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A B S T R A C T   

Nowadays, the economic viability of second-life (SL) Li-ion batteries from electric vehicles is still uncertain. 
Degradation assessment optimization is key to reduce costs in SL market not only at the repurposing stage, but 
also during SL lifetime. As an indicator of the ageing condition of the batteries, state of health (SOH) is currently 
a major research topic, and its estimation has emerged as an alternative to traditional characterization tests. In an 
initial stage, all SOH estimation methods require the extraction of health indicators (HIs), which influence al-
gorithm complexity and on-board implementation. Nevertheless, a literature gap has been identified in the 
assessment of HIs for reused Li-ion batteries. This contribution targets this issue by analysing 58 HIs obtained 
from incremental capacity analysis, partial charging, constant current and constant voltage stage, and internal 
resistance. Six Nissan Leaf SL modules were aged under extended cycling testing, covering a SOH range from 
71.2 % to 24.4 %. Results show that the best HI at the repurposing stage was obtained through incremental 
capacity analysis, with 0.2 % of RMSE. During all SL use, partial charge is found to be the best method, with less 
than 2.0 % of RMSE. SOH is also estimated using the best HI and different algorithms. Linear regression is found 
to overcome more complex options with similar estimation accuracy and significantly lower computation times. 
Hence, the importance of analysing and selecting a good SL HI is highlighted, given that this made it possible to 
obtain accurate SOH estimation results with a simple algorithm.   

1. Introduction 

Environmental problems related to internal combustion vehicles, 
together with government actions and citizen awareness, have brought 
electric vehicles (EV) to the forefront of the automotive industry. This 
has a direct impact on the demand for Li-ion batteries for EVs, which 
reached 160 GWh in 2020 [1]. 

Due to usage, Li-ion batteries suffer from capacity and power fade, 
which may compromise their compliance with EV requirements. 
Therefore, automotive standards set 20 % to 30 % of capacity loss as a 
threshold value for the Li-ion batteries to be retired from EVs. Compared 
to traditional alternatives such as recycling, the reuse of Li-ion batteries 
in other applications leads to lifetime extension, thereby representing a 
beneficial solution from an economic and environmental point of view. 
Stationary applications, where energy density is not as crucial as in EVs, 
emerge as possible second-life (SL) usage scenarios. The potential of 
these SL batteries from EVs is such that the storage supply for stationary 

applications could exceed 200 GWh per year by 2030 [2]. 
However, the success of SL batteries from EVs is still uncertain today, 

given that this depends on their technical and economic viability. Even 
though the operation and durability of SL modules [3–5] and battery 
packs [6,7] from EVs has been experimentally assessed in recent years, 
the economic feasibility of reusing EV batteries is still uncertain today. 

In recent years, the improvements in Li-ion chemistries, together 
with mass production have led to a cost reduction in new batteries that 
threatens the SL market. Up to 30 % of the price of reused batteries is 
determined by their repurposing process [8]. In this stage, character-
ization is key from a dual perspective: to ensure that reused modules are 
suitable for the specific application and to minimize dispersion within 
reconfigured batteries. The latter can be up to four times the value in 
new modules [3], and it may compromise the requirements of power 
converters [9] or even battery lifetime [10,11]. Moreover, knowledge of 
the degradation level of reused batteries is also necessary throughout 
their SL lifetime, in order to guarantee safe operation. Traditionally, Li- 
ion batteries are characterized by capacity and/or internal resistance in 
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order to assess their state of health (SOH). SOH is an index of the ageing 
condition of batteries, and its monitoring requires several hours of 
testing and specific equipment and eventually the interruption of normal 
operation. 

In the quest to optimise degradation assessment of Li-ion batteries, 
the estimation of their SOH has emerged as an alternative in recent 
years. In an initial stage, all SOH estimation methods aim to identify a 
characteristic parameter related to SOH, i.e., a health indicator (HI), 
from which SOH can be assessed. In general, two options have been 
addressed: experimental and model-based methods [12,13]. The first 
approach relies on laboratory testing to analyse ageing behaviour, 
covering direct measurements of HIs such as impedance measurements 
[14] or Ah counting [15,16], as well as indirect assessment which re-
quires data analysis and processing to evaluate HIs, e. g. from incre-
mental capacity analysis (ICA) [17,18], voltage response [19–21] or 
charging curve method [4]. Another novel approach is the assessment of 
stoichiometry parameters, which focuses the analysis at electrode level, 
thereby obtaining valuable information about degradation mechanisms 
[22]. Despite their accuracy, experimental methods are difficult to 
implement online, given that they require specific equipment and are 
performed in a laboratory environment, which may differ from real 
conditions [15,23,24]. For their part, model-based methods aim to es-
timate or identify HIs and can be divided into adaptive filtering algo-
rithms, such as Kalman Filters [25], and data-driven methods, which are 
based on machine learning algorithms, such as Support Vector Machine 
or neural networks [15,26,27]. The accuracy and robustness of results, 
together with the shorter time series of data required make these 
methods more attractive for real applications. Nevertheless, complex 
models or HI extraction procedures lead to higher computational re-
quirements, which may compromise the implementation of a specific 
SOH estimation method in battery management systems. 

All SOH estimation methods for Li-ion batteries require, in an initial 
stage, the extraction of HIs. Li-ion battery ageing is caused by multiple 
mechanisms such as chemical decomposition and structural changes, as 
well as by their interaction, and the assessment of such features is thus 
not evident. Moreover, the correlation between HI and SOH influences 
the specific algorithms used in estimation. The trade-off between algo-
rithms, considering accuracy and implementation easiness, and HI 
extraction in real applications is extremely significant in SOH estimation 
[28]. However, although SOH estimation has become relevant in recent 
years, only a few studies focus on SL batteries. The inhomogeneous 
characteristics of these reused batteries due to previous usage in EVs, 
together with the acceleration of their ageing rates related to changes in 
the dominant ageing mechanisms in the so-called ageing knee, motivate 
the specific analysis of SL batteries. 

