
 

  

 

Aalborg Universitet

A deep reinforcement learning-based approach for the residential appliances
scheduling

Li, Sichen; Cao, Di; Huang, Qi; Zhang, Zhenyuan; Chen, Zhe; Blaabjerg, Frede; Hu, Weihao

Published in:
Energy Reports

DOI (link to publication from Publisher):
10.1016/j.egyr.2022.02.181

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Li, S., Cao, D., Huang, Q., Zhang, Z., Chen, Z., Blaabjerg, F., & Hu, W. (2022). A deep reinforcement learning-
based approach for the residential appliances scheduling. Energy Reports, 8(5), 1034-1042.
https://doi.org/10.1016/j.egyr.2022.02.181

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.egyr.2022.02.181
https://vbn.aau.dk/en/publications/c25caa68-6a62-49f0-a66f-6d4ba24979a3
https://doi.org/10.1016/j.egyr.2022.02.181


Available online at www.sciencedirect.com

d
r
o
o
o
a
a
t
p
t
d
©
(

P

K

s
d

ScienceDirect

Energy Reports 8 (2022) 1034–1042
www.elsevier.com/locate/egyr

2021 The 2nd International Conference on Power Engineering (ICPE 2021), December 09–11,
2021, Nanning, Guangxi, China

A deep reinforcement learning-based approach for the residential
appliances scheduling

Sichen Lia, Di Caoa,∗, Qi Huanga,b, Zhenyuan Zhanga, Zhe Chenc, Frede Blaabjergc,
Weihao Hua

a School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
b School of Energy, Chengdu University of Technology, Chengdu, China

c Department of Energy Technology, Aalborg University, Aalborg, Denmark

Received 10 February 2022; accepted 17 February 2022
Available online xxxx

Abstract

This paper investigates the optimal real-time residential appliances scheduling of individual owner when participating in the
emand response (DR) program. The proposed method is novel since we cast the optimization problem to an intelligent deep
einforcement learning (DRL) framework, which avoids solving a specific optimization model directly when facing dynamic
peration conditions induced by the outdoor temperature, electricity price and resident’s behavior. We consider the scheduling
f power-shiftable, time-shiftable and deferrable appliances for the optimization of profit and satisfaction rate of resident. The
ptimization problem is first modeled as a Markov decision process and then solved by a model-free entropy-based DRL
lgorithm. Unlike traditional model-based methods which rely on accurate knowledge of parameters and physical models that
re difficult to obtain in practice, the proposed method can develop real-time near-optimal control behavior by interacting with
he environment and learning from data, which avoids the error caused by the simplification and assumption when building
hysical model. The proposed scheduling algorithm also achieves better tradeoff between the profit and the satisfaction rate
han deterministic DRL algorithm owing to the introduction of the entropy term. Simulation results using real-world data
emonstrate the effectiveness of the proposed method.
2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the 2021 The 2nd International Conference on Power Engineering, ICPE, 2021.

eywords: Demand response; Residential appliances scheduling; Deep reinforcement learning

1. Introduction

With the deployment of smart meters, communication systems and intelligent controllers in modern power
ystem, demand response has become an effective method to release the tension between electricity supply and
emand and improve the system reliability. In general, demand response can be classified into incentive-based and

∗ Corresponding author.
E-mail address: caodi@std.uestc.edu.cn (D. Cao).
https://doi.org/10.1016/j.egyr.2022.02.181
2352-4847/© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the 2021 The 2nd International Conference on Power Engineering, ICPE,
2021.

http://www.elsevier.com/locate/egyr
https://doi.org/10.1016/j.egyr.2022.02.181
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2022.02.181&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:caodi@std.uestc.edu.cn
https://doi.org/10.1016/j.egyr.2022.02.181
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Li, D. Cao, Q. Huang et al. Energy Reports 8 (2022) 1034–1042

m
f
a
u
m

d
i
f
H
t
I
w

h
s
A
s
o
R
e
a
a
l
w
d
s
c
A
t

Q
r
m
a
p
s
s
p

b
s
t
t
i

2

e

price-based programs. To flatten the demand curve by providing electricity price that vary in time, price-based
programs are the chief research content of this paper. In recent years, various price-based methods have been
proposed in literature, which can be classified into three categories.

