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A B S T R A C T   

Energy systems analyses are integrated elements in planning the transition towards renewable energy-based 
energy systems. This is due to a growing complexity arising from the wider exploitation of variable renewable 
energy sources (VRES) and an increasing reliance on sector integration as an enabler of temporal energy system 
integration, but it calls for consideration to the validity of modelling tools. This article synthesises EnergyPLAN 
applications through an analysis of its use both from a bibliometric and a case-geographical point of view and 
through a review of the evolution in the issues addressed and the results obtained using EnergyPLAN. This 
synthesis is provided with a view to addressing the validity and contribution of EnergyPLAN-based research. As 
of July 1st, 2022, EnergyPLAN has been applied in 315 peer-reviewed articles, and we see the very high 
application as an inferred internal validation. In addition, the review shows how the complexity of energy 
systems analyses has increased over time with early studies focusing on the role of wind power and the 
cogeneration of heat and power and later studies addressing contemporarily novel issues like the sector inte
gration offered by using power-to-x in fully integrated renewable energy systems. Important findings developed 
through the application of EnergyPLAN includes the value of district heating in energy systems, the value of 
district heating for integration of VRES and more generally the importance of sector integration for resource- 
efficient renewable energy-based energy systems. The wide application across systems and development stages 
is interpreted as inferred validation through distributed stepwise replication.   

1. Introduction 

Renewable energy sources (RES) are a cornerstone in the transition 
towards a carbon-neutral society where every effort is made to ensure 
that anthropogenic global warming is limited, as e.g. outlined in the 
Paris Agreement [1]. Energy planning deals with the issue of enabling 
this transition – while at the same time acknowledging the links to de
mographic development and to developments in prosperity [2]. In a 
large survey, Salvia et al. [3] investigated climate change mitigation 
measures in 237 European cities, finding that 78% has mitigation plans – 
though only 25% strive for carbon neutrality. 

As outlined in e.g. Ref. [4], there are three main steps or phases in the 
implementation of RES in the energy system:  

1. In the introduction phase, RES are merely a supplement to an 
otherwise fossil energy system, and RES exploitation merely de
creases the production on fossil-based generation units. Any RES 
contribution will be fully reflected in fossil fuel savings.  

2. In the high-RES phase, the RES absorption capability of the energy 
systems becomes strained at times and the temporal characteristics 
of the energy system become an issue. In this phase, the RES 
implementation is not fully reflected in fossil fuel savings, as timing 
and other system restrictions may not permit the integration of the 
full production.  

3. In the fully RES-based phase, the temporal issues become even more 
prominent, aggravated by the circumstance that, in this phase, there 
is no fossil-based generation capacity on which to fall back, if 
required. The system needs to be flexible and fully adept in ensuring 
that all energy needs are covered at the right time using RES that 
often have variable or fluctuating character. 

For the fully RES-based systems, concepts such as sector integration 
or smart energy systems [5–7] have been suggested as an integrated 
approach through which the exploitation of synergies between hitherto 
disparate energy sectors can ensure the proper integration of RES into 
the energy system. One key element is that storage should first be used in 
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the sectors where this is economically attractive – before resorting to, e. 
g., electricity storage, which is expensive and typically less efficient [8]. 

The complexity of the transition and the integration of RES vary with 
the nature of the RES, and while biomass-based units or reservoir-based 
hydro plants have dispatch characteristics that resemble those of fossil 
fuel-based units, focus is often on fluctuating or variable RES. These 
mainly include wind power, solar power, solar thermal, wave power, 
and run-of-river hydroelectric power. In most geographical settings, 
these are the primary options due to biomass constraints or topo
graphical restrictions. Biomass is indeed an important topic in its own 
right, with a wide discussion on the extent to which its use is even 
sustainable [9,10] and many analyses try to restrict the use to what is 
locally available and at the same time sustainable [11,12]. Wind power 
and district heating have both been key elements in the transition in, e. 
g., Denmark, but while adding resource efficiency, both elements have 
also added complexity [13,14]. 

With complexity follows larger demands to the analyses required for 
designing appropriate transition pathways and ultimately to support 
policymaking and investment decision-making. A large number of tools 
or models are currently being applied to help identify feasible or optimal 
transition pathways for various geographical areas or for investigating 
elements of the transition including TIMES [15–17], Balmorel [18,19], 
Homer [20,21], energyPRO [22–27], Pypsa [28–31], the LUT Energy 
System Transition Model [32,33] and more. 

In terms of modelling approaches, Chang and co-authors therefore 
also identify a trend towards a more sector-integrated approach in the 
modelling community [34]. Johannsen and his team, on the other hand, 
point to the circumstance that, e.g., urban planners often do not have the 
competence to engage is systems analyses and scenario-making at the 
complexity level required for planning the transition [35]. Similarly, 
Rozmi et al. [36] argue for the value of immersive visualization tools in 
energy systems analysis. 

Lund and co-authors distinguish between denominated simulation 
and optimisation models [37], where optimisation models are charac
terised by an endogenous system design optimisation and simulation 
models only model systems described explicitly by the user. System 
design is thus an endogenous process using simulation models. Another 
main characteristic of the different modelling tools is their temporal 
resolution, i.e., whether they use hourly data for a full year or more, use 
time-slicing or even do not use any sub-yearly modelling to model the 
energy system. 

The geographical target of transition pathway development ranges 
from cities and islands over countries to entire continents. Islands 
represent a particular and novel focus for transition planning research, 
and regarding the use of models in this context, Prina et al. [38] find that 
national-scale models are often applied in these cases. This is despite 
such cases requiring particular constraints due to, e.g., challenges 
arising from spatial and temporal resolution. They also note that 
compared to unit commitment models, models like EnergyPLAN rely on 
a simplified representation of system stability. 

In a comparison of models, Klemm and Vennemann [39] address 
which models are suitable for multi-energy systems in mixed-used dis
tricts. Based on a survey of 145 models, they identify 13 models – 
including EnergyPLAN, energyPRO, HOMER, Markal, oemof and TIMES 
– as having the required characteristics for modelling such systems. In 
another comparison, Bouw et al. [40] identifies a gap in existing models 
in terms of their representation of buildings and retrofitting opportu
nities as well as in general lack in equal representation of heat and 
electricity sectors – though acknowledging that, e.g., EnergyPLAN as a 
general purpose model “do treat all sectors with the same degree of detail”. 

EnergyPLAN is an example of one the more prominent modelling 
tools in the scientific literature [41]. It is a tool that has been under 
continuous development at Aalborg University since the turn of the 
millennium, and the first publications even precede the use of the name 
[42–44]. EnergyPLAN has been developed with the explicit purpose of 
designing and simulating high-RES energy systems. Thus, it operates 

with a 1 h temporal resolution for a full year and it has sectorial inte
gration in its core to act as an enabler of the integration of RES into the 
energy system. It is a simulation model [37] based on analytical pro
gramming implying that EnergyPLAN employs pre-coded priorities and 
procedures to handle the behaviour of all units in each time step. It is 
thus, for instance, not based on the numerical solving of a series of 
connected balance equations, as in modelling tools based on linear 
programming. 

A previous survey from 2015 showed that, at that time, EnergyPLAN 
had been applied 95 times to simulate case studies published in the 
journal literature [41]. Primary energy consumption, carbon dioxide 
emissions, costs, and excess generation were the most dominant char
acteristics that were applied to assess to which extent a given energy 
system was favourable. 

Since that survey, the field in general and EnergyPLAN applications 
in particular have gained even further traction. This combined with the 
magnitude of the investments required for the energy transition in
creases the need for validation of EnergyPLAN. Rehman and Andersen 
[45] argue for two important elements of validation; internal and 
external. The former addresses the computational ability and the latter 
the appropriateness of the model under given circumstances. External 
validation is usually performed in the modelling-tool selection phase of 
the analysis in question, while internal validation regards the actual 
mathematical procedures of the tool in question. EnergyPLAN is docu
mented in the manual [46] as well as in Ref. [47], but even so, strictly 
speaking, this does not constitute a validation. 

In Ref. [48], the authors argue, with respect to the energyPRO 
modelling tool, that the sheer number of applications can function as an 
internal validation; what may be labelled inferred internal validation. The 
rationale being that the more a modelling tool is used, the lower is the 
likelihood that misrepresentations or actual programming errors are left 
unnoticed. 

The aim of this article is to strengthen the internal validation of 
EnergyPLAN through a review of its application, and thus also to form a 
reference for further work applying EnergyPLAN. This review is based 
on analyses of journal articles which apply EnergyPLAN or refer to 
EnergyPLAN in other ways, as well as analyses on the geographical scale 
of the cases studied. Secondly, in a more in-depth part, a selection of case 
articles is analysed with a view to illustrating the evolution in types of 
analyses conducted and results gained using EnergyPLAN. 

In its essence, the article is a synthesis article as it synthesises the 
application of EnergyPLAN from a quantitative as well as from a qual
itative perspective. The quantitative element supports its validation, and 
the qualitative element synthesises some of its impacts on the energy 
systems analysis field. The qualitative element also serves to support the 
article’s supposition of model validation through distributed stepwise 
replication. It is the first article to address the inferred validation of the 
EnergyPLAN model through such a synthesis of its application. 