Table 1 summarizes the main contributions identified which target 
this issue, detailing for each case the specific HI and algorithm used, 
together with the application addressed, capacity fade interval and the 
resulting prediction error. The assessment of SOH at the repurposing 
stage has been addressed through direct measurements of HIs such as 

electrochemical impedance spectroscopy (EIS) [14], with a SOH pre-
diction error below 2 %, or Ah counting in partial charging method 
(PCM) [29], which allowed a capacity estimation accuracy of within 3 
%. For its part, [30] used indirect HIs from ICA to achieve 3 % prediction 
accuracy in SOH estimation. When it comes to online SOH assessment, 
[15] estimated SOH with a maximum error of 1.85 % under extended SL 
ageing using Ah counting in PCM, while [4] assessed average Fréchet 
distance (AFD) in the constant current section of the charging curve, 
obtaining 1.5 % of SOH estimation error. This latter work addressed 
both online and offline SOH estimation. It should be noted that the cells’ 
capacity, format, and chemistry analysed in the contributions might 
vary. 

As can be seen from Table 1, only a few steps have been taken with 
regard to SOH estimation in SL Li-ion batteries. Most studies focus on the 
repurposing stage, and there is clearly a lack of a complete SL lifetime 
assessment. Overall, this research work is supported on two grounds: the 
importance of simplifying SOH estimation algorithms in order to facil-
itate their implementation in real applications and the literature gap 

Nomenclature 

CC constant current 
CN nominal capacity 
CRPT capacity 
CV constant voltage 
DCIR direct current internal resistance 
EIS electrochemical impedance spectroscopy 
EV electric vehicle 
HI health indicator 
IC incremental capacity 
ICA incremental capacity analysis 

LR linear regression 
MaxE maximum absolute error 
PC partial charge 
PCM partial charging method 
RMSE root mean squared error 
RPT reference performance test 
SL second life 
SOC state of charge 
SOH state of health 
SVR – L support vector regression with linear kernel 
SVR – RBF support vector regression with radial basis function 

kernel  

Table 1 
Research contributions targeting SOH estimation for SL Li-ion batteries.  

Reference Health 
indicator 

Algorithm Application Capacity 
fade 
interval 
(%) 

Maximum 
prediction 
error (%) 

[14] EIS 
Linear 
regression 

Repurposing 5–20 2 

[29] PCM 

Support 
vector 
machine 
and K- 
means 
algorithm 

Repurposing 17–40 3 

[30] ICA 

Linear 
regression, 
ordinary 
least 
square, 
ridge 
regression 

Repurposing 15–35 3 

[15] PCM 

Weighted 
least 
squares 
support 
vector 
machine 

Online 20–55 1.85 
(RMSE) 

[4] 

EIS, 
charging 
curve, 
ICA and 
AFD 

Linear 
regression 

Online 
Offline 

6–38 1.5  
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found in the analysis of HIs in SL batteries. Therefore, this contribution 
aims to assess the selection of HIs for SOH estimation in reused Li-ion 
batteries from EVs. Experimental data will be extracted from modules 
retired from real EVs, adding valuable information for the economic and 
technical viability of the SL market. The paper is organized as follows. 
Section 2 details the experimental procedure, describing the Li-ion 
modules used and the experimental setup. An overview of HI extrac-
tion is provided in Section 3, together with the SOH estimation pro-
cedure. Section 4 presents and discusses the results covering the 
repurposing stage and the complete SL lifetime. Moreover, a comparison 
of different estimation algorithms with a given HI is carried out in this 
section. Finally, Section 5 draws the main conclusions of the work. 

2. Experimental procedure 

2.1. Module description 

The six Li-ion modules under study in this work were specially 
designed for automotive purposes, in particular for the Nissan Leaf EV. 
Each module is composed of four pouch-type cells of nickel and man-
ganese oxide cathode (LMO/LNO) and graphite anode. The cells are 
assembled in two parallel-connected pairs associated in series (2s2p). 
Three external terminals are available in the modules: positive, middle 
point and negative, in such a way that 2p cells are the smallest testing 
unit. The nominal capacity (CN) of the modules is 66 Ah, and their 
maximum, minimum, and nominal voltages are 8.3 V, 5 V, and 7.5 V, 
respectively. The EV history of the modules is unknown, as this is not 
provided by the manufacturer. Fig. 1 shows some of the modules under 
test in the laboratory setup. The cells have only been used in the EVs, 
being therefore at the beginning of their SL. 

2.2. Experimental setup 

The tests are carried out at 2p cell level between the positive and 
middle point terminals. For ease of reading, the 2p cell connection will 
hereinafter be referred to as cell. The experimental procedure of this 
contribution consists of two main sets: reference performance tests and 
cycling ageing tests. 

2.2.1. Reference performance test 
The reference performance test (RPT) is composed of capacity and 

direct current internal resistance (DCIR) measurements. The capacity 
test consists of two full charge-discharge cycles at C/3 between the 
voltage limits of the cell. C is defined according to the nominal capacity. 
The charging procedure is a constant current (CC) pulse until the 
maximum cell voltage followed by a constant voltage (CV) phase with a 

cut-off current of C/20, while the discharge procedure is CC. The actual 
capacity of the cell (CRPT) is determined from the capacity discharged in 
the second cycle. The RPTs are carried out at a controlled ambient 
temperature of 25 ◦C ± 1 ◦C. Prior to the initial test, a rest time of 4 h is 
set at the given temperature, and the cell is discharged at C/3 with a CC 
pulse down to their minimum voltage. For their part, the DCIR tests 
starts with a CC full charge at C/2. Then, the cell is discharged at C/2 
with a CC pulse until it reaches 90 % of its state of charge (SOC). After a 
1 h rest, the procedure is repeated until the next SOC level is reached. 
The DC internal resistance is calculated from the voltage and current 
after 10 s of discharge pulse and their values at the end of the rest period. 
The process is performed at SOC levels of 90 %, 70 %, 50 %, 30 % and 10 
%. 

