Aalborg Universitet

Livscyklusvurdering af danske fiskeprodukter

Usikkerhed, metoder, og dataudfordringer Pizzol, Massimo; Codotto, Giovanni; Hegland, Troels Jacob; Madsen, Niels

Creative Commons License CC BY 4.0

Publication date: 2022

Document Version Anden version

Link to publication from Aalborg University

Citation for published version (APA):

Pizzol, M., Codotto, G., Hegland, T. J., & Madsen, N. (2022). *Livscyklusvurdering af danske fiskeprodukter:* Usikkerhed, metoder, og dataudfordringer. Abstract fra DET 21. DANSKE HAVFORSKERMØDE, Aalborg, Danmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

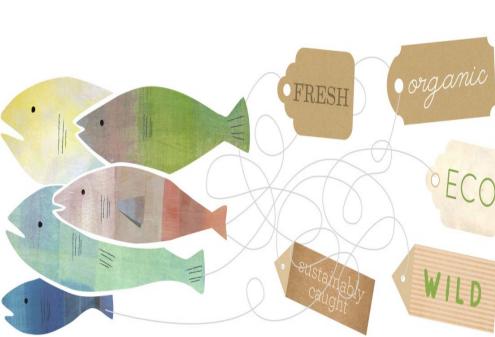
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

LIFE CYCLE ASSESSMENT OF DANISH FISH PRODUCTS

UNCERTAINTY, METHODS AND DATA CHALLENGES

Massimo Pizzol¹, Giovanni Codotto¹,

Troels J. Hegland¹, Niels Madsen³


¹Dep. Planning, Aalborg Univ. ²Center for Blue Governance, Aalborg Univ.

³Dep. Of Chemistry and Bioscience, Aalborg Univ.

AALBORG UNIVERSITY

LCA OF FISH PRODUCTS

- Consumers demand sustainable food products
- Producers rely on <u>LCA</u> to evaluate and communicate the <u>sustainability of products</u>
- Increasingly for fish too

Credit: https://www.futureoffish.org/

2

LCA AS A MODEL

- LCA is a modelling exercise
- Model results are uncertain [1]:
 - \rightarrow imperfect knowledge
 - \rightarrow assumptions
 - \rightarrow lack of precise data
- Due to uncertainty, comparing results from different LCA models is challenging

3

UNCERTAINTY AND VARIABILITY

- Impact of mixed fisheries? (**Co-production**)
- Consequences of increasing demand? (Constraints)
- Impact of variable conditions? (Time and space)

Need to **fit the simplified LCA model** to complex reality.

MODELLING APPROACHES

- Retrospective account of impacts of a product (Attributional)
- Prospective look at consequences of change in demand (Consequential) [2]
- Most LCA studies on fish are attributional LCA [3]
- But different LCA methods used to support similar decisions

STUDY OBJECTIVES

For the specific case of fisheries, systematically address uncertainty in LCA results due to:

Modelling choices

Variability of vessels and fishing conditions

Data gaps

CLIMATE IMPACT OF 1 kg DANISH FISH

Top-down approach:

Disaggregation of national statistics
 Define subgroups of fisheries
 Divide total catch and fuel use among subgroups

2. System modelling

Test different models of co-production and constraints

FISHERIES UNDER ANALYSIS

Vessel category	Subgroups
Trawlers up to 12 m	Cod and plaice, Norwegian Lobster, Sprat
Trawlers 15-18 m	Codandplaice,NorwegianLobster,Sprat,Industrial fish
Trawlers 18-24 m	Cod and plaice, Norwegian Lobster, Industrial fish
Trawlers over 40 m	Industrial fish, Herring, Mackerel, Horsemackerel