The article proceeds with an overview of the approach used for 
identifying studies applying EnergyPLAN in the literature in Section 2, 
and quantitative analyses of the usage of EnergyPLAN in Section 3. 
Section 4 presents a discussion of validation approaches including 
calibration, replication, and model comparisons, while Section 5 is a 
review of types of EnergyPLAN applications and the results of these over 
time. Lastly, conclusions are presented. 

2. Methodology 

One issue when identifying relevant work is that search facilities like 
Scopus [49] and Directory of Open Access Journals [50] do not enable 
users to perform full-text searches of journal articles. Thus, whether an 
article is identified properly using databases depends on where the au
thors have used the term EnergyPLAN in the given work. Observing 
Table 1, for instance, it is clear that there are many more occurrences of 
the term “EnergyPLAN” when making full-text searches in Elsevier’s 
journals using ScienceDirect [51], than in a Scopus search where only 
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titles, keywords and abstracts are included. 
On the other hand, full text searches are also more likely to generate 

irrelevant matches that require manual evaluation. In the 2015 survey 
[41], 18% of the ScienceDirect results were thus not relevant in the 
context. 

Therefore, the process needs to be split into more steps; screening of 
journals and in-depth search within these. This section details how ar
ticles have been identified for inclusion in the analyses and are subse
quently analysed in a three-step approach, as outlined in Fig. 1. These 
steps are detailed in the following subsections. 

2.1. Identification of journals and full-text search facilities 

Using Scopus [29] and Directory of Open Access Journals [30], a 
series of journals may be identified where the term EnergyPLAN appear 
in the data indexed by these – typically in titles, keywords and abstract. 
This results in the journals listed in the second column in Table 2. 

In many cases, these journals are but one of multiple journals of the 
publisher; however, using the journal identification as an entry point to 
identify the publishers’ proprietary search engines enables the wider 
full-text search across the publishers’ range of journals. 

2.2. Article identification and characterisation 

The identification of journal articles for inclusion in the analysis 
involves a selection of the type of publications for inclusion and an 
evaluation of the articles. First and foremost, only peer-reviewed journal 
articles are included in this survey. Some of the publishers’ search fa
cilities enable the inclusion or exclusion of different categories of work, 
which can assist in this regard. Taking ScienceDirect as an example, 
several categories may be selected or deselected, as shown in Table 3, 
which details the application. 

Secondly, some peer-reviewed journal articles apply the term 
“EnergyPLAN” – though some in contexts irrelevant for this article. 
Here, the same labelling as used in Ref. [41] is applied:  

1. Irrelevant in the context – e.g., through the reference to various 
websites containing the word energyplan or from articles preceding 
the tool in focus in this article  

2. Duplication – mainly copies of article abstracts published separately 
from the main article  

3. Referencing results – work that mentions results from EnergyPLAN 
analyses, but without detailing or describing the modelling tool  

4. Characterisation – papers that consider EnergyPLAN as a candidate 
for analytical tool, characterises it, compares to other modelling 
tools or similar, or mentions it as an example of a model  

5. Application – papers that present analyses where EnergyPLAN has 
been applied to one or more case studies. 

Category 5 articles typically also contain elements of categories 3 
and 4, while Category 4 articles also typically contain elements of 
Category 3 articles. However, here they are only characterised according 
to the highest category number. 

Contrary to the analyses in Ref. [41], Categories 1 and 2 are excluded 
already in the initial article selection process. 

Search results are harvested for storage in an Excel database 
depending on the facility of the journal in question. While for instance 
Scopus can export directly in CSV (comma-separated values) format, 
exports from ScienceDirect are in BibTeX format [52] which are sub
sequently converted to CSV using JabRef [53]. 

Since this is a very dynamic field in publishing, the article database 

Table 1 
Examples of differences in number of search results depending on search facility. 
Data as of June 1st, 2022. Results are neither checked for relevance nor type of 
publication. Scopus searches are made using the search string “TITLE-ABS-KEY 
(energyplan) AND DOI (10.xxxx/*)” where xxxx is the DOI root for the indi
vidual publisher.  

Journal or 
publisher 

Search results in Scopus (Title, 
Abstract & Keywords) 

Search results using 
journal full-text search 

IEEE 19 22 
IJSEPM 12 12 
Elsevier 169 781 
MDPI (e.g., 

Energies) 
25 27  

Fig. 1. Analytical approach for EnergyPLAN article analysis.  

Table 2 
Journals and publishers publishing EnergyPLAN work identified through Scopus 
and DOAJ.  

Publisher Journals Publisher’s full-text search 
facility 

Econ Journals Int. J of Energy Economics and 
Policy 

https://econjournals.com/ 

Elsevier Applied Energy, Energy, Smart 
Energy, Energy Policy - and 
more 

https://www.sciencedirect. 
com/ 

IEEE IEEE Access https://ieeexplore.ieee. 
org/search/advanced 

MDPI Applied System Innovation; 
Energies; Sustainability 

https://www.mdpi.com/ 

SAGE Energy and Environment https://journals.sagepub.co 
m/ 

SDEWES J of Sustainable Development 
of Energy, Water and 
Environment Systems 

(No proprietary search engine 
– searched via Scopus and 
Google Scholar) 

Serb. Soc. of 
Heat Transfer 
Eng. 

Thermal Science (No proprietary search engine 
– searched via Scopus and 
Google Scholar) 

Springer J of Modern Power Systems 
and Clean Energy – and more 

https://link.springer.com/ 

Taylor & 
Francis 

International Journal of 
Sustainable Energy 

http://www.tandfonline.com 

Wiley Wind Energy - and more https://onlinelibrary.wiley. 
com/search/advanced 

WITPress WIT Transactions on Ecology 
and the Environment 

https://www.witpress.com/ 

AAU Press Int. J of Sustainable Energy 
Planning and Management 

https://journals.aau.dk/index 
.php/sepm  

Table 3 
Article categories used in ScienceDirect and application in the identification of 
work.  

Included Disregarded 

Research articles, 
Review articles, 
Short 
communication 

Conference papers, Books, Book chapters, Encyclopaedia, 
Conference abstracts, Book reviews, News, Editorials, other 
(Acknowledgements, Indexes, Contributor descriptions)  

P.A. Østergaard et al.                                                                                                                                                                                                                          

https://econjournals.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://ieeexplore.ieee.org/search/advanced
https://ieeexplore.ieee.org/search/advanced
https://www.mdpi.com/
https://journals.sagepub.com/
https://journals.sagepub.com/
https://link.springer.com/
http://www.tandfonline.com
https://onlinelibrary.wiley.com/search/advanced
https://onlinelibrary.wiley.com/search/advanced
https://www.witpress.com/
https://journals.aau.dk/index.php/sepm
https://journals.aau.dk/index.php/sepm


Renewable and Sustainable Energy Reviews 168 (2022) 112724

4

requires maintenance, which is a manageable task for most publishers 
due to their slow publication rate of EnergyPLAN articles. Specifically 
for Elsevier journals, however, the automated search and notification 
facility offered by ScienceDirect is used whereby an e-mail may be 
received when a new article containing a given search term is published. 

3. Quantitative EnergyPLAN usage 

This section provides an overview of the use of and reference to 
EnergyPLAN in the journal literature from a quantitative and 
geographical scope perspective, thus providing bibliometric data on its 
ability to model a variety of different systems. 

3.1. Character and temporal evolution of EnergyPLAN references 

The first usage of EnergyPLAN was found around the turn of the 
millennium, and the first published results were from an analysis of the 
interplay between wind power and cogeneration of heat and power 
(CHP) and the impacts on the transmission system from different oper
ation strategies [43]. At this time, however, the tool had not yet received 
its name; thus, the first articles referring to the name were not published 
until 2003. 

Applying the characterisation from Section 2 gives the tabular 
overview found in Table 4 –shown graphically in Fig. 2. 

Not surprisingly, the first articles were applications only, and only 
later were results or the tool referenced in the literature. Fig. 2 shows a 
sustained increase by all three measures over the last two decades. Also, 
in the later years, reference to results or to EnergyPLAN itself has 
increased and has overtaken the application of the tool in the literature. 
This points towards a larger awareness of the tool as well as a focus on 
the results gained from EnergyPLAN modelling. 

As seen in Fig. 3, as of July 1st, 2022, 39% or 315 of the articles 
demonstrate an actual application of EnergyPLAN; another 42% offer 
some level of characterisation of EnergyPLAN, and 19% refer to results 
without going more into detail about the tool itself. It should be noted, of 
course, that this survey does not capture any work that refers to Ener
gyPLAN analyses with a complete disregard for which tool was used in 
the referred work. Taking for instance the five highest cited articles in 
Scopus which both apply EnergyPLAN and use the term EnergyPLAN in 
title, abstract or keywords [10,65,71,97,122], as of July 1st, 2022, these 

are cited 1924 times in the literature – though they can of course be 
referenced for information not relating to the EnergyPLAN analyses and 
results. All five articles are EnergyPLAN application articles. 

In general, EnergyPLAN has seen a substantial application in the 
journal literature. This is discussed further in relation to validation of 
EnergyPLAN in Section 6. 

