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Abstract—Failure of power electronics can significantly impact
the long-term power system reliability, especially for the systems
with a high penetration level of the renewable energy-based units.
Therefore, the analysis of power electronics reliability impact on
the optimum system design needs to be included in the long-
term planning. However, current long-term forecasting methods
cannot provide generation and demand profiles suitable for the
power electronics reliability evaluation typically due to a low
time resolution. In this paper, a long-term forecasting method for
power electronics-based system design is proposed. The method
employs statistical and artificial intelligence-based models to
provide forecasting profiles and their probability of occurrence
with a high time resolution over the whole long-term planning
horizon. The case study results show that the accuracy of the
forecast profiles obtained with the developed model is suitable
for power electronics reliability analysis.

Index Terms—Long-term forecasting, power electronics, relia-
bility, power system design

I. INTRODUCTION

Nowadays the electrical systems are designed with the aim
of contributing to the reduction of the fossil fuel usage and
meeting the global sustainability goals [1]. A high installation
rate of the renewable energy is today characteristic for modern
power system design. During the long-term planning, the
optimum capacity planning of renewable energy generation
and storage units is carried out. This generation capacity needs
to be sufficient to cover the load demand over a long-term
planning horizon (e.g., 15-30 years) [2]. During this stage,
the power system reliability analysis is employed to assure
system adequacy [3]. However, failure-prone power electronics
interface is an emerging challenge to the system reliability [4].
In fact, its failure can lead to the interruptions in power supply
from the renewable energy generation units [5], [6]. Thus, to
avoid this problem, power electronics reliability needs to be
included in the future design of a modern power system.

Regarding the power electronics reliability analysis, the
failure rate of the units is estimated based on the stress they
experience during operation. As a first step, the mission profile
(operating conditions) is translated into the stress profile, as
shown in Fig. 1. Furthermore, to evaluate the damage of the
different stress levels, the stress profile is decomposed into an
equivalent set of reversals. Afterwards, the time at which the
dominant failure mechanisms are triggered is estimated based
on the accumulated stress. Finally, probabilistic evaluation is
performed to account for uncertainties [7], [8]. The failure
rate information can be used to avoid the unexpected system
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Fig. 1. Procedure for the power electronics reliability estimation [2]. The input
to the procedure is a mission profile representing the operating conditions of
the power electronic unit. The output is the corresponding failure rate.

downtime due to power electronics failure. Moreover, it can
help to reduce times with the insufficient generation capacity
and improve the power system reliability [4]. Finally, it leads
to a more realistic system cost with a reduced unplanned power
electronics replacement cost.

The power electronics loading is directly influenced by the
operating conditions [9], which depend upon the generation
and load balance in the system. During planning, the gener-
ation and demand profiles are determined by means of long-
term forecasting methods. The forecast profiles are character-
ized by low time resolution intervals (1 sample per month
or a year) [10]–[12]. Those are suitable for power system
capacity planning and reliability studies [13], [14], as shown in
Fig. 2, which do not require high dynamics. However, during
operation, the power electronics system experience substantial
changes in loading due to the volatility and intermittency

978-1-6654-1211-7/22/$31.00 ©2022 IEEE



Long-term system planning
Capacity planning 

15-30 years ahead

Short-term operational planning
Capacity allocation 

Minutes-days ahead

Design for reliability
Useful life estimation 

Several years ahead

Power System Design Power Electronics Design

Typical generation/demand profile Typical power electronics loading profile 

Δtpred =1 monthΔtpred =1 month
t (years)t (years)

tpred  =15-30 yearstpred  =15-30 years

P

Δtpred =1 minΔtpred =1 min
t (min)t (min)

tpred  =5 yearstpred  =5 years

Δtpred =1 minΔtpred =1 min
t (years)t (years)

tpred  =1 daytpred  =1 day

P P

Fig. 2. Overview of the time resolution and horizon requirements for profiles within power system and power electronics design domains. P is a forecast
profile with tpred forecast horizon and ∆tpred time resolution interval.

