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Abstract 

One of the initiatives to reach the European 

decarbonization goal is the roll-out of smart heating 

meters in the building stock. However, these meters often 

record the total energy usage with only hourly resolution, 

without distinguishing between space heating (SH) and 

domestic hot water (DHW) production. To tackle this 

limitation, this paper presents the validation of a new 

methodology to estimate the SH and DHW from total 

measurements in different building types in three 

countries (Denmark, Switzerland, and Italy). The method 

employs a combined smoothing algorithm with a support 

vector regression (SVR) to estimate the different heating 

uses. The estimation results are compared with the 

different countries’ DHW compliance calculations. The 

comparison showed that the compliance calculations 

outperformed this method by considering the validation 

dataset characteristics. 

Introduction 

The society is being pressed to become more sustainable. 

These pressing sustainable challenges are due to the 

global climate change, pollution issues, and fossil fuel 

supply curtailment. A “green” transition must occur, 

especially for the building sector. According to European 

Commission (2022a), in the European Union (EU), its 

building sector has an estimated share of 40% of the total 

energy end-usage, where 79% of it is for space heating 

(SH) and domestic hot water (DHW) production alone 

(European Commission (2022b)). It is estimated that 97% 

of the existing buildings in the EU must be renovated to 

achieve its 2050 environmental goals (BPIE (2017)). This 

estimation is based solely on the energy performance 

certificates (EPC) issued in the different EU member-

states. An EPC results from several calculations made by 

an expert to estimate a building’s energy usage and 

efficiency. These calculations are based on different 

measurements, assumptions, and standards depending on 

the country where the building is located. The objective 

behind these certificates is to raise awareness of energy 

efficiency among the owners and tenants, promote the 

refurbishment of the building, and assess the overall 

country building stock (Iribar et al. (2021); Gonzalez-

Caceres et al. (2022)). Even though the EPCs are 

promising, they usually show a significant difference 

between the measured and estimated energy usage. This 

difference is known as the performance gap (Cozza et al. 

(2021)) and has been studied in several EU countries 

(Gram-Hanssen and Hansen (2016)). In order to solve this 

issue, one of the proposed solutions is the usage of actual 

measurements as additional information for performing 

the EPC calculations. This manuscript focuses on how the 

actual building heating measurements can be used to 

estimate the SH and DHW shares and compare them with 

the countries’ current compliances to estimate the yearly 

DHW consumption in the EPCs. The countries studied are 

Denmark, Switzerland, and Italy. Therefore, each 

country’s effort in using energy data to decrease the 

performance gap is explained below. 

As a front-runner country, Denmark is making a great 

endeavor to install smart heat meters in buildings 

connected to the district heating (DH) network (Johra et 

al. (2020)). The resulting data from the meters are the 

aggregated heating usage (SH and DHW), water 

consumption, and temperature-weighted volume 

consumption, resulting in monotonically increasing 

measurements (Kristensen and Petersen (2021)). Also, 

these meters typically have hourly measurements, and the 

data are easily accessible by the utility companies. 

Although this initiative is a substantial move toward 

achieving the energetic target set by Denmark (Danish 

Climate Policies | Energistyrelsen (2022)), it has a 

downside regarding its data collection. In most buildings, 

only one device is installed, which collects the total heat 

usage without differentiating between the energy used for 

SH or DHW production. Because these two heat uses 

depend on different factors, it is crucial to disaggregate 

them to understand better the building and occupancy heat 

demand (Gram-Hanssen (2014)). 

Even though the DHW in Swiss nZEB accounts for 50-

70% of the total heat consumption, its monitoring is not 

required by the local regulations or the EPC (Office 

fédéral de l’énergie OFEN SuisseEnergie (2016); 

Flourentzou and Pereira (2021)). On the contrary, in 

Switzerland, it is common for the buildings to be 

equipped with one heat meter that measures the total heat 

consumption, both for SH and DHW, making it 
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challenging to identify the heat required for the DHW or 

SH production (Flourentzou and Pereira (2021)). 

In Italy, in the last years, the Government promoted 

several energy conservation measures for the building 

envelope with related incentives due to the prevalence of 

old buildings. So, as a matter of fact, the energy 

consumption of the building stock will change in the 

future (also considering the climate change effect). 

