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Representation Learning-driven Fully-automated
Framework for the Inverse Design of Frequency
Selective Surfaces

Zhao Zhou, Zhaohui Wei, Jian Ren, Member, IEEE, Yingzeng Yin, Member, IEEE, Gert Frglund Pedersen, Senior
Member, IEEE, and Ming Shen, Senior Member, IEEE

Abstract—Frequency selective surfaces (FSSs) refer to planar
structures that behave with specific electromagnetic (EM) re-
sponses within a frequency range and are widely applied in
wireless propagation systems. Given the fact that different EM
responses correspond to distinguished topologies, conventional
inverse design methods of FSSs are usually labor-intensive, as
they rely on experienced human engineers to determine the
topology and then rationally tune its structures. There have
been great attempts using optimization algorithms (e.g. genetic
algorithm) or machine learning to automate the second tuning
stage after the initial EM topologies are determined by human
engineers. However, the first topology selection stage still require
engagements with experienced engineers. This paper proposes
a fully-automated framework for the inverse design of FSSs.
We achieved a fully-automated inverse design by establishing
a machine-friendly mapping flow. The mapping flow derives
its continuity and compactness from representation learning,
which enables both auto-selection of the topology and auto-
evolution of the unit cell based on the topology. The auto-selection
stage automatically determines the appropriate topology by
compressing the EM constraints through the principal component
analysis (PCA) and classifying the topology using the support
vector machine (SVM). Afterward, the auto-evolution system can
efficiently evolve until it yields an optimal unit cell. We developed
a self-monitor strategy to control the evolution and maximize the
evolution efficiency by adaptively tuning the three modules within
the auto-evolution system. We validated the presented framework
with four FSS designs. The results proved its potential as a highly
efficient fully-automated tool for the inverse design of FSSs.

Index Terms—Auto-evolution, auto-selection, frequency se-
lective surface, fully-automated, inverse design, representation
learning.

I. INTRODUCTION

Metasurfaces refer to a periodical combination of over-
lapped planar metallic and dielectric layers in sub-wavelength
size, which have unique abilities to manipulate microwave
signals at desired frequencies. They possess capabilities of
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power-conserving transformations [1], [2], cloaking [3], ab-
sorber [4], spatial filtering [5], polarizer [6], radar cross-section
reduction [7], to name just a few. Among them, the frequency
selective surfaces (FSS) focus on the transmission or reflection
capability. The typical inverse design of FSSs follows a
performance-oriented process and takes two stages, topology
selection and geometry optimization, as demonstrated in Fig.
1. Conventional inverse design methods require experienced
designers with domain knowledge to select the topology in
advance. Afterward, the designers need to manually tune
the parameters and check the performance through repetitive
full-wave electromagnetic (EM) simulations, which is time-
consuming and resource-demanding. The design efficiency
depends on the designers’ experience level and the computa-
tion capability. There have been many published methods that
automate the second optimization stage based on optimization
algorithms or machine learning. However, most of them are
not fully-automated and still require experienced engineers
in the topology selection stage. A fully-automated inverse
design method is in tremendous demand to reduce the need
for experienced engineers for the inverse design of FSSs.

There have been many publications [8]-[22] utilizing ma-
chine learning to automatize the inverse design process to
different degrees. Machine learning-based methods are popular
due to their unique merits compared to optimization algorithm-
based methods, such as genetic algorithm-based methods (GA)
[23]-[25]. A number of full-wave simulations are inevitable
for optimization methods [26]. By contrast, machine learning-
based methods accumulate intelligence from historical data
to form a surrogate model. The surrogate model can reduce
or replace the need for full-wave simulation and facilitate
the design for new constraints significantly. According to the
automation level, we roughly divide them into semi-automated
[9]-[19] and fully-automated methods [20]-[22]. Considering
the strategy, there are two categories: some works [9]-[16],
[21], [22] developed a forward mapping surrogate model and
performed iterative optimization to find the optimal design;
the others [17]-[20] directly established an inverse mapping
surrogate model or utilized generative networks to produce the
satisfying design.

Most of the optimization algorithm-based methods and ML-
based methods [9]-[19] are semi-automated, because they
mainly focused on automatic optimization in the second stage
of the inverse design. Experienced designers are required to
decide the topology in the first topology selection stage. For
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Fig. 1. Inverse design of FSSs: conventional vs. fully-automated.

instance, in [9], an artificial neural network model was devel-
oped to determine the reflective phase for a given Minkowski
reflectarray element, and then the model was integrated with
an optimization algorithm to generate the optimal element for
the desired phase. Prado et al. [10], [11] utilized support vector
machines (SVMs) to substitute full-wave EM simulation tools
to accelerate the inverse design of reflectarrays. The SVMs
were trained with a sufficient number of simulation results
in advance. Afterward, they were used to analyze reflectar-
ray elements at a low time cost and were integrated with
iterative optimization processes to determine the reflectarray
element for a given phase shift. Abdullah et al. [12] applied
a data-driven supervised-learning technique integrated with
the sequential-search strategy on a crusader cross topology
to maximize the radar cross-section (RCS) reduction of the
coding FSSs. Hodge et al. [14] proposed deep convolutional
generative adversarial networks (DC-GANs) to realize the
inverse design of metasurface elements. The DC-GANs were
trained with elements selected from published literature. After
training, a Generator, a Discriminator, and a Simulator were
obtained. A three-fold process was taken to achieve given EM
constraints: a) a random latent noise vector was initialized;
b) generating an element by inputting the vector into the
Generator and analyzing its EM response using the Simulator;
c¢) adjusting the vector and repeating steps (b-c) until the EM
response meets the EM constraints. Xiao et al. [17] proposed
an inverse learning system to predict geometry variables of
selected metasurfaces for a desired EM behavior without
further optimization, which consists of a data classification
technique and a cascade of two inverse learning machines for
enhanced learning performance. Zhu et al. [18] artificially built
up a modified Jerusalem Cross structure at first; afterward,
they utilized a three-layer back-propagation neural network to
project the reflection phase to the length of the metal arm.
Likewise, Wei et al. [19] targeted the appropriate topology
in advance through analysis of filter equivalent circuit before
applying the genetic algorithm (GA) to reach an optimal
design.