3.2. Geographical coverage 

EnergyPLAN is applied to various scales in the literature, ranging 
from urban neighbourhoods to continents. For this overview, three 
different levels are included:  

• Local  
• Country  
• Multi-country 

For certain cases, adaptions are made compared to normal 
geographical understanding. Due to size, states or provinces in the USA, 
China, India, and Australia are treated as countries. Thus, a paper 
dealing with 10 US states [133] is not treated as a “local” geographical 
scale, but rather as a multi-country geographical scale. 

In general, there is a prevalence for studies of countries, as seen in 
Fig. 4 and Table 5, and within this category, a certain prevalence of 
European case studies. However, as also seen, all inhabited continents 
are represented in the case studies conducted using EnergyPLAN in the 
journal literature. Africa is the continent with the least application of 
EnergyPLAN. 

Fig. 5 shows a graphical representation of where EnergyPLAN has 
been applied in the journal literature, indicating that, e.g., all EU 
member countries have been analysed. The application in general has 
been global, albeit with a clear underrepresentation in Africa as well as 
Central and South-East Asia. 

Different scales of applications provide different settings for energy 
systems analyses where small systems are more sensitive to issues of 
granularity in the modelling environment whereas the modelling of very 
large systems in single-node models like EnergyPLAN run the risk of not 
capturing internal bottlenecks and of evening out fluctuations from 
geographically disparate regions. 

4. Approaches to model validation 

This section presents an overview of different theoretical consider
ations to model validation as well as a discussion on calibration and 
model comparisons as part of validation and finally considerations 
regarding open source as a part of validation. 

4.1. Theoretical considerations regarding validation 

The validation of models and modelling tools is a recurring issue in 
the scientific literature. According to the Oxford Advanced Learner’s 
Dictionary, validation is “to prove that something is true” [825], which 
is not possible to do with any scientific hypothesis; whereas the Oxford 
Learner’s Dictionary of Academic English elaborates slightly with the 
definition “to prove that something is true or accurate” [826] and 
Merriam-Webster’s defines validation as “to support or corroborate on a 
sound or authoritative basis” [827]. 

Sargent [828] argues that “model verification and validation are critical 
in the development of a simulation model as a model and its results need to be 
‘correct’ “. However, as pointed out by Smiatek et al. “Validation Is Not 
Verification” [829], which is based on the fact that “if the simulation 
model output data and the real world output data are consistent with each 
other, the simulation model is not rejected, but neither is it accepted or ‘proven 
true’. It is provisionally accepted as ‘valid’ because it has not been falsified” 
[830]. Both Wang & Grant and Rykiel forward the notion that validation 
“means that a model is acceptable for its intended use because it meets 

Table 4 
Character of EnergyPLAN reference and temporal evolution in the journal lit
terature. Updated up until July 1st, 2022.   

Application Characterisation Reference 

2003 [54–58] [59] – 
2004 – – – 
2005 [60,61] – – 
2006 [62–66] – – 
2007 [67,68] – – 
2008 [69–72] [73] [74] 
2009 [75–81] [82] [83] 
2010 [18,84–91] [92] [93,94] 
2011 [95–107] [108–115] [116–121] 
2012 [122–134] [135,136] [11, 

137–141] 
2013 [12,142–148] [149–156] [157–162] 
2014 [163–181] [182–195] [196–207] 
2015 [208–230] [41,231–242] [5, 

243–250] 
2016 [10,251–269] [25,270–300] [301–310] 
2017 [311–327] [328–363] [364–370] 
2018 [371–398] [28,399–435] [436–452] 
2019 [16,453–483] [31,33,36,484–518] [519–540] 
2020 [541–576] [20,577–624] [625–646] 
2021 [647–686] [34,38–40,47,48,687–700] 

[701–720] [721–739] 
[740–757] 

2022 [1,2,4,9,10,12, 
758–783] 

[3,5–8,11, 784–815] [816–824]  
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specified performance requirements.” [831,832] 
Helfenbein and DeSalle introduce the term corroborate, stating that 

“Hypotheses, other than tautologies, that have been tested and not falsified 
have been corroborated” [833]. 

Refsgaard & Henriksen [834] split the model validation into three 
elements – the conceptual model, the coding and the site-specific model, 
stating that a “conceptual model is subject to confirmation or falsification 
like scientific theories. A model code may be verified within given ranges of 
applicability and ranges of accuracy, but it can never be universally verified. 
Similarly, a model may be validated, but only with reference to site-specific 
applications and to pre-specified performance (accuracy) criteria”. Based 
on this, they arrive at the finding that a “model’s validity will always be 
limited in terms of space, time, boundary conditions and types of applica
tion.” [834] 

A similar, disaggregated and more operational approach is given by 
Rykiel [832], saying that the “validation process can be decomposed into 
several components: (1) operation, (2) theory, and (3) data.” 

Finally, as pointed out by Kleindorfer et al. [835], there seems to be 
no way to validate a tool and a model in a traditional scientific under
standing. Applying a courtroom analogy, the model and tool designers 

are left with the option of arguing for the credibility “beyond reasonable 
doubt”. Applying such approach to the EnergyPLAN tool and energy 
systems models made in EnergyPLAN, one may argue that the large 
application in the scientific literature shown in Section 3 lends credi
bility to EnergyPLAN and that is it validated through its application. In 
the case of EnergyPLAN, this is further supported by its shown ability to 
replicate a diversity of different energy systems across nations and en
ergy system development stages. 

4.2. Replication and calibration 

From a more practical stance, some articles touch upon the issue of 
validation of EnergyPLAN through a discussion on calibration as in Refs. 
[375,547]. Focus is thus on the tool’s ability to replicate systems 
described with existing statistical data. In the latter reference, this is the 
overall topic of the paper, where they first show that EnergyPLAN can 
replicate a given year and secondly suggest approaches to modelling 
multiple years despite, e.g., climatic differences between years. Other 
work provides a more integrated approach, addressing validation from a 
model theoretical perspective as well from a calibration/data perspec
tive; e.g. Ref. [134]. 

Replication through calibration is useful for documenting the ability 
to model existing systems appropriately – thereby validating the output 
– however, it will by nature be limited as suggested by Ref. [834] to 
certain boundary conditions or as phrased by Kerr and Goethel “Oper
ational validation of the model using independent data may not be possible 
when the simulated scenario extends outside the realm of observed condi
tions” [836] in a publication on fish stocks. 

Energy planning models, however, are frequently applied to analyse 
future scenarios based on significant changes in the composition of the 
energy system. Thus, while a tool through a proper calibration may 
replicate a given system to match actual statistics, it is not per se a given 
that future systems will also match. Here, the situation is of course, that 
there is no statistics or measurements to match against. However, with a 
tool like EnergyPLAN that has been used to replicate multiple systems in 
the literature, a large variety of different systems have already been 
replicated as shown in Section 3. Thus, to take an example, a reference 
model for a given country with only individual boilers for heating may 
be set up and calibrated to adequately replicate the existing system. 
While this replication and calibration in the given case does not neces
sarily lend credibility to district heating analyses of that country, 
replication in other countries or systems with district heating will. Thus, 
analyses across different energy system development stages will support 
a model’s validation – particularly for systems not at the forefront of 
development. This may be labelled validation through distributed 
stepwise replication. 

Additional to the discussion of replication with the aim of validation 
is also the issue of replication by other researchers. In principle, the 
results of the use of tools for energy system analysis should be replicable 

Fig. 2. Character and temporal evolution in the use of EnergyPLAN 2003–2021 in the journal literature. Partial data for 2022 are not shown.  

Fig. 3. Character of EnergyPLAN reference in the journal literature. Updated 
up until July 1st, 2022. 
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Fig. 4. Geographical coverage of EnergyPLAN applications in the journal literature. Updated up until July 1st, 2022.  

Table 5 
Characterisation of journal papers applying EnergyPLAN according to geographical scale. Updated up until July 1st, 2022.   

Local Country Multi-Country 

Europe [4, 68,86,91,96,98,99,101,123,126,127,148,171,173,174, 
209,211,221,224,252,253,263,264,267,311,315,316], 
[371–374], 
[380,382,390,392,398,454,460,461,464,469,473,476,477, 
480,544,545,547,551,554,557,558,560] [562,565–567,651, 
652,659,660,668,670,672,681,684,761,772,775,778] 

[1,9,10, 12,16,54–58,61–67,69–72,75–81,84,85,87–90,95,97, 
100,102,103,105,107], [122,124,125,128–131,134,145–147, 
168–170,178–181], [208,210,213–215,217–220,222,225,226, 
229,254,256–258,261,262,266], [317–320,323,324,326,375, 
378,379,385–387,389,395,397,453,457–459,463,465,468, 
470,472] 
[474,479,482,483,542,546,549,555,561,568,571,573,575, 
656,657,663,665,667,671,675,677,680,682,683,766,769,770, 
774,780] 

[10,106,177,255,259,265,322, 
391,393,649,673,679,782] 

Asia [216,268,313,325,327,396,462,475,563,653,686,762] [12, 132,142,144,164,166,172,176,227,230,269,312,314,383, 
481,559,574,654,655,662,664,666,669,764,767,768,771,776] 

[2, 104,143,228,251,260,321, 
376,384,466,467,471,541,548, 
550,552,569,650,674,758,765] 

Africa  [570,576,647,648,777,781,783]  
North 

America  
[163,165,167,212,223,381,388,478] [133] 

South 
America 

[676,678,685,759,763] [377,456,564,658,760,773,779]  

Australia   [553]  

Fig. 5. Global application of EnergyPLAN applications in peer-reviewed journal articles. The map shows countries in which EnergyPLAN has been applied, though in 
many cases the application has not been to the entire country. Updated up until July 1st, 2022. 
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for other researchers. This requirement means that the tools and models 
as well as the data should be accessible for others to replicate. 

