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ABSTRACT

In this paper, a dual-band antenna at 4.5 GHz and 25 GHz is presented. The antenna is a low-frequency
phased patch antenna array combined with a high-frequency transmitarray with a fixed beam. The low-
frequency patch antenna array and the high-frequency transmitarray feed share the same aperture area.
The high-frequency transmitarray surface only uses a single substrate layer and is electrically transparent
to the low-frequency phased array with beamforming. The antenna is measured to achieve an impedance
bandwidth of 350 MHz and 3 GHz, and a gain of 15.4 dBi and 23.5 dBi, at S- and K-band respectively.
With an impressive frequency-ratio of 5.55 and an aperture area of only 12x12cm the antenna achieves
an aperture efficiency of 66% and 15% in the two bands respectively. Additionally, the low-frequency
beamforming capabilities (with the existence of transmitarray surface) are measured and the antenna is
shown to have a 60-degree scanning range with only a 0.22 dB gain drop-off.

INDEX TERMS Dual-band, S-band, K-Band, Antenna, Transmitarray, Antenna Array, Beamforming,

Satellite, Nano-satellite, Shared Aperture, Prototype, Measurement.

I. Introduction
NTENNAS can be designed with different features and
advantages. Some features and benefits come at the
expense of reduced antenna performance in another area.
Different use-cases and applications set different require-
ments for the performance of the antenna [1]-[8].

For this work, a very specific use-case is considered. The
antenna should utilize commonly used satellite frequency
bands. Thus, dual S- and K-band frequency operation is
chosen. The antenna should have low-frequency beamform-
ing capabilities while simultaneously maintaining a sufficient
high-frequency gain. The purpose of these requirements is
for the antenna to be used in a nano-satellite constellation.
The high-frequency band is used to establish a high-speed
connection to neighboring satellites in the constellation. The
low-frequency antenna will utilize beamforming to maintain
a communication link with Earth. Reflectarray and trans-
mitarray antennas are often reported in the literature to
yield a high gain [9]-[28]. For space applications, multi-
part antennas such as reflectarray and transmitarray antennas
often require a deployment mechanism. Between the two
options, a transmitarray might be the better option, as the

feeding source could be installed on the stationary part of
the antenna. The installation of the antenna unto a satellite
is a complex and very application-specific task. The antenna
is envisioned to be installed on one of then sides of the
satellite. No further discussion about antenna installation
will be conducted. None of the antennas reported in the
state-of-the-art literature have shown the desired antenna
performance characteristics of both simultaneously having
dual-band operation with a high frequency-ration and low-
frequency beamforming capabilities. Some antennas reported
in the literature satisfies parts of the requirements, but unlike
the antenna presented in this paper none of them covers all
the listed requirements simultaneously [16], [18], [22], [24].

In [16] a dual-band transmitarray is presented. However,
it is designed for k- and ka-band and could not easily be
scaled to a larger frequency-ratio. The antenna presented
in [18] is a dual-band antenna that has the same issue. Its
frequency-ratio is very low as it is designed for two k-band
frequencies. Neither the antenna from [16] nor [18] have
any beamforming capabilities. In [22] a dual-band antenna
with beam-steering is presented. Ignoring the low frequency-
ratio the antenna still has some disadvantages. To beam-
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steer, the transmission surface has to be physically moved.
But, since the surface also contains the unit elements for the
other frequency band the beam-steering cannot be performed
without affecting the opposite band negatively. Paper [24]
presents a beam-steering method that used switched to
realize a few predefined beam directions. Even with this
single band antenna design realizing wide low loss scanning
would be troublesome.