The works in [20]-[22] realized full automation. The work
in [20] realized automated design by integrating a variational
autoencoder, a predictor, and an optimizer. After training, they
represented a metasurface into the latent variables using the

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

encoder and optimized the variables by employing particle
swarm optimizations integrated with the predictor. The de-
coder would decode the optimized variables into a final meta-
surface. In the implementations of dual-layer and three-layer
metasurfaces, they simulated 17.5 thousand and 16.5 thousand
structures to collect data for training the autoencoder and
predictor. Naseri et al. [21] achieved a fully-automated inverse
design of nonuniform bianisotropic metasurfaces in two steps.
In the first step, they determined the surface parameters within
several candidates using the alternating direction method of
multipliers based on the two-dimensional method of moments.
In the second step, they trained the machine learning surrogate
model with 70 thousand samples and then utilized particle
swarm optimization to optimize the surface parameters. Nadell
et al. [22] utilized a twelve-layer deep neural network to model
the forward mapping of an all-dielectric metasurface, which
took 21 thousand simulation data for training. Afterward, they
developed a novel fast-forward-dictionary-search method to
solve the inverse modeling problem: they collected all com-
binations of geometric parameters on 13% spectra to generate
a dictionary. Given the constraints, they searched through the
dictionary to list all combinations that approximately satisfy
the constraints and gave the best ones. One shared limitation
among these works is that they require tens of thousands
of simulation data to train the surrogate model, which is a
commonly criticized disadvantage of most machine-learning
approaches.

In this paper, we manage to realize the fully-automated
inverse design without establishing a dictionary mapping
through tremendous simulation data in advance. To achieve
this, we need to develop a machine-readable mapping of conti-
nuity and compactness. The continuity of mapping determines
the degree of automation. The works in [12], [13], [18], [19]
achieved only semi-automation because their mappings did not
start from the constraints, which is the initial state of inverse
design. The compactness of the mapping impacts the difficulty
to establish and the overall efficiency. The works in [20]-
[22] managed to establish mappings from all the candidate
geometries to their EM behaviors, which suffered from high
complexity and required a huge amount of simulation data.

Representation learning [27], [28] may offer us inspiration
to facilitate the fully-automated inverse design. Boulanger-
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Fig. 2. The proposed fully-automated inverse design framework based on representation learning.

Lewandowski et al. [28] have proven that representation learn-
ing outperforms many state-of-art models aiming at the tran-
scription of polyphonic music. Representation learning, also
known as feature learning, allows the machine to automatically
represent machine-unfriendly physical features into machine-
friendly features and then smoothly project from the source
space into the target space.

In this paper, a highly efficient fully-automated inverse
design framework for FSSs is developed. Based on representa-
tion learning, we facilitate fully-automated inverse design by
establishing a continuous and compact horizontal projection
integrated with vertical representations of physical features.
The horizontal projection consists of auto-selection and auto-
evolution. The vertical representations include vectorization of
the constraints and fan-based modeling. We have three main
contributions:

1) compared with [12], [13], [18], [19], we establish a
mapping from EM constraints to the topology candidates
to enable auto-selection of the suitable topology, which
can be accomplished without experienced designers;

2) one advantage over [20]-[22] is that we establish a
cross-evolution system to customize the topology and
evolve it into an optimal design instead of building a
dictionary mapping in advance through tedious training,
hence we take only hundreds of simulation cycles while
they took tens of thousands of simulation cycles to
collect data;

3) the other advantage is, unlike [20]-[22] that obtained
the optimal design by optimizing several candidate
geometries, the auto-evolution system can evolve the
auto-selected topology into new geometries that satisfy
various constraints, thanks to the proposed fan-based
representation defined by only tens of parameters instead
of the pixelated metal layer defined by hundreds of
parameters [20].

We validate the proposed framework in four cases where
different EM constraints were provided. It has been proven
that, with only the EM constraints provided, the framework
can automatically select the appropriate topology and yield

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

the optimal designs in different scenarios.

The main content is arranged as follows. Section II demon-
strates the workflow and components of the proposed fully-
automated inverse design framework. After that, Section III
describes the implementations we performed in different sce-
narios. The corresponding results are discussed and compared
with the existing methods to clarify our advantages in Section
IV. Section V lists our conclusions.

II. FULLY-AUTOMATED INVERSE DESIGN FRAMEWORK

The inverse design seeks a projection from EM constraints
to an optimal design. Only a few states during the projection
are physically visible to human engineers, and these states
belong to various isolated spaces. Thus, conventional methods
rely on experienced engineers to deal with these separate
spaces. To enable fully-automated inverse design, we built up a
continuous mapping flow to connect these states. As illustrated
in Fig. 2, this mapping flow derives from representation learn-
ing: the physical features in isolated states are represented in
machine-readable features; the represented machine-readable
features are projected from the current state to its posterior
state. The vertical representation and horizontal projection fol-
low adaptive rules in different states. The proposed framework
can be roughly divided into two stages: auto-selection of the
topology and auto-evolution of the selected topology.

