Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Metagenomic binning with assembly graph embeddings

Lamurias, Andre; Sereika, Mantas; Albertsen, Mads; Hose, Katja; Nielsen, Thomas Dyhre

Published in:
Bioinformatics

DOl (link to publication from Publisher):
10.1093/bioinformatics/btac557

Creative Commons License
CCBY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Lamurias, A., Sereika, M., Albertsen, M., Hose, K., & Nielsen, T. D. (2022). Metagenomic binning with assembly
graph embeddings. Bioinformatics, 38(19), 4481-4487. https://doi.org/10.1093/bioinformatics/btac557

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 19, 2022

https://doi.org/10.1093/bioinformatics/btac557
https://vbn.aau.dk/en/publications/18381807-5ebf-49a1-b2e3-90d6d6869475
https://doi.org/10.1093/bioinformatics/btac557

Bioinformatics, 38(19), 2022, 4481-4487
https://doi.org/10.1093/bioinformatics/btac557
Advance Access Publication Date: 16 August 2022
Original Paper

OXFORD

Genome analysis
Metagenomic binning with assembly graph embeddings

Andre Lamurias ® "*, Mantas SereikaZ, Mads Albertsen
Thomas Dyhre Nielsen’"

2* Katja Hose"' and

'Department of Computer Science, Aalborg University, 9000 Aalborg, Denmark and “Center for Microbial Communities, Department of
Chemistry and Bioscience, Aalborg University, 9000 Aalborg, Denmark

*To whom correspondence should be addressed.
"The authors wish it to be known that, in their opinion, the last three authors should be regarded as Joint Authors.
Associate Editor: Inanc Birol

Received on February 25, 2022; revised on August 2, 2022; editorial decision on August 8, 2022; accepted on August 12, 2022

Abstract

Motivation: Despite recent advancements in sequencing technologies and assembly methods, obtaining high-quality
microbial genomes from metagenomic samples is still not a trivial task. Current metagenomic binners do not take
full advantage of assembly graphs and are not optimized for long-read assemblies. Deep graph learning algorithms
have been proposed in other fields to deal with complex graph data structures. The graph structure generated during
the assembly process could be integrated with contig features to obtain better bins with deep learning.

Results: We propose GraphMB, which uses graph neural networks to incorporate the assembly graph into the binning
process. We test GraphMB on long-read datasets of different complexities, and compare the performance with other
binners in terms of the number of High Quality (HQ) genome bins obtained. With our approach, we were able to obtain
unique bins on all real datasets, and obtain more bins on most datasets. In particular, we obtained on average 17.5%
more HQ bins when compared with state-of-the-art binners and 13.7% when aggregating the results of our binner
with the others. These results indicate that a deep learning model can integrate contig-specific and graph-structure

information to improve metagenomic binning.

Availability and implementation: GraphMB is available from https://github.com/MicrobialDarkMatter/GraphMB.

Contact: andrel@cs.aau.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial communities play a vital role in most processes in the bio-
sphere and are essential for solving present and future environmen-
tal challenges (Timmis et al., 2017). Examples include the impact of
the human microbiome on health and disease (Gilbert et al., 2018),
discovery of new antibiotics (Ling et al., 2015), and turning waste
products into valuables (Nielsen, 2017). Metagenomics holds the
promise to enable access to genomes of microbes from complex mi-
crobial communities and thereby aid to realize their potential.
However, high-quality genomes are difficult to obtain from complex
communities, since it is not trivial to determine which DNA sequen-
ces originate from the same microbial genome.

To retrieve metagenome assembled genomes (MAGs) from com-
plex metagenomes, several binners have been proposed based on com-
position and abundance features (Yang et al., 2021). Composition
refers to the k-mer frequencies of a particular contig and can be used
to distinguish between different species (Burge et al., 1992). The abun-
dance (coverage) of a contig in one or more samples has also been
shown to be a powerful feature to retrieve MAGs (Albertsen ez al.,
2013; Sharon et al., 2013; Tyson et al., 2004), which is usually
referred to as differential abundance (or coverage) binning.

©The Author(s) 2022. Published by Oxford University Press.

One of the most successful binners is MetaBAT2 (Kang et al.,
2019). It uses coverage and composition to compute a pairwise dis-
tance matrix for all contig pairs, with the composition feature based
on an empirical posterior probability calculated from a set of refer-
ence genomes. A graph-based clustering algorithm is then used to
bin the contigs based on their distances, where the contigs are linked
according to their similarity scores. Wu et al. (2016) presented a
similar method, MaxBin2, which wuses an Expectation—
Maximization algorithm to estimate the probability of a contig
belonging to a particular bin, but also used single-copy marker genes
to estimate the number of bins. Although more composition and
abundance methods have been proposed (Alneberg er al., 2014;
Imelfort et al., 2014; Lin and Liao, 2016; Lu et al., 2017; Yu et al.,
2018), these two can be considered the most established and com-
monly used.

