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Gharehpetian, Senior Member, IEEE, Amjad Anvari-Moghaddam, Senior Member, IEEE and, Frede Blaabjerg
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Abstract—This paper presents a distributed fault-tolerant
finite-time control scheme for the secondary voltage and
frequency restoration of islanded inverter-based Alternating
Current (AC) Microgrids (MGs) considering input saturation and
faults. Most existing distributed methods commonly design the
secondary control layer based on ideal conditions of the control
input channels of the MG without any faults and disturbances.
At the same time, MGs are exposed to actuator faults that can
significantly impact the control of MGs, and lead the MG in
unstable situations. One of the other typical practical constraints
in multi-agent systems such as MGs is saturation. The other
novel idea is that a consensus-based scheme synchronizes the
islanded MG’s voltage and frequency to their nominal values
for all DGs within finite time, irrespective of saturation and
multiple faults, including partial loss of effectiveness and stuck
faults simultaneously. Finally, the performance of the proposed
control schemes are verified by performing an offline digital time-
domain simulation on a test MG system through a couple of
scenarios in MATLAB/Simulink environment. The effectiveness
and accuracy of the proposed control schemes for islanded AC
MGs are compared to previous studies, illustrating the privilege
of that.

Index Terms—Actuator faults, distributed control, finite-time,
microgrids, saturation, voltage and frequency synchronization.

NOMENCLATURE

A. DG Parameters
i, j Indices for DG units
vnomi , wnomi Voltage and frequency reference values
vd,qoi Direct and quadrature components of the

output voltage
Pi, Qi, mP

i , nQi Active power, reactive power and their
corresponding droop constants

mP
i , nQi Active and reactive power droop

constants
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uvi , uωi , upi Auxiliary voltage, frequency, and active
power-sharing inputs.

B. Fault Parameters
θvi (t) Unknown time-varying multiplicative

faults
θvi (t), θ̄vi (t) Lower and upper bounds of

multiplicative actuator faults
υfvi , ūiω , ūiP Faulty voltage and frequency control

signals
υvsi (t), ϕvi (t) Unknown time-varying stuck faults,

occurrence of the stuck fault
υvM Limitation of the actuator

C. Control Parameters
αvi1,2, αωi1,2, αpi1,2 Positive adaptive parameters
σvij , σ

ω
ij , σ

p
ij Positive constants

Q(γ), P (γ) Positive feedback matrix, positive
definite design matrix

I. INTRODUCTION

IN Alternating Current (AC) Microgrids (MGs), the
main control challenges are voltage and frequency

synchronization subject to active and reactive power-sharing
of Distributed Generations (DGs). For providing global
stability in MGs, a hierarchical control structure consisting of
primary, secondary, and tertiary control layers has been widely
proposed to standardize their operation and functionalities
[1]. The primary and secondary control levels and the local
control loops generally interact with each other by a cascaded
structure [2]. The tertiary control layer usually deals with
optimal power flow and economic dispatch independent of
primary and secondary controllers. The steady-state errors
of frequency and voltage resulting from the primary control
layer are compensated by the secondary control layer [3].
Conventionally, a centralized controller was used to receive the
necessary information and optimize the power flow problems.
However, when the number of DGs in an MG increases,
the centralized control approach needs higher bandwidth
communication [4]. Also, this approach suffers from single-
point failures, poor Plug and Play (PnP) capability, and low
fault tolerance performance [5]. In contrast, distributed control
approach is more appropriate for the secondary control of
MGs. Many various aspects of distributed control of MGs
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have been investigated in literature for time-delay [6], [7],
noise-resiliency [8], attack-resiliency [9], [10], and finite-time
consensus [11]–[13]. The consensus-based distributed control
has also been widely proposed in MGs for synchronization
of voltage, and frequency to their nominal values [14]–
[17]. Indeed, the main challenges of isolated operations
in these papers are voltage and frequency restoration by
considering small and large signal disturbances. In this
way, the MG is considered as a multi-agent system where
each DG is an agent. The communication among local
DERs allows the coordination of individual DGs, including
frequency/voltage restoration, active/reactive power-sharing,
and smooth switching operations. Aouthors in [18], based
on the feedback linearization technique, have proposed a
secondary controller for islanded MGs. In this approach, ideal
conditions for the control inputs and communication channels
have been considered. However, in practical applications,
the communication networks possess different limitations and
restrictive conditions.

Considering the non-ideal conditions, problems such as
fault-tolerant controls have been investigated [1], [19], [20].
Actuator faults can deteriorate the performance of the system
as a large control signal is always required to mitigate the
impacts of faults. In general, electrical devices are prone to
various faults caused by changes in environmental conditions
such as humidity and temperature, faults caused by EMC
problems, contact problems, and packaging failures [21]. In
addition, semiconductors are vulnerable to different faults like
metallization failures, and electrical overstress [22]. According
to the findings in [23], semiconductor switch failures can
appear in the output signals of the power converter, which can
be considered as a fault in the system. The other important
problem for the implementation of control algorithms is
the input saturation, which is a usual type of nonlinearity
in the control system, especially in actuators caused by
impossibilities in applying unlimited control signals [17],
[24]. Due to the limits on the duty cycles and nonidealities
in the components, and some software/hardware limits, the
power converters are inherently nonlinear systems [25]. Also,
saturation is common in the current controllers for overcurrent
protection [26]. The mentioned nonlinearities can affect the
performance of the power converters and even the stability of
the closed-loop system. It is known that high-gain feedback
can be employed to handle any input disturbances [27].
However, when the partial loss of effectiveness faults exists
in the control system, this method cannot provide a desirable
performance against saturation and faults. Therefore, it is
clear that the previously reported works cannot achieve the
consensus in the presence of the above input constraints.
Discarding the limitations conduces to controller wind up,
leading to poor transients such as large settling time and large
rise time in the response. In addition, transient performance
and convergence time to a steady-state value are the crucial
performance indexes that can easily be affected by actuator
faults. Worth to be noted that in classical LTI control
systems, the states of the closed-loop systems asymptotically
converge to equilibrium point provided that the closed-loop
system is asymptotically stable. These methods can only