A. Auto-selection

The goal in the first stage is to select a suitable topology
for given EM constraints. The EM constraints define how the
FSS should behave. The EM constraints and possible topology
are physically visible to human engineers. However, the EM
constraints and possible topology are not machine-readable
and are in isolated spaces. Thus, to enable auto-selection, we
need to represent the EM constraints and possible topology
into machine-readable features and establish a mapping that
connects the EM constraints to the proper topology.

A single EM constraint can be represented as a curve (E(f))
of the coefficient (such as transmission, reflection, axial ratio,
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etc.) of interest versus the frequency within the desired band.
We can discretely sample the E(f) and generate a vector E of a
constant length that represents the constraint. Sometimes, there
are multiple constraints on one FSS and consequently multiple
E(f)s. In this case, we can discretely sample each constraint
E(f)s and calculate their normalized weighted mean to form
a final vector E. The weights of multiple constraints can be
identical if they are equally important. Otherwise, the weights
can be unequally assigned according to their importance level.
This final vector E represents all the constraints. As shown in
Fig. 2, E is defined as a one-dimensional vector:

efnl, (D

where each element (ey;) of the vector E represents the
constraints at a single frequency point. The size (n) of E
equals the number of frequency points of interest. Generally,
as n increases, E contains more detailed information. E would
be taken as input for the proposed framework to impose the
expected constraints on the inverse design process.

As for the topology of the unit cell, we took a combination
of three overlapped metal layers and two substrate layers
between every two metal layers, as seen in Fig. 2. The up and
bottom metal layers are identical as well as the two substrate
layers, because the equivalent filtering circuit is symmetrical.
We classified the topology according to whether each metal
layer should be a patch layer or a slotted layer. The topology
(T) can then be defined as:

1, if % is patch
ol @)
0, of * 1is slotted,

E = [eflyean ey

T= [tu/b7 tm]v

where u/m/b means up, middle, and bottom metal layers,
respectively.

By far, we had the EM constraints and possible topology
represented as machine-readable vectors, E and T. The next
step is to connect them by projecting E to T. In machine view,
it is a classification task with Es as the input features and T's
as the classes. After training, the machine would output the
class of the highest possibility that satisfies the constraints.

To facilitate the classification, we performed the principal
component analysis (PCA) [29] on E to compress the input
features. The PCA can help reduce the column dimension
n of E by projecting a high dimensional space into a low
dimensional space. Therefore, it indeed projected E of high
column dimension to X of low column dimension. Decreasing
the low dimension can reduce the complexity of classification
but may lower its accuracy. After tuning and comparison, we
fixed the low dimension as 2 to balance the training complexity
and classification accuracy. Here is how we performed it:

1) pre-defined N sets of constraints within a broad range
and represented them as {E(f)s, Ts}, where N = 100;

2) discretely sampled E(f)s (or the weighted mean in case
of multiple constraints) into N sets of E and formed the
data sets {E;, Ts};

3) acquired the eigenvectors W, of E; by solving the
equation E;=W,-A-W;1;

4) picked out two eigenvectors corresponding to the two
largest eigenvalues and formed Wo;

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 3. The new classification space defined by X projected through PCA
and the illustration of the support vector classification.

5) projected E to X by transformation, X=W 7 -(E—m),
here m is the mean of E;

6) the data set {E;, Ts} was transformed into {X;, Ts}.
After the PCA, E of size n was projected to X = [z1, 23] of
size 2. To visualize the performance of the PCA, X is plotted
as a two-dimensional scattering plot in Fig. 3. It shows that
four types of topology denoted by four different symbols are
separated in the X space transformed through PCA.

Now the classification problem was simplified to a projec-
tion problem from X to T. We then automatized this projection
by using SVMs [30] for classification. Here is the guideline
to compute the SVM classifier:

1) performed the PCA on E; from {E,, Ts} and formed

training data {X,, Ts};

2) built an optimum hyperplane that separates the classes,

its vector is as follows:

W_Zcz T, - O(Xs), 3)

where X,; and T,; are the input and label of each
training data sample, ® represents the projection from
input to output;

3) the classification vector w was obtained by solving the
linear kernel-based function:

SDIEED D) S

=1 j=1

max fle) K(Xgi,Xsj) Tsi-cis

1
T;=0,0<¢ <53 4

bject to Vi =
subject to Vi, Zc TN

j=1
where the linear kernel refers to K(Xy;,X,;) =
va X - X5, and A > 0 determines the trade-off be-
tween increasing margins between classes and ensuring

samples being classified correctly;
4) the offset b is obtained by

b=w"®(Xy) - Ty; (5)

5) after training, a soft margin was obtained, and the well-
trained SVMs can be utilized to project a vector X to

T:
T=w". ®(X)—b (6)

In real design, an E vector of size n was projected to
X = [x1, x2] of size 2 through PCA, which is represented as a
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black triangle in Fig. 3. Afterward, X was projected to T using
the well-trained SVM classifier. As shown in Fig. 3, the black
triangle was classified to Ts,= [1, 1] according to hyperplanes
defined by the well-trained SVM classifier. Through PCA
and SVM, the vector E that represents the constraints was
projected to T that represents the selected topology. The auto-
selection of topology was accomplished.

B. Auto-evolution

Auto-evolution aims to search for an optimal design of the
selected topology that satisfies the EM constraints. In machine
view, it is to find a mapping from the design of the unit cell
to its EM satisfaction level. The EM satisfaction level (S(0))
of a design indicates how much its EM behavior fits the EM
constraints (E). It is evaluated by measuring how much the
design’s EM behavior fits the EM constraints. At first, we
need to represent the design and its EM satisfaction level in
machine-readable features.