More recently, deep learning-based methods have been used to
improve metagenomic binning. Deep learning models present an ad-
vantage over other statistic methods since this type of model can
learn complex patterns in the data that would be difficult to manual-
ly model with other methods. Nissen ez al. (2021) proposed,
Variational Autoencoders for Metagenomic Binning (VAMB), a bin-
ner based on a variational auto-encoder (VAE) to encode

4481

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

2202 4290100 0 U0 Jasn yajolqigsiaysianun Biogiey Aq 628999/ L 871/6L/8E/2I0ILE/SOIEULIOJUIONG/WOO dNO"OIWaPEDE//:SA)Y WO} PAPEOUMOQ

https://orcid.org/0000-0001-7965-6536
https://orcid.org/0000-0002-6151-190X
https://github.com/MicrobialDarkMatter/GraphMB
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac557#supplementary-data
https://academic.oup.com/

4482

A.Lamurias et al.

composition and abundance features into low dimension embed-
dings that can lead to better binning results on the datasets tested.
Other deep learning approaches have also been recently proposed.
LRBinner (Wickramarachchi and Lin, 2021) adapts VAEs to long-
reads, while SemiBin (Pan ef al., 2021) uses a semi-supervised siam-
ese neural network with must-link and cannot-link constraints
obtained with reference genomes.

Some recent works have also used the assembly graph to improve
metagenomic binning. The common assumption is that contigs that
were linked on the assembly graph should also be binned together,
as they are likely broken into contigs based on internal genome
repeats. Mallawaarachchi et al. (2020) presented a method that
refines bins from other tools using information from the assembly
graph. Their method, GraphBin, refines the clusters of contigs that
were separated by binning but were linked in the assembly graph.
They navigate the assembly graph using a label propagation algo-
rithm to refine the binning. MetaCoAG also uses the assembly graph
for post-processing bin refinement (Mallawaarachchi and Lin,
2021).

However, both GraphBin and MetaCoAG only use the assembly
graph during post-processing, instead of integrating into the binning
process. This means that their clustering algorithm uses only contig-
specific features, ignoring the connectivity information provided the
assembly graph until after an initial clustering is obtained. By inte-
grating the assembly graph only as a post-processing step, more
errors can be introduced if this information is not properly used, i.e.
contigs may be incorrectly assigned to bins due to misleading links
in the assembly graph. This is more likely to occur in complex sam-
ples where multiple strains occur and contigs will be connected in
the assembly graph even if they belong to different but similar
genomes.

With the recent successes of deep neural networks in various
problems, there has also been an increasing focus on adapting those
approaches for graph data structures. Graph neural networks
(GNNs) take advantage of the connectivity information in a graph
and can be used to perform node, edge and graph-level tasks. The
GraphSAGE (Hamilton et al., 2017) algorithm samples neighbors
from each node and updates the node’s embeddings taking into ac-
count the embeddings of its neighbors. The embeddings of the neigh-
bors are aggregated and concatenated with the node embeddings.
The resulting vector is the input for the next layer, and the sampling
process is repeated. To train GraphSAGE on unlabeled nodes, the
similarity between neighboring nodes is calculated and the model
weights are updated in order to maximize this similarity, while mini-
mizing the similarity between random pairs of nodes. The loss func-
tion used is a binary cross-entropy function, which takes as input
the dot product between the embeddings of the two nodes of an
edge. However, the random negative sampling strategy is not opti-
mal for assembly graphs, since two disconnected contigs may also
belong to the same genome. Furthermore, the original GraphSAGE
implementation also considers all neighbors to be of the same im-
portance, while on an assembly graph some edges may be stronger
than others.

Finally, most binning methods are developed only on short-read
assemblies (Yang et al., 2021), and only very few binners have been
developed with a focus on long-read assemblies (Wickramarachchi
et al., 2020; Wickramarachchi and Lin, 2021). While long-read
sequencing technologies have gained traction, there is still a lack of
benchmarks and studies on long-read sequencing for metagenomics
(Feng et al., 2021; Kolmogorov et al., 2020; Sereika et al., 2021;
Singleton et al., 2021). The longer read length results in much
improved assemblies that generates more sparse assembly graphs
and enables more robust estimations of composition and coverage.

Here, we present GraphMB, a binner developed using long-read
metagenomic data and incorporates the assembly graph into the
contig features learning process, taking full advantage of its poten-
tial by training a neural network to give more importance to higher
coverage edges. The graph-aware features of each contig are based
on its own features, as well as on the contig-specific features of its
neighboring contigs. We accomplish this using state-of-the-art deep
learning techniques, in particular GNNGs, a type of deep learning

model that can learn representations of graph nodes based on node
features and the graph structure.

2 Materials and methods

The main idea behind GraphMB is to generate embeddings based on
contig-specific features and the assembly graph, which are then clus-
tered into bins and evaluated according to completeness and con-
tamination. The advantage of clustering embeddings instead of the
original features is that these embeddings are of a smaller dimension
and can encode relationships that are latent in the original features.
We improve upon existing binners by incorporating the assembly
graph into the training process. The assembly graph describes which
contigs are connected, and how many reads support that connection
(read coverage). We use this information to train a GNN, and gener-
ate embeddings that take into account the neighborhood of a contig.
Figure 1 provides an overview of GraphMB, and the following sec-
tions explain each step of the process.

2.1 Input data

GraphMB requires an assembly consisting of a set of contig sequen-
ces in FASTA format and an assembly graph in GFA format. We
tested exclusively with assemblies generated with Flye (Kolmogorov
et al., 2020) (v2.9), which has the advantage of including the read
coverage of each edge into the assembly graph file. The edge read
coverage is used to assign different weights to graph edges, so that
edges with higher coverage have a more impact in the model.
GraphMB is also compatible with GFA files that do not have this in-
formation. In this case, the edge coverage is assumed to be equal for
all edges. We have not run in-depth tests on the performance with or
without this information, since it was available on the real datasets
we tested on.

