In this paper, we propose a scheme to mitigate the problems caused by communication
system malfunctions on MG control and management. Our work combines three different,
but related, areas of research, which are MG power management, M2M communication,
and DL based energy consumption and production forecastings.

Previous studies that focus on load/generation forecastings for MG control and man-
agement did not deeply focus on communication aspects. On the other hand, it is challeng-
ing to find a communication-related MG publication that include DL based load/generation
forecasting. That is to say, the authors could not find a similar study in the current literature
that equally covers all the considered aspects of this work. Furthermore, the concept of
enhancing the communication message content that transmits power references from an
external EMS to an ESS in a typical grid-connected MG configuration has novelty and
justifies that this proposal can empower the existing literature.

For the sake of providing a definite discussion on the findings of this research several
points can be noted as follows:

• The effects of payload sizes on end-to-end communication latencies were experimen-
tally tested. The results proved that by enlarging the messages in the scale required
for this application no serious latency increases were observed.
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• It was proposed to use RNN-LSTM algorithms for load and PV generation forecastings
and simulation results proved that although the forecastings were not always perfect
but the general patterns were consistent.

• The unfavorable energy interactions with the grid through the PCC in case of commu-
nication link failure was analyzed. It was shown that these deviations from internal
energy balancing can be mitigated by designing a more capable communication infras-
tructure that can prepare, arrange, and transmit enhanced messages with forecasted
power references for next time steps. This helps the ESS to anticipate its upcoming,
however, not 100% accurate setpoint in the case of communication link failure.

• Numerical evaluation for internal energy balance of the MG by using the proposed
communication architecture and utilizing the LSTM-RNN load/generation forecasted
values was conducted and the results were presented for two different communication
link loss scenarios.

In summary, the findings of this paper demonstrate how some detrimental effects of
communication outage on the optimum operation of MGs can be minimized by enhancing
message’s content with the help of utilizing deep-learning methods. This is not a simple and
trivial problem, therefore, future work will be required so that the concept can be further
investigated. Potential future research topics will be focused on considering different MG
configurations such as islanded MGs based on VSIs and also other communication protocols
and infrastructures. In addition, other deep-learning based forecasting methods will be
investigated and their capabilities to perform short-term or very short-term predictions will
be evaluated. The aforementioned future works are just some examples and the potential
of expanding the concept introduced in this paper is vast according to its originality.
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3. Shafiee, Q.; Dragičević, T.; Vasquez, J.C.; Guerrero, J.M. Hierarchical control for multiple DC-microgrids clusters. IEEE Trans.

Energy Convers. 2014, 29, 922–933. [CrossRef]
4. Zhou, X.; Zhou, L.; Chen, Y.; Guerrero, J.M.; Luo, A.; Wu, W.; Yang, L. A microgrid cluster structure and its autonomous

coordination control strategy. Int. J. Electr. Power Energy Syst. 2018, 100, 69–80. [CrossRef]
5. Saad, A.; Faddel, S.; Youssef, T.; Mohammed, O.A. On the Implementation of IoT-Based Digital Twin for Networked Microgrids

Resiliency against Cyber Attacks. IEEE Trans. Smart Grid 2020, 11, 5138–5150. [CrossRef]
6. Krueger, H.; Cruden, A. Multi-Layer Event-Based Vehicle-to-Grid (V2G) Scheduling with Short Term Predictive Capability within

a Modular Aggregator Control Structure. IEEE Trans. Veh. Technol. 2020, 69, 4727–4739. [CrossRef]

www.crom.et.aau.dk
http://doi.org/10.1016/j.apenergy.2015.08.040
http://dx.doi.org/10.3390/en14185610
http://dx.doi.org/10.1109/TEC.2014.2362191
http://dx.doi.org/10.1016/j.ijepes.2018.02.031
http://dx.doi.org/10.1109/TSG.2020.3000958
http://dx.doi.org/10.1109/TVT.2020.2976035


Sensors 2022, 22, 6006 22 of 23

7. Guan, C.; Luh, P.B.; Michel, L.D.; Wang, Y.; Friedland, P.B. Very short-term load forecasting: Wavelet neural networks with data
pre-filtering. IEEE Trans. Power Syst. 2013, 28, 30–41. [CrossRef]

8. Hernández, L.; Baladrón, C.; Aguiar, J.M.; Calavia, L.; Carro, B.; Sánchez-Esguevillas, A.; Sanjuán, J.; González, Á.; Lloret, J.
Improved short-term load forecasting based on two-stage predictions with artificial neural networks in a microgrid environment.
Energies 2013, 6, 4489–4507. [CrossRef]

9. Wen, L.; Zhou, K.; Yang, S.; Lu, X. Optimal load dispatch of community microgrid with deep learning based solar power and
load forecasting. Energy 2019, 171, 1053–1065. [CrossRef]