The first category is the optimization procedure based method. In [1], a stochastic dynamic programming based
ethod is proposed for energy management of a smart home with plug-in electric vehicle energy storage. Ref. [2]

ormulated the optimization of energy use in a smart home as a mixed integer nonlinear programming problem,
iming to minimize the electricity cost and maximize the comfort of a resident at the same time. Authors in [3]
tilized non-linear programming to schedule the appliances to flatten the demand curve. However, the methods
entioned above suffer from heavy computation burden and the “curse of dimensionality” [4].
The second category is the heuristics based method. Authors in [5] proposed an evolutionary algorithm based

emand side management strategy for reshaping the load profiles of the smart grid. Due to the straightforward
mplementation of particle swarm optimization algorithm (PSO), Ref. [6] proposed an improved PSO based method
or the optimization of appliances in an indeterminate environment in a residential energy management system.
owever, the heuristics based optimization methods are more suitable for deterministic cases, cannot react to

he dynamic of the environment (e.g., indoor temperature, electricity price, appliances working state, etc.) [7].
n addition, methods mentioned above have to resolve an optimization problem when new states are encountered,
hich is time consuming.
In recent years, machine learning (ML) has become a hot research spot. By learning powerful knowledge from

istorical data, ML based methods can deal with the uncertainty and dynamic of environment, and have been
uccessfully applied to fields like image processing [8], speech recognition [9] and optimization and control [10].
mong various machine learning methods, reinforcement learning (RL) is most suitable for the residential demand

ide management problem. In an RL model, the residential appliances are scheduled by the controller composed
f RL algorithm, which can evolve continuously and improve their performance by utilizing their past experiences.
ef. [11] proposed effective management strategy for household electricity usage based on RL algorithm. The
lectricity cost minimization problem is first modeled as a Markov decision process (MDP), then the Q-learning
lgorithm is used to solve the MDP. Simulation results showed the effectiveness of proposed method. The Q-learning
lgorithm is also applied to obtain the optimal incentive rate based on the prediction of the electricity price and
oad demand provided by the deep neural network in [12]. However, the input state (time information, appliances
orking states, etc.) and the output action (the residential appliances power) of Q-learning algorithm need to be
iscretized. The naive discretization of state and action spaces would cause information loss since both the state
ignal (time information, appliances working states, etc.) and output action (the residential appliances power) are
ontinuous value. This would lead to the suboptimal solution to the residential demand side management problem.
t the same time, the computation complexity would increase sharply and the training is hard to converge when

he state and action are discretized with a finer granularity.
To solve the problems mentioned above, neural networks are used for fitting the action value function in

-learning algorithm due to its strong non-linear fitting capability. This fall into the research field named deep
einforcement learning (DRL), which combines the non-linear fitting capability of neural network and the decision
aking ability of RL. DRL employ DNN to approximate the action value function, can take the continuous signal

s the input and provide action in continuous domain. This avoid the information loss during training and can
rovide better solution than Q-learning algorithm to problems with continuous state and action domain in real-world
cenarios. The DRL-based methods have been widely adopted in the various fields to solve optimization problem,
uch as the optimization of distribution network work [13], the management of electric vehicle charging [14], and
ower system related studies [15].

In this paper, the physical properties of different kinds of appliances and the resident’s power consuming
ehaviors is considered to simulate the power consumption in one household. Then, the DRL method is used to
chedule different kinds of appliances to minimize the electricity cost and dissatisfaction of resident. The rest of
his paper is organized as follows. Section 2 describes the mathematical model of the residential appliances. Then,
he residential appliances scheduling problem is formulated as MDP. In Section 3, the soft actor–critic algorithm is
llustrated in detail. Numerical simulation results are discussed in Section 4. Then Section 5 concludes this paper.

. Problem modeling

The resident employs the home energy management system (HEMS) to schedule the appliances to minimize the

lectricity cost and the dissatisfaction level of resident. The control framework is shown in Fig. 1. In this section,
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Fig. 1. The framework of residential appliances.

the mathematical model of power-shiftable, time-shiftable, and deferrable appliances are first illustrated, followed
by the formulation of Markov decision process.

2.1. Power-shiftable appliances

The power-shiftable appliances, such as air conditioner (AC) and electric water heater (EWH), can adjust the
working power continuously within the predefined range. In this paper, the two power-shiftable appliances, i.e. AC
and EWH are considered.