Additionally, a Comma-separated Values (CSV) file with the es-
sential single copy marker genes found on each contig may be pro-
vided to select the best training checkpoint. This file is used to
evaluate the clusters obtained with each checkpoint in terms of com-
pleteness and contamination. If this file is not provided, the last
checkpoint will be used for clustering. Alternatively, a file with con-
tig labels may also be provided for the same purpose, evaluating
each checkpoint in terms of purity and completeness instead. To
take advantage of the same abundance features as other binners, an-
other CSV file with the abundance of each contig on different sam-
ples may be provided. The format of this file is one row per contig
and the mean base coverage and variance on each sample as col-
umns, which is compatible with other binners (MetaBAT2 and
VAMB).

From the assembly graph file, we take the edge sequences instead
of the contig sequences. Even though contigs in the assembly graph
are represented as edge paths, we do not consider the contig paths,
but only the connections between edges of the assembly graph
(Supplementary Fig. S1). However, in the case of long-read datasets,
we have found that most contigs (80-90%) are composed by only
one edge (Supplementary Fig. S2).

2.2 Contig-specific embeddings

We first generate contig embeddings using a VAE model that takes
as input composition and abundance features. This model defines a
multivariate distribution over a latent representation of the features
(Fig. 1b). The composition features are calculated on the provided
FASTA file, while the abundance features should be pre-calculated
and provided as a CSV file previously described. The VAE model
has an encoder and a decoder component. The latent representation
is learned by training the encoder with a reconstruction loss, com-
paring the original inputs to the output of the decoder, and with a
Kullback-Leibler (KL) divergence loss, which penalizes distributions
that diverge from a standard normal distribution. We used the
VAMB implementation of VAEs, which separates the reconstruction
loss into two components (composition and abundance), which
have different weights (10% to composition and 90% to the abun-
dance) (Nissen et al., 2021).

2202 4290100 0 U0 Jasn yajolqigsiaysianun Biogiey Aq 628999/ L 871/6L/8E/2I0ILE/SOIEULIOJUIONG/WOO dNO"OIWaPEDE//:SA)Y WO} PAPEOUMOQ

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac557#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac557#supplementary-data

Metagenomic binning with assembly graph embeddings

4483

Composition

Abundance

Contig [AT | TC | CG

Contig| S1 | S2

C1 [0.01]0.02(0.35

C1 10.12(0.73 (c)

Assembly graph

C2 |0.88(0.18

C2 (0.03{0.24]0.35
@ C3 [0.16]0.10(0.41

C3 |0.16[/0.34

Assembly

C4 10.01]0.11(0.39

C4 [0.26/0.51

C1: TTATATTGGTTC

C5 [0.23|0.14|0.15

C5 [0.70{0.62

Cé6 10.21]0.13|0.15

C6 [0.39(0.13

C2: TAGTCGGTTCAT

C3: ACAACTTTAATG (b)

C4: AGGATTAAAGGA VAE
C5: TGGGAACTCTTT embeddings
C6: TCTTTTTAGCGT

(11111 c5 cs

(d)

C4 ‘ c2 G3
mn - A o

GNN
embeddings EEEEN

Fig. 1. GraphMB’s workflow. (a) The metagenome of an environmental sample is sequenced and assembled into contigs. (b) Initial embeddings are computed with a variational
auto-encoder based on k-mer composition and abundance features. (c) The input of the GNN are the initial contig embeddings and the graph structure provided by the assem-
bly graph. The thickness of the edge corresponds to the number of reads that cover it. (d) The GNN model learns new embeddings by aggregating neighboring contigs (nodes

in the assembly graph). (e) The final embeddings are clustered and bins are obtained

2.3 Neighborhood sampling

We have adapted the GraphSAGE sampling algorithm to make bet-
ter use of the assembly graph information. An assembly graph G is
constituted by contigs C and adjacency matrix A. Each contig c € C
has contig-specific feature vector x, € X, obtained in the previous
step, and A;; = rc(cj, ¢j), where rc is the read coverage, if ¢; and ¢;
are connected in the assembly graph, or 0 otherwise. We consider
positive edges as all edges that are specified by the assembly graph,
i.e. Ajj > 0. We use the read coverage of each edge as a way to dis-
tinguish between pairs of contigs that are more likely to belong to
the same genome. The read coverage rc is obtained from the assem-
bler, and it corresponds to the number of reads that align to both
elements of the pair. If the assembly graph does not contain this fea-
ture, the read coverage of all pairs is assumed to be 1, meaning that
all edges have the same relevance. If a contig is disconnected from
the graph, we pick a random contig as a negative edge. Negative
edges are used by the model to keep apart random contigs, while the
distance between linked contigs (positive edges) is reduced.
However, if a contig is connected to multiple other contigs, we use
the read coverage as a probability of picking a neighboring edge as a
positive edge, and its inverse as the probability of picking it as a
negative. For example, in Figure 1c, C4-C3 is more likely to be
sampled as a positive edge than C4-Cé, since the former has a
higher read coverage. This way, the model minimizes the distance
between embeddings of pairs of contigs that are connected by high
coverage edges.