The design of the unit cell related to any topology is
a combination of three overlapped metal layers with two
substrate layers clamped in the middle, as exhibited in Fig. 4.
The metal layers define the topology type. According to the
result T output from auto-selection in the first stage, the three
metal layers can be either patch layer (t, = 1) or slotted
layer (t, = 0). To generalize the instances of the topology,
we divide the patch or slot into a fixed number of fans,
as shown in Fig. 4. Each fan shares an angle of 360°/Nj
and there are Ny fans in total (Ny = 72). The length of
each fan is adjustable to produce changeable capacitance and
inductance. Multiple fans act as tunable resonant networks.
The number of fans N decides the complexity and flexibility
of the geometry of each metal layer. Simpler geometries
can be obtained by reducing Ny to a smaller value, while
more complex geometries can be obtained by increasing Ny
to a larger value. The geometrical flexibility of each metal
layer decreases or increases accordingly. By adjusting the
length (ry/m/p,:) of each fan, we can tune the capacitance
and inductance to form various resonant networks. The metal
layer can be customized into various planar geometries. Fan-
based representation reaches a balance between increasing
possibilities and reducing complexity. Unlike the traditional
method [18] that swept the parameters of a specific geometry,
fan-based representation creates new geometries and provides
more possibilities and functionalities. Compared with [19] that
pixelated the metal layer and involved hundreds of parameters,
fan-based representation creates sufficient structures by utiliz-
ing only tens of parameters, hence training complexity and the
amount of training data are reduced significantly. To further
reduce complexity, we divide the metal layer into several sec-
tors according to filtering requirements in different directions.
The fans within each sector are identical to the fans within
any other sector. Suppose that the number of sectors is .S, the
number of fans to adjust will be reduced to Ny /S because all
the sectors are identical. Ny/S is equivalent to the number of
fans within each sector. The number of sectors (S) depends
on the EM constraints: S = 8 fits symmetrical constraints;
S = 4 is suitable when there are different constraints for

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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orthogonally polarized signals; S = 1 or 2 is recommended
for asymmetrical constraints in beam management scenarios.
Figure 4 exhibits three examples of customized metal layers in
case of T = [1,0], Ny = 72, S = 8/4/2. Now we represented
each instance of the unit cell as a normalized vector P:

P= [lvharu/b,ru/b»rm;rm]- (7)

The representation rules between the geometric parameters
(mm) of the unit cell and its normalized P can be expressed
as follows:

L=(4f. 1/c—0.8)/0.4; (8)

[ is the normalized length of the unit cell, L is the real length,
fe is the center frequency, and c is the speed of light in

vacuum.
0.305, 0 <h <0.25
0.508, 0.25 <h < 0.5
H= 9)
0.813, 0.5 <h < 0.75
1.524, 0.75 <h < 1

(H is the standard thickness of Rogers4003C' substrate from
Rogers Corporation [31]);

Ru/b/m = H/18 ’ (Tu/b/m + 8)7 (10)

Fu/b/m 18 the normalized radius of the metal layer, and R, /4 /1,
is the real radius.
(11)

Ru/b/m,i = Ru/b/m “Tu/b/mi-

Fu/b/m,i tepresents each element of the vector ry /p/p, and in-
dicates the normalized length of each fan. Ry /pm, ; represents
each element of the vector R, ;,/,, and indicates the real length
of each fan. The size of vectors 7,3/, and Ry, /p/,, equals to
Ny¢/S.

The EM satisfaction level (S(0)) of a design indicates how
much its EM behavior fits the EM constraints (E), and it is
evaluated by measuring how much the design’s EM behavior
fits the EM constraints. To evaluate the satisfaction level
S(0) of a design, we represented its EM behavior as

0= [0f1a0f27---70fn]~ (12)

Then, the design’s satisfaction level S(O) is evaluated by
measuring how much Oloy;] fits Elef;]. In practice, we
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decomposed E into an upper boundary, E,[ey; ] and a lower
boundary, Eglef; q]. S(O) can then be defined as (13)

S(O)Z 1 ’ L(O)Z {0, €rid < 0 < €f4q
B'in,u+(1fﬂ)’6fi,da else
(13)
Here, 3 determines the trade-off between emphasizing the
upper boundary and emphasizing the lower boundary.
After representation, now the auto-evolution is to find the
optimal design P,p.imq: that maximizes the satisfaction level

S(O(P)), which can be expressed as

Poptimal = arggm:v{S(O(P))} (14)
To solve this, we set up a cross-evolution system, as illustrated
in Fig. 5. As its name implies, this system iteratively operates
across three modules: a surrogate model module (SMM),
an EM simulation module (ESM), and a batch upgradation
module (BUM).

The SMM consists of a batch pool, a neural network (NN)
model, and an output. The batch pool collects all the designs
(Ps) produced by far and provides training data for the NN
model. The NN model has two hidden layers, each equipped
with 50 neurons and attached with a batch normalization [32];
it utilizes the Adaptive Moment Estimate (Adam) [33] as the
optimizer; the Rectified Linear Unit (ReLU) [34] is employed
as the activation function. The cost function of the surrogate
model is the mean square error between the predicted S(O) and
the real S(0) given by the ESM. The SMM operates in two
states, training and predicting. In the training state, it utilizes
the historical data from the batch pool to train a surrogate
NN model; in the predicting state, it takes a new batch of
the designs ([P;]) as input in each iteration and predicts their
corresponding S;(0)s, the S(0)s in iteration i. The SMM
operates in the training state from the beginning, and it shifts
to the predicting state when the NN model is well-trained.
The NN model is considered well-trained when the predicted
Si(0) is close enough to the real S;(0) given by the ESM.
The SMM stops running when an optimal design has been
obtained.

