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Re-Identification of Giant Sunfish using Keypoint Matching

Malte Pedersen∗1, Joakim B. Haurum1, Thomas B. Moeslund1, and Marianne Nyegaard2

1Visual Analysis and Perception Lab, Aalborg University, Denmark
2Ocean Sunfish Research Trust, Auckland, New Zealand

Abstract

We present the first work where re-identification of
the Giant Sunfish (Mola alexandrini) is automated
using computer vision and deep learning. We pro-
pose a pipeline that scores an mAP of 60.34% on
a full rank of the novel TinyMola dataset which in-
cludes 41 IDs and 91 images. The method requires
no domain-adaptation or training which makes it
especially suited for low-budget or volunteer-based
projects, like Match My Mola, as part of a human-
in-the-loop model.

The pipeline includes segmentation, keypoint de-
tection and description, keypoint matching, and
ranking. The choice of feature descriptor has the
largest impact on the performance and we show
that the deep learning based SuperPoint descrip-
tor greatly outperforms handcrafted descriptors like
SIFT and RootSIFT independent of the segmenta-
tion level and matching method. Combining Super-
Point and the graph neural network based Super-
Glue matching method produces the best results.

1 Introduction

The world’s heaviest bony fish, the elusive ’Giant
Sunfish’ (Mola alexandrini), can reach an impres-
sive weight of 2.3 ton [22]. Globally, they are rarely
seen by SCUBA divers, but are frequent seasonal
visitors to the Bali area, Indonesia [18]. Here, they
seek cleaner fish interaction for removal of skin par-
asites, and are a highly popular target of the local
SCUBA tourism industry [26]. Little is known of
this seasonal sunfish phenomenon, including if the
tourism is reliant on a small, local sunfish popu-

∗Corresponding Author: mape@create.aau.dk
This work has been funded by the Independent Research
Fund Denmark under case number 9131-00128B.

Different IDs

Same IDs

Features: SuperPoint
Matcher: SuperGlue

Figure 1: Re-identification based on the num-
ber of keypoint matches. The images in the
top and bottom rows are of the same and different
individuals, respectively. The yellow lines connect
matched keypoints.

lation with high site fidelity, or transient sunfish
with low re-visitation rates. Understanding this is
critical for assessing the potential impacts (and any
need for regulation) of diver crowding, which causes
disruptions to sunfish-cleaner fish interactions [18].
To investigate this, the citizen science and vol-

unteer based project, Match My Mola [19], collects
and curates sunfish images from the Bali area, taken
by tourist divers, for photo identification purposes.
Images are manually compared pair-wise to assess
re-sightings of individuals over time, however, with
increasing image numbers match time becomes a
significant challenge to this volunteer-based project,
and an automated system is critically needed.

Re-identification has been an active research prob-
lem within computer vision for decades. However,
like in other fields the research has mainly been
focused on humans [31] and only few have taken
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a glance into the aquatic world [2, 24, 15, 5]. In
this work we present the first scientific attempt to
re-identify sunfish and show that it is possible based
on the number of keypoint correspondences as illus-
trated in Figure 1.
Our contributions include: 1) a re-identification
pipeline that requires no domain-adaptation or train-
ing, 2) an evaluation of how the segmentation level
affects the performance of the system, 3) a compar-
ison between the handcrafted feature descriptors
SIFT and RootSIFT and the deep learning based
SuperPoint feature descriptor.

2 Related Work

Photographic identification has been used for study-
ing wild marine animals in a non-intrusive manner
for decades [14, 29]. It allows researchers to identify
the same individual across different years, but re-
quires manual labour to obtain the photographs and
match the individuals from the captured footage.
Citizen science projects have proven to be an ef-
fective and irreplaceable method to gather large
amounts of data. But as the databases grow, so
does the need for manual labor. Therefore, com-
puter vision has become an essential tool to scale
such research.
Image processing and pattern matching tech-

niques have been used to automatically identify
individuals of whale-sharks [2], spotted raggedtooth
sharks [27], and patterned terrestrial animals [6, 24].
However, recently Siamese networks and the use
of triplet loss have become a popular means for
handling re-identification problems within marine
vision. Wang et al. proposed to use a Siamese net-
work and adversarial training to identify whales by
their flukes [28] and Nepovinnykh et al. trained a
Siamese network for Ringed Seal re-identification
[17]. Deep learning has generally gained a lot of
attention during the last decade, which is also seen
in the work done by Bouma et al. where they train
a ResNet50 model using a triplet loss for identi-
fying dolphins by their fin tail [3]. A ResNet50
was also used by Moskvyak et al. in their work
on re-identification of manta rays [15, 16], where
they proposed to embed the feature vectors by body
landmark information and use a weighted combina-
tion of three losses. On a higher level, Schneider
et al. investigated how the performance of CNNs

was affected by using either Siamese networks or
triplet loss for animal re-identification and found
that triplet loss generally outperforms Siamese net-
works [23].