2.4 Graph embeddings

The hidden state of each contig (represented in Fig. 1d by the empty
squares) is concatenated with the aggregation of the hidden states of
the sampled neighbors. Then a feed-forward neural network is
trained to generate graph embeddings using the previous concaten-
ation as input. The initial hidden states correspond to the contig-
specific features, while for each layer of the network, the hidden
states correspond to the output of the previous layer for each contig.
The output of the final layer corresponds to the graph embeddings.

We used a loss function that takes advantage of the read cover-
age information provided by the assembly graph. For the positive
edges, we multiply the dot product between the two node embed-
dings by the normalized read coverage. This way, low coverage
edges, which are more likely to introduce noise into the model, will
have less impact on the loss function, and we give more importance
to the edges with high coverage while training. Therefore, the loss
we used is given by:

J(zi) = —re(u,v)log(o(z,20) = Q - Ey,op,) log(a(=2,20,), (1)

where z,, and z, are the embeddings of two contigs with rc read
coverage, and v,, is a randomly sampled negative edge for contig #,
P, is the negative sampling distribution previously explained and Q
the number of negative samples, since multiple negatives can be
sampled for each positive edge.

2.5 Clustering

We cluster the concatenation of the contig-specific embeddings and
graph embeddings with the iterative medoid clustering algorithm
used by VAMB, also similar to the one used by MetaBAT2. We clus-
ter the concatenation of both embeddings since we observed that
this strategy worked better than clustering only one type of embed-
dings. This algorithm takes a random seed contig and calculates its
embedding distance to all other contigs. Then it uses an iterative
process to determine the best medoid contigs and generates clusters
with the other contigs that are closest to the medoid. This method
has the advantage of not requiring the number of clusters as input,
and being easily parallelizable.

2.6 Experimental setup

We run experiments on one simulated dataset, six Wastewater
Treatment Plant (WWTP) datasets and one soil sample. As long-
read datasets are not part of the benchmarks used by other binners,
we simulated our own data. The simulated dataset was generated
using badread (Wick, 2019) (v0.2.0), by generating reads according
to the methodology proposed by Quince et al. (2021). We simulate

2202 4990100 0 Uo Jasn sejolqigsieNsioaun Biogley Aq 6.28999/1811/6 |/8E/BI0E/SOIBWIOJUIOIG/ WO dNO"DlWepED.//:SARY WOl PAPEO|UMOQ

4484

A.Lamurias et al.

Table 1. Summary of the datasets used to compare binners

Datasets Total size (Gbp) Reads N50 (kbp) ~ Assembly length (Gbp) Contigs N50 (kbp) Meancov. Contigs Edges Samples

Strong100 7.5 13.3 0.17
Hjor 16.0 8.7 0.86
Viby 17.2 14.0 1.32
Damh 26.7 14.3 1.93
Mari 23.3 10.1 1.69
AalE 27.7 10.2 1.92
Hade 452 9.8 3.01
Soil 115.0 7.7 1.98

175.0 42 852 670 1
80.4 13 19496 5937 4
101.0 7 23389 7800 4
119.0 8 32771 14066 4
83.1 8 36611 12651 4
83.4 8 40827 12425 4
73.9 9 70402 27952 4
93.3 19 51135 69522 1

Note: Total size refers to the total number of base pairs in the dataset. Reads NS0 is the N50 length of reads. Assembly length refers to the sum of the length of

all contigs. Contig N50 is the N50 value for contigs. Mean cov. refers to the mean base coverage of all contigs. Contigs and edges refers to the number of contigs

of each assembly and edges in the assembly graph. Samples is the number of samples available to calculate abundance.

reads from 100 strains, corresponding to 50 species, with randomly
generated abundances. We then assembled the reads with metaflye
v2.9 (Kolmogorov et al., 2020) and ran other binners for compari-
son. The details of the assembly of each dataset are given in Table 1.
The WWTP datasets come from a previous study (Singleton et al.,
2021) (Accession number PRJNA629478), from which we used a
subset of six plants. For each one of the WWTP datasets, we calcu-
lated contig coverage on the long-reads used to generated those con-
tigs, as well as three additional short-reads datasets from the same
plant but different time points. We assembled the long-read data
with metaflye, and ran three Racon (v1.3.3) polishing rounds with
the long-reads and one round with short-reads. Although we had
four samples for each dataset, only one had long-reads, so we only
assembled that one and used the other three short-read samples to
calculate contig abundance. Finally, we also tested on a soil sample
that originated from a previous study (Brunbjerg et al., 2019)
(Accession number PRJEB50688). We developed and optimized the
hyperparameters of the network on all datasets, except Damh and
Hade which we used to confirm if the model was over-optimized for
the other datasets. We have made all datasets available at https:/
doi.org/10.5281/zenodo.6122610.

2.7 Evaluation

We compared the results of our binner with five other binners on
the same datasets, using their default values. All binners we used
take as input the contig sequences and their abundances. We used
MetaBAT2 (Kang et al., 2019), since it had obtained good results on
the WWTP datasets, and is generally considered the state-of-the-art
on recent papers (Vosloo et al., 2021; Yue et al., 2020). We also
used MaxBin2 (Wu ez al., 2016), another established metagenomic
binner. VAMB (Nissen et al., 2021) is a deep learning-based binner,
which we compare with our approach. Although VAMB provides a
bin-splitting functionality for when assemblies from multiple sam-
ples are available, in our configuration we had only one assembly
per dataset. Therefore, we were not able to compare with the opti-
mal configuration of VAMB. GraphBin (Mallawaarachchi et al.,
2020) is a binner that also takes advantage of the assembly graph
but has only been tested on short-read assemblies. We run Graphbin
with the output of MetaBAT as initial bins, which are required by
this tool. Finally, we ran SemiBin (Pan et al., 2021), a recently pro-
posed deep learning binner, using one of the pretrain models pro-
vided by the authors (ocean model) as well as training on our own
data with the default parameters.