In this paper, an antenna design with the described features
will be presented. The antenna is a dual S- & K-band
antenna with low-frequency beamforming capabilities. Dual-
band functionality is achieved by combining a low-frequency
phased patch antenna array with a high-frequency transmi-
tarray in the same aperture area. Compared with antennas
reported in the state-of-the-art, the antenna of this paper
is unique. It enables low-frequency beamforming with an
dual-band antenna that has a very high frequency-ratio. It
achieves this without significantly sacrificing the radiation
performance in either of the two bands. To realize good
low-frequency beamforming performance the high-frequency
transmitarray surface needs to be electrically transparent at
the lower frequency. In this paper, good transparency is
achieved with the designed single-layer transmitarray unit
element.

ll. Antenna Configuration

The fabricated antenna prototype is seen in Fig. 1. The
proposed antenna has two parts made with a total of four dif-
ferent layers. The bottom part consists of a single 3 mm thick
layer of Polypropylene (PP) material placed between two
Rogers RO4003C layers both with a thickness of 0.812 mm.
The top part is a single layer of RO4003 with a thickness
of 1.524 mm. The substrate layers have a permittivity of
3.55, and a loss tangent of 0.027. The PP material has a
permittivity of 2.245 and a loss tangent of 0.002. All layers
have the same size. The high-frequency unit elements are
contained within a 120x120 mm area but the layers have
been enlarged by 8 mm on the two opposite sides of the
board to allow for six metal mounting beams to be installed.
The purpose of the metal beams is to mechanically hold the
top surface securely and centered above the lower part. The
separation between the two parts is 40 mm.

The bottom part houses the low-frequency patch antenna
array and the high-frequency transmitarray feed. The top part
houses the high-frequency transmitarray surface. The low-
frequency patch antenna array has eight elements in a 3-by-
3 configuration with the center element missing. The center
element is removed to accommodate the high-frequency
transmitarray feed. The low-frequency patch antenna ele-
ments has a center-to-center separation of 35 mm. This

distance is calculated using d = . The selected

1+ sin(6)
distance aims at a scanning range of £60° without grating

lobes.

FIGURE 1: The fabricated antenna prototype.

Fig. 2 shows two cross-section pictures of the bottom part
of the proposed antenna. Fig. 2a shows the feed of the low-
frequency part. The low-frequency patch antenna elements
are 17.75 mm. They are fed with SMA type connectors
from the bottom of the three layers. The connector pins
pass through a 4.15 mm opening in the ground plane and
are soldered to the patches 4.80 mm from the patch center
Fig. 2b shows the feed of the high-frequency part. The high-
frequency feed antenna element is 2.75 mm. It is fed with
an MMPX type connector from the bottom of the topmost
of the three layers. The connector is soldered to a circular
pad with a diameter of 0.6 mm. A VIA that passes through
a 1.25 mm opening in the ground plane connects the pad
to the patches 0.75 mm from the patch center. Around the
high-frequency patch, a grounded wall with 16 VIAs is used
to shield the patch antenna from surface waves. The bottom
two layers have a square cutaway with a size of 18 mm.
In the cut-away, an aluminum grounded guard with a 2 mm
thickness is inserted to ensure a connected and continuous
ground for the high-frequency feed.

() (b)

FIGURE 2: Cross-section cut of the simulation model. (a)
Low-frequency feed. (b) High-frequency feed.
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The top layer houses a large number of high-frequency
unit elements for the high-frequency transmitarray surface.
Fig. 3 shows the simulation model of the high-frequency
transmitarray unit cell. Each unit element is a copper plus
shape that is printed on both sides of the substrate. The
pluses on the two opposite sides are connected with four
pins. The four pins increase the coupling between the plus-
shapes which reduces the transmission loss. The pins all have
a diameter of 0.3 mm and they are placed symmetrically in
the plus shape 0.5 mm from the center of the plus shapes.
The desired phase distribution is generated by tuning the
length of the plus-shaped unit elements in the range from
1.3 mm to 5.9 mm. The elements are arranged in a square
grid with a 6 mm spacing.

(@ (b)

FIGURE 3: Simulation model of the high-frequency trans-
mitarray unit element. (a) Top view. (b) Model with the
substrate layer partly transparent.

Fig. 4 shows the simulated phase and magnitude response
of the unit element at the two center frequencies for different
element sizes and incident angles. The unit element is
designed to have a low loss and Fig. 4a shows that the unit
element has a loss of less than 2.5 dB for both frequency
bands. Even for different low-frequency incident angles, the
loss remains low. As seen from Fig. 4b the unit element
achieves a phase range of 330° at 25 GHz. Additionally, for
different incident angles at a frequency of 4.5 GHz the unit
element has a maximum phase shift of 7°.

lll. Antenna prototype measurement and evaluation

Fig. 1 shows the fabricated prototype antenna. In this section,
the measured performance of the antenna prototype will be
presented in a comparison with four simulated antennas. The
simulated antennas used for the comparison are the antennas
seen in Fig. 5.