>Data source: Statistics Denmark, Fiskeristyrelsen

➤Time series for years 2017 - 2019

1. Reduce number of fish categories

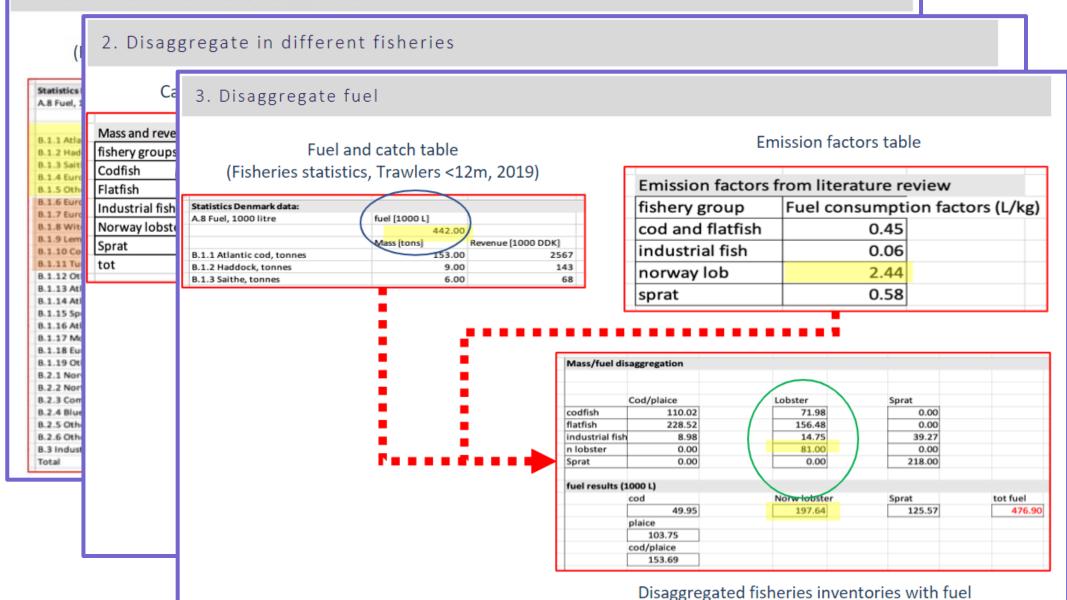
Fuel and catch table (Fisheries statistics, Trawlers <12m, 2019)

itatistics Denmark data:	fuel [1000 L]	1
	442.00	
		ue [1000 DDK]
3.1.1 Atlantic cod, tonnes	wass (rons) reve	2567
8.1.2 Haddock, tonnes	9.00	Contraction of the second s
[2] · · · · · · · · · · · · · · · · · · ·	9.00	143
8.1.3 Saithe, tonnes	5.00	68 93 156 4280 244 66
8.1.4 European hake, tonnes	9.00	93
B.1.5 Other codfishes, tonnes		156
B.1.6 European plaice, tonnes	274.00	4280
B.1.7 European flounder, tonnes	\$3.00	244
B.1.8 Witch Flounder, tonnes	3.00	66
8.1.9 Lemon Sole, tonnes	5.00	127
8.1.10 Common Sole, tonnes	8.00	811
8.1.11 Turbot, tonnes	7.00	324
B.1.12 Other flatfishes, tonnes	35.00	423
B.1.13 Atlantic Herring, tonnes	0.00	0
B.1.14 Atlantic Mackerel, tonnes	0.00	1
B.1.15 Sprat, tonnes	218.00	355
8.1.16 Atlantic Horsemackerel, tonnes	0.00	0
8.1.17 Monk, tonnes	3.00	97
B.1.18 European eel, tonnes	0.00	0
B.1.19 Other fish for human consumptio		713
B.2.1 Norway lobster, tonnes	81.00	5118
B.2.2 Northern prawn, tonnes	0.00	0
B.2.3 Common Shrimp, tonnes	0.00	0
3.2.4 Blue mussels, tonnes	0.00	0
8.2.5 Other cockles and mussels, tonnes	0.00	0
B.2.6 Other crustaceans and molluscs, to	1.00	35
B.3 Industrial fish, tonnes	63.00	99
Total	940.00	15621