(1) AC: The dynamic of the indoor temperature under AC is modeled by [16,17]:

θ AC
t+1 = αθ AC

t + (1 − α)
(
θout

t − R P AC
t

)
, α = exp

(
−

△t
C R

)
, 0 ≤ P AC

t ≤ P AC
max (1)

here the θ AC
t (◦C) represents the indoor air temperature at time slot t, θout

t (◦C) denotes the ambient temperature
t time slot t, α is the inertia factor of the AC, R (◦C/kW) is the thermal resistance, P AC

t (kW) is the power
onsumption of AC at time slot t, P AC

max (kW) denotes the maximum power of AC, △t(hour) means interval of
time slot, and C (kWh/◦C) is the thermal capacity. Of which, C and R are the parameters of house, the both

arameters are related to the insulation level, volume, walls, and surface [17].
(2) EWH: The temperature of hot water in EWH water tank changes with time [18,19]:

θ EW H
t+1 = βθ EW H

t + (1 − β)
(
Gθout

t + Btθ
EW H
water + Qt

)
R′, β = exp

(
−

△t
Z R′

)
,G =

S A
T R

, Bt = C p · Ft · ρwater,

(2a)

R′
=

1
G + Bt

, Qt = 3600P EW H
t △ t, Z = C p · vol · ρwater, 0 ≤ P EW H

t ≤ P EW H
max (2b)

here the θ EW H
t (◦C) represents the water temperature in the EWH at time slot t, θout

t (◦C) is the ambient temperature
t time slot t, θ EW H

water (◦C) denotes the inlet cold water temperature, β is the inertia factor of the EWH, S A (m2)
epresents the tank surface area, T R

(
hour · m2

·
◦ C/kJ

)
is the tank insulation thermal resistance, C p (kJ/ (◦C · kg))

enotes the specific heat of water, Ft (L/hour) represents water flow rate at time slot t, ρwater (kg/L) means density
of water, P EW H

t (kW) is the power consumption of EWH at time slot t, P EW H
max (kW) denotes the maximum power

of EWH, △t (hour) means interval of a time slot, and vol (L) represents the volume of the tank.

2.2. Time-shiftable appliances

The time-shiftable appliances can be dispatched from the peak to the off-peak to reduce the cost of power
consumption. This paper considers two time-shiftable appliances: wash machine (WM) and dishwasher (DW). Both
appliances have two operating points, “on” and “off”:

PW M/DW
t =

{
∂

W M/DW
t PW M/DW

max

0
, ∂

W M/DW
t =

{
1, if t W M/DW

start ≤ t < t W M/DW
end and εW M/DW

t < ε
W M/DW
req

0, otherwise
(3a)
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where PW M/DW
t represents the power consumption of WM/DW at time slot t, PW M/DW

max denotes the maximum
power of WM/DW, ∂W M/DW

t represents the working state of WM/DW,εW M/DW
t is the working time up to time t of

WM/DW, t W M/DW
start is the time to start work of the WM/DW, t W M/DW

end is the end working time of the WM/DW, and
the εW M/DW

req means the required working time of WM/DW.

2.3. Deferrable appliances

The deferrable load means that when the customer satisfaction is lower than the threshold, it will stop consuming
power, and the load will be transferred to the time when the customer satisfaction is higher than the threshold. The
customer satisfaction can be determined by factors such as electricity cost, etc. This paper only considers electric
vehicle (EV) as the deferrable appliance. The dynamic of EV battery is modeled by

Et+1 = Et + P EV
t · △t, Emin ≤ Et ≤ Emax, (4a)

−P EV
max ≤ P EV

t ≤ P EV
max, i f t ∈

[
tarr , tdep

]
, P EV

t = 0, otherwise (4b)

where the Et is the EV battery energy at time slot t, P EV
t denotes the charging/discharging power at time slot t,

△t (h) means interval of a time slot, Emin and Emax are minimum and maximum battery storage energy, respectively,
P EV

max is the maximum power of EV, tarr means EV arrives home at time tarr , and tdep represents EV arrives home
at time tdep.

2.4. Markov decision process formulation

In this paper, the problem of residential appliances scheduling is modeled as the MDP of finite time steps, which
is defined by a tuple (S,A,R,F), where:

(1) S is the state space. The states of three types appliances can be defined as follows:
(a) Power-shiftable Appliances: In this paper, the state of one AC at time slot t is defined as: s AC

t =(
∂ AC

t , θ AC
t , θ AC

set

)
where the ∂ AC represents the working state of AC, 1 is “on”, 0 is “off”, and the θ AC

set denotes
the setpoint temperature of the AC thermostat at time slot t.