The ESM is supported by Computer Simulation Technology
(CST) Studio Suite®, a full-wave EM modeling and simulation
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software. This module simulates each design within a batch
([P;]) in each iteration and yields its real .S;(0). The real S;(0)
is taken as the output label for training the NN model in the
SMM. The real S;(0) is compared with the predicted S;(0) to
evaluate the performance of the NN model in the SMM. The
ESM stops running when the NN model has been well-trained.
At the end of each iteration, the BUM upgrades the batch
and produces a new batch for the next iteration. The upgrada-
tion follows the rule of the particle swarm optimization (PSO)
[35]. Suppose that the batch is [P;]; in iteration 7, then a new
batch [P;];41 for next iteration ¢ + 1 can be expressed as:

[Pjliv1 = [Pjli + Uiya. (15)

Here, U; 41 depends on the batch-best design (P, ;) and the
historical-best design (P ;). The batch-best design (P ;)
refers to the best design of current batch that maximizes
S;(O([P;])) in iteration 7. The historical-best design refers
to the best design of all the batches (P, ;) that maximizes
S(O([P])). U;41 can be expressed as:

[Ujlis1i =w-[Uj]i +c1 711 Ppyi+co 72 Prpi,  (16)

where
(17

1
W = Wmpar + = - (wmaz - wmzn)

1

Here, Wazs Wmin, €1, and co are adjustable hyperparameters;
1 and I are the current and maximum iterations, respectively;
r1 and 75 are random floats within the range [0, 1], as defined
in [35]. The BUM keeps running until an optimal design has
been reached.

The three modules cooperate. a) The batch pool in the SMM
is expanded iteratively by gathering new batches generated by
the BUM. b) The ESM provides the real S;(0) as the output
label for the SMM to evaluate the performance of the surrogate
NN model; the SMM trains the surrogate model to replace the
ESM. c¢) in each iteration, the BUM generates a new batch
according to S;(0) obtained from the SMM/ESM, and the
new batch is sent to the SMM/ESM in the next iteration.

The running schedule of the three modules is controlled by
the model-ready sign producer (MRSP) and the design-good
sign producer (DGSP). The MRSP and DGSP monitor the
auto-evolution system, and they activate or abort the modules
by releasing the model-ready and design-good signs. The
model-ready sign indicates that the model has been well-
trained. The model-ready sign is released when the mean
square error between the SMM'’s predicted S;(0Q) and the
ESM’s real S;(0) reaches a minimum threshold. The mean
square error between the SMM’s predicted S;(0) and ESM’s
real S;(0) is the cost function of the MRSP. The model-ready
sign shifts the SMM from training to predicting state, and it
stops the ESM. The design-good sign indicates that indicates
the optimal design has been achieved. The cost function of
DGSP is S;(0). The design-good sign is released to stop the
whole system when the S;(0) reaches a maximum threshold.
In reality, the actual running schedule of the system depends
on the EM constraints.

The advantage of the cross-evolution system is to integrate
three modules, upgrade the training data dynamically, and
adjust working states adaptively. The cross-evolution system
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into an optimal design automatically.

III. VALIDATION

We validated our framework in four common scenarios:
band-pass, dual-band-pass, high-pass, and linear-to-circular
polarizer. Note that the operating frequencies were set arbi-
trarily without any preference for fair validation.

A. Band-pass

The band-pass behavior is widely required to raise the
Signal to Noise (S/N) ratio and improve the sensitivity of
wireless transmitters/receivers [36], [37]. A band-pass FSS
acts as a spatial filter for incident microwave signals. It allows
only the signals between a pre-defined frequency range to pass
through and attenuates the remaining.

A band-pass FSS is evaluated by measuring its reflection
coefficient (S11/92) and transmission coefficient (Sz1/12). As
we proceeded our experiment in the ideal loss-free EM envi-
ronment supported by CST, where the sum square of Sy; /22
and Sj;/12 remains constant and Sz; equals S21, we only
utilized Sy to evaluate the unit cells.

For validation, we pre-defined the constraints as a band-pass
behavior from 6 GHz to 7.5 GHz, an insert loss less than 2 dB,
as expressed in (18):

< —15dB, f < 5GHz;
Se1{ >—2dB, 6GHz < f < 7.5GHz; (18)
< —15dB, f > 9GHz.

By discretely sampling 200 points from 2 GHz to 12 GHz,
the constraints were represented into two vectors of length
200 that indicate upper and lower boundaries (Up_bound E,,
and Low_bound E;), as given in (19) and (20). The E vector
was defined as the normalized mean of E,, and E4, as given
in (21).

length:60 length 80 length:60
= |—15,...,—15, 0 0,—15, 19)
Ed: [730,...,—30,— , 30 —30 (20)
\—,_/
length:80 length:30 length:90
E,+E
E= (Ew + Ea) i=1,2,..,200. (21)

2 x maz(|Eyi|, | Eal)’

According to E, the auto-selection component pointed out
the appropriate topology, T= [1,0]. The metal layers of the
topology were divided into 8 sectors, and each sector had
10 fans, because the constraints were symmetrical. Once the
topology was decided, the auto-evolution system activated and
yielded an optimal band-pass unit cell after only 14 iterations,
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Fig. 6. The evolution result of the band-pass unit cell: (a) The evolution record
over the iterations; (b) The boundaries (Up_bound E,, and Low_bound E ;)
and simulated S21 of the designed unit cell.