4.3. Validation through comparison 

Models may also be validated though comparisons to other models. 
Thus, in more cases, the same case study is investigated in EnergyPLAN 
and another modelling tool to validate the model outcomes. R Lund et al. 
[254] compare EnergyPLAN outcomes with a Modest-based model to 
investigate large-scale heat pumps in district heating, finding that the 
“comparison does not show any significant differences”, albeit a tendency 
for lower optimum of heat pumps and lower system costs for the 
EnergyPLAN-based model. 

H Lund et al. [68] compare results from EnergyPLAN with H2RES 
(see model description in Ref. [837]) to evaluate the renewable energy 
transition of the island Mljet in Croatia. The two models had different 
scopes and coverage – EnergyPLAN targeting holistic systems and 
H2RES electricity systems only for instance – thus the comparison was 
for electricity-only systems. The article identified different approaches 
in the modelling of, e.g., hydrogen storage and minimum ancillary ser
vice provision, but the two models arrived at “more or less the same re
sults” when analysing the island of Mljet. 

Liao et al. [321] compare outcomes from their modelling tool with 
EnergyPLAN to assess results on North-West China. They find that 
EnergyPLAN underestimates wind and PV curtailment as a consequence 
of overestimating the flexibility of the system as it excludes “the unit 
commitment constraints”. It should be noted that EnergyPLAN does not 
exclude unit commitment constraints – though not all of the constraints 
in Ref. [321] are included. Thus, power balance, reserve capacity, and 
maximum generation are for instance included while ramping, mini
mum on and offline time constraints and inter-system constraints are not 
to address a sample of the constraints from Ref. [321]. Unfortunately, is 
not clear which of the mentioned constraints in particular have caused 
the deviations in the result. 

In a comprehensive model analysis of Bolivia, Lopez et al. [773] 
compared the LUT Energy System Transition model and EnergyPLAN. 
They found that EnergyPLAN arrived at a 30% higher system costs due 
to differences in the modelling of synthetic natural gas – a major con
stituent in the LUT scenario. For the same reason, the use of EnergyPLAN 
would not lead to the same role of synthetic natural gas. Subsequently, 
EnergyPLAN’s modelling of this sector was improved to address the 
identified issue. 

Perkovic et al. [269] use EnergyPLAN as comparison for their ana
lyses of desalination in Jordan, finding good agreement between the 
results from EnergyPLAN and from their proposed Mixed Integer Linear 
Programming model. Similarly, Laitinen et al. use EnergyPLAN to vali
date their tool EnFloMatch [651] for a system with a battery, an elec
tricity demand, PV and wind power. They found “very similar results” 
from the two model runs. Lastly, Lyden et al. [815] use EnergyPLAN to 
compare with simulation results from the use of their PyLESA model on a 
case having PV, heat pump and thermal storage, showing “similar overall 
results”. 

These model comparisons corroborate EnergyPLAN’s credibility. 
Also, the fact that researchers find it valuable to use EnergyPLAN to 
validate new models and compare results with other models is a testa
ment to the wide applicability range of EnergyPLAN and the years of 
development. 

4.4. Open source as validation 

EnergyPLAN is not an open-source model but rather open access. 
Thus, users do not have access to the actual implementation of the al
gorithms. This is opposed to initiatives such as OseMOSYS, where the 
first 2011 presentation [838] stressed a compact and accessible coding, 
or the PyPSA [29] environment. 

Stokes [839] point to the challenge of validating open source models 

with no well-defined “software vendor” and thus possible uncontrolled 
evolutions but Groissböck [31] argue that, e.g., “OseMOSYS, and pyPSA 
are mature enough based on a function comparison with commercial or 
proprietary tools for serious use”. Interestingly, this is assessed based on 
functionality rather than, e.g., an internal validation of the coding. 
Likewise, in one of the early PyPSA application articles, validation was 
not so much considered with a view to the coding but rather “through 
replication and extreme input testing” where the extreme input testing 
shows whether changes in inputs provide expected results. 

Open access will provide the expert user the opportunity to probe 
into the coding and with more users utilising a given model and possibly 
adapting it, it must be assumed that this does provide a high degree of 
internal validation of the coding. This is not an option for a model like 
EnergyPLAN where instead it may be argued that there is a case of 
distributed extreme input testing. For non-expert users, whether the 
source is open access or not does not per se offer validity or not. 

5. EnergyPLAN results from the literature 

This section reviews four categories of EnergyPLAN studies that may 
also be seen as a progression in terms of the level of complexity of the 
energy systems design and simulation. From the first studies, where 
focus was on the integration of CHP and RES into fossil-based systems 
with little sector integration, to some of the latest analyses, where 
EnergyPLAN is integrated with other modelling tools to form even more 
complex simulation environments. In this latest category, the aim is to 
address the integration between national energy systems or to form 
modelling environments that include both design optimisation and 
simulation approaches. The diversity and high application also support 
the notion of extreme input testing. 

5.1. Early-stage sector integration studies 

The early studies of sector integration using EnergyPLAN focused 
mainly on supplementing existing fossil-based energy systems and 
reducing the energy production of these technologies, as shown by the 
three phases listed in the Introduction. In these studies, the focus was 
only on a few energy sectors. More specifically, the review of the first 
stage shows how EnergyPLAN was instrumental in showing the feasi
bility of CHP combined with district heating and how this could help 
integrate RES into the energy systems. Many of the studies from the early 
2000s used a scenario for the west Danish energy system in 2020 with 
20% wind power integration as the basis for making different energy 
system analyses. 

This scenario was modelled in an early version of EnergyPLAN that 
focused on the connection between the heating and electricity sectors, 
with the remaining energy sectors being included using simple 
representations. 

Lund and Münster [54] used the scenario to evaluate different stra
tegies for dealing with excess electricity production from wind power 
and later, Lund [65] used the scenario to identify an optimal mix of 
different types of variable RES in the electricity system. 

Østergaard [62] used the scenario to analyse how wind power 
penetration could be increased in Western Denmark via sector integra
tion, and Lund and Münster [63] used the scenario to analyse how to 
increase the flexibility in the Danish energy system, with a view to 
increasing the national utilisation of variable RES. The national flexi
bility options were compared with the potential to use the international 
transmission lines for balancing. Based on the total annual costs of the 
energy system, the study found that the share of wind power could be 
increased from 20% to 40% without significant imbalance issues in the 
electricity system. 

Lund and Münster [64] used the scenario to analyse the energy 
system effects of changing a share of the passenger cars and vans in 
Denmark from oil-driven to battery electric vehicles and hydrogen fuel 
cell vehicles. The results were analysed using excess electricity 
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production, socio-economic costs, and CO2 emissions as criteria. Chen 
et al. [86] used the scenario to evaluate the energy system effect of using 
thermoelectric generators in CHP plants. 

The 2020 scenario was not the only utilised scenario, as e.g. Münster 
and Lund [80] used a scenario for the Danish energy system in 2004 to 
analyse how different alternatives of utilising organic waste in the en
ergy system could provide reductions in the fossil fuel consumption. 

5.2. Full sector integration and smart energy systems 

The progress from early stage studies to full sector integration was a 
process in which the research on different areas formed a new full sys
tem understanding as highlighted in Ref. [5]. Several studies have 
highlighted the importance of a variety of technologies to the large-scale 
integration of RES. In Ref. [81], seven different integration technologies 
were compared. Here, it became evident that it is not enough to conduct 
studies on how to reduce curtailment when analysing RES integration. 
Significant differences can be found among the technologies in terms of 
energy efficiency and thus the ability to reduce fossil fuel demands. 

The first studies of fully 100% RES-based energy systems, however, 
revealed some challenges. Coherent analyses of full energy systems, such 
as in Refs. [75,95], formed a pathway together with the comparative 
assessments of different integration and technology studies presented in 
Ref. [81]. In fully renewable energy systems, bioenergy became a key 
parameter, especially in the transport sector [70]. A key solution to this 
challenge is electrofuels and power2X, due to a significantly more 
fuel-efficient conversion potential as well as a large potential to reduce 
the reliance on bioenergy in fully renewable energy systems [180]. 

EnergyPLAN has been used for the modelling of 100% RES-based 
energy systems for more than 15 years. As outlined in the previous 
section, it was initiated to address the large-scale penetration of RES 
-based electricity in the Danish context. This has meant that the tool 
already from this stage included sector integration on the thermal side, 
considering CHP as well as district heating. Already at an early stage, the 
tool also included large-scale heat pumps and thermal storage. 