A common issue with the aforementioned meth-
ods is the requirement for training data and domain
adaptation. However, it is demanding to capture
images in wild underwater environments and marine
image datasets are, therefore, often sparse. This
leaves little to no room for the creation of high
quality data splits.

3 TinyMola Image Dataset

The dataset used in this work is named ’TinyMola’
and it is a subset of the much larger Match My
Mola image database, which consists of more than a
thousand photo events (PhE). PhEs are 1-3 images
of the same individual captured by the same diver
during the same dive and the images can be of one
or both sides of the fish as illustrated in Figure 2.
Manually identifying sunfish between PhEs is both
hard and time-consuming and only 29 individuals
have been matched and verified by the marine sci-
entists at this point. These individuals form the
basis of the TinyMola dataset as no ground truth
is available for the remainder of the dataset.

The sunfish have unique markings which are used
to identify the individuals. However, the markings
on the fish are not identical on the two sides and
they cannot be directly compared. Therefore, we
frame the re-identification task to be side-specific
and provide each side of the fish a unique ID. For
each ID there are images from at least two PhEs.
However, there are cases where two PhEs of the
same individual include images from both sides in
one of the PhEs but not in the other. These ’un-
paired’ images are named singles if they do not
match with images from any other PhE. We have a
total of 41 IDs shared among 14 left-side, 17 right-
side, and 10 single IDs as summarized in Table 1.

Table 1: TinyMola Dataset composition.

Left Right Singles Total
IDs 14 17 10 41
Images 37 44 10 91
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(a) Left side of the fish. (b) Right side of the fish.

Figure 2: Two images from the same photo
event. The images are captured at different dis-
tances and angles, and shows both sides of the fish.

The quality of the images vary extensively de-
pending on the turbidity of the water, attenuation
of light, occlusion, and camera settings [20]. Two
examples illustrating some of the variations can
be seen in Figure 3. The resolution of the images
varies from 0.1 to 16 megapixels (MP) with a mean
around 4 MP and an object resolution around 1 MP
on average. To standardize the images we resize
them to a resolution of 640x480 and convert them
to gray-scale.

4 Method

As previously mentioned, re-identification of sun-
fish is currently conducted manually by marine re-
searchers. The researchers crop the image around
the target and look at markings across all overlap-
ping body parts on the two images. If the markings
are barely visible the image may be subject to con-
trast enhancement. The images are then compared
pair-wise to images of other sunfish and matches are
noted and examined by other matching-experts, to
confirm that the images are of the same individual.
We propose a solution inspired by the manual

process for ranking the images based on the number
of matching keypoints. The pipeline is illustrated
in Figure 4 and the modules are described below.

4.1 Region of Interest

We want to investigate whether cropping the image
has an effect on the performance of the system.
Therefore, we evaluate three levels of segmentation:
1) full image, 2) bounding box, and 3) instance
segmentation. An ImageNet [8] pre-trained Mask
R-CNN 50 FPN model [10] from Detectron2 [30]

(a) Low contrast. (b) Extreme angle.

Figure 3: Image variations. Sometimes the ob-
jects are only partly visible, the contrast may be low,
or the object is captured from an extreme angle.

is used for segmenting the objects. The model is
fine-tuned for 300 epochs with a batch size of 6 and
a train split consisting of 100 random images of
sunfish from the Match My Mola database, which
are not part of the TinyMola dataset. The fine-
tuned model achieves an average precision of 87.7%
on the segmentation task and the bounding boxes
are simply drawn around the segmentations.

4.2 Keypoints

The body of a sunfish is highly rigid, except for the
dorsal and pelvic fins. Consequently, the markings
on the fish are mainly affected by affine transfor-
mations such as rotation and scale. We test and
evaluate the performance of two handcrafted feature
descriptors (SIFT and RootSIFT) and one state of
the art deep learning based feature descriptor (Su-
perPoint), which are all summarized here.
The Scale Invariant Feature Transform (SIFT)

keypoint descriptor was proposed by Lowe [12, 13]
and has been among the most popular keypoint
descriptors for two decades. Interest points are lo-
cated in the image by creating a scale-space using
difference-of-Gaussians and finding consistent ex-
trema points. A histogram of oriented gradients
(HoG) with 36 bins is created from a region around
the point and used to assign an orientation to the
keypoint. The SIFT descriptor itself is based on a
4x4 matrix of normalized HoG features with 8 bins
resulting in a feature vector with 128 values.
Originally, Lowe proposed to match SIFT fea-

tures by Euclidean distance, however, as noted by
Arandjelovic and Zisserman [1] the Hellinger kernel
has often been used to compare histograms as it
commonly yields superior results compared to Eu-
clidean distance. As the SIFT descriptor is based
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Figure 4: The proposed pipeline. In the first module the ROI is either the full image, bounding box,
or instance segmentation. Next, keypoints are located (illustrated as yellow circles). During matching
some keypoints are not paired (represented by red circles). Ambiguous or weak keypoints are dismissed
during cleaning and lastly the images are ranked based on the number of keypoint matches.