guarantee the convergence at the steady-state, i.e., as t→∞.
However, they cannot guarantee this convergence will happen
in finite time. In contrast, the finite-time control methods
ensure that the convergence will happen in finite-time. In
multi-agent systems, inspired by the natural synchronization
phenomena [28], the finite-time control schemes have been
proposed based on the information measurements among the
neighboring agents (e.g., [29], [30]). These control schemes
are robust against perturbations and measurement errors and
are faster than the conventional distributed control algorithm
[31], [32]. From a practical perspective, sensitive loads in
MGs require operation at the nominal voltage and frequency.
Besides a finite mitigating time, the finite-time control
provides robust performance, higher accuracy, and disturbance
rejection properties [33]. Hence, it is desirable to accelerate
the synchronization process and achieve the consensus in a
finite time. Several existing works such as [33]–[36] have
investigated some types of finite-time secondary control of
MGs to speed up the synchronization process of both voltage
and frequency. In particular, a finite-time control protocol
has been proposed in [36] to synchronize the frequency and
regulate the voltage for islanded MGs. This paper shows that
the contrary the conventional distributed method, the finite-
time controller can even maintain finite time convergence
in frequency synchronization and voltage regulation under
changing the communication topology.

This paper proposes a novel finite-time consensus secondary
voltage and frequency control strategy for islanded AC MGs
subject to input saturation and actuator faults. To this end, a
distributed adaptive technique into the secondary control layer
is suggested to restore voltage and frequency. Note that, simialr
to several recnt studies such as [19], we consider the nonlinear
dynamic of DGs. The disadvantage of using linear dynamics
is that it cannot be effectively used for MGs simulation,
especially when there are large-signal disturbances. To the
best of our knowledge, this is the first paper investigating
the problem of secondary voltage and frequency regulation
in the presence of input saturation under faults in AC
MGs. Motivated by the problems mentioned above, the main
contributions of this paper can be summarized as follows:

• A novel fault-tolerant finite-time control scheme in the
presence of saturation in the control inputs is proposed
for islanded AC MGs based on a distributed algorithm in
the secondary control layer of MGs, which can restore the
voltage and frequency, and realize active/reactive power-
sharing. The presented method is based on an nonlinear
adaptive law that guarantees finite-time semi-global
stability of the closed-loop control system, considering
input limitations and faults.

• Unlike the existing works on the problem of distributed
secondary control with faults [1], and [19], we consider
time-varying faults in the multiplicative term where the
upper and lower bounds of fault factors are unknown,
which is close to practical situations. Besides, our method
can tackle stuck faults differently from the low gain
approaches.

• From a practical point of view, loads in MGs require
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to operate at the reference value of voltage and
frequency. Hence, it is desirable to accelerate the
synchronization and guarantee consensus in a finite
time. Additionally, the finite-time control approaches
provide robust performance, stability, and disturbance
rejection. In this paper, finite-time semi-global stability
can be achieved despite faults and saturation. It is worth
mentioning that by using the proposed scheme, there is
no need to have quantitative information of the fault such
as amplitude, frequency, and type of signals. We need
to make sure that the fault signals are bounded. This
assumption is common in the design of robust control
systems [37].

It should be highlighted that in control problems, different
kinds of software and hardware damage to the input controller
that might affect the control commands can be considered
as input constraints such as fault and saturation [33]. Faults
can have devastating effects on the performances and cause
the information security in the MG to be vulnerable. Fault-
tolerant controllers help MGs ride through software and
hardware damages. The authors in [38] and [39] classify
the faults according to eight basic points of view that can
lead to some classes of faults by objectives, system limits,
phenomenological causes, stage of creation, or occurrence.
These unwanted phenomena can be unveiled through different
modes of faults in the control system. In MGs, inverters are
considered as real actuators [40]. Therefore, any failure or fault
in these actuators might cause faulty signals in the control
loop, which can affect the whole performance and stability.
It should be noted that a type of fading channel also has the
same effect on the control systems [41].

The rest of the paper is organized as follows: preliminaries
of the problem, including a model of communication
between DGs, model of faults, and dynamic model of
the MG are introduced in Section II. The proposed
distributed fault-tolerant scheme for voltage regulation and
frequency synchronization are provided in Sections III and
IV, respectively. The performance of the control schemes
based on offline digital time-domain simulations and the
comparison with other works are presented in Section V.
Finally, conclusions are stated in Section VI.

II. PRELIMINARIES

A. Notation

‖ . ‖ represents the Euclidian norm of vectors or matrices.
I denotes the identity matrix with appropriate dimensions.
diag {d1, d2, . . . , dn} stands a block-diagonal matrix with
d1, d2, . . . , dn, on its diagonal. For any symmetric matrix
Q(γ) ∈ Rn×n, λi is the i-th eigenvalue of Q(γ) and, λmax and
λmin show the maximum and minimum eigenvalues of Q(γ),
respectively. Re {λi (Q(γ))} means the real part of λi (Q(γ)).
Q(γ) > 0 denotes Q(γ) is a real symmetric and positive
definite matrix.