The eight low-frequency antenna ports are measured indi-
vidually in an anechoic chamber. While measuring one port
the other ports are terminated in a matched load. After the
measurement, MatLab is used to compute a combined low-
frequency radiation pattern. The combined radiation pattern
is computed as the phased and weighted superposition of the
eight individual radiation pattern measurements.
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FIGURE 4: Simulated performance of the designed unit
element. (a) Magnitude response. (b) Phase response.

FIGURE 5: Simulation model of the reference antennas used
to evaluate the performance of the proposed antenna. (a)
Low-frequency only reference (LF Ref.). (b) High-frequency
only reference (HF Ref.). (c) Multi-layer transmitarray ref-
erence (ML Ref.). (d) Simulation model of the prototype
antenna (Prot. Sim.).
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A comparison between the measured and simulated low-
frequency impedance match of the prototype antenna is seen
in Fig. 6. It is seen that the fabricated prototype is shifted in
frequency but still maintains a wide impedance bandwidth of
350 MHz. The shift is likely caused by a slight discrepancy
in the dialectic constant of the substrate material.

0
7 S
f 10§= =S2,2Sim = S4.4 Meas
= |= =S3,3Sim =——S85,5 Meas
£ 150 -s6,68im  — 6,6 Meas
& 20 = - 87,7 Sim 87,7 Meas | V4
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Frequency [GHz]

FIGURE 6: Measured and simulated low-frequency S-
parameters of the prototype antenna.

Fig. 7 shows the boresight realized gain of the low-
frequency band. Fig. 8 shows the theta slice of the radiation
pattern when beamforming with the low-frequency antenna
part. Both figures are a comparison between the measured
performance of the antenna prototype antenna and the sim-
ulated performance of the reference antennas seen in Fig 5.

In Fig. 7 it is seen that the reference antenna with a
multi-layer transmitarray surface is significantly worse than
the proposed antenna. This supports the claim that the de-
signed single-layer unit element is more transparent at lower
frequencies such as 4.5 GHz than the multi-layered unit
elements typically found in the literature. The frequency-
dependent gain response seen in Fig. 7 shows that the
measurement is well-matched with the simulation.
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FIGURE 7: Measured and simulated low-frequency bore-
sight realized gain of the prototype antenna.

Fig. 8 shows the measured and simulated low-frequency
beamforming performance of the prototype antenna in com-
parison with the reference antenna seen in Fig. 5a. Because
of the good low-frequency transparency of the designed
transmitarray unit elements, the beamforming performance
of the low-frequency antenna part is not negatively affected

by the presence of the high-frequency transmitarray surface.
The 60-degree scanning range gain drop-off is measured at
only 0.22 dB for the antenna prototype.
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FIGURE 8: Measured and simulated low-frequency beam-
forming performance of the prototype antenna at 4.5 GHz.

Both Fig. 7 and Fig. 8 show that the gain of the measured
antenna is very similar to the gain of both the simulated
prototype and low-frequency only reference antenna. Thus it
is concluded that the presence of the proposed transmitarray
surface has no negative impact on the low-frequency gain
characteristics.

A comparison between the measured and simulated high-
frequency S1,1-Parameter of the prototype antenna is seen in
Fig. 9. The impedance match of the fabricated prototype ex-
ceeds the expectation from the simulations, as the impedance
bandwidth is more than 3 GHz.
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FIGURE 9: Measured and simulated high-frequency S-
parameters of the prototype antenna.