Consequently, the district heating networks in the main 

cities of northern Italy, which were built several decades 

ago and are operating at high temperatures (70-80°C), 

need to be revised in terms of both production and 

operating conditions. An example of such an intervention 

is studied by Vivian, Quaggiotto and Zarrella (2020). The 

heating and DHW disaggregated profiles will help design 

and manage these improvements efficiently. In addition, 

the recent concept of the district heating network 

integrated with other renewable energy technologies (e.g., 

heat pumps) in new building districts is a good 

opportunity (Bordignon et al. (2022)). Also, in this case, 

the disaggregated profiles can help design and set suitable 

control strategies to increase energy efficiency. 

Another aspect to consider on the importance of knowing 

these energy shares is regarding refurbishment initiatives. 

In Pomianowski et al. (2020), the authors argue that 

global building regulations have stricter SH efficiency 

rules while overlooking DHW consumption. Therefore, 

the new buildings, also known as low-energy buildings, 

have a much higher DHW share due to the continuous 

decrease of SH usage over the years and the higher levels 

of comfort concerning heating practices demanded by the 

residents. 

Thus, a better assessment of the thermal appliances can be 

achieved by disaggregating the energy used in buildings. 

This contributes to a more detailed understanding and 

control on the demand side and promotes better decision-

making strategies regarding heat production and 

distribution. 

Background 

The disaggregation of time-series has been studied since 

the 1980s regarding electrical appliances metering 

(Zeifman and Roth (2011)). However, the research has 

been shifting towards heating meter data. One of the first 

articles to explore this type of data is Bacher et al. (2016), 

which presents a statistical methodology to estimate the 

SH from 10-min resolution total heat measurements. This 

method is based on the premise that SH demand variates 

accordingly to the smooth external temperature 

fluctuations. At the same time, DHW usage fluctuates 

sporadically with higher peaks due to its short-time hot 

water draw-off events. The method predicts the SH by 

applying a kernel smoother to the total measurements, 

where all values above a defined threshold are due to 

DHW usage. Although promising, the method needs 

validation with separated space heating and DHW usage 

measurements. Also, the need for high-resolution data 

(10-minutes resolution) to detect the DHW peaks is 

uncommon to find in the typical installed smart meters. 

Unlike the above method, more straightforward methods 

were developed to disaggregate heating datasets. The 

articles Lien, Ivanko and Sartori (2020), and Ivanko, 

Sørensen and Nord (2021) propose different methods to 

decompose SH and DHW usage based on discovering the 

DHW profiles when the total heating is assumed to be 

equal to the DHW usage only (no SH demand). 

Additionally, considering the relationship between SH 

demand and the external temperature, the methods were 

validated with several Norwegian buildings (apartments 

and hotels) and compared with other existing methods. 

Also worth mentioning regarding Lien, Ivanko and 

Sartori (2020) is that besides presenting their developed 

methodology, they also compared their results with 

several Norwegian reference data. 

In Marszal-Pomianowska et al. (2019), another technique 

is proposed by assuming that the total heat measurements 

are equal to the DHW usage during Summer (no SH 

demand). Their novel approach does not aim to 

disaggregate the data but to predict the dwelling’s daily 

DHW usage profile. This load-profiling technique seeks 

to throw light on the customers’ DHW practices and how 

their behavior affects the DH supplier. 

In Hedegaard, Kristensen, and Petersen (2021), the 

weekly SH and DHW usage profiles are predicted using 

calibrated grey-box models. This method is likely to be 

the most reliable and accurate of the ones presented in this 

review, and the authors claim that the model’s accuracy 

can be improved even further. Also worth mentioning is 

Alzaatreh et al. (2018). A pattern recognition technique 

was developed and tested in this research work to separate 

SH measurements from other appliances in two UK 

single-family dwellings. 