2.2.2. Ageing test 
The ageing test consists of a continuous cycling with CCCV charge 

and CC discharge at 1C between cell voltage limits, with a cut-off current 
of C/20. The test is performed at a controlled ambient temperature of 
25 ◦C ± 1 ◦C. An RPT was performed every 250 cycles. 

Fig. 2 shows a sequence example of RPT, with the corresponding 
capacity and DCIR measurements, and cycling ageing test performed in 
one of the cells under test. 

The test bench used, shown in Fig. 1, consists of a battery tester and a 
climatic chamber. The battery tester is rated at 5 V and 50 A on each 
channel, with an accuracy within ±0.1 % of the full scale. The climatic 
chamber allows a temperature range from − 30 ◦C to +180 ◦C, with 
measurement precision of ±0.5 ◦C. Data processing and computations 
are performed with the Matlab R2020a software. 

3. Health indicator extraction and SOH estimation 

The estimation of SOH consists of two main steps. First, it is neces-
sary to extract HIs that provide useful information regarding ageing. 
Given the complexity of degradation mechanisms in SL Li-ion batteries, 
and the eventual appearance of the ageing knee, the selection of such 
indicators is no trivial matter. Once the specific HI is identified, a cor-
relation with SOH is analysed in a second stage. Thus, this section covers 
both steps, describing the HI extraction and the SOH estimation 
procedures. 

3.1. Health indicators 

The extraction of HI for SOH estimation is regarded as one of the 
main challenges in this field nowadays [26]. Robustness to ageing and 
operating conditions, together with accuracy and easiness of extraction, 
are characteristics sought in HIs. This, together with the reused char-
acter of the cells under study, motivates the analysis of different 
extraction methods. From each method, the number of HIs obtained 
depends on the information available and their tailoring to the specific 
characteristics of the cells. Hence, four HI extraction methods are 
selected in this contribution: incremental capacity, partial charging, 
internal resistance and amount of charge in the CC and CV stages. 
Among other alternatives, the encouraging results of these methods in 
previous literature motivated their choice for SL batteries. All the HIs are 
extracted under similar measurement conditions, according to the RPT 
procedure described in subsection 2.2.1. Therefore, the dependence on 
current or temperature in the HI extraction does not come within the 
scope of this work. 

3.1.1. Incremental capacity 
ICA has been reported as a promising technique to estimate SOH in 

SL Li-ion batteries [31], with accurate results at acceptable computa-
tional costs. Based on the differentiation of capacity against voltage on a 
CC charge, ICA makes it possible to track the characteristic peaks and 
valleys, which can be used as HIs to estimate SOH. In real operation, 
while the discharge current is normally defined by the load, the charging 

Battery

Climatic chamber

Nissan Leaf modules

tester

Fig. 1. Example of Nissan Leaf modules under test and experimental test bench.  
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current is usually constant. Therefore, this method is of great interest 
when it comes to SOH estimation. Moreover, when performed at low 
currents, ICA makes it possible to identify underlying degradation 
mechanisms in Li-ion cells, which, although not coming within the scope 
of this contribution, could also be seen as a further advantage of this 
technique to be used in SOH assessment. Nevertheless, the initial SOC of 
the cell may compromise the identification of some indicators [32], and 
the method requires data processing to filter the curve in order to get 
HIs. 

In this contribution, the incremental capacity (IC) curve is extracted 
from the second charge of the capacity test in the RPT on its CC stage. 
The sampling time interval is 1 s. Each charge is split into 300 sections of 
equal time, considering this number as a compromise between the 
measurement noise and IC detection. For each section, named n to n + 1, 
voltage and capacity change are obtained, computing the IC as the dif-
ferentiation of the battery charging capacity (Q) against the voltage (V), 
according to Eq. (1). 

IC =

(
dQ
dV

)

n
=

Qn+1 − Qn

Vn+1 − Vn
(1) 

Measurement noise in the IC curve is mitigated through a moving 
average filtering of 12 points. This solution is found to be the best 
compromise between accuracy and simplicity. The peak and valley 
identification is performed on the filtered IC curves using the ‘findpeaks’ 
function in Matlab. The minimum distance between peaks and valleys is 

set to 30 points, and the minimum height to 5 points. 
Fig. 3 shows the IC curves of the six cells (C 1 to C 6) under study in 

this contribution at the beginning of the test, i.e., at their repurposing 
stage. As can be seen, two peaks (P 1 and P 2) and a valley (V 1) are 
identified according to the procedure described in this subsection. This 
is consistent with a previous work performed with similar SL modules 
[31]. From each of these characteristics, the IC magnitude and the 
corresponding voltage will be kept as HIs. Hence, six indicators are 
available (HI 1 to HI 6), as is summarized in Table 2. For example, HI 1 
corresponds to the IC magnitude of Peak 1 and HI 4 represents the 
voltage of Peak 1. 

3.1.2. Partial charging method 
PCM relies on the concept that the overall capacity of the cell can be 

estimated from a given charge measured in a specific voltage range. As 
in the case of ICA, this technique can be applied in normal battery 

Fig. 2. Cell voltage and current signals during the RPT and cycling ageing (voltage plotted on the left axis and current on the right axis).  

Fig. 3. IC curves of the six cells at the beginning of their SL.  

Table 2 
HIs extracted from ICA.  

Characteristic ICA HI 

IC Voltage 

Peak 1 HI 1 HI 4 
Peak 2 HI 2 HI 5 
Valley 1 HI 3 HI 6  
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operation, given that current is usually constant during battery 
charging. One of the main advantages of PCM is its simplicity, as it is 
based on Ah counting and does not require data processing. 