1. Reduce number of fish categories

2. Disaggregate in different fisheries

Statistics A.8 Fuel, 1	Catch table, reduced				
8.1.1 Atla	Mass and revenuel of fish groups				
8.1.2 Had	fishery groups	mass (tons)	cevenue (1000	F	
8.1.3 Sait	Codfish	182.00	3027.00		
8.1.4 Euro 8.1.5 Oth	Flatfish	385.00	6275.00		
8.1.6 Euro				H	
8.1.7 Euro	Industrial fish	63.00	99.00		
8.1.8 Wit	Norway lobster	81.00	5118.00		
8.1.9 Lem	Sprat	218.00	355.00		
8.1.10 Co 8.1.11 Tu	tot	929.00	14874.00		
8.1.12 Ot	101	525.00	14074.00	-	
8.1.13 Atl					
8.1.14 Atl					
8.1.15 Sp			_		
8.1.16 Atl					
8.1.17 Mc					
8.1.18 Eu					
B.1.19 Ot		-			
8.2.1 Nor		-	•		
8.2.2 Nor					
8.2.3 Com					
8.2.4 Blue		-			
8.2.5 Oth					
8.2.6 Oth					
B.3 Indust					
Total					
-					


Disaggregation factors table (Thrane, 2004)[4]

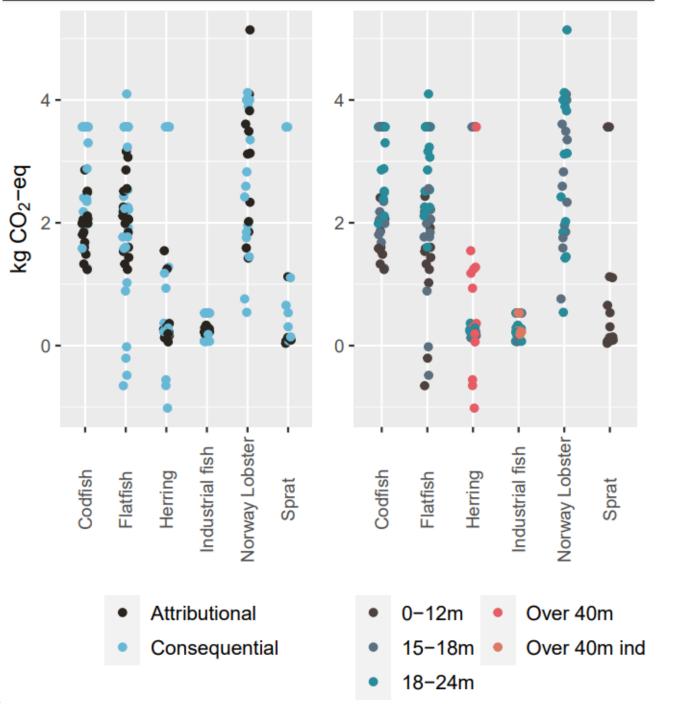
	Cod/plaice fishery	Lobster fishery	Sprat fishery	Scaling factor
codfish	0.56	0.37	0.00	0.93
flatfish	0.32	0.22	0.00	0.54
industrial fish	0.12	0.20	0.52	0.83
n lobster	0.00	0.22	0.00	0.22
Sprat	0.00	0.00	0.48	0.48
tot	1.00	1.00	1.00	

Mass/fuel dis	aggregation		
	Cod/plaice	Lobster	Sprat
codfish	110.02	71.98	0.00
flatfish	228.52	156.48	0.00
industrial fish	8.98	14.75	39.27
n lobster	0.00	81.00	0.00
Sprat	0.00	0.00	218.00