B. Communication Graph model

In an AC MG consisting of N DGs, the communication
network among DGs can be described by an undirected graph

G = (V, E ,A), where V = {νi : i ∈ N} is a set of nodes,
representing each DG in the MG, and E ⊆ V × V is a set of
edges. If the node νi can communicate with the other node νj ,
there exists an edge (νi, νj) ∈ E between them. A ∈ RN×N
is defined as the adjacency matrix, where aij = aji, aii = 0.
aij > 0 if the i-th DG receives (transmits) the information
from (to) the j-th DG and, otherwise, aij = 0. The set of
neighbors of DG i is defined as Ni = {νj ∈ V : (νj , νi) ∈ E}.
The Laplacian matrix of the graph associated with A is defined
as L = [lij ] ∈ RN×N , where lii =

∑
j 6=i aij , when i = j.

In communication network of MGs, the nominal values for
voltage and frequency are only accessible for a leader node
that can be connected to a few DGs. Ḡ = diag[ai0] is defined
as a diagonal pinning matrix, where ai0 > 0 if the i-th DG
(νi) can directly receive information of the leader, otherwise
ai0 = 0. Also, we define β = L+ Ḡ.

C. Inverter-based MG modeling

This section presents the state space formulation of MG
proposed in [14]. The physical layer of inverter-based MGs
includes a DC energy source, a voltage source inverter, the
primary and the secondary control layer, the series LCL
filter, and the output connector (demonstrated in Fig. 1). As
mentioned before, the communication layer among DGs is
modeled by a graph through which each DG is considered
as an agent. In the primary control layer, the control loops use
PI controllers to regulate the output voltage and frequency
of inverters. It should be noted that each DG’s nonlinear
large-signal model is presented in its rotating d-q (direct-
quadrature) reference frame concerning a selected DER as a
common reference frame. Since some deviation in voltage and
frequency generated by the primary control layer, the main aim
of the secondary control is to restore them to their desired
values. To come up a proper secondary controller, we use the
following droop equations for the i-th DG [42]:

ωi = ωnomi −mP
i Pi (1){

vodi = vnomi − nQi Qi
voqi = 0

(2)

As previously mentioned, DG units are nonlinear and
heterogeneous systems. Additionally, due to the differences
between DG’s parameters, the dynamic of units are
heterogeneous and non-identical. Some previous studies in
the literature only considered the simplified linear dynamics
of DG units and ignored the nonlinear model of these units.
According to the findings in [43], linear dynamics are only
proper and valid for the analysis and controller design around
the equilibrium points of the system. They cannot be extended
for the analysis and simulations of the system in different
conditions. In the feedback linearization technique, we do not
discard the nonlinear terms in the model; we cancel them using
feedback terms. Thus, input-output feedback linearization is
required to transform the nonlinear dynamic of DGs to a linear
one. Once the input-output feedback linearization technique
is used, the secondary control is converted to a multi-agent
tracking problem. To design any control scheme into the
secondary control layer, by utilizing the feedback linearization
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Fig. 1: The MG’s control layers.

technique and combining dynamic models of the control loops
and filters, the dynamics of each DG in MGs can be described
as follows [19]:



δ̇i = ωnomi −mP
i Pi − ωcom

Ṗi = ωci (vodiiodi + voqiioqi − Pi)
Q̇i = ωci (vodiioqi − voqiiodi −Qi)
i̇ldi =

−Rfi

Lfi
ildi + ωcomilqi +

vnom
i −nQ

i Qi−vodi
Lfi

i̇lqi =
−Rfi

Lfi
ilqi − ωcomildi − voqi

Lfi

v̇odi = ωcomvoqi + ildi−iodi
Cfi

v̇oqi = −ωcomvodi +
ilqi−ioqi
Cfi

i̇odi =
−Rfi

Lci
iodi + ωcomioqi + vodi−vbdi

Lci

i̇oqi =
−Rfi

Lci
ioqi − ωcomiodi +

voqi−vbqi
Lci

(3)

The impact form of the above equation can be written as: ẋi = fi(xi) +Wi(xi)Hi + ri1(xi)ui1 + ri2(xi)ui2
yi1 = gi1(xi)
yi2 = gi2(xi) + hiui2

(4)

where Hi = [ωcom vbdi vbqi]
T is considered as

a known disturbance, the state vector is xi =

[δi Pi Qi φdi φqi γdi γqi iLdi iLqi vodi voqi iodi ioqi]
T ,

ui = [ui1 ui2]
T is the input vector and yi = [yi1 yi2]

T is the
output vector, accordingly. The detailed descriptions of the
functions fi(.), Wi(.), ri(.), and gi(.) can be obtained from
the state-space equations in 3.
For the secondary voltage control of MGs, we define Fi(xi) =
fi(xi)+Wi(xi)Hi, then the voltage dynamics of each DG are
obtained as follows:{

ÿi1 = v̇odi
ÿi2 = v̈odi = L2

Fi gi1
+ Lri1LFi1 gi1 ui1

(5)

where LFi
gi = [∂gi/∂xi]Fi(xi) and L2

Fi gi1
=

[∂LFi gi1/∂xi]Fi(xi) denotes Lie Derivative [43] of gi1
with Fi. So, one can write (5) as:

ẏi = Ayi + Bυvi (t) +Dvdvi (6)

where υvi = L2
Figi1

+ Lri1LFigi1ui1 is the virtual input,

yi = [vodi v̇odi]
T

= [yi1 yi2]
T , A =

[
0 1
0 0

]
, B = [0 1]

T
,

Dv = [1 0]
T

and dvi denotes the external disturbance
or can be considered as the modeling error. Hence, the

control input can be defined as ui1 =
(−L2

Fi
gi1+υi)