In this work, partial charging data are obtained from the second cycle 
of the capacity test in the RPT in its CC stage. The voltage range analysed 
is from 3.7 V to 4.15 V, given that the most significant changes in IC 
occur within these values, as shown in Fig. 3. The entire voltage range is 
divided into fractions of 50 mV and, as a result, 45 voltage windows are 
identified. At each interval, the corresponding charge in Ah is extracted 
as the indicator for SOH estimation (HI 7 to HI 51). Table 3 summarizes 
the HIs extracted through PCM, detailing for each interval, the corre-
sponding low (VLOW) and high voltage (VHIGH). For instance, HI 7 cor-
responds to the partial charge extracted from 3.70 V to 3.75 V. 

Fig. 4 shows an example of HI extraction for a given SL cell at the 
beginning of its life (Fresh) and after being aged (Aged) through PCM. 
For exemplification, the voltage range between 3.9 V and 4.1 V, corre-
sponding to HI 40 is plotted. 

3.1.3. Internal resistance 
Capacity and internal resistance are correlated in a Li-ion cell, in 

such a way that degradation leads to capacity fade and resistance in-
creases. Given the simplicity of measurement and its possibilities in real 
applications, DCIR is considered as HI to estimate SOH. The value of 
DCIR depends on the SOC of the cell, in such a way that extremely high 
or low levels increase the internal resistance [33]. Therefore, DCIR is 
considered as HI at various SOC. More precisely, in this work, the DCIR 
test in RPTs is the extraction method for these HIs, according to the 
procedure described in Section 2.2.1. Hence, five HIs are available, from 
the corresponding SOC levels of the test (90, 70, 50, 30, and 10 %), 
which are named HI 52 to HI 56. 

Table 4 describes the specific SOC of each HI, in such a way that HI 
52 is the DCIR measured at the discharge pulse of 90 %. 

3.1.4. Charge in CC and CV stages 
The study of the CC and CV stages from a specific charge makes it 

possible to extract different HI, such as energy, temperature or the slope 
of the curve [28]. In this contribution, the corresponding charge of each 
stage will be considered, given the extraction simplicity. As for ICA and 
PCM, this method can be applied in normal battery operation given that 
the charging current is usually controlled. In this contribution, the sec-
ond charge of the capacity test in the RPTs is considered. For a given 
charge, the corresponding CC and CV charges are extracted as shown in 
Fig. 4. Thereby, the HI related to the charge in the CC stage (QCC) is 
named HI 57, while HI 58 corresponds to the charge in the CV stage 
(QCV). 

3.2. SOH estimation 

The aim of this work is to assess different HI for reused cells during 
their SL lifetime. SOH is a reference of the degradation state of Li-ion 
batteries, and it can be related to their capacity, energy or power ca-
pabilities. In this work, SOH will be defined as the ratio between the 

actual capacity, measured during the capacity test of a given RPT and 
the nominal value, according to Eq. (2), and expressed as a percentage. 

SOH (%) =
CRPT

CN
⋅100 (2) 

Two of the main metrics to evaluate the goodness of a HI are its 
dependency on SOH and its robustness to ageing. In order to assess the 
first condition, each of the 58 HIs previously described will be analysed 
separately. Aiming to facilitate the procedure, HIs that show a linear 
correlation with SOH will be targeted. Therefore, their correlation with 
SOH will be evaluated through linear regression. The goodness of fit will 
be assessed considering the estimated and measured value of SOH by 
means of root mean square error (RMSE) and maximum absolute error 
(MaxE). Therefore, the best indicators for SOH estimation among the 
proposed alternatives will be selected. 

HI selection is the first stage in the development of all SOH estima-
tion methods and plays a key role in determining the specific algorithm. 
Once the most suitable indicators are detected, SOH estimation will be 
assessed by means of different methods. Li-ion batteries are complex 
systems, and the estimation of their SOH is usually a non-linear problem. 
Nevertheless, if the HIs are linearly related to SOH, a simple linear 
regression is sufficient. Therefore, two different algorithms will be 
considered: linear regression (LR) and support vector regression (SVR). 
LR is one of the most targeted SOH estimation algorithms given its 
simplicity. The objective function of this algorithm is SOH (HI) = a ⋅ HI 
+ b, being the coefficients a and b adjusted by the least squares method. 
However, the accuracy of this algorithm is compromised when it comes 
to non-linear problems, and it may lead to overfitting problems [26]. For 
its part, SVR is a generalization algorithm that recognizes patterns. 
Despite its computational complexity, SVR has become a widely-used 
approach for SOH estimation, as it can be used for non-linear prob-
lems and requires fewer data points for training than other ML algo-
rithms [26]. The objective function of LR is targeted in this case by 
solving a convex quadratic problem, which is normally simplified by 
introducing the kernel function [13,15]. In this contribution, linear 
(SVR-L) and radial (SVR-RBF) kernel functions will be used in SVR, 
given that they are commonly used to deal with non-linear problems. 

The SOH estimation procedure will be carried out in two steps. First, 
the SOH models will be trained by means of cross validation, in order to 
increase their robustness. For a given model, if only the RMSE of the 
training set was considered, the accuracy would be overestimated, as the 
RMSE when predicting a new dataset would be greater. Therefore, a 
separate validation set is drawn from the same population as the training 
samples, without being used for parameter estimation. The complete 
cross validation process is:  

i. Random division of the data into k parts, named folds, of equal 
size.  

ii. Training the model with k-1 folds. Parameters are thereby 
estimated. 

iii. Testing the model in the remaining fold, computing the corre-
sponding RMSE and MaxE. 

Table 3 
HIs extracted from PCM and their lower and upper voltage.  