Substrate Metal

(@ (b) (©)

Fig. 7. The final design of the unit cell for the band-pass FSS: (a) Its overall
structure; (b) Its up/bottom metal layer; (c) Its middle metal layer.

as seen in Fig. 6(a). There were 20 samples in each iteration,
including 280 samples in total. The geometry of the designed
unit cell is shown in Fig. 7 and Table I listed its geometric
parameters. Figure 6(b) exhibits its simulated transmission
coefficient (S21, the green curve labeled as “Sim. S71”) of
the output unit cell, where red and blue lines mark the upper
boundary (Up_bound) and lower boundary (Low_bound). We
can observe that the desired band-pass behavior was realized.

To validate the simulation results, a prototype of a band-
pass surface that consists of 15 by 15 designed unit cells was
fabricated and measured in an anechoic chamber. Three metal
layers are etched on the surface of two Rogers4003C sub-
strate layers with a thickness of 1.524 mm. The measurement
setup is shown in Fig. 8. A transmitter horn and a receiver
horn were placed on two sides of the FSS prototype under
test, they are opposite to each other and are connected to a
network analyzer. The measured S2; is compared with the
simulated Ss; in Fig. 9. A good agreement level between
measurement and simulation can be observed, which verifies
the performance of this band-pass design.

B. Dual-band-pass

The significant impact of dual-band-pass FSSs [5] attracts
both the industry and academia as the 5G/6G of wireless
communication approaches. Dual-band-pass FSSs can decou-
ple the shared aperture base station antennas and enable their
co-existence.

A dual-band-pass FSS should serve as a filter that sieves
the approaching microwave signals within two separate fre-
quency ranges. Compared with the single-band-pass case, it
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Fig. 8. (a) Illustration of the measurement setup; (b) Photograph of the
anechoic chamber; (c) Photograph of the FSS prototype in the anechoic
chamber.
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Fig. 9. Measured and simulated S21s of the band-pass prototype.

increases the difficulty for human engineers, but it makes no
difference in the perspective of the machine equipped with our
framework.

Likewise, we pre-defined the constraints as a dual-band-
pass behavior at 2.85 GHz and 8 GHz, with bandwidths of
300 MHz and 400 MHz, an insert loss of less than 5dB, and
a roll-off rate of 25 dB/GHz, as expressed in (22):

< —15dB, f <2.3GHgz;
> —5dB, 2.7GHz < f < 3GHz;
So1d < —15dB, 34CGHz< f <74GHz.  (22)
> —5dB, 7.8GHz < f < 8.2GHz;
< —15dB, f > 8.6 GHz.

The constraints were discretely sampled and then represented
into Up_bound E,, and Low_bound E;), as given in (23) and
(24). The E vector was defined as the normalized mean of E,,
and E,;), as seen in (25).

length:46 length:22 length:80 length:24 length:28

—N————— ——
E,=[,-15,70,.., 0,°15,...,-15,0,..., 0,~15,..];
(23)
Ej=1[..,-30,-5,..,—5 —30,... —30,—5,...,—5, —30,...];
—_— Y Y—

length:54  length:6 length:96 length:8 length:36

24

E,+E .
(Ew + Ed) i=1,2,..200.  (25)

T ox max(|Eyi|, |Fail)’
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Fig. 10. The evolution result of the dual-band-pass unit cell: (a) The evolution
record over the iterations; (b) The boundaries (Up_bound E,, and Low_bound
E ;) and simulated S3; of the designed unit cell.
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Fig. 11. The designed unit cell for the dual-band-pass FSS: (a) Its overall
structure; (b) Its up/bottom metal layer; (c) Its middle metal layer.

TABLE II
THE PARAMETERS OF THE DESIGNED DUAL-BAND-PASS UNIT CELL

Parameter Value (mm) Parameter Value (mm, ¢ €[0, 9])

L 18.98 Ry [3.17, 5.17, 4.90, 5.35, 2.81,
5.53, 5.26, 3.63, 3.81, 3.45]

H 0.813 R,, [1.48, 0.93, 4.69, 2.90, 5.00,

0.43, 2.41, 4.19, 3.15, 5.67]

According to E, and Eg4, the topology of T= [1,0]
was auto-selected based on the represented dual-band-pass
constraints. The metal layers of the topology were divided
into 8 sectors, and each sector had 10 fans, because the
constraints were symmetrical. Afterward, it went through
the auto-evolution system and produced an optimal unit cell
to form the required dual-band-pass FSS. The evolutionary
history was recorded in Fig. 10(a), indicating that overall, 12
iterations were taken to arrive at the final design. No noticeable
enhancement can be observed after 12 iterations. Figure 10(b)
depicts the achieved transmission behavior at around 2.85 GHz
and 8 GHz. The corresponding unit cell shows its geometry in
Fig. 11 and lists its detailed size in Table II.

Using 15 by 15 designed unit cells, a dual-band-pass surface
was constructed and a prototype was fabricated and measured
to verify the design performance. Three metal layers are etched
on the surface of two Rogers4003C' substrate layers with a
thickness of 0.813 mm. The prototype was measured using the
same measurement setup. The measured S2; is compared with
the simulated So; in Fig. 12. S9; was measured from 2 GHz
to 10 GHz due to the frequency limitation of the measurement
system. Besides, frequencies below 2 GHz are out of the
operating band. Within the main operating band, the measured
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Fig. 12. Measured S21 and simulated S2; of the dual-band-pass prototype.
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Fig. 13. The evolution result of the high-pass case: (a) The evolution record
over the iterations; (b) The boundaries (Up_bound E,, and Low_bound E ;)
and simulated So; of the designed unit cell.
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Fig. 14. The designed unit cell for the high-pass FSS: (a) Its overall structure;
(b) Its up/bottom metal layer; (c) Its middle metal layer.