Similar to AC, the state of one EWH is defined as: s EW H
t =

(
∂EW H

t , θ EW H
t , θ EW H

set

)
.

(b) Time-shiftable Appliances: The state of one WM/DW at time slot t is defined as: sW M/DW
t =(

∂
W M/DW
t , t, εW M/DW

t , t W M/DW
end , ε

W M/DW
req

)
where t denotes the time information.

(c) Deferrable Appliances: The state of one EV at time slot t can be defined as : s EV
t =

(
∂EV

t , t, κEV
t , tdep, κ

EV
max

)
,

∂EV
t =

{
1, iftarr ≤ t < tdep

0, otherwise where the ∂EV
t is the working state of EV, t is the time information, κ EV

t is the battery

storage energy of EV at time slot t, and κ EV
max represents the maximum battery storage energy.

In this paper, the state at each time slot t st ∈ S consists of the electricity price Pt , and the states of three types
appliances:

st =
(
Pt , s AC

t , s EW H
t , sW M

t , s DW
t , s EV

t

)
(5)

(2) A is the action space. The action at time slot t at ∈ A is a set of actions of the appliances:

at =
(
P AC

t , P EW H
t , PW M

t , P DW
t , P EV

t

)
(6)

(3) R is the reward function. The objective of the residential appliances scheduling considers both the profit and
satisfaction of resident.

(a) Power-shiftable Appliances: The reward function of AC at time slot t can be defined as: r AC
t = µACψ AC

t +(
1 − µAC

)
ϕAC

t where ϕAC
t =

⎧⎪⎨⎪⎩
(
θ AC

t −
(
θ AC

set − T AC
))2
, ifθ AC

t <
(
θ AC

set − T AC
)

0 , otherwise(
θ AC

t −
(
θ AC

set + T AC
))2
, ifθ AC

t >
(
θ AC

set + T AC
) , ψ AC

t = P AC
t Pt represents the

electricity consumption of AC, ϕAC
t is the resident’s dissatisfaction level with θ AC

t , the µAC
∈ [0, 1] is a parameter

which balances the ψ AC
t and ϕAC

t , T AC means the acceptable range of indoor temperature under the action of AC

for resident, and the Pt is the electricity price.
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And the reward function of EWH is defined as: r EW H
t = µEW Hψ EW H

t +
(
1 − µEW H

)
ϕEW H

t where the ψ EW H
t

and ϕEW H
t are similar to ψ AC

t and ϕAC
t , respectively.

(b) Time-shiftable Appliances: The reward function of WM/DW is defined as: r W M/DW
t ={

∂
W M/DW
t ψ

W M/DW
t , if t ̸= t W M/DW

end

ϕ
W M/DW
t , if t = t W M/DW

end

where the ψW M/DW
t = PW M/DW

t Pt denotes the electricity consumption

of WM/DW, and the ϕW M/DW
t =

(
ε

W M/DW
t − ε

W M/DW
req

)2
is the resident’s dissatisfaction level with WM/DW.

(c) Deferrable Appliances: The reward function of EV is defined as: r EV
t =

{
∂EV

t ψ EV
t , ifϕEV

t = 0
∂EV

t ϕEV
t , otherwise where

ψ EV
t = P EV

t Pt denotes the electricity consumption of EV, κ EV
min represents the minimum battery storage energy

and the ϕEV
t =

⎧⎨⎩
(κ EV

max − κ EV
t )2, if κ EV

t > κEV
max or t = tdep

(κ EV
min − κ EV

t )2, if κ EV
t < κEV

min
0, otherwise

is the resident’s dissatisfaction level with EV, which

considers three situations that may cause dissatisfaction, one is overcharge, the second one is overdischarge, and
the third is that the battery is not full at the time of leaving home.

Then, the immediate reward the agent obtains at time slot t rt is defined as:

rt (st , at ) = r AC
t + r EW H

t + r W M
t + r DW

t + r EV
t (7)

(4) F is the transition function. st+1 = F(st , at ) denotes the probability distribution that the environment transfers
to next state when action at is executed under state st .