VHIGH (V) VLOW (V) 

3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.1 

3.75 HI 7         
3.80 HI 8 HI 16        
3.85 HI 9 HI 17 HI 24       
3.90 HI 10 HI 18 HI 25 HI 31      
3.95 HI 11 HI 19 HI 26 HI 32 HI 37     
4.00 HI 12 HI 20 HI 27 HI 33 HI 38 HI 42    
4.05 HI 13 HI 21 HI 28 HI 34 HI 39 HI 43 HI 46   
4.10 HI 14 HI 22 HI 29 HI 35 HI 40 HI 44 HI 47 HI 49  
4.15 HI 15 HI 23 HI 30 HI 36 HI 41 HI 45 HI 48 HI 50 HI 51  
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iv. Repeating the process k times, in such a way that all the folds are 
used as train and test sets.  

v. The cross-validation error is then found as the average of the k 
testing errors. In addition, the final parameter values are 
computed as the average of the k training models. 

Secondly, the models will be validated in extra data sets from other 
cells, obtaining the corresponding validation RMSE and MaxE. 

4. Results and discussion 

The assessment of HI for SOH estimation is held in two stages: at the 
repurposing stage and during SL operation. In both cases, six Nissan Leaf 
cells removed from real EVs are compared. The HIs were obtained ac-
cording to the procedures described in Section 3.1. Considering the 
specific information available from each method and their adjustment to 
the cells under study, a total of 58 HIs are selected. It is important to note 
that the HIs are compared under similar measurement conditions, and 
therefore the dependence on current and temperature is not considered. 
Once the HIs are evaluated, the most robust HI with ageing will be 
selected and used for SOH estimation with different algorithms. 

4.1. Repurposing stage 

In compliance with automotive standards, Li-ion battery packs are 
normally retired from EVs when their SOH reaches 80 to 70 %. However, 
their constituent cells usually perform under different operating condi-
tions when operating in EVs. This may lead to a dispersion on their in-
ternal parameters, as detected in previous studies with similar cells 
[3,34]. Hence, the six retired cells, named C 1 to C 6, are first tested 
under the RPT described in Section 2 in order to assess their condition at 
the beginning of their SL. Table 5 shows the results of the corresponding 
RPT. Capacity is expressed both in Ah and in terms of SOH. For its part, 
the DCIR at 50 % of SOC is obtained as a representative measurement. 

As can be seen in the table, the SOH measured ranges from 62.8 % to 
71.2 %. The average value of SOH is 66.8 %, slightly below the auto-
motive retirement limit. The correlation between DCIR and SOH can 

also be observed as, in general, the higher the capacity, the lower the 
internal resistance. The nominal value of DCIR is unknown, as this is not 
provided by the manufacturer, and therefore the relative increase 
cannot be determined. 

From the RPT performed at the repurposing stage and through the 
procedures previously described, the 58 HIs are extracted (HI 1 – HI 58), 
and the SOH of the cells is estimated for each case by LR. This estimation 
is related to the SOH measured in the RPT, computing thereby the 
RMSE. Fig. 5 shows the results obtained for the 58 HIs in terms of RMSE 
(Fig. 5a) and MaxE (Fig. 5b). As can be seen, the RMSE ranges from 0.2 
% of HI 3 (ICA: IC in Valley 1) to 3.8 % of HI 51 (PCM: 4.1 V – 4.15 V), 
with an average value of 1.6 %. For its part, the average MaxE is 2.5 %, 
ranging from 0.6 % to 5.1 %. Given the importance of reducing the in-
ternal dispersion of reconfigured batteries to ensure safety and to extend 
the SL lifetime, specific accuracy could be desirable. Hence, it is found 
that 15.5 % of the 58 features analysed lead to less than 1 % of RMSE. 
The main part of the features, 69 %, make it possible to estimate SOH 
with between 1 and 2 % of RMSE. 

When it comes to the repurposing stage, the reduction of measure-
ment times is key to lowering costs. Therefore, the required testing time 
to obtain the HIs is also shown in Fig. 5c. In this plot, HIs are grouped 
based on the extraction method. For example, to obtain indicators 
through ICA, the required testing time ranges from 25 to 81 min. Post- 
processing data timing is not considered. As can be seen, DCIR is the 
fastest HI to be measured, with a test time of less than 1 min, while the 
longest time, around 99 min, is required in the CC and CV charge. When 
relating time and RMSE, in general for HIs involving Ah counting, the 
greater the time, the lower the RMSE, as could be expected. For example, 
if a measurement time of over 25 min is set, the RMSE is lower than 1.85 
% in PCM. This is also the case of CCCV charge at the reconfiguration 
stage, where QCV measurement requires less than 30 min with around 
3.0 % of RMSE and QCC almost 100 min to obtain half the RMSE. 
Nevertheless, this is not the case of ICA, where no correlation between 
measurement time and RMSE is found. 

Looking at each extraction method separately, ICA is found to have 

Fig. 4. Example of partial charge extraction (HI 40) in a SL cell at the beginning of the test (Fresh) and after being aged (Aged) and CCCV charge stage description.  

Table 4 
HIs extracted from DCIR measurements and their corresponding SOC.  

SOC (%) 90 70 50 30 10 

HI HI 52 HI 53 HI 54 HI 55 HI 56  

Table 5 
Capacity, SOH and DCIR at 50 % of SOC of the six Nissan Leaf cells at their 
repurposing stage.  

Cell C 1 C 2 C 3 C 4 C 5 C 6 

Capacity (Ah)  47.01  45.22  44.65  44.23  41.99  41.44 
SOH (%)  71.23  68.51  67.65  67.01  63.62  62.79 
DCIR @ 50 % SOC (mΩ)  1.83  1.99  2.05  2.03  2.15  2.47  
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the best results over the 58 candidates, with an RMSE of 0.2 % achieved 
with IC in Valley 1 (HI 3). In previous work related to this technique, this 
valley was also found to be a good HI for SL cells [31]. All the HIs 
extracted with this technique showed an RMSE of less than 2.5 %. 
Regarding the few research contributions identified that cover SOH 
estimation of reused batteries, summarized in Table 1, the heterogeneity 
of capacity, format and chemistry of the cells analysed allows only a 
general comparison of the proposed HIs. Bearing this in mind, four of the 
six HIs obtained from ICA showed similar or better accuracy results than 
previous contributions that targeted this extraction method at the 
reconfiguration stage [30]. 