Each bin generated by GraphMB and other binners was eval-
uated for completeness and contamination with CheckM (Parks
et al., 2015) (-reduced-tree, version 1.1.2) and dereplicated using
dRep (Olm ef al., 2017) (version 2.3.2). We considered High
Quality (HQ) bins as those with >90 completeness and <5 contam-
ination. We also evaluated the simulated dataset with AMBER
(Meyer et al., 2018), using the gold labels of the contigs. In this case,
we considered the average bin purity and completeness weighted by
the length of the contigs and the HQ bins are calculated with the
same criteria as before, but considering contamination as 1—purity.

dRep generates bin clusters based on multiple sets of bins obtained
with different approaches. The bin clusters contain bins from differ-
ent approaches that are similar enough to be clustered together. We
consider unique bins as those that are HQ and were not clustered to-
gether with any other HQ bin from a different approach. Finally, we
used DASTool to combine the bins produced by all tools, generating
a set of bins that is a combination of all approaches.

3 Results

We implemented the proposed method in Python and compared its
performance to state-of-the-art binners on simulated and real-world
datasets.

3.1 Implementation

We implemented GraphMB in Python 3.7, Pytorch 1.10 and DGL
0.6.1. It can run both on CPU (single and multithread) and GPU.
The package can be installed from GitHub, using pip, or with ana-
conda. We provide simple instructions on the GitHub page (https://
github.com/MicrobialDarkMatter/GraphMB), including example
commands, as well as a link to more detailed documentation. The
GitHub page also includes the simulated dataset for testing.

Many parameters can be configured, however, we defined de-
fault values for what we used in our experiments. We optimized the
default parameters with all datasets except for DamH and Hade.
Some parameters, such as the size of the embedding dimension and
batch size, can be set automatically according to the size of the input
datasets. GraphMB has three graph convolution layers, with hidden
dimension of 512 and output dimension of 64, learning rate of
0.00005 and ReLU activation function. We trained each model for
100 epochs.

The output of GraphMB is a TSV file mapping each contig to a
bin. The model and embeddings of the last epoch are saved to disk.
If a contig marker file is provided, GraphMB also saves the model
that obtained the best performance on those markers, which differs
from the final CheckM evaluation but is still a good indication of
the best epoch to stop model training, and we used this criterion for
the results shown. The training process can also be stopped if the
previous two epochs did not reduce the loss by more than a certain
threshold. We do not filter by bin size or write the contigs to file by
default, since this can be accomplished with a post-processing script,
and may not be required for all applications.

3.2 Comparison to other binners

Table 2 shows the results obtained for all datasets by all tested bin-
ners. GraphBin, MaxBin2, SemiBin-ocean, Semibin-train, VAMB,
MetaBAT2 and GraphMB refer to the number of HQ bins obtained
with each approach for each dataset. Table 2 also shows the differ-
ence in terms of number of HQ bins between GraphMB and both
VAMB and MetaBAT2, in absolute value and in percentage. We
focus our comparison between GraphMB and those two since
MetaBAT?2 obtained the best results on most datasets, and VAMB is

2202 4990100 0 Uo Jasn sejolqigsieNsioaun Biogley Aq 6.28999/1811/6 |/8E/BI0E/SOIBWIOJUIOIG/ WO dNO"DlWepED.//:SARY WOl PAPEO|UMOQ

https://doi.org/10.5281/zenodo.6122610
https://doi.org/10.5281/zenodo.6122610
https://github.com/MicrobialDarkMatter/GraphMB
https://github.com/MicrobialDarkMatter/GraphMB

Metagenomic binning with assembly graph embeddings 44385
Table 2. Results obtained with GraphMB and state-of-the-art binning tools

HQ bins Strong100 Hjor Viby Damh Mari AalE Hade Soil
GraphBin 30 11 15 14 16 12 6 0
Maxbin2 27 12 19 16 14 12 19 0
SemiBin-ocean 30 11 1 22 18 21 7 0
SemiBin-train 27 7 4 23 22 32 25 0
VAMB 28 22 12 22 30 37 28 0
MetaBAT2 32 23 29 41 39 43 44 2
GraphMB 33 25 23 43 48 46 52 3

A VAMB N 3 11 21 18 9 24 3

A MetaBAT 1 2 -6 2 9 3 8 1

A % VAMB 15.2% 12.0% 47.8% 48.8% 37.5% 19.6% 46.2% 100.0%
A % MetaBAT 3.0% 8.0% -26.1% 4.7% 18.8% 6.5% 15.4% 33.3%
GraphMB dRep unique 0 1 2 4 6 8 12 2
DASTool w/o GraphMB 37 32 32 41 43 43 51 15
DASTool w/GraphMB 37 33 32 46 47 48 58 16

Note: The WWTP datasets are sorted by ascending size of assembly in terms of number of contigs. The Soil dataset is separate because it has a much higher

complexity than the WWTP datasets.

the closest to our approach. ‘GraphMB dRep unique’ refers to how
many of the HQ bins generated by GraphMB were not matched
with HQ bins from the other binners according to the dRep analysis.
dRep finds bins from different binning approaches that correspond
to essentially identical genomes. The number on the table corre-
sponds to groups of bins that have only one HQ bin, and that bin
was obtained with GraphMB, i.e. HQ bins that only GraphMB
could identify.