Fig. 10 shows the boresight realized gain of the high-
frequency band. The figure is a comparison between the
measured performance of the antenna prototype antenna and
the simulated performance of the reference antennas seen in
Fig 5. Since the figure shows that all the simulation curves
are almost identical it is concluded that the addition of the
low-frequency antenna elements does not negatively affect
the performance of the high-frequency antenna part. And,
that the designed single-layer unit element type is on par
with the multi-layered element type. When comparing the
curve of the simulated and the measured antenna prototype
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it is seen that the measured frequency-dependent gain seems
to be slightly shifted to a higher frequency. This is consistent
with the observations from the S-parameter measurements.
The overall measured gain is observed to be slightly higher
in the measurement compared with the simulations.
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FIGURE 10: Measured and simulated high-frequency bore-
sight realized gain of the prototype antenna.

Both the low-frequency and the high-frequency gain
curves show a very similar frequency shift. Additionally, the
S-parameters of both the low-/ and high-frequency parts of
the prototype antenna also indicate a slight frequency shift.
The consistency of the frequency shift further indicates that
it might be caused by a slight discrepancy in the dialectic
constant of the substrate. Because of the frequency shift,
the high-frequency part of the antenna can be observed to
achieve a slightly higher overall gain in Fig. 10. This higher
gain is caused by the fact that the gain of the feeding horn
is slightly increasing with frequency.

Fig. 11 and Fig. 12 shows the measured radiation pattern
of the prototype antenna. The measured gain and radiation
pattern shape are in very good agreement with the expecta-
tion from the simulation. Fig. 11a and 12a shows that low-
frequency antenna part is able to achieve a realized gain of
14.31 dBi at 4.5 GHz. Fig. 11b and Fig. 12b shows that
the transmitarray part of the prototype antenna achieves a
realized gain of 22.64 dBi at 25 GHz.

(@ (b)

FIGURE 11: Measured radiation pattern. (a) Low-frequency
mode at 4.5 GHz. (b) High-frequency mode at 25 GHz.
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FIGURE 12: Simulated and measured radiation pattern
slices. (a) Low-frequency mode at 4.5 GHz. (b) High-
frequency mode at 25 GHz.

The mutual and inner element coupling was not measured.
However, Fig. 13 shows how the antenna prototype is
simulated to have a low coupling between the two frequency
bands of less than -38 dB and a mutual coupling between
the low-frequency elements of less than -14 dB.
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FIGURE 13: Simulated low-frequency S-parameters of the
proposed antenna. (a) Mutual-coupling. (b) Low- to high-
frequency coupling.



IV. State Of The Art Comparison

Tab. 1 shows a compression between the antenna presented
in this work and various other antennas reported in the state-
of-the-art.

The proposed prototype antenna achieves dual-band op-
eration with a high-frequency ratio and the antenna also
achieves low-frequency beam-forming. The novelty of the
antenna is that it achieves these two performance character-
istics without significantly sacrificing the radiation perfor-
mance in either of the two bands. The proposed antenna has
a slightly lower high-frequency aperture efficiency, but the
high-frequency radiation performance is still deemed to be
very competitive.

TABLE 1: Performance comparison between the proposed
antenna and other antennas found in the state-of-the-art
literature.

Ant. CF [GHz] FR [1] SL [1] AE [%] BFC
Center Frequency (CF), Frequency-Ratio (FR), Surface Layers (SL),
Aperture Efficiency (AE), Beamforming Capable (BFC)

This 4.5 & 25 5.55 1 66 & 15 Yes
Work

[16] 19.5 & 29 1.49 2 23.6 & 21.3 | No
[18] 19.8 & 29.1 | 1.47 4 20.0 & 18.1 | No
[22] | 20 & 30 1.50 2 13.6 & 9.3 Yes
[24] | 28 - 3 234 Yes

V. Conclusion

A shared aperture dual-band transmitarray and patch antenna
array for S- and K-band with beamforming capabilities
has been successfully designed. A prototype antenna is
measured to have a high similarity to the simulated results.
The measurement shows the antenna to achieve impedance
bandwidths of 350 MHz and 3 GHz, and a realized gains
of 14.31 dBi and 22.64 dBi, at 4.5 GHz and 25. GHz,
respectively. Additionally, the prototype antenna is shown to
only have a 0.22 dB gain drop-off in a 60-degree beam scan-
ning range. The design and unique features of the presented
antenna make it interesting for many new and different use-
cases and applications including satellite communication.
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