Regarding PCM, the accuracy of the HIs depends on the specific 
voltage range. Fig. 6 details the results of RMSE obtained for each charge 
at the corresponding VLOW and VHIGH . As can be seen, the best accuracy 
is obtained when the highest voltage available is reached, with RMSE 
lower than 0.95 %. Good results are also obtained in HI 33 (3.85 V – 4 
V), with 0.90 % of RMSE and in HI 32 (3.85 V – 3.95 V), with 1.05 %. 
Regarding MaxE, six of the HIs allow to estimate with less than 1.5 %, 
and the main part of the indicators are below the 3 % of maximum 

prediction error stated in other research studies that use this method for 
a similar purpose [29]. As can be seen in Fig. 6, there are significant 
accuracy differences in adjacent voltage ranges, specially between 3.85 
V and 3.9 V for an upper voltage of 4.0 V. A possible reason for this is the 
influence of charge distribution depending on voltage in the cells under 
study, which can be assessed by IC curves. As Fig. 3 shows, there is a 
slight mismatch between the IC curves of the six cells at the beginning of 
their SL. Hence, the best results of HIs from PCM are obtained in voltage 
ranges that cover similar IC areas, such as the whole Peak 1 of all the HI 
32 and HI 33. On the other hand, the worst results are obtained in HI 38 
and HI 51, both HIs corresponding to voltage ranges with a mismatch in 
IC curves of the cells. Therefore, it can be concluded that PCM features 
show better results when applied in voltage ranges with similar IC curve 
behaviour. It is also noteworthy that with VLOW from 3.7 V to 3.8 V, the 
RMSE pattern is similar for all the upper voltages considered. This cor-
responds to voltages below the first peak identified by ICA (Peak 1). 

Considering DCIR measurement as extraction method, SOH is esti-
mated with less than 1.5 % of RMSE requiring around 1 min of mea-
surement. This low testing duration is an advantage in terms of 
optimizing repurposing times. Nevertheless, given its small magnitude, 
DCIR requires precise equipment to be determined and it can be highly 
influenced by measurement variability. The maximum errors obtained 
with this method are lower than 2.4 %. The most similar contribution 
gathered in Table 1 focused on impedance measurement through EIS, 
with the subsequent instrument requirement, and achieved error values 
lower than 2 % [14]. Finally, charge in CC stage shows good RMSE re-
sults, around 1.5 % of RMSE, but requires long testing times. For its part, 
charge in CV stage can be measured faster than in CC stage at the 
repurposing stage but may not always be possible in real operation. 
Furthermore, many battery management systems perform balancing 
actions during this CV stage, which might also affect HI extraction. 

From this analysis, a first insight on HIs for SOH estimation on SL 
batteries is carried out. Nonetheless, given the complexity of assessing 
degradation in Li-ion batteries, which eventually suffer from an accel-
eration in the ageing trends, an extended analysis on the HI covering a 
wider SL lifetime range is of great interest. Therefore, the next section 
evaluates the HIs and SOH estimation during extended SL operation. 

4.2. Extended second-life operation 

Robustness to ageing is key in HI, especially in SL batteries. In order 
to evaluate this attribute, the six Nissan Leaf cells were aged according 
to the test described in Section 2.2.2. Fig. 7 shows the SOH measure-
ments from RPTs with the corresponding Equivalent Full Cycles (EFC) 
during the test. EFC is defined as the sum of the entire Ah throughput 
during the ageing test related to the nominal capacity of the cells. 
Further information about the test results can be found in [5]. The SOH 
range covered during the ageing test goes from 71.2 % to 24.4 %. As 
shown in the figure, in the initial ageing stages, the cells show quasi- 
linear capacity fade with slightly different slopes. During the second 
stage, there is a change in the ageing trend, in the so-called ageing knee, 
where the degradation accelerates. From this point, there is a change in 
the main ageing mechanisms of the cell, which involves higher safety 
risks in operation. Therefore, SL lifetime should be limited before the 
apparition of such ageing knee. This second stage starts between 45 % 
and 49 % of SOH, depending on the tested cell. 

The 58 HIs were tracked during the ageing test in the corresponding 
RPTs. However, HIs extracted from ICA could not be identified in 
advanced stages of degradation. When it comes to HI identification, IC 
curves vary with ageing, with Peak 2 vanishing below 56 % of SOH. For 
SOH values lower than 47 %, it was not possible to identify any peak or 
valley with the C-rate used during the RPT capacity measurement. In 
previous research with similar cells, it was found that increasing testing 
currents lead to feature vanishing, especially at low SOH, so lower C- 
rates would be advised in these cases [31]. This loss of HIs could be 
alternatively used as an approach for SOH estimation. For example, in 

Fig. 5. a) RMSE, b) MaxE and c) Time of measurement of HIs at the repur-
posing stage. 
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the cells under study, ICA features could not be tracked below the ageing 
knee, thereby making it possible to detect it. Given the complexity of 
ageing assessment in SL Li-ion batteries, a deeper insight on HI 
depending on the SOH level is carried out. Hence, three SOH ranges 
were defined: SOH range A, with values greater than 60 %, range B, 
covering middle SOH values between 50 and 60 %, and range C, which 
considers SOH values below 50 %. The number of RPTs performed in 
SOH ranges A, B and C were 25, 29, and 28 respectively. 