A significant challenge in the context of further integration of RES 
going beyond the heat and electricity sector is the transport sector. 
While EnergyPLAN included industry, transport as well as biogas from 
early stages, further developments took place to also include electrofuels 
for transport and industry as well as in relation to the dynamic model
ling of these components. The transport sector can now be modelled 
with a variety of options from gaseous to liquid fuels, biofuels and 
power2X to electrofuels, as well as smart charge and V2G of electric 
vehicles [71]. Rather advanced modelling of electrofuels, transport so
lutions and power2X for transport and industry is now possible with 
fully dynamic abilities, such as presented in Korberg et al. [649]. 

The smart energy systems approach represents a level of systems 
integration that ensures balance between energy savings and energy 
efficiency on the one side and the integration of RES on the other, using 
several different energy vectors, infrastructures and storages [5] that are 
now better integrated in EnergyPLAN. 

Several studies now use the smart energy systems approach, not only 
from a national level but also from a local, city, regional or island level, 
e.g. for Aalborg [545], Zagreb [372] as well as Madeira [557]. 

Other studies see technologies in the perspective of fully integrated 
renewable energy systems, e.g. for the effects of system design on in
frastructures [379], the impact of electrification of ferries [566] and the 
use of biogas in smart energy systems [549]. 

In two works, Bačeković and Østergaard investigated the value of 
sector integration [372] and the value of integration between separate 
systems [373] finding a strong value of sector integration – and a lesser 
value of integration between systems. The former article finds that 
RES-based systems not based on sector integration results in biomass 
demands higher than the sustainably available quantity while integrated 
smart energy systems are much better at integrating fluctuating RES. 
Costs are similar in the two instances. 

A coherent understanding of the roles and the design of energy sys
tems based on RES is dependent on a system understanding. In fully 
integrated energy systems in EnergyPLAN, several different future 
contexts can be used in the analysis of different sides of the transition 
from more traditional energy systems. 

5.3. Multi-tool analyses 

EnergyPLAN has been and still is mostly used as a stand-alone energy 
system analyses tool. However, with a general increase in both model
ling and computer power, a recent development is the increasing num
ber of analyses that have been made which either combine EnergyPLAN 
with other energy system analysis tools or utilise EnergyPLAN as the 
computational engine in optimisation algorithms or other multi-run 
analyses. These multi-tool approaches form an even more complex 
modelling approach with, in general, two different approaches. 

The first approach is to combine inputs and outputs from two 
different energy system modelling tools, for instance by linking outputs 
from one tool into EnergyPLAN, or vice versa. This approach typically 
has the aim to utilise the strengths of different energy system analysis 
tools to provide a greater insight into the energy systems, and maybe 
overcome any potential weaknesses that certain modelling tools might 
have. 

De Luca and co-authors use this approach to link Trnsys and Ener
gyPLAN to evaluate the implementation of RES in Altavilla Silentina in 
Southern Italy [371]. With Trnsys, they are able to model PV in detail, 
then using EnergyPLAN to simulate the entire energy system using the 
PV outputs from Trnsys. 

EnergyPLAN has also been combined with LEAP [840], utilising the 
benefit of LEAP’s long-term projection of energy system development 
combined with EnergyPLAN’s capabilities of investigating the annual 
operation of the energy system on an hourly basis. Bhuvanesh and 
co-authors [383] use this combination to investigate the case of Tamil 
Nadu in India. Kiwan and Al-Gharibeh [574] use the approach for Jor
dan, also combining it with another tool, SAM, to capture meteorolog
ical data and designing the power plants. Also Cantarero [381] utilises 
the same approach to investigate Nicaragua, by combining the long 
investment paths of LEAP with the hourly simulations from 
EnergyPLAN. 

A similar approach is used by Thellufsen and co-authors to investi
gate the potential for district heating in Ireland. Here, the long-term 
investment paths are determined by Markal/TIMES [841], and com
bined with an hourly investigation of the potential for district heating in 
Ireland, using the features of EnergyPLAN [16]. 

Østergaard and co-authors [464] conduct a multi-tool analysis by 
comparing results from EnergyPLAN on the overall system level to more 
local analyses conducted in EnergyPRO, thus comparing the outputs to 
gain more insight into the consequences of implementing heat pumps in 
district heating systems. 

EnergyPLAN has the distinct feature of including the entire energy 
system, whereas other modelling tools focus mostly on the electricity 
system. Thus, researchers have combined outputs from an electricity 
model and simulated this in EnergyPLAN to capture the whole energy 
system. This is the case for Groppi et al. [460] that use HOMER to 
optimise the electricity system of Favignana Island, Italy, and then use 
these outputs as inputs for EnergyPLAN to simulate the entire system. 
From HOMER, they calculate, for instance, RES capacity and electricity 
load. 

EnergyPLAN uses demands as inputs, which has led researchers to 
link demand response modelling tools with EnergyPLAN. Olkkonen and 
co-authors model demand side response in the electricity sector, using 
their own demand response model, and generate an optimal use of 
flexible electricity demand on an hourly basis. The total system effect of 
this demand response is then investigated using EnergyPLAN [320]. 
Olkkonen and co-authors expand on this approach in a later study, also 
including a wind power simulation tool. Both examples are analyses of a 
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Finnish energy system [387]. 
The second overall approach concerns using EnergyPLAN as the 

computational solver in optimisation algorithms, agent-based models 
and other multi-run algorithms written in different tools, such as 
MATLAB, Python and other tools and languages. Here, EnergyPLAN, in 
most cases, is used to calculate a large number of scenarios for the same 
case, to assist researchers in identifying one or more optimal solutions to 
the posed research questions. 

Several different applications have been developed to use Ener
gyPLAN as an energy system simulation core in an optimisation algo
rithm. One set of modelling tools focuses on single objective decision 
tools; as seen in the GenOpt and EnergyPLAN linking described by Bjelic 
and Rajakovic [214]. This has been applied to the case of Serbia and 
used for investigating how to combine different solutions in the energy 
system to the flexibility gap coming from implementing wind and solar 
energy [257]. Another developed tool which is useable for these single 
objective optimisations is the EnergyPLAN toolbox for MATLAB, 
developed by Cabrera et al. [613] This has been used for the case of 
Lanzarote [659]. These tools run EnergyPLAN with the objective of 
minimising or maximising one parameter, for instance CO2 emissions or 
RES share. 

Furthermore, a branch has developed looking at multi-objective/ 
multi-criteria optimisation algorithms utilising EnergyPLAN. The early 
development of this application was initiated by Mahbub et al. [267], 
using Java to combine multi-objective evolutionary algorithms (MOEA) 
with EnergyPLAN and applying it to the case of Aalborg, Denmark. Viesi 
et al. continued the work utilising this application on Trento in Italy 
[572]. 

Another application is the ePLANopt protocol, which uses MOEA 
implemented in python programming, essentially running several 
EnergyPLAN analyses with the objective of identifying the optimal so
lutions for more optimisation criteria. 

Typical for ePLANopt models is to investigate CO2 emissions and 
total annual costs calculated by EnergyPLAN. If convergence is reached, 
the ePLANopt stops; if there is no convergence, it will generate new 
parameters and execute the tool again, thus being evolutionary. EPLA
NOpt has been used on cases in Italy [397] and South Tyrol [374], and 
has been developed to be able to calculate marginal abatement cost 
curves. Other multi-objective approaches have been developed such as 
by Bellochi et al. [565] and Menapace et al. [547]. 

By combining EnergyPLAN with single and multi-objective optimi
sation algorithms, EnergyPLAN has entered a much more comprehen
sive modelling scope, where computer algorithms are able to identify 
solutions much faster than the individual user. This both provides more 
details to an analysis, but also requires a sufficient overview from the 
researcher grasping the wide number of results and outcomes from such 
optimisation procedures. 

A final EnergyPLAN development worth mentioning here is the 
development of help add-on tools to EnergyPLAN, which expands the 
capabilities of EnergyPLAN beyond the initial scope of the tool. The 
MultiNode add-on expands the capabilities of EnergyPLAN analyses, by 
allowing the user to investigate the consequences of linking two or more 
EnergyPLAN models through electricity transmission. It has been 
applied to investigate whether local system integration or electricity 
transmission benefits the energy system technically [322]; how a 
number of islands in Croatia can potentially link [398], and the linking 
between local and national energy systems in Croatia [373] and 
Denmark [253]. In a parallel development, Huang et al. have developed 
a multi-node approach to EnergyPLAN between the two cities Beijing 
and Zhangjiakou in China [563]. 

6. Conclusions 

This paper has discussed the issue of how to validate complex energy 
systems modelling tools such as EnergyPLAN. There are different sci
entific views on how to do so, but consensus seems to be that it is 

difficult tantamount to impossible to do so in a traditional sense. This 
leads to statements as “A model code may be verified within given 
ranges of applicability and ranges of accuracy, but it can never be uni
versally verified” [834] and the consequence that models and modelling 
tool developers are left with the choice of arguing for credibility 
“beyond reasonable doubt”, as phrased by Kleindorfer et al. [695]. 