of the renewable energy sources. Their loading profiles can
significantly change in a short time span, e.g., within several
minutes [15]. The large variations in loading result in accu-
mulation of the additional stress. To evaluate its impact on
the reliability, a high time resolution profile (1 sample per
minute) is required [16] (see Fig. 2). Hence, the long-term
forecasting methods with the low time resolution intervals
[13], [14], [17] cannot be used to capture these dynamics. In
[18], a need to incorporate volatility into long-term forecasting
has been discussed. Furthermore, a connection between high
time resolution forecasting (1 sample per hour) and long-
term forecasting horizon is pointed out in [19]. However,
both [18], [19] are limited to the deterministic time-series
forecasting models. They do not account for uncertainty, which
usually result in an increase in inaccuracy with the extension
of the forecasting horizon. In such case, the advantages of
the probabilistic forecast prevail over deterministic one [20].
However, the probabilistic models for long-term planning,
which forecast profiles with a sufficient time resolution for
power electronics reliability are still lacking.

Therefore, a long-term forecasting method suitable for both
generation capacity planning studies and the estimation of
the power electronics reliability is proposed in this paper. It
employs artificial intelligence-based model to provide the pre-
diction of the generation and demand profiles with a low time
resolution (1 sample per month). Furthermore, a probabilistic
forecasting is used to predict the main characteristics (intensity
and intra-day variations) of profiles and their probability of the
occurrence with a high time resolution (1 sample per minute).
With respect to that, the rest of the paper is organized as
follows. In Section II, a detailed description of the proposed
long-term forecasting model suitable for power electronics-
based systems is provided. In Section III, a numerical analysis
is conducted. It includes accuracy evaluation of the proposed
forecasting method for reliability studies. In Section IV, con-
cluding remarks are provided.

II. PROPOSED FORECASTING MODEL FOR POWER
ELECTRONICS-BASED SYSTEMS

The outline of the proposed forecasting model is shown in
Fig. 3. It consists of two parts: 1) Trend Determination and

2) Pattern Characterization. The former is used for forecasting
with low time resolution e.g., 1 sample per month. In fact, it
provides sufficient information for capacity planning studies.
The latter is employed for forecasting with high time resolu-
tion e.g., 1 sample per minute suitable for power electronics
reliability investigation.

A. Trend Determination

Trend determination is developed for forecasting of genera-
tion and demand trend several years ahead. Different methods
commonly used in long-term capacity planning studies can be
employed for this purpose [18], [19]. In this work, an artificial
intelligence-based method is implemented. It provides more
accurate results than the physics and statistical models [21].

The Long Short Term Memory Network suitable for dealing
with issues related to time series due to the existence of
cycle structure is developed [22]. It is a uni-variate single step
network that can be used for forecasting a single step ahead in
the time series profile. The network architecture includes the
input layer with 12 neurons. They correspond to parameter
values with monthly resolution PLR

hist. Moreover, there is one
hidden layer with 20 neurons. Finally, there is one neuron in
the output layer. It represents the predicted parameter value
for the next month, which corresponds to the PLR

pred in Fig. 3.

B. Pattern Characterization

Pattern Characterization uses the historical data with a high
time resolution PHR

hist together with the results from Trend De-
termination PLR

pred to determine the forecast profile with a high
time resolution PHR

pred. First, the historical data is classified
into characteristic classes of daily profiles. Subsequently, the
classified profiles and the forecast monthly trend are used to
determine the probability of certain profiles occurring in the
future. As a result, a high time resolution profile for long-
term planning horizon is constructed from the daily profiles
with the highest probability of occurrence.

1) Classification: The K-means clustering method is used
for classification. It organizes the M input profiles into K
mutually exclusive clusters based on the similarities of their
features [20], [23]. The degree of association between the
profiles belonging to one cluster needs to be the highest and
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Fig. 3. Proposed model for the long-term forecasting that enables a power electronics reliability estimation within design of power electronics-based power
systems. PHR

hist are historical data with high time resolution interval (1 sample per minute), PLR
pred are predicted data with low time resolution interval (1

sample per month), and PHR
pred are predicted data with high time resolution interval (1 sample per minute).

vice versa. The objective function J to be minimized during
the clustering process is:

J =

M∑
m=1

K∑
k=1

ukm∥vm − ck∥ (1)

where ukm represents the membership of m-th daily profile
feature vm to a cluster k. ck is a mean of all daily profiles that
belong to the k-th cluster. It is a characteristic daily profile,
i.e. centroid of a cluster k.