(Lri1
LFigi1

) . As



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, JUNE 2022 5

explained in some previous related papers (e.g., [44]–[46]),
input-output feedback linearization is utilized to facilitate the
distributed secondary controller design without linearizing
the DG dynamics. It should be mentioned that the feedback
linearization can only use for the modeling purpose and not
the control design. In fact, the proposed secondary control
approach in this paper is linear (see (11)). Also, from the
dynamic model in (3), derived from the LCL filters and the
output connectors, it can be figured out that the variables
in L2

Figi1
and Lri1LFigi1 include measurable variables and

DG’s filters parameters. Therefore, the compensator block,
corresponding to the feedback linearization technique, can be
implemented into the secondary control layer. To increase the
accuracy of the linearization, the effect of measurement noise
or parameter inaccuracy can be overcome by employing some
methods discussed in the literature such as [5] and [17], which
are out of the scope of this paper. The block diagram of
distributed secondary voltage control is shown in Fig. 1. Based
on the state-space model in 6, now, the aim of the secondary
control level is to find an appropriate voltage control υi as yi1
converges to vref in order to reach a consensus considering
the constraints in the control input.

D. Fault Model

In general, from modeling point of view, faults can be in
the form of additive or multiplicative. Multiplicative faults
appear as a product of the fault signal in one or multiple
variables, which can be considered intermittent faults like
pulse and sine functions. In this paper, we consider the time-
varying multiplicative (partial loss of effectiveness) faults,
which are common in practical applications and have been
used in several studies, [1], [19], [41]:

υfvi = θvi (t)sat(υvi (t)) + ϕvi (t)υ
vs
i (t) (7)

sat(υvij(t)) =


υvM υvij ≥ υvM
υvij −υvM < υvij < υvM
−υvM υvij ≤ −υvM

(8)

where θvi (t) satisfies 0 ≤ θvi (t) ≤ θvi (t) ≤ θ̄vi (t) ≤ 1.
ϕij (t) ∈ {0, 1} is used to determine the occurrence of the
stuck fault. υvsi (t) will be a constant as long as the stuck
fault exists. It is obvious that when θvi (t) = 1 and ϕvi (t) = 0,
there is no fault in the MG and whenever ϕvi (t) = 1 stuck
faults occur in actuators.

Assumption 1. The graph considered as a communication
topology for MGs is undirected and connected.

Assumption 2. The bounds of faults and
disturbances considered in this paper satisfy
[λmax(B2B

T
2 )δ̄i]/[λmin(B2θiB

T
2 ] (υvM − st), where i ∈ V ,

δ̄i is the upper bound of δvi (t) = ϕvi (t)υ
vs
i + dvi (t), st is a

constant with 0 < st < υvM and B2 is given by a full-rank
decomposition B = B1B2 [47].

Lemma 1. [27] Consider a dynamical system described by ẏ =
f (y) and let V (y) be a differentiable function with V (y) ≥

0. The origin of the system is finite-time stable if there are
positive scalars za > 0, cz > 0 and 0 < η <∞ such that:

V̇ (y) ≤ −za V (y) + η (9)

For any 0 < ca < 1, the trajectory of y will be limited to the
relict set Λ =

{
y
∣∣∣V (y) ≤ η

za(1−ca)

}
and the upper bound of

the settling time ts is estimated as follows:

ts ≤
1

zaca
ln

(1− ca)V (y(0))

η
(10)

III. DISTRIBUTED FINITE-TIME FAULT-TOLERANT
VOLTAGE CONTROLLER

This section aims to design a distributed finite-time leader-
following consensus of voltage regulation subjected to faults
with input saturation in the control input channels. Then, the
stability and semi-global consensus of the closed-loop control
system are analyzed. Moreover, the steady-state error and
the settling time are proposed in analytic forms. Note that
this approach, in comparison to the traditional low-and-high
gain methods which can only use for additive disturbances,
can alleviate the effects of faults. In addition, by using the
parametric form of the Riccati equation, this design provides
a parametric stable solution.
Let evi (t) stands for the collection of local information for DG
i, which can be represented by:

evi (t) =

N∑
j=1

aij(yi(t)− yj(t)) + ai0(yi(t)− yref ) (11)

where aij(yi(t) − yj(t)) can denote the weighted exchanged
information between i-th and j-th DGs. Considering the
properties of the Kronecker product, one can write:

ev(t) = (β ⊗ I)y(t) (12)

where ev (t) = col {ev1 (t) , ev2 (t) , . . . , evN (t)}. The
distributed finite-time scheme in the secondary control layer
for each DG is designed as follows:{

υvi (t) = −αvi1(t)qvi (t)− bvij(γ, t)
bvij(γ, t) =

αv
i2

2(t) qvij(γ,t)

αv
i2(t)‖qvij(γ,t)‖+ε(γ)Υ(t)

(13)

where i ∈ Vi, qvi = BTP (γ)evi (t), αvi1, qvij(γ, t) and bvij(γ, t)
are the j-th elements of qvi (γ, t) and bvi (γ, t), respectively.
P (γ) will be introduced in the rest of the paper. The adaptation
law of the mentioned parameters is described as follows:{

α̇vi1 = υvM (−σvi1αvi1(t) + ‖qvi (t)‖2)
α̇vi2 = υvM (−σvi2αvi2(t) + ‖qvi (t)‖) (14)

where εv(γ) = (λmin(Q(γ))/λmax(P (γ))).

Remark 1. Following the low-and-high gain feedback
principle, the first term in (13) is designed as the low-gain
part with υvM in its adaption law which is adjusted based
on the saturation level. In contrast, the second term is the
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high-gain part that mitigates the impact of multiplicative
faults.