We obtained more bins using our graph embedding method
when compared with VAMB. For the WWTP datasets, we obtained
between 3 and 21 more HQ bins (12-49%) on the WWTP datasets,
in comparison to VAMB. Compared with MetaBAT2, we obtained
between 1 and 9 more HQ bins (3-22%), and our approach
obtained more bins on all but one of the real datasets. It did not out-
perform MetaBAT2 on one of the WWTP datasets, where VAMB
also obtained lower results. The GraphBin approach obtained worse
results than the other binners, indicating that this particular graph-
based approach is not optimized for the long-read assemblies of
these datasets. We observed that GraphBin incorrectly merged many
bins, obtaining highly contaminated bins. The SemiBin-ocean ap-
proach, also obtained a low number of HQ bins on most datasets,
possibly since the pretrained model used was also trained on short-
read assemblies. However, while training SemiBin on our own data
(one model for each dataset), we found that it only improved the
results in some cases, indicating that additional hyperparameter tun-
ing may be necessary.

Table 3 shows the results of the AMBER evaluation metrics on
the simulated dataset. While VAMB obtained the highest average
purity and SemiBin-train the highest completeness, GraphMB
obtained the best balance between these two metrics, and highest
number of HQ and Medium Quality (MQ) bins. In Supplementary
Table S4, we show the results on a short-reads dataset, simHC+
(Wu et al., 2014), evaluated using the same metrics. Although
GraphMB has a lower F1 score than VAMB on the short reads data-
set, we used the same parameters as for the long-read datasets, and
it still outperformed MetaBAT.

3.3 Ensemble results

After combining multiple binning results with dRep, we observed
that our approach was able to recover HQ bins that were not recov-
ered by other approaches. This corresponded to a total of 35 bins
across all datasets. Our approach obtained distinct bins from other
others on all the real-world datasets.

We used DASTool (Sieber et al., 2018) to observe if our ap-
proach could improve the aggregation of bins obtained from mul-
tiple approaches. We first combined the output bins of MetaBAT2,
MaxBin2, GraphBin and VAMB, in order to include a variety of

Table 3. AMBER evaluation metrics on the simulated Strong100
dataset on GraphMB and state-of-the-art binning tools

AP (bp) AC (bp) F1 HQ
GraphBin 0.848 0.613 0.712 23
MaxBin2 0.818 0.765 0.791 14
SemiBin-ocean 0.858 0.783 0.819 26
SemiBin-train 0.826 0.820 0.823 20
VAMB 0.969 0.755 0.849 26
MetaBAT2 0.905 0.592 0.716 26
GraphMB 0.967 0.762 0.852 29

Note: The metrics used are Average Purity (bp), Average Completeness
(bp), F1-score, HQ and MQ bins based on these purity and completeness met-
rics. The highest value of each metric is bolded.

approaches, and then the same bins but also the output bins of
GraphMB. This resulted in more HQ bins than any of the individual
binners in most cases. Since we obtained unique bins on all datasets,
we expected that combining our method to others would also results
in more bins, which was the case for six out of seven real datasets
we tested on (six WWTP datasets plus soil dataset). Using DASTool
to aggregate the bins of GraphMB with the others resulted in 23
more HQ bins to be recovered. Furthermore, in four datasets, the
aggregation of the other bin sets still obtained fewer HQ bins than
GraphMB. Note that the difference between the number of bins
obtained with DASTool including GraphMB and excluding it is not
the same as the dRep unique GraphMB bins. While DASTool aggre-
gates bins from different approaches, improving their scores, dRep
only matches the outputs of different approaches, without attempt-
ing generate a new bin.

3.4 Computational performance

We tested GraphMB both on CPU and GPU environments. We did
not account for the assembly and abundance calculation times, since
these are preprocessing steps common to all approaches. For small
datasets such as the simulated dataset we used, GraphMB can run
on CPU, single or multi-threaded. On a single thread, the simulated
dataset took about 4 min to process. For bigger datasets, we recom-
mend using a GPU. In Supplementary Table S3, we show the run-
ning time of both VAMB (used to generate the initial embeddings)
and GraphMB, as well as the peak memory usage, for each dataset.
We observed that the GraphMB running time scales linearly with
the number of edges. We run our experiments on a single Tesla

2202 4990100 0 Uo Jasn sejolqigsieNsioaun Biogley Aq 6.28999/1811/6 |/8E/BI0E/SOIBWIOJUIOIG/ WO dNO"DlWepED.//:SARY WOl PAPEO|UMOQ

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac557#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac557#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac557#supplementary-data

4486

A.Lamurias et al.

V100 GPU with 32GB RAM. The batch size parameter can be
adjusted if less memory is available.