Disaggregated fisheries inventories

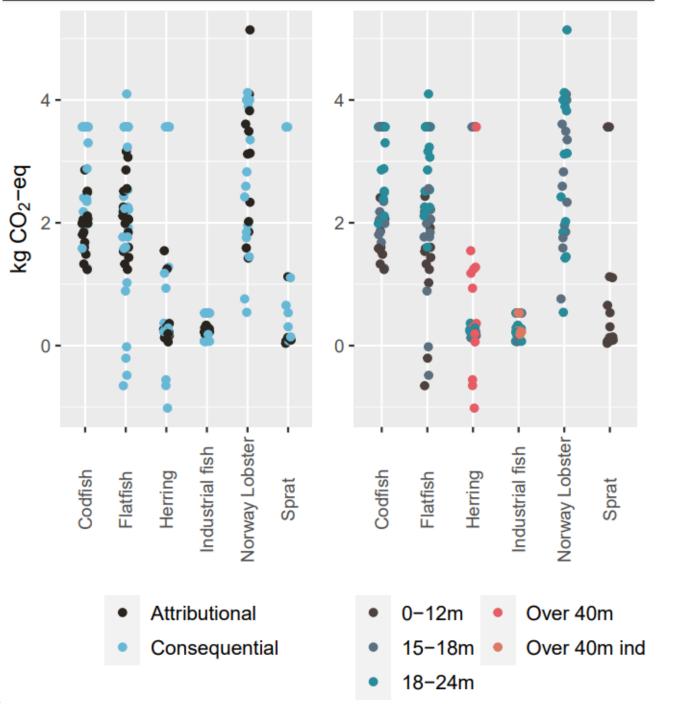
1. Reduce number of fish categories

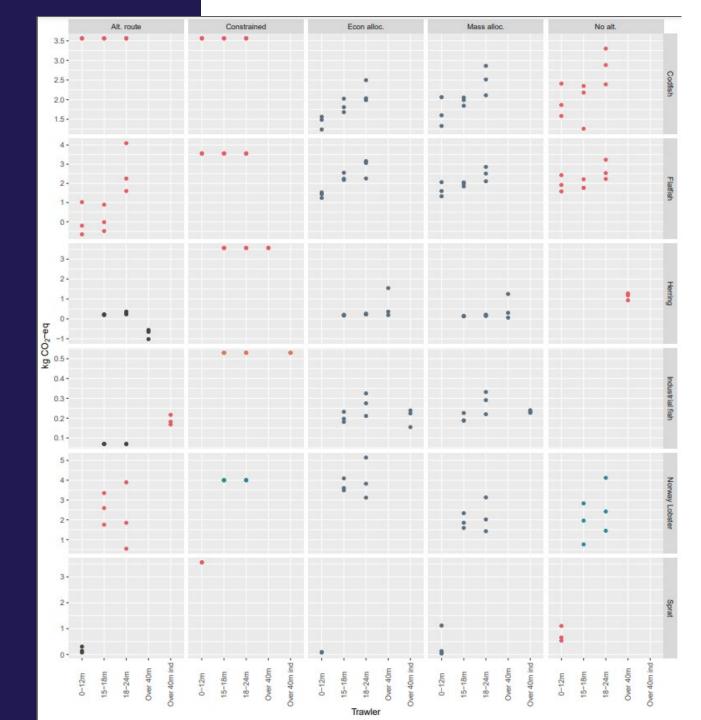
SYSTEM MODELLING


Approach	Method		Question answered		
Attributional	Partitioning by mass: mass allocati	on	Retrospective: how can impacts of various activi attributed to this product?	ties be	
Attributional	Partitioning by revenue: economic	allocation	Retrospective: how can impacts of various activi attributed to this product?	ties be	
Consequential	Substitution, Constrained activity		Prospective: what are the consequences of increasing the demand for this product, when its production can not be increased due to constraints?		
Consequential	Substitution, Unconstrained a alternative production routes	activity, no	Prospective: what are the consequences of inclute the demand for this product, when it can't be provin any other way?	•	
Consequential	Substitution, Unconstrained alternative production routes	activity,	y, Prospective: what are the consequences of inclution the demand for this product, when there alternatives in the market?		

 Uncertainty of attributional vs consequential (left)