The HIs were assessed with the same procedure as in the repurposing 
stage. The SOH was thus estimated through LR from the corresponding 
HI, and the error considering the actual value was computed. Fig. 8 
presents the RMSE of each HI using data from each of the three SOH 
ranges separately and all together. As can be seen, the worst results are 
obtained when all the SOH range is covered, with an average RMSE 
value of 4.7 % in the 58 HIs. However, when a specific range is analysed, 
SOH estimation improves. Therefore, in range A, the RMSE varies from 
0.7 % to 3.2 %, with an average value of 2.2 %. When SOH decreases, the 
estimation improved, with RMSE in range B between 1.2 % and 2.7 %, 
and an average value of 1.6 %. Capacity fade rate was found to be more 
homogeneous in this range between the cells under test, which could 
explain the better results obtained. Finally, the worst estimation was 
obtained in SOH range C, with an average value of 3.5 % and values 
from 0.9 % to 8.0 %. This could be related to the inhomogeneous ac-
celeration in the degradation rate of the cells, as for example the ageing 
knee was detected at SOH of 49.4 % in cell C 3, while in cell C 5 this 

point appeared at 32 % of SOH. 
When assessing extraction methods of HIs throughout ageing, ICA is 

found to be the best in the lowest SOH range, but it should be noted that 
the corresponding HIs vanished below a specific SOH value, and less 
data were thus considered compared to other methods. For its part, PCM 
shows the best results in SOH range B. As was observed at the repur-
posing stage, the best results in PCM were obtained in voltage ranges 
with similar IC curve behaviour. Given that Peak 2 fades and vanishes in 
this SOH range, the resulting increase in homogeneity of IC curves could 
be related to the better SOH estimation results. Regarding DCIR, this 
method performs best in SOH range A. This could be explained with the 
correlation between DCIR and capacity during SL lifetime. During SL 
ageing, DCIR increases linearly with Ah throughput in early stages, with 
a similar trend than capacity fade. However, the degradation rate of 
DCIR accelerates in a second phase, while capacity loss remains linear. 
Finally, capacity fade changes its trend after the ageing knee [5]. 
Therefore, DCIR is advised as HI in early stages of SL. 

To summarize, Table 6 gathers the best HIs for each range, specifying 
in each case the RMSE and MaxE obtained. As can be seen, in general, 
PCM is the best extraction method for HIs in SL Li-ion cells, with errors 
below 1.4 % in SOH range A, 2.2 % in B and 3.4 % in C. In this latter SOH 
range, although ICA indicators (HI 1, HI 2, HI 5 and HI 6) showed good 
RMSE results, it should be noted that less data were available due to 
feature vanishing. HI 3 and HI 4 could not be tracked for SOH range B 
and C. From this analysis, it can be stated that it is worthy to focus on 
different HIs depending on the specific SOH range. On the other hand, 
regarding ageing robustness, PCM also made it possible to track the best 
indicators. More precisely, considering all RPTs available, HI 40 allowed 
SOH estimation within 71.2 % to 24.4 % of SOH with 1.9 % of RMSE, 
and both HI 34 and HI 13 with 2.1 %. Despite the literature gap on SL 
SOH estimation, as already mentioned, some discussion can be held 
from the contributions identified in Table 1. PCM was used in [15] 
within a SOH range from 80 % to 45 %, achieving 1.85 % of RMSE, but 
targeting online estimation, while [4] achieved 1.5 % of maximum error 
covering SOH from 92 % to 61 % with AFD method. 

4.3. SOH estimation: Case study 

The selection of HIs influences the requirements for SOH estimation 
algorithms. In this context, this subsection aims to evaluate different 
mathematical approaches. From the previous analysis, the best HIs 
depending on the SOH range, as well as the most robust HIs to ageing 

Fig. 6. RMSE of HIs obtained from PCM at repurposing stage.  

Fig. 7. SOH measured during the cycling ageing test in the six Nissan Leaf cells.  
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during all SL lifetime were identified. In this case, the comparison will be 
carried out considering the same HI so that the accuracy of estimation 
algorithms with the same input is assessed. Among the options presented 
in Table 6, HI 34 (PCM: 3.85–4.05 V) is selected, given its robustness to 
different ageing stages. 

Therefore, following the procedure described in Section 3.2, SOH 
models are first trained and tested through cross validation with the data 
sets from four of the cells, and subsequently validated with the two 
remaining cells. Three algorithms are considered: LR, SVR-L and SVR- 
RBF, and for each case, the k-fold division for cross validation is per-
formed with five groups. In order to assess different evaluation cases, 
four scenarios are defined: with SOH validation data included in model 
data (Scenario 1), with values outside of the lower (Scenario 2) or higher 
(Scenario 3) bound and lying out of both limits (Scenario 4). Thereby, all 
cells are to be considered for validation. Table 7 describes each scenario, 
detailing the specific validation cells and the SOH range of model and 
validation data sets. 

Fig. 9a shows the correlation between the HI and SOH in Scenario 2, 
with the training data set and the results of the SOH estimation 
depending on the algorithm in the validation cells. As can be seen, the HI 
depends linearly on the SOH in almost all the SOH range. It is only below 

Fig. 8. RMSE of the 58 HIs depending on SOH range.  

Table 6 
Best HI depending on SOH range with the corresponding measurement method, 
RMSE and MaxE.  

SOH 
Range 

Measurement 
method 

HI RMSE 
(%) 

MaxE 
(%) 

A 

PCM HI 41 (3.9–4.15 V) 0.69 1.36 

PCM 
HI 45 (3.95–4.15 
V) 1.25 2.71 

PCM HI 48 (4–4.15 V) 1.28 3.02 

B 

ICA 
HI 4 (voltage Peak 
1) 

1.18 1.26 

PCM HI 45 (3.95–4.15 
V) 

1.21 2.20 

PCM HI 36 (3.85–4.15 
V) 

1.25 2.46 

C 

PCM HI 40 (3.9–4.0 V) 1.92 3.37 

PCM 
HI 34 (3.85–4.05 
V) 2.06 4.29 

PCM HI 13 (3.7–4.05 V) 2.13 4.24 

All 

PCM HI 40 (3.9–4.0 V) 1.92 5.59 

PCM HI 34 (3.85–4.05 
V) 

2.06 4.73 

PCM HI 13 (3.7–4.05 V) 2.13 5.02  

Table 7 
Validation scenarios for SOH estimation with the corresponding cells and SOH 
ranges.  