Theorem 1. Let Assumption 1 and 2 holds. Employing
the proposed adaption law (14), there exists γ > 0 such
that the consensus problem of finite-time semi-global voltage
regulation of each DG in the MG considering input saturation
under partial loss of effectiveness faults can be solved by
(13). In addition, the steady-state error will be limited to the
following residual set:{

ȳ | ‖ȳ‖ ≤
√

%v

λ1λmin(P (γ))(1− ξ)

}
(15)

where 0 < ξ < 1, %v =
N∑
i=1

2∑
j=1

κiσ
v
ijα

v
ij+2

N∑
i=1

κiΥ(t) and λ1

is the minimum eigenvalue of β. The settling time is restricted
by:

ts ≤
1

ε(γ)ξ
ln

(1− ξ)V (ȳ(0))

%
(16)

Proof. V (ȳ) is the Lyapanuv candidate which is selected for
the system (5) as follows:

V (ȳ) = ȳT (β ⊗ P (γ))ȳ (17)

where P (γ) is the parametric matrix and the unique solution
of the following Riccati equation for any γ > 0:

ATP (γ) + P (γ)A− P (γ)BBTP (γ) +Q(γ) = 0 (18)

According to (12) and (7), the dynamics of the global tracking
error with input saturation are described as follows:

ẏ(t) = (I ⊗A)y(t) + (I ⊗B)θ(t)sat(υv(t))+

(I ⊗B)δvi (t)
(19)

sat(υvi (t)) = [sat(υvi1(t)), ... , υvi2(t)]. By differentiating of
V (ȳ), we have:

V̇ (ȳ) = 2ȳT (β ⊗ P (γ)) ˙̄y (20)

By applying (12) into (20), we can obtain that

V̇ (ȳ) = 2ȳT (β ⊗ P (γ)A) ˙̄y + 2ȳT (β ⊗ P (γ)B)

× θ sat(υv) + 2ȳT (β ⊗ P (γ)B)δ

= V1 + V2

(21)

where we define V1 and V2 as follows:

V1 = 2ȳT (β ⊗ P (γ)A)ȳ − 2

N∑
i=1

αvi1q
v
i
T (γ, t) θiq

v
i (γ, t)

− 2

N∑
i=1

δ̄i
κi

qvi
T (γ, t)θi q

v
i (γ, t)

‖qvi (γ, t)‖
+ 2ȳT (β ⊗ P (γ)B)δ

(22)

V2 = 2ȳT (β ⊗ P (γ)B)sat(υv) + 2

N∑
i=1

αvi1q
v
i
T (γ, t) θi

× qvi (γ, t) + 2

N∑
i=1

δ̄i
κi

qvi
T (γ, t)θi q

v
i (γ, t)

‖qvi (γ, t)‖

(23)

By considering the above-mentioned definitions, we can
obtain:

V1 ≤ 2ȳT (β ⊗ P (γ)A)ȳ − 2

N∑
i=1

κiα
v
i1q

v
i
T (γ, t) θiq

v
i (γ, t)

− 2

N∑
i=1

δ̄i ‖qvi (γ, t)‖+ 2

N∑
i=1

qvi (γ, t)δi

(24)
Note that 2κiα

v
i1
≥ (1/λ1), i ∈ V , where λ1 is the minimum

eigenvalue of β and δ̄i is the bound of ‖δi(t)‖ which satisfies
‖δi(t)‖ ≤ δ̄i. Substituting (14) into (24), we can get that:

V1 ≤ ȳT (β ⊗ P (γ)A+ β ⊗ATP (γ)− 1

λ1
β2 ⊗ P (γ)

×BBTP (γ))ȳ
(25)

Based on Assumption 1, there will be an orthogonal matrix ψ
such that ψTβψ = F with F = diag{λ1, ..., λN}, 0 < λ1 ≤
λ2 ≤ ... ≤ λN . If we define ỹ = (ψT ⊗ I)ȳ, then we have:

V1 ≤ ỹT (F ⊗ P (γ)A+ F ⊗ATP (γ)− 1

λ1
F 2 ⊗ P (γ)

×BBTP (γ))ỹ ≤ ỹT (F ⊗Q(γ))ỹ
(26)

and then, we obtain:

V1 ≤ −
λmin(Q(γ))

λmax(P (γ))
ȳT (β ⊗ P (γ))ȳ = −ε(γ)V1 (27)

Now, we try to take a similar step for another Lyapanuv
function V2. Considering (7), one can write:

V2 = 2

N∑
i=1

qvi
T (γ, t) θi [sat(υvi ) + αv

i1
qvi
T (γ, t) +

δ̄i
κi

× qvi (γ, t)∥∥ qvi T (γ, t)
∥∥ ]

(28)

Let define ζ = −2qvij
T (γ)θi[sat(υ

v
i ) + αvijq

v
i (γ) +

δ̄i
κi

qvi (γ,t)

‖ qvi T (γ,t)‖ ] and rvi (γ, t) = (δ̄i/κi)(
qvi (γ,t)

‖ qvi T (γ,t)‖ ). It should

be mentioned that qvij(γ, t) and rvij(γ, t) stand for the j-th
components of qvi (γ, t) and rvi (γ, t), respectively. As θi has a
diagonal form, ζi(γ, t) can be written as follows:

ζi(γ, t) =

N∑
i=1

−2qvi
T (γ, t) θi [−sat(υvi )− αv

i1
qvij(γ, t)

− rvij(γ, t)] =

n∑
j=1

χij(γ)

(29)

By substituting (13) into (29), it yields that:

χij(γ) = −2qij(γ, t) θij
[
sat
(
−αvijqvij(γ, t)− bij(γ)

)
−αvi1 qvij(γ, t)− rvij(γ, t)

] (30)

Considering Assumption 2, we have
∣∣αvij qvij(γ, t)∣∣ ≤ st and

|rij(γ, t)| ≤ υvM−st. If |bij(γ)| ≥
∣∣rvij(γ, t)∣∣, then ζij(γ) ≤ 0,

otherwise by using (13), one can get:
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χij(γ) ≤ 2 θvij

[
αvi2

2(t) qvij(γ, t)

αvi2(t)
∥∥qvij(γ, t)∥∥+ ε(γ)Υ(0)

+
δ̄i
κi

qvi (γ, t)∥∥ qvi T (γ, t)
∥∥
]
≤ 2θ̄vijε(γ)Υ(0)

(31)

where we considered the fact that δ̄i
κi
≤ υvM . Hence, one can

reach:

V2 ≤
N∑
i=1

n∑
j=1

χij(γ) ≤
N∑
i=1

n∑
j=1

2θ̄vijε(γ)Υ(0) (32)

Combining (27) and (32), we obtain that:

V̇ (ȳ) ≤ ε(γ)V (ȳ) +

N∑
i=1

n∑
j=1

2θ̄vijε(γ)Υ(0) (33)

Therefore, based on Lemma 1, the proof is completed.

IV. DESIGN OF FINITE-TIME FAULT-TOLERANT CONTROL
SCHEME FOR FREQUENCY REGULATION

In this part, a distributed finite-time frequency and active
power sharing algorithms are put forward to reach frequency
restoration such that ω → ωref , concerning the occurrence
of faults and input saturation similar to the previous section.
Moreover, the proposed algorithm should be able to realize
active power-sharing. Based on the droop characteristic in
(1), the frequency synchronization problem can be dealt with
as a tracking problem of first-order multi-agent systems.
To achieve frequency restoration and active power sharing
simultaneously, two separate controllers are considered such
that mp

1P1 = mp
2P2 = ... = mp

NPN . According to (1), one
can write: {

ω̇i = uωi

mP
i Ṗi = uPi

(34)

Here, it is needed to design a secondary frequency controller
by using the differential equation in (34) to reach the frequency
regulation and active power-sharing. In this regard, considering
the mentioned constraints in control input, the following
control schemes are defined:

{
ω̇i = ũωi = θωi (t)sat(uωi (t)) + ϕωi (t)uωsi (t) + dωi

mP
i Ṗi = ũPi = θpi (t)sat(upi (t)) + ϕpi (t)u

ps
i (t) + dpi

(35)

Considering the given dynamics, we can allocate two finite-
time control schemes to guarantee frequency synchronization
and proportional active power-sharing under faults and
saturation. Next, to achieve the control purposes, the following
controllers are presented:{

uωi (t) = −αωi1(t)qωi (t)− bωij(γ, t)
bωij(γ, t) =

αω
i2

2(t) qωij(γ,t)

αω
i2(t)‖qωij(γ,t)‖+εω(γ)Υ(t)

(36)

{
upi (t) = −αpi1(t)qpi (t)− bpij(γ, t)

bpij(γ, t) =
αp

i2
2(t) qpij(γ,t)

αp
i2(t)‖qpij(γ,t)‖+εp(γ)Υ(t)

(37)

where qωi = BTP (γ)eωi (t), qpi = BTP (γ)epi (t). The
weighted tracking errors between frequency and active
power sharing of i-th and j-th DGs in (36) and (37)

are eωi (t) =
N∑
j=1

aij(ωi(t)− ωj(t)) + ai0(ωi(t)− ωref ) and

epi (t) =
N∑
j=1

aij(m
p
iPi(t)−m

p
jPj(t)), respectively. The

adaptation law of the mentioned adaptive gains are given as
follows: {

α̇ωi1 = uωM (−σωi1αωi1(t) + ‖qωi (t)‖2)
α̇ωi2 = uωM (−σωi2αωi2(t) + ‖qωi (t)‖) (38)

{
α̇pi1 = upM (−σpi1α

p
i1(t) + ‖qpi (t)‖2)

α̇pi2 = upM (−σpi2α
p
i2(t) + ‖qpi (t)‖) (39)

Therefore, according to the above protocols, the distributed
secondary control scheme for the frequency synchronization
and active power-sharing is proposed as:

ωni =

∫
(ũωi + ũPi )dτ (40)

Theorem 2. If Assumptions 1 and 2 hold, then by using the
proposed control schemes (36) and (37), the synchronization
of frequency and active power sharing for MGs by considering
input saturation and multiplicative faults can be obtained.

Proof. With some mild modifications and taking some steps
similar to the previous theorem, this theorem can be proved.

Remark 2. The steady-state tracking error of the proposed
frequency and active power-sharing schemes and the
limitation of settling time can be obtained in the same fashion
as Theorem 1.