One MDP is composed of a finite number of time steps. At each time slot, the residential appliances controller
decides the power of above-mentioned appliances at , then obtains an immediate reward rt and residential appliances
controller transfer to the next state st+1. The reward function of the controller is to learn a policy π (at |st ) to
maximize the discounted cumulative reward from start state s1 onward: R1 (st , at ) =

∑T
t=1 γ

(t−1)r (st , at ) where at

s sampled from policy π , and γ ∈ [0, 1] is the reward discount factor, which is introduced to balance the future
ewards and the immediate reward. Considering that the policy π (at |st )may be stochastic, the objective function of
he controller is defined as O = max (Ea∼π [R1 (st , at )]).

. Proposed method

Different from standard RL, which naı̈ve maximize the expected return, the reward function of SAC is to
aximize a trade-off between expected return and entropy H [20]:

RH
1 (st , at ) = r (s1, a1) +

T∑
t=2

γ (t−2) (r (st , at )+ ηH (π (at |st ))) (8)

here the temperature parameter η is used for balancing the exploration and exploitation during the training process.
ote that, when η = 0, RH

1 = R1. Considering the entropy regularization, the Bellman equation for Qπ
H and V π

H
re defined as [20]:

Qπ
H (st , at ) = Est+1∼env

[
r (st , at ) + γ V π

H (st+1)
]
, V π

H (st ) = Eat ∼π

[
Qπ

H (st , at )− η logπ (at |st )
]

(9)

SAC consists of a state value network VB (st ), a target state value network VB̃ (st ), an action-value network
QX (st , at ), and a policy network πS (at |st ) where B, B̃, X and S denote the parameters of these networks,
espectively. Therein, the VB (st ), VB̃ (st ), and QX (st , at ) are regarded as the critic part, and the πS (at |st ) is the
ctor part. In SAC, actor part is used for making decision, and critic part is used for approximating Eq. (9).

As described above, VB (st ) and QX (st , at ) are used for approximating the Eq. (9), respectively. Therefore, the
alue network VB (st ) can be optimized by minimizing:

JV (B) = Est ∼Z

[
0.5

(
VB (st )− Eat ∼πS

[
QX (st , at )−

η logπS (at |st )

])2
]

(10)

here Z represents the replay buffer which can reuse of previously collected (S,A,R,F) data for efficiency and
tabilize the training process [21]. And the parameters of the target network B̃ are updated by slowly tracking B:˜ ˜
= τ ∗ B + (1 − τ ) ∗ B where τ < < 1.
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Table 1. The parameters of power-shiftable appliances.

Appliance Parameters

AC1 C1 = 10 kWh/◦C, R1 = 2 ◦C/kW, P AC1
max = 15 kW, θ AC1

set = 24◦C, T AC1
= 3 ◦C, µAC1

= 0.4

AC2 C2 = 6 kWh/ ◦C, R2 = 3.33 ◦C/kW, P AC2
max = 9 kW, θ AC2

set = 24 ◦C, T AC2
= 2 ◦C, µAC2

= 0.4

EWH θ EW H
water = 15 ◦C, S A = 2.5 m2, vol = 150 L, T R = 0.75 hour · m2

·
◦ C/kJ, θ EW H

set = 55 ◦C, C p = 4.2 kJ/ (◦C · kg),
T EW H

= 4 ◦C, ρwater = 1 kg/L, P EW H
max = 4.5 kW, µEW H

= 0.3 Fbase = 3 L/hour, ∆Ft ∼ N (0, 1) or ∆Ft = 0

WM/DW PW M
max = 2 kW, tW M

start = tarr , tW M
end = 0, εW M

req = 60 min, P DW
max = 2.5 kW, t DW

start = 0, t DW
end = 9, εDW

req = 30 min

EV tarr ∼ U (15, 16, 17, 18), tdep ∼ U (7, 8, 9, 10), P EV
max = 6 kW, κEV

max = 24 kWh, κEV
min = 1 kWh, κEV

tarr
∼ N (9.6, 0.2)

The QX (st , at ) is optimized as JQ (X) = Est ,at ∼Z
[
0.5 (QX (st , at )− y)2

]
, y = r (st , at )+γEst+1∼env

[
VB̃ (st+1)

]
.

The actor part is updated in the direction that maximize the critic value. Thus, the goal of policy network
S (at |st ) is to maximize the follow equation Jπ (S) = Est ∼Z

[
QX (st , at )− η logπS (at |st )

]
where at is sample

rom the πS (at |st ) which is differentiable wrt S via the reparametrization trick [20].