So1 agrees well with the simulated S3;, which validates the
performance of this dual-band-pass design.

C. High-pass

The high-pass FSSs prevent signals below a cut-off fre-
quency [38], [39], which is also a widely needed spatial
filtering behavior.

Similarly, we pre-defined the constraints as a high-pass
behavior, with a cut-off frequency at 7.5 GHz, an insert loss of
less than 4 dB, and a roll-off rate of 15 dB/GHz, as expressed
in (26):

< —10 dB, f<7GHz

S 26
1) > —44B, f>175GHz. (26)

The constraints were discretely sampled and represented
into two vectors that indicate upper and lower boundaries
(Up_bound E,, and Low_bound E;) as given in (27) and (28).
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TABLE III
THE PARAMETERS OF THE DESIGNED HIGH-PASS UNIT CELL

Parameter Value (mm) Parameter Value (mm, ¢ €[0, 9])
L 17.32 R/ [6.59, 5.54, 2.77, 4.48, 4.88,
4.88, 6.59, 5.45, 4.88, 2.52]
H 0.305 R, [5.63, 4.44, 1.33, 4.37, 5.63,
3.56, 5.70, 5.78, 1.48, 2.67]
0
Sim. 821
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=30 : /
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Fig. 15. Measured and simulated S21s of the high-pass prototype.

The E vector was fixed as the normalized mean of E, and
E,;), as seen in (29).

length:140 length:60

E,=[-10,..,-10,70,..., 0];

27
Ey=[-30,...,—30,—4, ..., —4]; (28)
— ——
length:150 length:50
E,+E .
E = (Ew + Ea) i=1,2,..,200. (29)

2 x maz(|Eyil, |Eail)’

According to E,, and E;, a unit cell with three slotted
metal layers (T= [0,0]) was auto-selected given the high-
pass filtering constraint. The metal layers of the topology were
divided into 8 sectors, and each sector had 10 fans, because
the constraints were symmetrical. After a 15-iteration auto-
evolution, the unit cell achieved a satisfying high-pass filtering
behavior with a cut-off frequency at 6.85 GHz, as shown in
Fig. 13(b). The evolution history is recorded in Fig. 13(a).
The optimal high-pass design and corresponding parameters
are given in Fig. 14 and Table III, respectively.

A high-pass surface prototype was fabricated and measured
to verify the simulation results, which consists of 15 by 15
designed high-pass unit cells. Three metal layers are etched
on the surface of two Rogers4003C' substrate layers with a
thickness of 0.305 mm. The prototype was measured using the
same measurement setup. The measured and simulated So1s
are compared in Fig. 15. Due to the frequency limitation of the
measuring system, So; was measured from 2 GHz to 10 GHz.
Additionally, the operating frequency band does not include
frequencies below 2 GHz. It can be observed that measurement
and simulation agree well within the operating band, which
validates the effectiveness of the high-pass design.

D. Polarizer

Circular polarization is widely preferred in satellite or point-
to-point communication systems due to its immunity to the
Faraday rotation effects, polarization mismatch, or multi-path
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Fig. 16. The evolution result of the polarizer case: (a) The evolution record
over the iterations; (b) The boundaries (Up_bound E,, and Low_bound E;)
and simulated S21 and AR of the designed unit cell.

fading issues. Mounting a linear-to-circular polarizer [40], [41]
on top of a linearly polarized antenna is a valuable way to
produce circular polarization.

We pre-defined the constraints as a linear-to-circular polar-
ization transformation behavior at 9.6 GHz, with a bandwidth
of 800 MHz, an insertion loss of less than 5dB, and an axial
ratio (AR) of less than 3dB, as listed in (30).

So1 > —5 dB,
AR < 3dB,

9.2GHz < f < 10 GHz;

(30)
9.2GHz < f < 10 GHz.

The main difference from the former cases is that now the
EM constraints (E(f)s) attribute to the transmission coefficient
(S21) and the axial ratio (AR) as well. Similarly, we discretely
sampled 200 points from 8.5 GHz to 11 GHz and generated
upper and lower boundaries (Up_bound E,gs21&E, 4z and
Low_bound E ;521 &E 44R), as given in (31-34). The E vector
was defined as the normalized weighted mean of the four
boundaries, as given in (35).
length:200
—~
EuSZl = [ 03 uO ]7
EdS21 = [75, ceey 75];
N——
length:200
length:56 length:64 length:80

E,ar = [20,...,20, 3,...,3,20, ..., 20]);

EdAR = [ 0, ,0 ];
——
length:200
£ (Eus21 +Egs21 —Eyar — Eqar)
4 x max(|Eys21il, | Eas21ils | Euaril, |Edari])’
i=1,2,...,200. (35)

€1V
(32)

(33)
(34)

The polarizer should generate a 90 ° phase difference be-
tween the orthogonally polarized signals to form circular
polarization. Therefore, the metal layers of the topology were
divided into 4 sectors, and each sector has 19 fans. The
proposed framework completed the design process after 16
iterations. As usual, we recorded the satisfaction level (S(0))
during evolution in Fig. 16. S3; and AR of the optimal
design are shown in Fig. 16(a) and (b), and its geometry and
parameters are shown in Fig. 17 and Table IV. The designed
polarizer has an insertion loss less than 5dB and an AR less
than 3 dB from 9.2 GHz to 10 GHz.
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Fig. 17. The designed unit cell for the polarizer FSS: (a) Its overall structure;
(b) Its up/bottom metal layer; (c) Its middle metal layer.