V. CASE STUDY

In this section, the performance of the proposed method is
verified through several simulation results of an off-grid multi-
DGs MG shown in Fig. 2, conducted in MATLAB/Simulink
software environment, which can demonstrate the effectiveness
of the proposed methods under external disturbance, faults,
and input saturation. The single line diagram of the MG
is based on the parameters presented in Table I. The bus
lines are represented by series resistance and inductance (RL)
branches. The DGs can communicate through the undirected
communication network as shown in Fig. 3, and only DG
#1 can access the reference signal values. The simulations
are performed under a couple of scenarios, which can verify
the accuracy and effectiveness of the proposed scheme in
encountering small- and large-signal disturbances such as load
change and PnP functionality of DERs. Here, we just focus
on the secondary voltage and frequency control. To make our
protocols suitable for implementation on real-time simulators
and controllers, the switching frequency of converters is
selected as fsw = 8kHz. In this regard, the sampling time
of the control algorithms is selected to be Ts = 0.00002s.
Also, a time-delay is applied to the generated PWM signals,
before being imposed to the converters. Moreover, we compare
our results with some previously reported works. It is worth
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note that due to the impedance effect of transmission lines,
both accurate reactive power sharing and voltage regulation
cannot be achieved simultaneously, except under a symmetric
configuration [7]. Nevertheless, it can be seen that our
proposed controller scheme does not deteriorate the reactive
power-sharing before applying the secondary control. It should
be mentioned that the proposed control algorithm does not
solve the Ricatti equation during the operation of the control
system (online), which means that it is required to solve that
once before applying the secondary control algorithm.

TABLE I: The MG Parameters

Descriptions DG#1&#2&#3 DG#4&#5

mP 12.5 × 10−5 9.4 × 10−5

nQ 1.5 × 10−3 1.3 × 10−3

KPV 0.05 0.1
KIV 390 420
KPC 10.5 15
KIC 16000 20000

LC Filters Rf = 0.3 Ω, Lf = 1.5 mH, Cf = 47µF
Output connectors Rc = 0.05 Ω, Lc = 0.35 mH

Lines Lines 2&3&4 Lines 1&5
0.12 + 0.1 Ω 0.175 + 0.58 Ω
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Line #2 Line #3

Line #5
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Load #3
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4

L
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e
 #

1

S #2

Fig. 2: Single line diagram of the test off-grid MG.
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DG 
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DG 
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Ref
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#5

Fig. 3: Communication topology network among DGs.

A. Performance evaluation and numerical results

Here, the performance of the finite-time algorithm in
synchronization of voltage, frequency, active power-sharing
in the presence of faults, and saturation is assessed. The
performance of the closed-loop system is evaluated with
the assumption that the communication links are ideal and
there exist no failures for them. According to the Riccati
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Fig. 4: Performance of the proposed scheme for DGs: (a)
Voltage, (b) Frequency, (c) Active power, and (d) Reactive
powers.

equation (18), Q(γ) must be a symmetric positive-definite
matrix. Based on that, to have a feasible solution and an
acceptable performance, we select the design matrices and

parameters as Q(γ) =

[
1 0
0 1

]
for the voltage controller,

Q(γ) = 0.81 for the frequency and active power controllers,
Υv(t) = 0.05 e−2t ,Υω(t) = 0.2 e−3t ,σvi1 = 0.5, σvi2 = 0.2,
σωi1 = σpi1 = 0.02, σωi2 = σpi2 = 0.04, υvM = 30 and
υωM = 12. Also, the fault parameters for voltage, frequency
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and active power control inputs are considered as θvi =
0.6 + (0.5 + (0.7− 0.5)× rand(1)) × sin(3t) and θω,pi =
0.5 + (0.4 + (0.9− 0.4)× rand(1)) × sin(4t). The second
terms of faults range from 50-70% and 40-90%, respectively.
The external disturbances are assumed to be dvi = cos(0.5t)
and dpi = dωi = cos(t). The simulations scenarios are carried
out as:

1) At t = 0s, the MG (Fig. 2) operates in the islanded mode;
2) At t = 0.7s, the proposed secondary control scheme is

activated;
3) At t = 1.5s, S #2 is closed;
4) At t= 5.5-6s, the DG #1 and DG #5 are under a stuck

faults, which means that their control input only sends a
constant as control command signals;

5) At t = 2.5s, load #3 is increased (200%) and then
decreased to the initial value at t = 4.5s;

6) At t = 5s, the S #2 is opened;
7) At t= 6.2-6.5s and t= 6.5-7s, the DG #2 and DG #4 are

under a stuck fault for frequency and voltage controller,
respectively;

8) At t = 8s, for PnP scenario, S #1 is opened, and DG #5
is plugged out and then plugged in at t = 10s by closing
S #1, respectively;

First, the primary controller is only activated, and all
DGs have to supply the loads. The operation of this layer
makes some deviations in the voltage and frequency from
the nominal values. Therefore, the proposed finite-time fault-
tolerant controllers in (13), (36) and (37) are applied at t
= 0.7s to restore the voltage and frequency of each DG to
their reference values in the presence of saturation and faults.
As can be observed from Fig. 4, by enforcing the secondary
control layer, the deviations are restored to their prescribed
values, and accurate active power-sharing is also provided.
Then, to investigate the performance of the proposed control
schemes against load changes, the switch S #1 is closed at t
= 1.5s to change the MG topology. Also, in two periods, we
consider the situations in which the controllers of DG #2 and
DG #3 cannot generate proper command signals. However,
the designed controllers show an acceptable performance
even though some deviations from the voltage and frequency
reference values. Even after occurring the faults, the proposed
controllers can maintain the stability of the closed-loop system,
with minimal fluctuations. Afterward, the load change scenario
is examined by increasing load #3 (200%) at t = 2.5s, and then,
the load change scenario gets over by decreasing load #3 to
its initial value. At t = 5s, the S #1 is opened to transfer the
MG topology to its initial one. At the end of the simulation, to
show the robust performance of the proposed control scheme
under PnP functionality, DG #5 is disconnected from the MG
and then reconnected at t = 8s and t = 10s, respectively. At this
stage, we can see some oscillations in the active and reactive
power of DG #5 during the PnP scenario while the other
DGs increase their output powers to compensate for the power
shortage caused by the outage DER units. All scenarios have
happened in the presence of saturation and faults. One can see
that by employing the proposed control schemes, the closed-
loop system responds well to different small- and large-signal

disturbances and the voltage and frequency of units are kept
to their prescribed values regardless of the input constraints.