Daily generation and demand profiles are characterized by
the intensity and intra-day variations. The parameters related
to the two features are used to classify the daily profiles
in a two-step clustering process. In the first step, the input
daily profiles are clustered based on the intensity feature. The
relevant intensity parameters are a daily peak and average
daily value of each profile. Afterwards, each intensity class
is clustered based on the intra-day variations characteristic.
In this step, the difference between two successive points
in a daily profile is used as a relevant feature. The optimal
number of intensity clusters Ni is determined using Calinski-
Harabasz criterion [23]. Afterwards, this criterion is used to
determine the optimal number of variation classes Nj(i) for
each intensity class. Therefore, the classification output are K
number of classes defined as:

K = Ni +

Ni∑
i=1

Nj(i) (2)

The k-th class and corresponding centroids are denoted as
CIiV j and cIiV j , where Ii and V j represent the i-th intensity
class and j-th variation class, respectively.

2) Probabilistic Forecast: Naı̈ve Bayes Classifier is em-
ployed to determine the occurrence probability of a daily
class CIiV j over the span of the forecast horizon. Its working

principle is based on Bayes rule, which describes the prob-
ability of event with respect to prior knowledge of relevant
conditions. The benefit of including the conditional probability
is the reduced impact of uncertainty on forecasting accuracy.
In fact, it provides more information based on the knowledge
of conditions. Furthermore, it gives a possibility to connect
the long-term and short-term aspects of the model.

Therefore, Naı̈ve Bayes Classifier determines prior prob-
ability distribution of each class based on input historical
data PHR

hist. Furthermore, it determines the conditional prob-
ability (likelihood), i.e., probability of conditions given the
outcome class. The relevant conditions are defined by the
five attributes in the attribute vector X = {x1, x2, ..., x5}.
The attributes x1-x3 provide information about the intensity
and variations. The attributes x1 and x2 are the previous
day mean and peak, respectively. The attribute x3 is defined
as a maximum variation of the previous day. Furthermore,
attribute x4 provides information about a month, where each
daily profile is a part of it. The last attribute x5 provides
limited information about the future. It is defined as a monthly
mean value, which corresponds to PLR

pred obtained from Trend
Determination model (see Fig. 3). It is assumed that the
likelihood of each continuous attribute in X follow Gaussian
distribution. For each new observation (daily profile) with the
attribute vector Xo, the forecast of the next day profile class
is done by finding the maximum posterior probability [20] :

max(P (Y = CIiV j |Xo)) =

max

{
5∏

m=1

P (Xm|Y = CIiV j) · P (Y = CIiV j)

}
(3)

Finally, the PHR
pred for several years ahead is constructed based

on the forecast of daily profiles with high time resolution
obtained with (3).
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III. NUMERICAL ANALYSIS

An analysis is performed for a system that consists of a
photovoltaic (PV) generation unit and a DC/DC converter, as
shown in Fig. 4 to illustrate the method. The relevant system
parameters are provided in Table I. To forecast the generation
profile of this system, a prediction of the input parameters, i.e.,
solar irradiance S and ambient temperature Ta is necessary.
For simplicity, only solar irradiance S is predicted, while the
ambient temperature Ta is set to a constant value in this paper.
The analysis can be extended to a larger system with several
generation and loading units. In such case, it is necessary to
determine the power electronics loading from the generation
and load profiles as well as from the energy management
strategy. The same procedure as in the case of solar irradiance
S can be applied to obtain the rest of the relevant forecast
profiles (e.g., load demand, ambient temperature, wind speed).
The training and testing result for the developed model are
presented first. Afterwards, the model validation for the power
electronics reliability analysis is carried out.