Validation scenario Validation cells SOH range (%) 

Model Validation 

1 C 2, C 3 71.2–24.4 68.5–31.7 
2 C 1, C 4 68.5–24.4 71.2–31.6 
3 C 5, C 6 71.2–31.6 63.6–24.4 
4 C 1, C 6 68.5–24.8 71.2–24.4  
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35 % of SOH that the overall capacity of the cell decreases faster than the 
charge used as HI. Given that SL operation should be restricted to 
degradation stages above the ageing knee for security reasons, the HI 
selected makes it possible to assess the SL lifetime in the case under 
study. 

Fig. 9b shows the RMSE and MaxE obtained in the four validation 
scenarios with the different SOH algorithms. In terms of RMSE, accuracy 
values ranging from 1.24 % were obtained with SVR-L in Scenario 2, to 
2.80 % in Scenario 3 with the same algorithm. Regarding MaxE in the 
validation set, values vary from 2.45 %, achieved with LR in Scenario 2, 
up to 8.05 %, resulting from SVR-L in Scenario 3. The variations 
observed between the validation cases may be due to two reasons. On 
the one hand, the existing dispersion related to SL cells should be 
highlighted. For example, considering Scenario 1, with SOH validation 
values within training data, RMSE is reduced to 1.57 % with LR if C 3 
and C 4 are used. Capacity fade in C 2 has an irregular trend at the 
beginning of the test, as noted in Fig. 7, which could be due to its pre-
vious usage conditions. As a result, some outlier points are detected 
around 60 to 70 % of SOH, which worsen the estimation results in the 
validation stage. On the other hand, the aforementioned loss of linearity 
with SOH of the HI in low SOH levels leads to worse accuracy results in 
this area. This is compounded if the validation data are out of the lower 
SOH train bound, as can be noted in Scenario 3, which shows the highest 
validation errors. On the contrary, if cells are assessed at early stages of 
degradation, estimation accuracy improves even if data are out of the 
training set, since the HI is strongly linear with SOH. This can be 
observed in Scenario 2. The estimation in Scenario 4 leads to interme-
diate results, with 1.85 % of RMSE and 6.20 % of MaxE applying SVR- 
RBF algorithm. This can be also explained considering the loss of line-
arity at low SOH levels. 

As can been noted, for a given scenario, there are only slight accuracy 
deviations between the three methods analysed. In general, SVR-RBF 
delivers the best estimation results, improving the RMSE by up to 
5.40 %, in three of the four scenarios considered. Nevertheless, the 
complexity of the calculations required for this algorithm result in 

higher computation times. Considering the average values measured for 
each algorithm in the four validation scenarios, SVR-RBF requires 
626.80 s for model training and validation, while SVR-L and LR need 
0.31 and 0.06 s, respectively. When evaluating the impact of such an 
increase of computational times in accuracy, it is found that the average 
RMSE decreases from 2.2 % using LR to 2.1 % with SVR-RBF, while 
MaxE increases, going from 5.2 % using LR to 5.3 % with SVR-RBF. 
Given the slight accuracy increase noticed with SVR-RBF and the 
importance of the trade-off with computational times, it can be 
concluded that it is not worthwhile using such complex algorithms for 
the case under study. From the research contributions identified in 
Table 1, [14,30] considered LR as well but applied only at the repur-
posing stage, obtaining 2 % and 3 % of MaxE respectively, while [4] 
used it both online and offline estimation until 40 % of capacity fade 
with errors below 1.5 %. However, in this work, data train and valida-
tion range from 71.2 % to 24.4 % of SOH, completely covering SL life-
time usage. In all of these contribution, a single HI is selected for all the 
SOH range tested. As an alternative approach and future line of this 
work, a combination of several HI depending on the degradation state of 
the cell could be considered. 

5. Conclusions 

This contribution evaluates the health indicator selection for SOH 
estimation in Li-ion cells from EVs during their second life lifetime. The 
need to optimise degradation assessment in order to ensure the eco-
nomic viability of SL batteries and the identified research gap in this 
field motivates this study. A total of 58 HIs were analysed, extracted 
from ICA, PCM, CC and CV charge stages, and DC internal resistance 
measurements. The experimental procedure was carried out with six 
reused modules from Nissan Leaf EVs. 

First, SOH was linearly estimated from HIs at the repurposing stage. 
The average RMSE of the 58 HIs was 1.6 %, and the best HI was achieved 
from ICA, with 0.2 % of RMSE. The fastest extraction method was DCIR 
measurement, with less than 1 min and RMSE lower than 1.5 %. 

Fig. 9. SOH measured during the cycling ageing test in the six Nissan Leaf cells.  
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Secondly, the robustness of the HIs during SL lifetime was assessed. 
From experimental cycling in a SOH range from 71.2 % to 24.4 %, the 
most robust HIs were obtained from PCM, with an estimation RMSE 
lower than 2 %. Other HIs such as DCIR are only advisable at the early 
stages of degradation, while HIs from ICA vanished below 50 % of SOH. 

Lastly, the scope of the HI choice in the SOH estimation algorithm is 
evaluated. From a given HI, and considering four validation scenarios, 
SOH models are trained and tested using linear and support vector 
regression. Results show that LR allows estimating SOH with similar 
results and significantly lower computation times than SVR. 

Overall, this contribution highlights the importance of analysing 
health indicators for SOH estimation in SL Li-ion batteries. The choice of 
a good HI allows to simplify algorithms and to implement them in real 
systems. This contributes to the enhancement not only of the repur-
posing stage, but also of the on-board battery health assessment and 
lifetime prediction, thereby reinforcing the economic viability of SL 
batteries. As future lines of this work, two challenges are highlighted: 
the analysis of the robustness of the health indicators in other ageing 
modes and the extraction of features under different conditions. 
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