B. Changing fault parameters

In this part of the evaluation, the performance of the MG
with the proposed controllers is illustrated for different values
of faults. The fault parameters on voltage, frequency and active
power controllers are considered as θvi = 0.8+4×sin(8t) and
θω,pi = 1+5×sin(10t). The simulation scenarios are the same
as the previous subsection. The results in Fig. 5 show that
although changes in fault parameters affect the response of
voltage and frequency in some moments and cause diversions
from the nominal values, the MG remains stable despite severe
faulty conditions.

C. Changing type of fault

To make the evaluation of our suggested controllers more
comprehensive, the fault signals are considered as a function
of states. Therefore, the fault signals are chosen as: θvi =
0.1 + 0.2 × sin(2vi) and θω,pi = 0.2 + 0.2 × sin(3ωi). The
results shown in Fig. 6 demonstrate that the performance of
the proposed control schemes has enough robustness against
the state-dependent faults and, the controllers do not need
information about the type of the occurred faults.

D. Comparison with previous studies

To verify the effectiveness of the proposed control algorithm
for the regulation problem of the DGs under multiplicative
faults and saturation, we compare our results with some
previously reported distributed secondary control methods.
The selected fault parameters are similar to Subsection V-A.
Simulation results presented in Fig. 7 show the voltage,
frequency, and active power signals of DG #2 for each method.
The following cases have been selected for the comparison:
• Firstly, the conventional algorithm proposed in [14] is

considered, which employs the standard linear consensus
cooperative protocol for the voltage and frequency
regulation according to the error signals and an ideal
communication network.

• The next algorithm is based on distributed sliding mode
algorithm in [11], which guarantees synchronization of
the voltage and frequency at the secondary layer in the
presence of uncertainties. By using the input dynamic
extension technique, the chattering is reduced.

• The next scheme is the cooperative fault-tolerant control
introduced in [19], which considered multiplicative and
bias faults. The design procedure consists of distributed
observer and an adaptive fault-tolerant algorithm to
regulate the voltage and frequency in MGs.

• The last method is based on a distributed robust finite-
time control algorithm presented in [33]. This algorithm
is reached from a super-twisting sliding-mode control
approach. The proposed protocols in this study are
synthesized by considering the unmodelled dynamics and
unknown disturbances.
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Fig. 5: Performance of the proposed scheme for DGs: (a)
Voltage, (b) Frequency, (c) Active power, and (d) Reactive
powers.

In the beginning, the performance of the MG based on
the mentioned previous reported methods and our proposed
algorithm is discussed in faulty condition with input saturation.
As shown in Fig. 7, the simulation results demonstrate that the
conventional method in [14] does not have good performance
in comparison with the other selected algorithms, and it can
be unstable under severe faults. Also, convergence is not
achieved due to a limitation on the control signals. It can
also be clearly understood that the response of sliding mode
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Fig. 6: Performance of the proposed scheme for DGs: (a)
Voltage, (b) Frequency, (c) Active power, and (d) Reactive
powers.

control algorithms of [11] is not proper and, there are some
oscillations as the consequence of faults. Unlike conventional
distributed controllers, this method quickly reaches consensus
and exhibits a more accurate robust performance as it uses a
sliding mode controller. The fault-tolerant method presented
in [19] illustrates a relatively desirable performance against
actuator faults. Still, due to the existence of saturation, it
is not able to provide a desired transient performance. In
general, all mentioned previously published methods cannot
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Fig. 7: Comparison of the proposed scheme with previously
reported studies in [14], [11], [19] and, [33]. (a) Voltage, (b)
Frequency and (c) Active power of DG #2.

display an acceptable and robust performance against faults
and saturation. As a result, there are some oscillations in the
voltage and frequency responses using the previously proposed
control schemes. Furthermore, the secondary controller does
not react well when the MG faces input constraints, and as
can be seen, the outputs of voltage and frequency take a fairly
long time to rise. Also, the selected methods’ control efforts
(Euclidean norm) of the voltage and frequency controllers are
compared as shown in Fig. 8. Note that these signals illustrate
the total energy related to each controller output. As can be
seen, the control efforts of other methods are relatively more
than the proposed algorithm. Note that by using the proposed
distributed control scheme, the convergence speed and fault-
tolerance of the voltage and frequency are desirable. Moreover,
it shows a better performance in terms of voltage regulation
and frequency synchronization in the presence of time-varying
multiplicative faults and saturation.

VI. CONCLUSION

In this work, a novel finite-time fault-tolerant secondary
control is proposed for voltage and frequency restoration
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Fig. 8: Comparison of the control efforts of the proposed
method with previously reported studies in [14], [11], [19]
and, [33]: (a) Voltage and (b) Frequency.

considering actuator faults in the presence of input saturation.
In this regard, an adaptive fault-tolerant controller is devised
for each DG to guarantee the semi-global stabilization
of the voltage and frequency of isolated AC MGs. It is
proven that finite-time stability could be achieved, and both
the steady-state consensus error and the settling time are
well formulated. Eventually, MATLAB/Simulink simulations
verifies the validity of the proposed fault-tolerant control
method. In addition, compared to the previously effective
methods, both the theoretical and simulation outcomes
reveal that the presented control scheme has better and
desirable performance under input limits, including partial
loss of effectiveness and constraints in actuators such as
saturation. Our future study investigates the effect of attacks
in communication networks of MGs in the secondary control
layer in the presence of faults and input constraints.
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