. Experimental results

.1. Experimental setup

The real-time electricity price data [22] of 2017 PJM and typical ambient temperature [17] are used in this
tudy. The real-time electricity price data are divided into training and test set. Training set contains data for the
rst 200 days of 2017 and the test data includes the 201th day to 300th day of 2017. For case studies, there are three
ower-shiftable appliances: AC1, AC2 and EWH, two time-shiftable appliances: WM and DW; and one deferrable
ppliance: EV are considered for case studies. The epoch starts at the time that the EV arrives and ends when the
ime pass 144 time slots. One-time slot △t is assumed to be 10 min. The parameters of above-mentioned appliances
re shown in Table 1.

This paper assumes that all power-shiftable appliances work the whole day, WM starts working when the EV
rrives home and stops at 0:00; DW starts working at 0:00 and stops at 9:00; and EV arrival time tarr and departure
ime tdep follow the uniform distribution tarr ∼ U (15, 16, 17, 18) and tdep ∼ U (7, 8, 9, 10), respectively. Normally,

the thermal capacity C ranges from 0.015 to 0.065 kWh/◦C per square meter, and the thermal resistance R can
be selected approximately from 0.001 to 0.003 kW/◦C per square meter of floor space [16]. Supposing that every
oom in a house has the same parameters such as wall material and thickness, etc. Under this assumption, the
.04 kWh/◦C/m2 and 0.002 kWh/◦C/m2 [16] are selected for the calculation of C1, C2 and R1, R2, respectively.
ssuming the floor area of the room affected by AC1 is 250 m2, C1 can be calculated as:

(
0.04 kWh/◦C/m2

)
×

250 m2
)

= 10 kWh/◦C, and the R1 equal to
((

0.002 kWh/◦C/m2
)
×

(
250 m2

))−1
= 2 ◦C/kW. Assuming AC2

orks in a room of 150 m2, C2 and R2 can be calculated in the same way. In this model, the water flow rate of
WH is calculated by Ft = Fbase +∆Ft , where Fbase is a fixed value and ∆Ft is sampled from normal distribution
r equal to 0. In general, the water flow rate changes frequently when water is used frequently. Therefore, this paper
ssumes that ∆Ft from tarr to 0:00, 7:00 to 9:00, and 11:00 to 13:00 follows the normal distribution, otherwise
Ft = 0.

.2. Performance evaluation

The performance of proposed method in one epoch which starts at 15:00, October 12, 2017 are shown in Fig. 2.
ig. 2(a) is the electricity price diagram. Fig. 2(b) is the EV battery storage diagram. It can be observed that EV is
harged when electricity price is low and EV discharges when the electricity price is high. Figs. 2(c) and 2(d) are
he WM and DW power diagram, respectively. It can be observed from the figure that WM and DW both choose
ow price period to finish the task. Fig. 2(e) is the ambient temperature diagram. Figs. 2(f) and 2(g) are the indoor
emperature under AC1 and AC2, respectively. Fig. 2(h) is the water temperature. Note that the electricity price
Fig. 2(a)) is high on edges (15:00∼23:00 and 5:00∼15:00) and low in the center (23:00∼5:00), so the indoor
emperature which affected by AC should be high at the edges (15:00∼23:00 and 5:00∼15:00) and low in the

enter (23:00∼5:00), and the water temperature should be low at the edges (15:00∼23:00 and 5:00∼15:00) and
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Fig. 2. Residential appliances scheduling.

high in the center (23:00∼5:00). Only in this way can resident obtain economic benefits under the electricity price
rend in Fig. 2(a).

Next, the comparative tests are carried out among various benchmark methods to evaluate the performance of the
roposed method. The benchmark solutions and proposed method have the same start state, ambient temperature,
lectricity price and flow rate. For the uncontrolled strategy, power-shiftable appliances work in maximum power
perating condition P AC/EW H

max when θ AC/EW H
t > θ

AC/EW H
set + T AC/EW H , or P AC/EW H

= 0 when θ AC/EW H
t <

θ
AC/EW H
set − T AC/EW H ; otherwise keep the same power as the previous time slot [19]. Under the uncontrolled