In this paper, we have operated from a point of departure of inferred 
internal validation – i.e., that the internal coding may be validated or 
corroborated simply through a large-scale application. We have thus 
synthesised EnergyPLAN’s application both from a quantitative and 
qualitative perspective. Indeed, EnergyPLAN is one of the leading en
ergy systems analyses modelling tools in use with 315 case studies in the 
journal literature as of July 1st, 2022. It is considered, mentioned, or 
reviewed in further 494 articles in the journal literature, and it may thus 
be stated that it has had and has a strong fingerprint on the modelling 
and energy systems analyses field. 

The large-scale application of EnergyPLAN may serve as an inferred 
internal validation, i.e., the combined efforts of the researchers involved 
have tested EnergyPLAN and found it appropriate not only for modelling 
given systems but also for producing credible results. 

The application across multiple countries and energy system devel
opment stages confirms the ability of EnergyPLAN to replicate different 
systems through calibration thus serving as an element in its validation. 
This is labelled validation through distributed stepwise replication. 

Several authors have compared EnergyPLAN to other modelling 
tools and have in general found good agreement in obtained results, thus 
also serving as an element in its validation. 

The review of EnergyPLAN applications demonstrates how Ener
gyPLAN has been instrumental in early analyses of CHP systems with 
varying degrees of RES penetration to later analyses of fully integrated 
smart energy systems, where the flexibility across all sectors is drawn 
upon to analyse and design RES-based energy systems with proper load- 
following capabilities. 

An important early-phase finding reached using EnergyPLAN is the 
value of district heating in energy systems – as well as the value of 
district heating in assisting in the integration of fluctuating RES. 

The review of EnergyPLAN applications for smart energy systems 
analyses has clearly shown the value of this possibility in EnergyPLAN 
and that there is a need to further understand the local or national roles 
or specific technologies’ roles in future fully integrated systems. The 
problems addressed are typically related to e.g., balances between en
ergy sources or bioenergy, the most feasible uses of these fuels, and the 
role of flexibility. A smart energy system approach highlights the need to 
understand that conclusions within energy systems are completely sys
tem dependent. Thus, the development of EnergyPLAN has followed or 
preceded the developments in the energy systems analysis community. 

An important finding from this phase is the importance of aiming for 
integrated smart energy systems when transitioning to fully RES-based 
energy systems. Other options are possible, but they will result in 
poorer performance and a higher drain of non-fluctuating energy 
sources. 

The specific review of the role of EnergyPLAN in simulation setups 
with other models also show how these multi-tool approaches only in
crease the role and potential of EnergyPLAN in future energy system 
analyses and the use of EnergyPLAN to validate new models supports its 
credibility and serves as a further inferred internal validation. 
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[31] Groissböck M. Are open source energy system optimization tools mature enough 
for serious use? Renew Sustain Energy Rev 2019;102:234–48. https://doi.org/ 
10.1016/j.rser.2018.11.020. 

[32] Osorio-Aravena JC, Aghahosseini A, Bogdanov D, Caldera U, Muñoz-Cerón E, 
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[122] Ćosić B, Krajačić GA. 100 % renewable energy system in the year 2050 : the case 
of Macedonia. Energy 2012;48:80–7. https://doi.org/10.1016/j. 
energy.2012.06.078. 

[123] Østergaard PA. Comparing electricity, heat and biogas storages’ impacts on 
renewable energy integration. Energy 2012;37:255–62. https://doi.org/10.1016/ 
j.energy.2011.11.039. 

[124] Connolly D, Lund H, Mathiesen BV, Pican E, Leahy M. The technical and 
economic implications of integrating fluctuating renewable energy using energy 
storage. Renew Energy 2012;43:47–60. https://doi.org/10.1016/J. 
RENENE.2011.11.003. 

[125] Hedegaard K, Mathiesen BV, Lund H, Heiselberg P. Wind power integration using 
individual heat pumps - analysis of different heat storage options. Energy 2012; 
47. https://doi.org/10.1016/j.energy.2012.09.030. 

[126] Brandoni C, Di Nicola G, Polonara F. Development of renewable energy strategies 
for small urban areas. WIT Trans Ecol Environ 2012;162:265–76. https://doi.org/ 
10.2495/EID120241. 
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roadmap Europe: combining district heating with heat savings to decarbonise the 
EU energy system. Energy Pol 2014;65:475–89. https://doi.org/10.1016/j. 
enpol.2013.10.035. 
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[187] Wiese F, Bökenkamp G, Wingenbach C, Hohmeyer O. An open source energy 
system simulation model as an instrument for public participation in the 
development of strategies for a sustainable future. WIREs Energy Environ 2014;3: 
490–504. https://doi.org/10.1002/wene.109. 

[188] Soshinskaya M, Crijns-Graus WHJ, van der Meer J, Guerrero JM. Application of a 
microgrid with renewables for a water treatment plant. Appl Energy 2014;134: 
20–34. https://doi.org/10.1016/j.apenergy.2014.07.097. 

[189] Elliston B, MacGill I, Diesendorf M. Comparing least cost scenarios for 100% 
renewable electricity with low emission fossil fuel scenarios in the Australian 
National Electricity Market. Renew Energy 2014;66:196–204. https://doi.org/ 
10.1016/j.renene.2013.12.010. 

[190] Amorim F, Pina A, Gerbelová H, Pereira da Silva P, Vasconcelos J, Martins V. 
Electricity decarbonisation pathways for 2050 in Portugal: a TIMES (The 
Integrated MARKAL-EFOM System) based approach in closed versus open systems 
modelling. Energy 2014;69:104–12. https://doi.org/10.1016/j. 
energy.2014.01.052. 
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[221] Šare A, Krajačić G, Pukšec T, Duić N. The integration of renewable energy sources 
and electric vehicles into the power system of the Dubrovnik region. Energy 
Sustain Soc 2015;5:1–16. https://doi.org/10.1186/s13705-015-0055-7. 

[222] Østergaard PA, Andersen FM, Kwon PS. Energy systems scenario modelling and 
long term forecasting of hourly electricity Demand. Int J Sustain Energy Plan 
Manag 2015;7. https://doi.org/10.5278/ijsepm.2015.7.8. 

[223] Vidal-Amaro JJ, Østergaard PA, Sheinbaum-Pardo C. Analysis of large-scale 
integration of renewable energy sources in the Mexican electricity system. WIT 
Trans Ecol Environ 2015;195:449–61. https://doi.org/10.2495/ESUS150381. 

[224] Neves D, Pina A, Silva CA. Demand response modeling: a comparison between 
tools. Appl Energy 2015;146:288–97. https://doi.org/10.1016/j. 
apenergy.2015.02.057. 

[225] Nunes P, Farias T, Brito MC. Enabling solar electricity with electric vehicles smart 
charging. Energy 2015;87:10–20. https://doi.org/10.1016/j. 
energy.2015.04.044. 

[226] Thellufsen JZ, Lund H. Energy saving synergies in national energy systems, 103; 
2015. p. 259–65. https://doi.org/10.1016/j.enconman.2015.06.052. 

[227] Cho S, Kim J. Feasibility and impact analysis of a renewable energy source (RES)- 
based energy system in Korea. Energy 2015;85:317–28. https://doi.org/10.1016/ 
j.energy.2015.03.081. 

[228] Xiong W, Wang Y, Mathiesen BV, Lund H, Zhang X. Heat roadmap China: new 
heat strategy to reduce energy consumption towards 2030. Energy 2015;81: 
274–85. https://doi.org/10.1016/j.energy.2014.12.039. 

[229] Zakeri B, Syri S, Rinne S. Higher renewable energy integration into the existing 
energy system of Finland – is there any maximum limit? Energy 2015;92:244–59. 
https://doi.org/10.1016/j.energy.2015.01.007. 
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[289] Gómez A, Dopazo C, Fueyo N. The “cost of not doing” energy planning: the 
Spanish energy bubble. Energy 2016;101:434–46. https://doi.org/10.1016/j. 
energy.2016.02.004. 

[290] Quiggin D, Buswell R. The implications of heat electrification on national 
electrical supply-demand balance under published 2050 energy scenarios. Energy 
2016;98:253–70. https://doi.org/10.1016/j.energy.2015.11.060. 

[291] Staffell I, Pfenninger S. Using bias-corrected reanalysis to simulate current and 
future wind power output. Energy 2016;114:1224–39. https://doi.org/10.1016/ 
J.ENERGY.2016.08.068. 

[292] Li D, He J, Li L. A review of renewable energy applications in buildings in the hot- 
summer and warm-winter region of China. Renew Sustain Energy Rev 2016;57: 
327–36. https://doi.org/10.1016/j.rser.2015.12.124. 

[293] Ishizaka A, Siraj S, Nemery P. Which energy mix for the UK (United Kingdom)? 
An evolutive descriptive mapping with the integrated GAIA (graphical analysis 
for interactive aid)–AHP (analytic hierarchy process) visualization tool. Energy 
2016;95:602–11. https://doi.org/10.1016/j.energy.2015.12.009. 
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et al. Potential of district cooling in hot and humid climates. Appl Energy 2017; 
208:49–61. https://doi.org/10.1016/j.apenergy.2017.09.052. 