10. Tascikaraoglu, A.; Boynuegri, A.R.; Uzunoglu, M. A demand side management strategy based on forecasting of residential
renewable sources: A smart home system in Turkey. Energy Build. 2014, 80, 309–320. [CrossRef]

11. Comodi, G.; Giantomassi, A.; Severini, M.; Squartini, S.; Ferracuti, F.; Fonti, A.; Nardi Cesarini, D.; Morodo, M.; Polonara, F.
Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of
energy management strategies. Appl. Energy 2015, 137, 854–866. [CrossRef]

12. Liu, N.; Tang, Q.; Zhang, J.; Fan, W.; Liu, J. A hybrid forecasting model with parameter optimization for short-term load
forecasting of micro-grids. Appl. Energy 2014, 129, 336–345. [CrossRef]

13. Arbab-Zavar, B.; Palacios-Garcia, E.J.; Vasquez, J.C.; Guerrero, J.M. LoRa Enabled Smart Inverters for Microgrid Scenarios with
Widespread Elements. Electronics 2021, 10, 2680. [CrossRef]

14. Palacios-Garcia, E.J.; Flores-Arias, J.M.; Chen, A.; Quiles-Latorre, F.J.; Bellido-Outeirino, F.J. Home energy management system
based on daily demand prediction and ZigBee network. In Proceedings of the 2015 IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2015 ; pp. 315–316. [CrossRef]

15. Palacios-Garcia, E.J.; Arbab-Zavar, B.; Vasquez, J.C.; Guerrero, J.M. Open IoT infrastructures for in-home energy management and
control. In Proceedings of the 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), Berlin, German,
8–11 September 2019; pp. 376–379. [CrossRef]

16. Guerrerol, J.M.; Berbel, N.; Matas, J.; Sosa, J.L.; Luis Garcia de Vicufia. Droop Control Method with Virtual Output Impedance for
Parallel Operation of Uninterruptible Power Supply Systems in a Microgrid. In Proceedings of the APEC 07—Twenty-Second
Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007.

17. Guerrero, J.M.; Vasquez, J.C.; Matas, J.; De Vicuña, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC
microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [CrossRef]

18. Arbab-Zavar, B.; Palacios-Garcia, E.; Vasquez, J.; Guerrero, J. Smart Inverters for Microgrid Applications: A Review. Energies
2019, 12, 840. [CrossRef]

19. Thomesse, J.P. Fieldbus technology and industrial automation. Proc. IEEE 2005, 93, 1073–1101. [CrossRef]
20. Cena, G. An improved can fieldbus for industrial applications. IEEE Trans. Ind. Electron. 1997, 44, 553–564. [CrossRef]
21. Mahalik, N.P.; Yen, M. Extending fieldbus standards to food processing and packaging industry: A review. Comput. Stand.

Interfaces 2009, 31, 586–598. [CrossRef]
22. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
23. Han, J.; Choi, C.S.; Park, W.K.; Lee, I.; Kim, S.H. Smart home energy management system including renewable energy based on

ZigBee and PLC. IEEE Trans. Consum. Electron. 2014, 60, 198–202. [CrossRef]
24. Setiawan, M.A.; Shahnia, F.; Rajakaruna, S.; Ghosh, A. ZigBee-Based Communication System for Data Transfer within Future

Microgrids. IEEE Trans. Smart Grid 2015, 6, 2343–2355. [CrossRef]
25. Olatinwo, D.D.; Abu-Mahfouz, A.; Hancke, G. A survey on LPWAN technologies in WBAN for remote health-care monitoring.

Sensors 2019, 19, 5268. [CrossRef] [PubMed]
26. Augustin, A.; Yi, J.; Clausen, T.; Townsley, W.M. A study of Lora: Long range & low power networks for the internet of things.

Sensors 2016, 16, 1466. [CrossRef]
27. Haxhibeqiri, J.; De Poorter, E.; Moerman, I.; Hoebeke, J. A survey of LoRaWAN for IoT: From technology to application. Sensors

2018, 18, 3995. [CrossRef]
28. Hofmann, C.A.; Knopp, A. Direct access to GEO satellites: An internet of remote things technology. In Proceedings of the 2019

IEEE 2nd 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 578–583. [CrossRef]
29. Shafiee, Q.; Stefanovic, C.; Dragicevic, T.; Popovski, P.; Vasquez, J.C.; Guerrero, J.M. Robust networked control scheme for

distributed secondary control of islanded microgrids. IEEE Trans. Ind. Electron. 2014, 61, 5363–5374. [CrossRef]
30. Simpson-Porco, J.W.; Shafiee, Q.; Dorfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary Frequency and Voltage Control of

Islanded Microgrids via Distributed Averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [CrossRef]
31. Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent

Neural Network. IEEE Trans. Smart Grid 2019, 10, 841–851. [CrossRef]
32. Chitsaz, H.; Shaker, H.; Zareipour, H.; Wood, D.; Amjady, N. Short-term electricity load forecasting of buildings in microgrids.