strategy, WM/DW start to work once they receive an assignment. The EV will charge immediately once it arrives
home until the battery is full. The Deep Deterministic Policy Gradient (DDPG) method [23] is also an actor-critic
based DRL method. But unlike SAC method, DDPG method is based on deterministic policy, while SAC method
is based on entropy-regularized stochastic policy. The Twin Delayed Deep Deterministic policy gradient method
(TD3) [24] which is an improvement version of DDPG can address function approximation error in actor-critic
methods, and has better effect than DDPG in robot control scene. The DDPG and TD3 methods share the same
structure of neuron network with the proposed method. For the theoretical-limit strategy, all the variables (∆Ft ,
tarr , tdep, and κ EV

tarr
), the electricity price and ambient temperature of current epoch are assumed to be known in

advance. Note that the theoretical-limit strategy cannot be achieved in the practice due to the randomness of the all
variables (∆Ft , tarr , tdep, κ EV

tarr
, the electricity price and ambient temperature).

In the proposed model, the evaluation metric can be divided into two part: one is electricity cost:

ψt = ψ
AC1
t + ψ

AC2
t + ψ EW H

t + ψW M
t + ψDW

t + ψ EV
t (11)

he other is dissatisfaction level:

ϕt = ϕ
AC1
t + ϕ

AC2
t + ϕEW H

t + ϕW M
t + ϕDW

t + ϕEV
t (12)

The simulation results of proposed method and benchmark methods are shown in Fig. 3. Note that the data
f Figs. 3(a) and 3(b) are normalized for better visualization of the performance of various methods. Fig. 3(a)
s a comparison of the cumulative electricity cost of the four methods, it can be observed that the cost of the
roposed method (i.e. red line) is 82.3% of uncontrolled strategy, the DDPG (yellow line), TD3 (purple line) and
heoretical-limit strategy (green line) are 80.1%, 77.6% and 52% of uncontrolled strategy, respectively.
1040



S. Li, D. Cao, Q. Huang et al. Energy Reports 8 (2022) 1034–1042
Fig. 3. Performance evaluation (a) Cumulative economic cost in test set; (b) Cumulative dissatisfaction level in test set; (c) Cumulative
economic cost and dissatisfaction level in test set.. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Though the theoretical-limit strategy has the best performance, the theoretical-limit strategy is difficult to
implement in practice. Next to theoretical-limit strategy is the DDPG strategy, followed by proposed method. This
study considers the economic benefits as well as the dissatisfaction level of resident. The cumulative dissatisfaction
level of the four methods are shown in Fig. 3(b). It can be observed from the figure that the proposed method
(i.e. red line) is 1.7% of uncontrolled strategy, the DDPG (yellow line), TD3 (purple line) and theoretical-limit
strategy (green line) are 34.2%, 29.5% and 0% of uncontrolled strategy, respectively. There exists large difference
between DDPG and proposed method when taking into account the resident comfort. As mentioned in Section 4
C, the DDPG and TD3 strategy are deterministic policy but the proposed method is a based on entropy-regularized
stochastic policy which can achieve better performance in complex environment [20]. Although the DDPG and TD3
strategy takes the economic benefits into account, the dissatisfaction level of resident is ignored. Different with
DDPG and TD3 strategy, the proposed method take into account two metrics at the same time due to the proposed
method has a stronger ability to explore the environment and it is always moving towards the goal of optimizing
the two metrics in the training process, rather than just learning the strategy of improving economic efficiency and
ignoring the user dissatisfaction like DDPG and TD3 strategy. Combining electricity cost and dissatisfaction level
metric, uncontrolled strategy is 0.5*(100% + 100%) = 100%, DDPG is 0.5*(80.1% + 34.2%) = 57.2%, TD3 is
0.5*(77.6% + 22.5%) = 53.6%, proposed method is 0.5*(82.3% + 1.7%) = 42% and theoretical-limit is 0.5*(52%
+ 0%) = 26%. The smaller the sum of the two metrics is, the better the performance of the method achieves. The
combination of the two metrics are show in Fig. 3(c). The results demonstrate the effectiveness of the proposed
method for these residential appliances scheduling problem.

5. Conclusion

In this paper, the residential appliances scheduling problem is formulated as a MDP from the perspective of
resident considering the randomness of ambient temperature, electricity price, flow rate, and commuting behavior.
Then proposed method is applied to solve the MDP. The proposed method can develop a control policy using
data obtained by interacting with the environment. Experimental results demonstrate that the proposed method can
reduce the electricity cost and the dissatisfaction level of resident. The proposed method avoids the dependence on
the physical model and comparative results demonstrates that it can achieve better results than the deterministic
DRL algorithm.
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