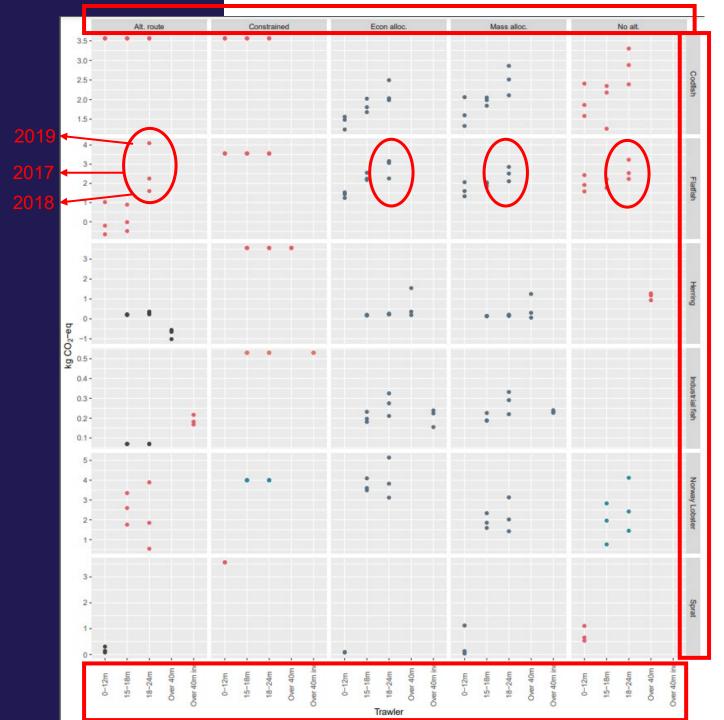
Compared with


- uncertainty of different segments and fishing practices (right)
- Sum of uncertainties creates high total variability

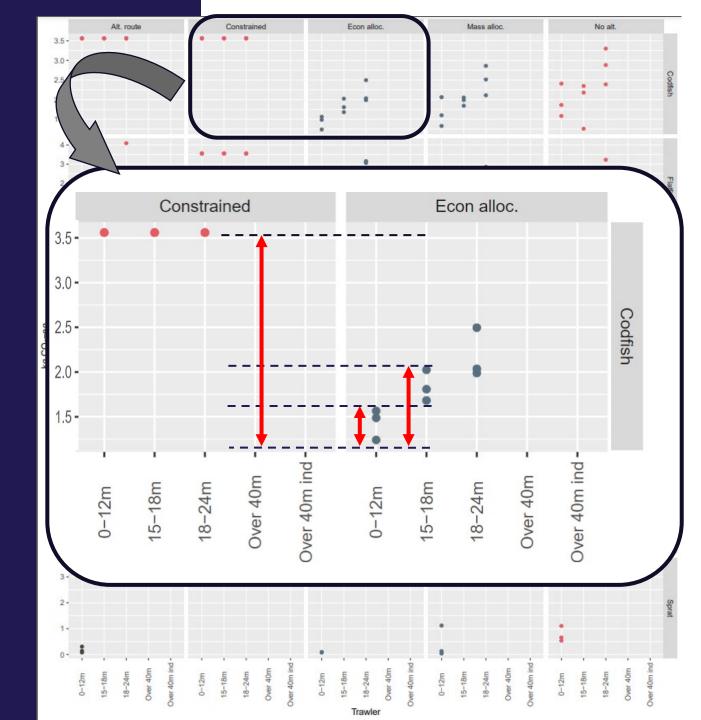


 Uncertainty of attributional vs consequential (left)

Compared with


- uncertainty of different segments and fishing practices (right)
- Sum of uncertainties creates high total variability

Minor yearly variability



AALBORG

UNIVERSITY

- Minor yearly variability
- Uncertainty due to model is higher than due to temporal variability and fishing conditions

- Minor yearly variability
- Uncertainty due to model is higher than due to temporal variability and fishing conditions
- Clean fisheries results less
 spread due to lower influence of co-catch

CONCLUSIONS

- LCA results highly model-dependent
- Pay attention to LCA approach and assumption behind result
- Keep in mind uncertainty behind models and numbers
- Overconfidence in results: risk of greenwashing
- Focus on model transparency

REFERENCES

[1] Lo Piano, S, Benini, L. A critical perspective on uncertainty appraisal and sensitivity analysis in life cycle assessment. J Ind Ecol. 2022; 26: 763–781. <u>https://doi.org/10.1111/jiec.13237</u>

[2] Weidema, B.P., M. Pizzol, J. Schmidt, and G. Thoma. Attributional or consequential Life Cycle Assessment: A matter of social responsibility. Journal of Cleaner Production 174: 305–314 (2018).

[3] Avadí, A., Henriksson, P.J.G., Vázquez-Rowe, I. et al. Towards improved practices in Life Cycle Assessment of seafood and other aquatic products. Int J Life Cycle Assess 23, 979–981 (2018). https://doi.org/10.1007/s11367-018-1454-8

[4] Thrane, M, Environmental impacts from Danish fish products: hot spots and environmental policies. Institut for Samfundsudvikling og Planlægning, Aalborg Universitet, Aalborg, Denmark (2004).

gico@plan.aau.dk

AALBORG UNIVERSITY