[315] Child M, Nordling A, Breyer C. Scenarios for a sustainable energy system in the 
Åland Islands in 2030. Energy Convers Manag 2017;137:49–60. https://doi.org/ 
10.1016/j.enconman.2017.01.039. 
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[372] Bačeković I, Østergaard PA. A smart energy system approach vs a non-integrated 
renewable energy system approach to designing a future energy system in Zagreb. 
Energy 2018;155. https://doi.org/10.1016/j.energy.2018.05.075. 

P.A. Østergaard et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.apenergy.2017.06.086
https://doi.org/10.1016/j.apenergy.2017.06.086
https://doi.org/10.1016/j.energy.2017.02.112
https://doi.org/10.1016/j.energy.2017.02.112
https://doi.org/10.1016/j.energy.2017.09.064
https://doi.org/10.1016/j.energy.2017.09.064
https://doi.org/10.1016/j.esr.2017.09.005
https://doi.org/10.1016/j.esr.2017.09.005
https://doi.org/10.1016/j.energy.2017.01.019
https://doi.org/10.1016/j.energy.2017.01.019
https://doi.org/10.1016/j.egypro.2017.04.025
https://doi.org/10.1016/j.egypro.2017.04.025
https://doi.org/10.1016/j.scs.2017.06.022
https://doi.org/10.1016/j.scs.2017.06.022
https://doi.org/10.1016/j.rser.2017.05.153
https://doi.org/10.1016/j.rser.2017.05.040
https://doi.org/10.1016/j.energy.2017.04.084
https://doi.org/10.1016/j.energy.2017.04.084
https://doi.org/10.1016/j.rser.2016.11.098
https://doi.org/10.1016/j.energy.2017.09.093
https://doi.org/10.1016/j.energy.2016.12.055
https://doi.org/10.1016/j.apenergy.2017.07.009
https://doi.org/10.1016/j.apenergy.2017.07.009
https://doi.org/10.1016/j.energy.2017.02.162
https://doi.org/10.1016/j.energy.2017.03.013
https://doi.org/10.1016/j.egyr.2017.03.001
https://doi.org/10.1016/j.rser.2017.02.046
https://doi.org/10.1016/j.rser.2017.02.046
https://doi.org/10.1016/j.simpat.2016.12.008
https://doi.org/10.1016/j.rser.2017.05.201
https://doi.org/10.1016/j.energy.2017.05.123
https://doi.org/10.1016/j.energy.2017.05.123
https://doi.org/10.1016/j.energy.2017.06.177
https://doi.org/10.1016/j.energy.2017.06.177
https://doi.org/10.1016/j.apenergy.2017.01.087
https://doi.org/10.1016/j.apenergy.2017.01.087
https://doi.org/10.1016/j.energy.2017.08.019
https://doi.org/10.1016/j.solener.2017.03.072
https://doi.org/10.1016/j.solener.2017.03.072
https://doi.org/10.1016/j.eneco.2017.09.009
https://doi.org/10.1016/j.eneco.2017.09.009
https://doi.org/10.1016/j.energy.2017.06.019
https://doi.org/10.1016/j.egypro.2017.05.057
https://doi.org/10.1016/j.egypro.2017.05.057
https://doi.org/10.1016/j.esr.2017.01.001
https://doi.org/10.1016/j.apenergy.2017.09.048
https://doi.org/10.1016/j.enpol.2017.08.009
https://doi.org/10.1016/j.jclepro.2017.07.142
https://doi.org/10.1016/j.jclepro.2017.07.142
https://doi.org/10.1007/s11367-016-1229-z
https://doi.org/10.1007/s11367-016-1229-z
https://doi.org/10.1007/s12053-016-9475-2
https://doi.org/10.1007/s12053-016-9475-2
https://doi.org/10.1007/s40974-016-0043-6
https://doi.org/10.1007/s40974-016-0043-6
https://doi.org/10.1007/s12667-016-0205-9
https://doi.org/10.1080/14786451.2015.1080706
https://doi.org/10.1016/j.energy.2017.07.116
https://doi.org/10.1016/j.ijhydene.2017.02.139
https://doi.org/10.1016/j.ijhydene.2017.02.139
https://doi.org/10.1016/j.egypro.2017.09.520
https://doi.org/10.1016/j.apenergy.2016.12.111
https://doi.org/10.1016/j.renene.2016.12.020
https://doi.org/10.1016/j.rser.2017.03.090
https://doi.org/10.1016/j.apenergy.2017.07.111
https://doi.org/10.1016/j.apenergy.2017.07.111
https://doi.org/10.1016/j.jclepro.2017.01.097
https://doi.org/10.1016/j.jclepro.2017.01.097
https://doi.org/10.1016/j.rser.2017.03.137
https://doi.org/10.1016/j.rser.2017.03.137
https://doi.org/10.1016/j.energy.2017.03.016
https://doi.org/10.1016/j.energy.2017.03.016
https://doi.org/10.1016/j.jclepro.2016.12.019
https://doi.org/10.1016/j.jclepro.2016.12.019
https://doi.org/10.1016/j.envsci.2017.08.022
https://doi.org/10.1049/iet-rpg.2017.0021
https://doi.org/10.1016/j.energy.2017.07.004
https://doi.org/10.1016/j.energy.2018.05.075


Renewable and Sustainable Energy Reviews 168 (2022) 112724

17

[373] Bacekovic I, Østergaard PA. Local smart energy systems and cross-system 
integration. Energy 2018;151:812–25. https://doi.org/10.1016/j. 
energy.2018.03.098. 

[374] Prina MG, Cozzini M, Garegnani G, Manzolini G, Moser D, Filippi Oberegger U, 
et al. Multi-objective optimization algorithm coupled to EnergyPLAN software: 
the EPLANopt model. Energy 2018;149:213–21. https://doi.org/10.1016/J. 
ENERGY.2018.02.050. 

[375] Figueiredo R, Nunes P, Brito MC. Multiyear calibration of simulations of energy 
systems. Energy 2018;157:932–9. https://doi.org/10.1016/j. 
energy.2018.05.188. 

[376] Zhang D, Mu S, Chan CC, Zhou GY. Optimization of renewable energy penetration 
in regional energy system. Energy Proc 2018;152:922–7. https://doi.org/ 
10.1016/j.egypro.2018.09.094. 

[377] Dranka GG, Ferreira P. Planning for a renewable future in the Brazilian power 
system. Energy 2018;164:496–511. https://doi.org/10.1016/j. 
energy.2018.08.164. 

[378] Bellocchi S, Gambini M, Manno M, Stilo T, Vellini M. Positive interactions 
between electric vehicles and renewable energy sources in CO2-reduced energy 
scenarios: the Italian case. Energy 2018;161:172–82. https://doi.org/10.1016/j. 
energy.2018.07.068. 

[379] Lund H. Renewable heating strategies and their consequences for storage and grid 
infrastructures comparing a smart grid to a smart energy systems approach. 
Energy 2018;151. https://doi.org/10.1016/j.energy.2018.03.010. 

[380] Marczinkowski HM, Østergaard PA. Residential versus communal combination of 
photovoltaic and battery in smart energy systems. Energy 2018;152:466–75. 

[381] Vanegas Cantarero MM. Reviewing the Nicaraguan transition to a renewable 
energy system: why is “business-as-usual” no longer an option? Energy Pol 2018; 
120:580–92. https://doi.org/10.1016/J.ENPOL.2018.05.062. 

[382] Cabrera P, Lund H, Carta JA. Smart renewable energy penetration strategies on 
islands: the case of Gran Canaria. Energy 2018;162:421–43. https://doi.org/ 
10.1016/j.energy.2018.08.020. 

[383] Bhuvanesh A, Jaya Christa ST, Kannan S, Karuppasamy Pandiyan M. Aiming 
towards pollution free future by high penetration of renewable energy sources in 
electricity generation expansion planning. Futures 2018;104:25–36. https://doi. 
org/10.1016/j.futures.2018.07.002. 

[384] You W, Geng Y, Dong H, Wilson J, Pan H, Wu R, et al. Technical and economic 
assessment of RES penetration by modelling China’s existing energy system. 
Energy 2018;165:900–10. https://doi.org/10.1016/j.energy.2018.10.043. 

[385] Djørup S, Thellufsen JZ, Sorknæs P. The electricity market in a renewable energy 
system. Energy 2018;162:148–57. 

[386] Lund H, Østergaard PA, Chang M, Werner S, Svendsen S, Sorknæs P, et al. The 
status of 4th generation district heating: research and results. Energy 2018;164: 
147–59. https://doi.org/10.1016/j.energy.2018.08.206. 

[387] Olkkonen V, Ekström J, Hast A, Syri S. Utilising demand response in the future 
Finnish energy system with increased shares of baseload nuclear power and 
variable renewable energy. Energy 2018;164:204–17. https://doi.org/10.1016/j. 
energy.2018.08.210. 

[388] Vidal-Amaro JJ, Sheinbaum-Pardo C. A transition strategy from fossil fuels to 
renewable energy sources in the mexican electricity system. J Sustain Dev Energy, 
Water Environ Syst 2018;6:47–66. https://doi.org/10.13044/j.sdewes.d5.0170. 