A. Model Training & Testing

Long short term memory network (Trend Determination)
and Naı̈ve Bayes Classifier (Pattern Characterization) are
trained and tested. To train the network, Adam optimizer is
chosen [22], while the gradient threshold and the learning
rate are set to 1 and 0.001, respectively. Furthermore, the loss
function adopts mean-squared-error, and the dropout method
is adopted to avoid overfitting.

The historical data between 2008 and 2020 from [25] is
used. 70% of the data (2008-2016) is allocated for training,
while remaining part (2017-2020) is used for testing. The
accuracy of the developed models is evaluated by means of the
relevant performance metrics. Those are Mean Average Error
(MAE) for Trend Determination model and Accuracy Score
(AS) for Naı̈ve Bayes Classifier [26]:

MAE =
1

N

N∑
n=1

|PLR
pred(n)− PLR

hist(n)| (4)

AS =
1

N

N∑
n=1

uCR[C
pred
IiV j(n) = Cact

IiV j(n)] (5)

TABLE I
PARAMETERS OF THE SYSTEM USED IN NUMERICAL ANALYSIS

PV array rated power 7.2 kW
DC/DC converter rated power 6 kW (3kW x 2 units)
Reliability-critical component IGBT (s1)
Failure mechanism Bond wire lift-off
Stress parameter Junction temperature of s1
Lifetime model Number of cycles to failure [24]
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Fig. 5. Numerical analysis testing results: (a) Historical high resolution (1
sample per minute) profile for 2018-2020 SHR

hist, (b) predicted low resolution
(1 sample per month) profile SLR

pred obtained with the Trend Determination
model, (c) predicted high resolution (1 sample per minute) profile SHR

pred
obtained with the Pattern Characterization model.

where uCR is a binary parameter defining the relationship of
Cpred

IiV j and Cact
IiV j being predicted and actual class for n-th day.

Training results indicate a MAE value of 11.71 W/m2

for Trend Determination model. Furthermore, in the Pattern
Characterization model, the training data is clustered into 10
different classes, for which the Naı̈ve Bayes Classifier yields
AS value of 0.78. This refers to that a high score of the true
positive rates is obtained for the majority of the classes. In
both cases, the obtained values validate the competency of the
proposed model. As a part of the testing process, the solar
irradiance profile for 2017 is predicted based on the historical
data of the previous years. The predicted profile is further



TABLE II
RELIABILITY VALIDATION STUDY: TWO-STEP CLUSTERING RESULTS

FOR INPUT SOLAR IRRADIANCE PROFILE.

Class
No.

profiles
Maximum

Intensity (kW/m2)
Maximum average
variation (kW/m2)

CI1V 1 7 0.24 0.15
CI2V 1 107 0.55 0.14
CI3V 1 82 0.79 0.18
CI3V 2 12 0.70 0.31
CI4V 1 26 0.99 0.24
CI4V 2 2 1.02 0.63
CI4V 3 87 1.0 0.21
CI5V 1 27 0.95 0.40
CI5V 2 13 0.93 0.33

on used as basis for prediction of the remaining three years
in the testing set (2018-2020), like shown in Fig. 5(a). The
prediction results for Trend Determination model are shown
in Fig. 5(b). There are no large discrepancies in the predicted
and actual values. This is also reflected in the MAE value of
10.66 W/m2. Therefore, it can be concluded that the predicted
low resolution profile (1 sample per month) is accurate enough
and it can be used for optimum long-term capacity planning.
Further on, the predicted monthly results are used in the
Pattern Characterization model to obtain high time resolution
(1 sample per minute) profile for the three years. The resulting
predicted profile is shown in Fig. 5(c), and AS value of 0.79
is obtained. The high resolution prediction profile differs from
the actual historical data shown in Fig. 5(a). In fact, the profile
is a combination of several different daily profiles obtained
within clustering process. It is used to evaluate the power
electronics reliability. Therefore, an accurate prediction, as in
case of Trend Determination model, where each predicted and
actual value differ insignificantly, is not needed. Hence, it is
only required that the predicted high resolution profile yields
the same reliability results as the actual historical profile. This
aspect is investigated further in the following.