4 Discussion

This article presented GraphMB, a metagenomic binner developed
for long-read assemblies, which takes advantage of the assembly
graph generated during the assembly process to obtain
neighborhood-aware embeddings. These embeddings are used to bin
contigs and obtain HQ MAGs. We demonstrated our approach on
both simulated and real datasets of diverse complexities. While on
the simulated dataset GraphMB worked on par with the other bin-
ners, it was able to obtain more HQ bins on the real datasets.
Furthermore, it also obtained unique bins that other binners could
not recover.

On the DamH and Hade datasets, on which we did not optimize
the hyperparameters, we still obtained good results. This indicates
that our approach would still work on similar datasets without
requiring any optimization. However, we would advise to test dif-
ferent numbers of hidden units (128-512), embedding dimensions
(32-128) and learning rates (10-2-10-5) if running GraphMB on
datasets that are very different from the ones we tested on, for ex-
ample, from other sequencing technologies or other assemblers. We
also provide a script to run a grid search on the parameters that we
considered.

The performance of GraphMB depends on the assembly graph,
which we can observe when comparing the different datasets we
used. We can see that on the soil dataset, which has an assembly
graph with more edges, GraphMB obtained lower results, even if
higher than the other binners. We intend to adapt Graph Attention
Networks (Velickovi¢ et al., 2018) to deal with more complex
graphs. This type of algorithm learns an attention mechanism to de-
cide which neighbors of a node should have more weight when com-
puting its embedding. This attention mechanism could also be
combined with the edge coverage information that we make use of
on GraphMB.

Since we used the individual elements of the contigs (also
referred to as edges of the assembly graph), unresolved repeats were
assigned to a single bin. As future work, we could change the assem-
bly graph by multiplying the unresolved repeats by taking into ac-
count their abundance, so that a repeat could be assigned to
multiple bins. This would require changing the structure of the as-
sembly graph, which we avoided doing for the present work. Other
approaches have used proposed soft binning of assembly graph
edges, which assigns a probability of an edge belonging to multiple
bins (Tolstoganov et al., 2022).

GraphMB is also dependent on the quality of the contig-specific
embeddings, since these are used as input features to the GNN. For
example, GraphMB performed worse in comparison to MetaBAT2
in the Viby dataset, where VAMB, which uses only contig-specific
embeddings, also had relatively bad performance. To overcome this
issue, we plan to implement an end-to-end architecture where the
VAE could be trained at the same time as the GNN. This would
mean that instead of having static contig-specific embeddings, these
could be fine-tuned while training the GNN.

Acknowledgements

The authors would like to acknowledge Caitlin M. Singleton for helping with
the WWTP raw datasets.

Funding

This work was supported by the VILLUM FONDEN (34299 and 15510) and
the Poul Due Jensen Foundation (Microflora Danica).

Conflict of Interest: MA is employed at DNASense ApS that consults and per-
forms sequencing. The remaining authors declare no conflict of interest.

Data availability

The data underlying this article are available in Zenodo, at https://doi.org/10.
5281/zenodo.6122610.

References

Albertsen,M. et al. (2013) Genome sequences of rare, uncultured bacteria
obtained by differential coverage binning of multiple metagenomes. Nat.
Biotechnol., 31, 533-538.

Alneberg,]. et al. (2014) Binning metagenomic contigs by coverage and com-
position. Nat. Methods, 11, 1144-1146.

Brunbjerg,A.K. et al. (2019) A systematic survey of regional multi-taxon bio-
diversity: evaluating strategies and coverage. BMC Ecol., 19, 1-15.

Burge,C. et al. (1992) Over-and under-representation of short oligonucleotides
in DNA sequences. Proc. Natl. Acad. Sci. USA, 89, 1358-1362.

Feng,X. et al. (2021) Metagenome assembly of high-fidelity long reads with
hifiasm-meta. Nat. Method., 19, 671-674. https://doi.org/10.1038/
$41592-022-01478-3.

Gilbert,].A. et al. (2018) Current understanding of the human microbiome.
Nat. Med., 24, 392-400.

Hamilton,W.L. et al. (2017) Inductive representation learning on large graphs.
In: Proceedings of the 31st International Conference on Neural Information
Processing Systems, Long Beach, California, USA, pp. 1025-1035.

Imelfort,M. et al. (2014) Groopm: an automated tool for the recovery of popu-
lation genomes from related metagenomes. Peer], 2, ¢603.

Kang,D.D. et al. (2019) MetaBAT 2: an adaptive binning algorithm for robust
and efficient genome reconstruction from metagenome assemblies. Peer], 7,
e7359.

Kolmogorov,M. et al. (2020) MetaFlye: scalable long-read metagenome as-
sembly using repeat graphs. Nat. Methods, 17,1103-1110.

Lin,H.H. and Liao,Y.C. (2016) Accurate binning of metagenomic contigs via
automated clustering sequences using information of genomic signatures
and marker genes. Sci. Rep., 6,24175-24178.

Ling,L.L. et al. (2015) A new antibiotic kills pathogens without detectable re-
sistance. Nature, 517,455-459.

Lu,Y.Y. et al. (2017) Cocacola: binning metagenomic contigs using sequence
composition, read coverage, co-alignment and paired-end read linkage.
Bioinformatics, 33, 791-798.

Mallawaarachchi,V. and Lin,Y. (2021) MetaCoAG: binning metagenomic
contigs via composition, coverage and assembly graphs. In: Pe’er, L.
(ed) Research in Computational Molecular Biology. RECOMB 2022.
Lecture Notes in Computer Science, Vol. 13278, Springer, Cham. https:
/ldoi.org/10.1007/978-3-031-04749-7_5.