Energy Build. 2015, 99, 50–60. [CrossRef]
33. Géron, A. Hands-on Machine Learning with Sklearn, Keras & Tensorflow, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019;

Volume 1.
34. Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing

2019, 323, 203–213. [CrossRef]

http://dx.doi.org/10.1109/TPWRS.2012.2197639
http://dx.doi.org/10.3390/en6094489
http://dx.doi.org/10.1016/j.energy.2019.01.075
http://dx.doi.org/10.1016/j.enbuild.2014.05.042
http://dx.doi.org/10.1016/j.apenergy.2014.07.068
http://dx.doi.org/10.1016/j.apenergy.2014.05.023
http://dx.doi.org/10.3390/electronics10212680
http://dx.doi.org/10.1109/icce.2015.7066428
http://dx.doi.org/10.1109/ICCE-Berlin47944.2019.8966225
http://dx.doi.org/10.1109/TIE.2010.2066534
http://dx.doi.org/10.3390/en12050840
http://dx.doi.org/10.1109/JPROC.2005.849724
http://dx.doi.org/10.1109/41.605633
http://dx.doi.org/10.1016/j.csi.2008.03.027
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/TCE.2014.6851994
http://dx.doi.org/10.1109/TSG.2015.2402678
http://dx.doi.org/10.3390/s19235268
http://www.ncbi.nlm.nih.gov/pubmed/31795483
http://dx.doi.org/10.3390/s16091466
http://dx.doi.org/10.3390/s18113995
http://dx.doi.org/10.1109/5GWF.2019.8911640
http://dx.doi.org/10.1109/TIE.2013.2293711
http://dx.doi.org/10.1109/TIE.2015.2436879
http://dx.doi.org/10.1109/TSG.2017.2753802
http://dx.doi.org/10.1016/j.enbuild.2015.04.011
http://dx.doi.org/10.1016/j.neucom.2018.09.082


Sensors 2022, 22, 6006 23 of 23

35. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
36. Palacios-Garcia, E.J.; Moreno-Muñoz, A.; Santiago, I.; Moreno-Garcia, I.M.; Milanés-Montero, M.I. PV Hosting Capacity Analysis

and Enhancement Using High Resolution Stochastic Modeling. Energies 2017, 10, 1488. [CrossRef]
37. NREL. Grid Modernization-Solar Power Data for Integration Studies. Available online: https://www.nrel.gov/grid/solar-

power-data.html (accessed on 9 August 2022).
38. Naik, N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In Proceedings of the 2017 IEEE

International Symposium on Systems Engineering, Vienna, Austria, 11–13 October 2017. [CrossRef]
39. OASIS Standard. MQTT Version 3.1.1. Available online: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

(accessed on 19 July 2022).
40. Singh, M.; Rajan, M.A.; Shivraj, V.L.; Balamuralidhar, P. Secure MQTT for Internet of Things (IoT). In Proceedings of the 2015 Fifth

International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015; pp. 746–751.
[CrossRef]

41. Jiang, X.; Ghadikolaei, H.S.; Fodor, G.; Modiano, E.; Pang, Z.; Zorzi, M.; Fischione, C. Low-latency networking: Where latency
lurks and how to tame it. Proc. IEEE 2018, 107, 280–306. [CrossRef]

42. Xylomenos, G.; Polyzos, G.C. TCP and UDP performance over a wireless LAN. In Proceedings of the IEEE INFOCOM
’99, Conference on Computer Communications, Proceedings, Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, The Future Is Now (Cat. No.99CH36320), New York, NY, USA, 21–25 March 1999; Volume 2,
pp. 439–446. [CrossRef]

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3390/en10101488
https://www.nrel.gov/grid/solar-power-data.html
https://www.nrel.gov/grid/solar-power-data.html
http://dx.doi.org/10.1109/SysEng.2017.8088251
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://dx.doi.org/10.1109/CSNT.2015.16
http://dx.doi.org/10.1109/JPROC.2018.2863960
http://dx.doi.org/10.1109/INFCOM.1999.751376

	Introduction
	Communication System for Residential MG Management
	Link Loss Effects
	Impact of Link Failure on a Grid-Connected MG with Grid-Feeding Inverters
	Smart ESS for Link Loss Effects Mitigation

	Deep Learning Techniques for Load/Generation Forecasting
	LSTM-RNN Based Framework for Time-Series Forecasting
	Simulation Results of Very Short-Term Residential Load Forecasting Using LSTM-RNN
	Simulation Results of Short-Term PV Power Forecasting Using LSTM-RNN

	Communication Protocol and Latency
	Messaging Protocol
	Latency Experiment with Various Payload Sizes

	Proposed EMS and ESS Architecture
	The Benefit of the Utilization of Forecast Data in the Case of a Transmission Link Loss
	System Performance Comparison for Different Link-Loss Occurring Instant

	Discussions and Conclusions
	References