B. Model Validation for Power Electronics Reliability Studies

To determine if the prediction accuracy of the proposed
model is suitable for power electronics-based system design,
a reliability study is performed. The classification represents a
critical part of the proposed model. In fact, it is necessary
to evaluate if the class centroid cIiV j results in the same
stress profile of the power electronic unit as all the daily
profiles belonging to the class CIiV j . For that purpose, lifetime
consumption LC is evaluated for each daily profile belonging
to a class. This is done by following the first three steps of the
reliability procedure shown in Fig. 1. A detailed description of
the reliability model and the parameters are provided in [27].
Afterwards, the distribution of the class LC is obtained and
evaluated by means of the following expression:

σLC(CIiV j) ≤ 0.1 · µLC(CIiV j) (6)
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where µLC and σLC are the average LC value and standard
deviation of a class CIiV j .

If the majority of the daily profiles of a class CIiV j fulfills
the evaluation criterion, it is then sufficient to present them
with class centroid cIiV j . The first year of the solar irradiance
profile with 1-minute resolution shown in Fig. 5(a) is input
to the classification. In the first step of classification, Ni = 5
intensity classes are defined. Afterwards, each intensity class
is divided into classes based on the variations by following the
procedure in Section II. Overall, K = 9 classes are obtained,
with the main characteristics provided in Table II.

The graphical results are shown with the example of class
CI4V 3 in Fig. 6, while the summary of the results for all
9 classes is presented in Fig. 7. There are overall 87 daily
profiles in class CI4V 3. The profiles have similar average daily



value and variation. However, the solar irradiance variations
occur during different periods and intensity levels in a day
for the daily profiles belonging to CI4V 3. Therefore, the
daily power electronics loading profiles differ within a class.
However, the results in Fig. 6(b) suggest that the majority
of the daily profiles results in a similar LC of the DC/DC
converter. Therefore, it can be concluded that the differences in
the daily profiles within the class do not significantly influence
the reliability results. Hence, the profiles belonging to the class
CI4V 3 can be represented with a single daily profile cI4V 3.

To further improve the results, the evaluation criterion in
(6) can be adjusted according to the application requirements.
Moreover, this reliability criterion can be directly added to
the Calinski-Harabasz criterion within the classification pro-
cess. In that way, a number of classes optimum for accurate
reliability evaluation can be achieved.

IV. CONCLUSION

In this paper, a long-term forecasting model suitable for
power electronics-based system design is presented. The
model can be used for generation capacity planning and power
electronics reliability prediction during long-term planning.
First, an artificial intelligence-based model is developed for
determination of the future trend in generation and demand.
Afterwards, a pattern characterization model based on the
two-step clustering method and Naı̈ve Bayes Classifier is
developed. Pattern characterization includes trend determina-
tion results to forecast high time resolution generation and
demand profiles. The case study results on the example of solar
irradiance forecast indicate that the model is suitable for power
electronics reliability studies. Therefore, the proposed long-
term forecasting model can be used for long-term planning of
power electronics-based power systems.
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[15] M. Anvari, G. Lohmann, M. Wächter, P. Milan, E. Lorenz, D. Heine-
mann, M. R. R. Tabar, and J. Peinke, “Short term fluctuations of wind
and solar power systems,” New J. Phys., vol. 18, no. 6, pp. 63 027–
63 048, 2016.

[16] A. Sangwongwanich, D. Zhou, E. Liivik, and F. Blaabjerg, “Mission
profile resolution impacts on the thermal stress and reliability of power
devices in PV inverters,” Microelectron. Reliab., vol. 88-90, pp. 1003–
1007, 2018.

[17] S. Seewald, R. Otal, and A. Bakulev, “Reliability forecasting and
investment optimization,” in Proc. of IEEE/PES T&D, Denver, CO,
USA, 2018, pp. 1–5.

[18] S. R. Khuntia, J. L. Rueda, and M. A. M. M. van der Meijden, “Volatility
in electrical load forecasting for long-term horizon — an ARIMA-
GARCH approach,” in Proc. of PMAPS, Beijing, China, 2016, pp. 1–6.
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