TABLE IV
THE PARAMETERS OF THE DESIGNED POLARIZER UNIT CELL

Parameter Value (mm) Parameter Value (mm, ¢ €[0, 18])
L 8.2 R [3.20, 3.02, 3.88, 3.24, 3.80,
3.96, 3.84, 3.82, 3.96, 3.86,
3.96, 3.82, 3.80, 3.96, 3.98,
3.96, 3.82, 3.98, 3.80]
H 0.813 R, [1.26, 1.22, 1.16, 0.86, 1.24,
1.58, 1.60, 1.48, 1.54, 1.48,
1.58, 1.54, 1.52, 1.58, 1.60,
1.52, 1.54, 1.60, 1.58]
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Fig. 18. Measured and simulated S21s and ARs of the polarizer prototype.

To validate the simulation results, a polarizer prototype
that consists of 15 by 15 designed unit cells was fabricated
and measured. Three metal layers are etched on the surface
of two Rogers4003C substrate layers with a thickness of
0.813mm. The polarizer prototype was measured using the
same measurement setup. Measured So; and AR are compared
with simulated ones in Fig. 18(b). The performance of this
polarizer design is confirmed by the measurement results,
which are in good agreement with the simulation results.

IV. DISCUSSION

The validation results in Section III proved that the proposed
framework could automatically inverse design a unit cell of
the FSS to satisfy any given EM constraints in real scenarios.
The implementations suggest that the whole inverse design
process required no human experience and took only around
15 iterations and 100 4+ 300 samples on average. Noted
that several geometries of the designed unit cell are strange,
because Ny is set as 72 to show its potential of producing
complex and flexible geometries. Such complex geometries
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Fig. 19. Simpler band-pass unit cell with Ny = 16: (a) Its overall structure;
(b) Its up/bottom metal layer; (c) Its middle metal layer.
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Fig. 20. The evolution result of the simpler band-pass unit cell: (a) The
evolution record over the iterations; (b) The boundaries (Up_bound E, and
Low_bound E;) and simulated S2; of the designed simpler unit cell.

TABLE V
THE PARAMETERS OF THE DESIGNED SIMPLER BAND-PASS UNIT CELL

Parameter ~ Value (mm) Parameter ~ Value (mm, ¢ €[0, 1])
L 15.23 Ry [6.53, 6.68]
H 1.524 R, [1.31, 3.66]

may not be suitable for mm-wave or THz frequency bands
due to fabrication limitations. For mm-wave or THz frequency
bands, Ny can be reduced to generate simpler geometries.
The smallest value of N is 8, in which case each metal
layer would be a circular patch or slot. For example, a
simpler band-pass unit cell is designed when Ny is set as
16. The designed simpler unit cell is shown in Fig. 19, and
its geometric parameters are listed in Table V. A satisfying
band-pass performance can be achieved, as shown in Fig. 20.
On the contrary, Ny can also be increased to generate more
complex geometries for more complicated constraints in low
frequency scenarios.

We compared our framework with existing methods in
Table VI. In our work, the amount of training data refers to the
sum of the amount used for training the SVM (100) and the
amount used for auto-evolution (300). References [12], [18]
both required human engineers to determine the topology and
involve intensive data pre-processing pipelines. Unlike them,
our framework auto-selects the suitable topology.

Furthermore, the proposed method requires the smallest
amount of training data to arrive at a satisfying design, whereas
[21], [22] required a huge amount of training data. The reason
is that existing methods often sweep over the whole parameter
space to include all possibilities within the training data. We
significantly reduce the number of required data thanks to
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TABLE VI
COMPARISON BETWEEN THE PROPOSED FRAMEWORK AND EXISTING
METHODS

Fully-automated The amount of training data

[12] No 588

[18] No 1 thousand
[21] Yes 70 thousand
[22] Yes 21 thousand

The proposed work Yes 100 4+ 300

the elaborately organized auto-evolution system. Instead of
blindly sweeping over the solution space, our system optimizes
the generation of the training data iteratively. The optimized
training data have improved informativeness and quality. As
a result, the number of required training data is reduced
significantly.

The proposed fully-automated framework can be adopted
by designers without domain knowledge to realize the inverse
design of FSSs for given EM constraints. Thanks to the auto-
evolution system, it takes only hundreds of simulation cycles
to arrive at the final design. It offers inspiration for the fully-
automated inverse design of other EM components. In future
work, we will further integrate filter theory and equivalent cir-
cuit approach into machine learning-based methods to increase
the interpretability and to further understand the projection
between geometries and responses.

V. CONCLUSION

We developed a fully-automated framework for the inverse
design of FSSs. Unlike conventional inverse design methods
that rely on experienced human engineers to determine the
topology or involve intensive pre-processing pipelines, our
framework can automatically read the physical EM constraints
and then decide the appropriate topology. Afterward, the
auto-evolution would evolve the selected topology into an
optimal design. The auto-evolution system consists of three co-
operated modules and two self-monitors to optimize the evolu-
tion process and maximize its efficiency. We have validated the
effectiveness and efficiency of the presented framework in four
inverse design scenarios. The validation results proved that
our framework frees human engineers and requires a smaller
amount of training data compared with existing inverse design
methods. The proposed framework can fully automatize the
inverse design of FSSs and offer inspiration for the automation
of other EM applications.
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