on histograms they proposed an enhanced method
named RootSIFT, which consists of two additional
steps: 1) L1-normalize the SIFT feature vector and
2) square root each element. Consequently, com-
paring RootSIFT features using Euclidean distance,
is equivalent to compare SIFT features using the
Hellinger kernel, which often increases performance.
Recently, deep learning has been used to both

detect and describe keypoints. SuperPoint [9] is
among the state of the art methods that handles
both tasks jointly. SuperPoint is a CNN that has
been trained on synthetic data of angular shapes,
such as triangles, lines, and cubes. Subsequently,
the model is finetuned on images from MS-COCO
[11] in a self-supervised manner using homographic
adaptation, which is the use of random homogra-
phies to learn image-to-image transformations that
may appear in real world scenarios. The SuperPoint
feature vector has a dimensionality of 256.

We evaluate the performance of all three descrip-
tors with default parameter values and a maximum
of 1024 keypoints per image. All the keypoint de-
scriptors are calculated on the full image, but is
only part of the matching process if they are lo-
cated within the ROI.

4.3 Keypoint Matching

Finding corresponding keypoints in two images is a
matter of determining which pair of features that are

most similar (nearest neighbor) determined by a dis-
tance function. In the following we will very briefly
describe two traditional methods (brute-force and
kd-trees) and a graph neural network (SuperGlue)
for finding the nearest neighbor.
Depending on the problem, and the dimension-

ality and nature of the data, keypoint matching
has commonly been done using brute-force methods
or kd-trees [4]. Brute-force methods compare all
elements in the two distributions and are guaran-
teed to find the best match, but the processing time
can be high for large distributions. On the other
hand, kd-trees do not guarantee to find the best
match, but are faster for large distributions. As the
TinyMola dataset is small and the task is an offline
problem we use brute-force to match the keypoints
to get optimal results.
Recently, deep learning has made its entry into

keypoint matching and SuperGlue [21], proposed
by the team behind SuperPoint, is currently one of
the state of the art methods. For each keypoint Su-
perGlue takes the position and feature descriptor as
input and encodes it using a multilayer perceptron.
The spatial and visually encoded feature vectors are
fed into a graph neural network that utilizes self-
and cross-attention to compute matching descrip-
tors. A similarity matrix is computed with added
"dustbin" columns and rows to handle non-matched
keypoints. Lastly, the Sinkhorn algorithm is used
to compute the optimal partial assignment.
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The SuperGlue algorithm is designed to be used
with SuperPoint which has twice as many elements
as SIFT and RootSIFT. Therefore, to make a fair
comparison we use brute-force to match the SIFT,
RootSIFT, and SuperPoint descriptors. Addition-
ally, we also match SuperPoint features using two
pre-trained SuperGlue models: SGIndoor, that has
been trained on indoor images from ScanNet [7] and
SGOutdoor that has been trained on a subset of
outdoor images from YFCC100M [25].

4.4 Clean Matches

Naively matching the closest keypoints can lead
to poor results. For this reason, David G. Lowe
introduced the distance ratio test [13] as a way to
dismiss keypoints that are ambiguous. If the ratio
between the distance to the nearest and second
nearest neighbor is above a threshold, the keypoint
is considered too uncertain and is discarded. The
optimal threshold depends on the nature of the data
and if it is too low too many correct matches may
be discarded and vice versa.

When using the brute-force method to match the
keypoints we clean the matches using the distance
ratio test with a threshold of 0.8 as proposed by
Lowe [13]. We do not clean the matches proposed
by SuperGlue as it dismisses weak and ambiguous
candidates through the dustbin and the Sinkhorn
assignment scheme.

5 Evaluation

We evaluate the performance of the proposed meth-
ods by their mean average precision (mAP) per
rank. We view every image of the dataset (ex-
cept the single images) as probes and compare each
probe against all the other images, which we call
the gallery images. The single images are included
in the set of gallery images. There is always at least
one gallery image with the same ID as the probe
and we name these the hit images. We calculate
the average precision as

AP =
1

H

k∑
n=1

PnRn, (1)

where H is the number of hit images, k is the rank,
P is the precision, and R is a relevance function.