[389] Bianco V, Marchitto A, Scarpa F, Tagliafico LA. Heat pumps for buildings heating: 
energy, environmental, and economic issues. Energy Environ 2018;31:116–29. 
https://doi.org/10.1177/0958305X18787272. 

[390] Child M, Nordling A, Breyer C. The impacts of high V2G participation in a 100% 
renewable åland energy system. Energies 2018;11. https://doi.org/10.3390/ 
en11092206. 

[391] Wang H, Di Pietro G, Wu X, Lahdelma R, Verda V, Haavisto I. Renewable and 
sustainable energy transitions for countries with different climates and renewable 
energy sources potentials. Energies 2018;11. https://doi.org/10.3390/ 
en11123523. 

[392] Meschede H, Child M, Breyer C. Assessment of sustainable energy system 
configuration for a small Canary island in 2030. Energy Convers Manag 2018; 
165:363–72. https://doi.org/10.1016/j.enconman.2018.03.061. 

[393] Hansen K, Mathiesen BV. Comprehensive assessment of the role and potential for 
solar thermal in future energy systems. 2018. https://doi.org/10.1016/j. 
solener.2018.04.039. 

[394] Perez N, Riederer P, Inard C. Development of a multiobjective optimization 
procedure dedicated to the design of district energy concept. Energy Build 2018; 
178:11–25. https://doi.org/10.1016/j.enbuild.2018.07.061. 
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[483] Pfeifer A, Krajačić G, Ljubas D, Duić N. Increasing the integration of solar 
photovoltaics in energy mix on the road to low emissions energy system – 
economic and environmental implications. Renew Energy 2019. https://doi.org/ 
10.1016/J.RENENE.2019.05.080. 

[484] Sandberg E, Kirkerud JG, Trømborg E, Bolkesjø TF. Energy system impacts of grid 
tariff structures for flexible power-to-district heat. Energy 2019;168:772–81. 
https://doi.org/10.1016/j.energy.2018.11.035. 

[485] Scheller F, Bruckner T. Energy system optimization at the municipal level: an 
analysis of modeling approaches and challenges. Renew Sustain Energy Rev 2019; 
105:444–61. https://doi.org/10.1016/j.rser.2019.02.005. 

[486] Limpens G, Moret S, Jeanmart H, Maréchal F, EnergyScope TD. A novel open- 
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[646] Anke C-P, Hobbie H, Schreiber S, Möst D. Coal phase-outs and carbon prices: 
interactions between EU emission trading and national carbon mitigation 
policies. Energy Pol 2020;144:111647. https://doi.org/10.1016/j. 
enpol.2020.111647. 

[647] Bamisile O, Babatunde A, Adun H, Yimen N, Mukhtar M, Huang Q, et al. 
Electrification and renewable energy nexus in developing countries; an 
overarching analysis of hydrogen production and electric vehicles integrality in 
renewable energy penetration. Energy Convers Manag 2021;236:114023. https:// 
doi.org/10.1016/j.enconman.2021.114023. 

[648] Bamisile O, Obiora S, Huang Q, Yimen N, Abdelkhalikh Idriss I, Cai D, et al. 
Impact of economic development on CO2 emission in Africa; the role of BEVs and 
hydrogen production in renewable energy integration. Int J Hydrogen Energy 
2021;46:2755–73. https://doi.org/10.1016/j.ijhydene.2020.10.134. 

[649] Korberg AD, Mathiesen BV, Clausen LR, Skov IR. The role of biomass gasification 
in low-carbon energy and transport systems. Smart Energy 2021;1:100006. 
https://doi.org/10.1016/j.segy.2021.100006. 

[650] Laha P, Chakraborty B. Low carbon electricity system for India in 2030 based on 
multi-objective multi-criteria assessment. Renew Sustain Energy Rev 2021;135: 
110356. https://doi.org/10.1016/j.rser.2020.110356. 

[651] Laitinen A, Lindholm O, Hasan A, Reda F, Hedman Å. A techno-economic analysis 
of an optimal self-sufficient district. Energy Convers Manag 2021;236:114041. 
https://doi.org/10.1016/j.enconman.2021.114041. 

[652] Liu W, Best F, Crijns-Graus W. Exploring the pathways towards a sustainable 
heating system – a case study of Utrecht in The Netherlands. J Clean Prod 2021; 
280:125036. https://doi.org/10.1016/j.jclepro.2020.125036. 

[653] Nam H, Nam H, Lee D. Potential of hydrogen replacement in natural-gas-powered 
fuel cells in Busan, South Korea based on the 2050 clean energy Master Plan of 
Busan Metropolitan City. Energy 2021;221:119783. https://doi.org/10.1016/j. 
energy.2021.119783. 

[654] Noorollahi Y, Khatibi A, Eslami S. Replacing natural gas with solar and wind 
energy to supply the thermal demand of buildings in Iran: a simulation approach. 
Sustain Energy Technol Assessments 2021;44:101047. https://doi.org/10.1016/j. 
seta.2021.101047. 

[655] Noorollahi Y, Golshanfard A, Ansaripour S, Khaledi A, Shadi M. Solar energy for 
sustainable heating and cooling energy system planning in arid climates. Energy 
2021;218:119421. https://doi.org/10.1016/j.energy.2020.119421. 
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cooling in existing Gas-CHP based district heating system – central European city 
perspective. Smart Energy 2021;4:100043. https://doi.org/10.1016/j. 
segy.2021.100043. 

[673] Sorknæs P. Hybrid energy networks and electrification of district heating under 
different energy system conditions. Energy Rep 2021;7:222–36. https://doi.org/ 
10.1016/j.egyr.2021.08.152. 

[674] Tahir MF, Haoyong C, Guangze H. Exergy hub based modelling and performance 
evaluation of integrated energy system. J Energy Storage 2021;41:102912. 
https://doi.org/10.1016/j.est.2021.102912. 

[675] Vallera AM, Nunes PM, Brito MC. Why we need battery swapping technology. 
Energy Pol 2021;157:112481. https://doi.org/10.1016/j.enpol.2021.112481. 

[676] Korkeakoski M. Towards 100% renewables by 2030: transition alternatives for a 
sustainable electricity sector in isla de la Juventud, Cuba. Energies 2021:14. 
https://doi.org/10.3390/en14102862. 
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[688] Besagni G, Premoli Vilà L, Borgarello M, Trabucchi A, Merlo M, Rodeschini J, 
et al. Electrification pathways of the Italian residential sector under socio- 
demographic constrains: looking towards 2040. Energy 2021;217:119438. 
https://doi.org/10.1016/j.energy.2020.119438. 

[689] Bogdanov D, Gulagi A, Fasihi M, Breyer C. Full energy sector transition towards 
100% renewable energy supply: integrating power, heat, transport and industry 
sectors including desalination. Appl Energy 2021;283:116273. https://doi.org/ 
10.1016/j.apenergy.2020.116273. 

[690] Gjorgievski VZ, Cundeva S, Georghiou GE. Social arrangements, technical designs 
and impacts of energy communities: a review. Renew Energy 2021;169:1138–56. 
https://doi.org/10.1016/j.renene.2021.01.078. 

[691] Hoang AT, Pham VV, Nguyen XP. Integrating renewable sources into energy 
system for smart city as a sagacious strategy towards clean and sustainable 
process. J Clean Prod 2021;305:127161. https://doi.org/10.1016/j. 
jclepro.2021.127161. 

[692] Javed MS, Ma T, Jurasz J, Mikulik J. A hybrid method for scenario-based techno- 
economic-environmental analysis of off-grid renewable energy systems. Renew 
Sustain Energy Rev 2021;139:110725. https://doi.org/10.1016/j. 
rser.2021.110725. 

[693] Maeder M, Weiss O, Boulouchos K. Assessing the need for flexibility technologies 
in decarbonized power systems: a new model applied to Central Europe. Appl 
Energy 2021;282:116050. https://doi.org/10.1016/j.apenergy.2020.116050. 

[694] Martínez-Gordón R, Morales-España G, Sijm J, Faaij APC. A review of the role of 
spatial resolution in energy systems modelling: lessons learned and applicability 
to the North Sea region. Renew Sustain Energy Rev 2021;141:110857. https:// 
doi.org/10.1016/j.rser.2021.110857. 

[695] Maruf MNI. Open model-based analysis of a 100% renewable and sector-coupled 
energy system–The case of Germany in 2050. Appl Energy 2021;288:116618. 
https://doi.org/10.1016/j.apenergy.2021.116618. 

[696] McKenna R, Hernando DA, ben Brahim T, Bolwig S, Cohen JJ, Reichl J. Analyzing 
the energy system impacts of price-induced demand-side-flexibility with 
empirical data. J Clean Prod 2021;279:123354. https://doi.org/10.1016/j. 
jclepro.2020.123354. 

[697] Musacchio A, Bartocci P, Serra A, Cencioni L, Colantoni S, Fantozzi F. 
Decarbonizing materials sourcing and machining in the gas turbine sector, 
through a cost-carbon footprint nexus analysis. J Clean Prod 2021;310:127392. 
https://doi.org/10.1016/j.jclepro.2021.127392. 
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