Mallawaarachchi,V. et al. (2020) Graphbin: refined binning of metagenomic
contigs using assembly graphs. Bioinformatics, 36, 3307-3313.

Meyer,F. et al. (2018) Amber: assessment of metagenome binners.
GigaScience, 7, giy069.

Nielsen,P.H. (2017) Microbial biotechnology and circular economy in waste-
water treatment. Microb. Biotechnol., 10, 1102-1105.

Nissen,].N. et al. (2021) Improved metagenome binning and assembly using
deep variational autoencoders. Nat. Biotechnol., 39, 555-556.

Olm,M.R. et al. (2017) Drep: a tool for fast and accurate genomic compari-
sons that enables improved genome recovery from metagenomes through
de-replication. ISME J., 11,2864-2868.

Pan,S. et al. (2021) SemiBin: incorporating information from reference
genomes with semi-supervised deep learning leads to better metagenomic
assembled genomes (MAGs). Nat. Commun., 13, 2326. https://doi.org/
10.1038/s41467-022-29843-y.

Parks,D.H. et al. (2015) Checkm: assessing the quality of microbial genomes
recovered from isolates, single cells, and metagenomes. Genome Res., 25,
1043-1055.

Quince,C. et al. (2021) STRONG: metagenomics strain resolution on assem-
bly graphs. Genome Biol., 22, 214. https://doi.org/10.1186/s13059-
021-02419-7.

Sereika,M. et al. (2021) Oxford nanopore r10. 4 long-read sequencing enables
near-perfect bacterial genomes from pure cultures and metagenomes with-
out short-read or reference polishing. Nat. Method., 19, 823-826. https:
/ldoi.org/10.1038/s41592-022-01539-7.

Sharon,l. ef al. (2013) Time series community genomics analysis reveals rapid
shifts in bacterial species, strains, and phage during infant gut colonization.
Genome Res., 23, 111-120.

Sieber,C.M. et al. (2018) Recovery of genomes from metagenomes via a dere-
plication, aggregation and scoring strategy. Nat. Microbiol., 3, 836-843.

2202 4990100 0 Uo Jasn sejolqigsieNsioaun Biogley Aq 6.28999/1811/6 |/8E/BI0E/SOIBWIOJUIOIG/ WO dNO"DlWepED.//:SARY WOl PAPEO|UMOQ

https://doi.org/10.5281/zenodo.6122610
https://doi.org/10.5281/zenodo.6122610

Metagenomic binning with assembly graph embeddings

4487

Singleton,C.M. et al. (2021) Connecting structure to function with the recov-
ery of over 1000 high-quality metagenome-assembled genomes from acti-
vated sludge using long-read sequencing. Nat. Commun., 12, 1-13.

Timmis,K. et al. (2017) The contribution of microbial biotechnology to sus-
tainable development goals. Microb. Biotechnol., 10, 984-987.

Tolstoganov,l. et al. (2022) Binspreader: refine binning results for fuller mag
reconstruction. bioRxiv. https://doi.org/10.1016/j.isci.2022.104770.

Tyson,G.W. et al. (2004) Community structure and metabolism through re-
construction of microbial genomes from the environment. Nature, 428,
37-43.

Velickovié,P. et al. (2018) Graph attention networks. In: International
Conference on Learning Representations, Vancouver, Canada.

Vosloo,S. et al. (2021) Evaluating de novo assembly and binning strat-
egies for time series drinking water metagenomes. Microbiol. Spectr.,
9, e01434-21.

Wick,R.R. (2019) Badread: simulation of error-prone long reads. JOSS, 4, 1316.

Wickramarachchi,A. and Lin,Y. (2021) LRBinner: binning long reads in metage-
nomics datasets. In: 21st International Workshop on Algorithms in

Bioinformatics (WABI 2021), Online. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik.

Wickramarachchi,A. et al. (2020) MetaBCC-LR: meta genomics binning by
coverage and composition for long reads. Bioinformatics, 36,13-i11.

Wu,Y.-W. et al. (2014) Maxbin: an automated binning method to recover
individual genomes from metagenomes using an expectation-maximization
algorithm. Microbiome, 2,26-18.

Wu,Y.-W. et al. (2016) Maxbin 2.0: an automated binning algorithm to re-
cover genomes from multiple metagenomic datasets. Bioinformatics, 32,
605-607.

Yang,C. et al. (2021) A review of computational tools for generating
metagenome-assembled genomes from metagenomic sequencing data. Comput.
Struct. Biotechnol. J., 19, 6301-6314.

Yu,G. et al. (2018) Bmc3c: binning metagenomic contigs using codon usage,
sequence composition and read coverage. Bioinformatics, 34, 4172-4179.
Yue,Y. et al. (2020) Evaluating metagenomics tools for genome binning
with real metagenomic datasets and CAMI datasets. BMC Bioinformatics,

21, 1-15.

2202 4990100 0 Uo Jasn sejolqigsieNsioaun Biogley Aq 6.28999/1811/6 |/8E/BI0E/SOIBWIOJUIOIG/ WO dNO"DlWepED.//:SARY WOl PAPEO|UMOQ

	tblfn1
	tblfn2
	tblfn3