The precision is given by

P =
TP

TP + FP
(2)

where TP is the number of true positives and FP
is the number of false positives. The relevance
function, R, takes a value of 1 or 0 depending
on whether the match is a hit or not. The rank
decides the number of matches to take into account
and the matches are sorted in a decreasing manner
based on the number of keypoint correspondences
between the probe and gallery image. The number
of hit images is bounded by the rank such that we
have H ≤ k. An example of calculating the AP is
given below where H = 3 and k = 5. The filled and
empty circles represent hits and misses, respectively.

Rank 1 2 3 4 5

Match

AP 1
3 (

1
1 + 2

2 + 0 + 3
4 + 0) = 0.92

Lastly, the mean AP is given by

mAP =
1

N

N∑
i=1

APi (3)

where N is the number of probes.

6 Results
The performance of the system is measured by the
mAP which is presented against the rank in Figure 5.
There are several interesting aspects that can be
seen from the results. One thing to notice is the
significant difference in performance between the
feature descriptors. For both of the handcrafted
descriptors (SIFT and RootSIFT), the mAP at rank
1 is close to zero indicating that the ranking is
more or less based on coincidence. On the other
hand, the deep learning based SuperPoint descriptor
shows promising results both when using brute-force
matching and SuperGlue. Decreasing the region
of interest seems to have an ambiguous effect; for
RootSIFT, SIFT, and SP-SGOutdoor it generally
worsen the performance, but for SP-BF and SP-
SGIndoor it increases the performance.
Both SIFT and RootSIFT have few hits on the

first rank, but the precision increases up to rank 10
and stabilizes. On the other hand, we see that the
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SP-SGOutdoor-Img (59.03%)
SP-SGOutdoor-Seg (55.69%)

Figure 5: Evaluation results. The legends specify descriptor-matching-segmentation, e.g., SP-SGIndoor-
BB is a combination of the SuperPoint descriptor, SuperGlue indoor matching, and bounding box
segmentation. The handcrafted feature descriptors (SIFT and RootSIFT) show weak performance
compared to the deep learning based SuperPoint descriptor. The difference between using brute-force
matching and the graph-based SuperGlue is less profound and the segmentation level seems to affect the
performance ambiguously. The mAP presented in the legends are from the last rank.

SuperPoint based methods all perform well already
on rank 1 and their performance increases slightly
before dropping and stabilizing, which indicates at
least a single hit among the first few ranks.
The SP-BF methods generally perform better

than the graph-based SuperGlue model trained on
indoor images and the SP-BF-Seg (56.86%) even
beats the SP-SGOutdoor-Seg method (55.69%).
This indicates that the training data has an ef-
fect on the performance of the SuperGlue algorithm.
The performance difference between the SGIndoor
and SGOutdoor may be due to the outdoor images
resembling the underwater domain to a larger de-
gree than indoor images. However, there is most
likely a gap between the terrestrial and underwater
domains and we suspect that better performance
can be achieved by training a SuperGlue model on
underwater images. Even so, the SP-SGOutdoor-
BB display the strongest performance with an mAP
of 60.34% at full rank.

The results indicate that our solution can signif-
icantly reduce the search space for the volunteers
who are currently manually matching the images in
the Match My Mola project. Instead of comparing
with every image in the database, the volunteers
may only need to look at the top ranked suggestions
to find potential strong matches.

7 Conclusion

We propose a pipeline for re-identification of Giant
Sunfish (Mola alexandrini) that requires no domain
adaptation or training. The pipeline is based on
publicly available methods for keypoint detection,
description, and matching. The evaluation is based
on the novel Tiny Mola Dataset, which consists of
underwater images of the Giant Sunfish captured
in diverse environments.

We found that the largest impact on performance
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was based on the choice of descriptor, while the
level of segmentation had a low and ambiguous ef-
fect. The deep learning based SuperPoint descriptor
outperforms the handcrafted keypoint descriptors
SIFT and RootSIFT. Good results were obtained
with both brute-force matching and the graph neu-
ral network based SuperGlue matching. The best
performance was achieved using a combination of
SuperPoint and SuperGlue with a score of 60.34%
mAP on full rank.
None of the methods in the proposed pipeline

have been trained or adapted to underwater envi-
ronments or fish in general. Therefore, the results
indicate that the pipeline may also be applicable out-
of-the-box in other domains (both terrestrial and
underwater). The solution seems especially suited
for low-budget or volunteer-based wildlife conser-
vation projects without sufficient data for training
supervised machine learning algorithms.
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