This manuscript aims to present the results from the 

validation of a novel disaggregation methodology 

described in Leiria et al. (under review). The validation 

process is constituted by applying the method in three 

smart heat meter datasets. These datasets are different in 

terms of measurements resolution (i.e., number of 

decimal digits), measurements scale (i.e., energy usage in 

a single apartment or a block of apartments), building type 

(i.e., residential or commercial buildings), heating 

systems (i.e., DHW production with or without storage 

tank) and different countries (i.e., Denmark, Switzerland, 

and Italy). The current study compares the DHW 

estimation by the disaggregation methodology with the 

actual measurements and the DHW compliance 

calculations of each country.  

Following the Introduction, the section Study Case 

presents the different validation datasets. In Methodology, 

the applied disaggregation method is explained. The 

results from the validation are examined in the section 

Results and Discussion. The manuscript closes with 

Conclusion and Suggestions for Further Work. 



Study Case 

For the methodology’s validation, three heating datasets 

are used. All datasets have separated energy 

measurements of SH, DHW, and the aggregated sum of 

both (total heat). The differences between datasets are the 

following. 

Danish dataset 

This dataset is constituted of 28 single-family apartments. 

All apartments are from a social housing complex in 

Aalborg, Denmark. The complex was progressively 

refurbished to the Nearly Zero-Energy Buildings (NZEB) 

standard from 2012 to 2020. The interior of the 

apartments was fully remodeled, and the new SH 

installation includes radiators in all rooms and kitchens 

and underfloor heating in the bathrooms and hallways. 

The heat for SH and DHW is produced at the building 

block level and distributed to each apartment. Apartments 

are equipped with single SH and total heat usage meters, 

and the DHW is calculated through the difference 

between measurements from the meters. The heated area 

of the dwellings is between 97 and 112 m2. 

The local weather data (hourly outdoor temperature and 

the global radiation) is retrieved from the Danish 

Meteorologic Institute website (Dansk Meterologisk 

Institut (2022)). The chosen weather station is Tylstrup, 

the nearest available station to Aalborg. 

In this work, the data pre-processing consisted in 

detecting the number of missing and negative 

measurements and removing them. In the 28 dwellings 

dataset (187 123 measurements) with approximately nine 

months of monitoring for each dwelling, there are 46 661 

missing hours (~25% of the dataset). The household with 

the lowest missing measurements has approximately 3% 

missing data. Some households have up to 43% of 

missing data. Regarding negative measurements 

(incorrect values), few apartments have those. In total, 

these values only represent 0.013% of the original dataset. 

Swiss dataset 

This dataset is constituted of an apartment building 

located in Vevey, Switzerland. The building was built in 

20120 and deeply refurbished to reach NZEB standards 

during 2018-2019. The local district heating network 

supplies heat for SH and DHW. A heat meter measures 

the total heat provided by the district heating network. A 

second, a Flexim ultrasonic portable flowmeter (Fluxus 

F601), was used to measure the heat consumption for the 

DHW.  

The hourly outdoor temperature and the global radiation 

data were collected from the Swiss Federal Office of 

Meteorology and Climatology-MeteoSwiss (Swiss 

Federal Office of Meteorology and Climatology-

MeteoSwiss (2022)). The “Vevey” station was used for 

the weather data as it was the nearest available. The data 

were pre-processed in order to identify the missing and 

negative values and remove them. In total, for 2020, there 

were five months of available valid data.  

Italian dataset 

The selected building dataset consists of a theatre and a 

rehab institution connected to the district heating network 

of Verona Centro Città, serviced by AGSM. This network 

supplies heat to residential, tertiary, and industrial 

customers, operating at constant supply temperature and 

variable flow rate. Overall there are 247 user substations, 

but just for 2 (theater and rehab institution) of these 247, 

the separate monitoring on the use of SH or DHW was 

provided. The measures all correspond to the primary 

circuit of the heat exchanger installed at each user 

substation. The measuring devices installed are all 

ultrasonic compact energy meters suitable for measuring 

the energy consumption of district heating systems. The 

principle of operation of these meters is static and based 

on the transit time measurement. In particular, ultrasonic 

meters are characterized by the absence of moving parts, 

thus preventing mechanical wear of the metering 

components, low-pressure losses, low start flowrate, and 

good tolerance to suspended particulates in the water 

flow. On the whole, the ultrasound principle assures 

stable and accurate measuring results. The measurement 

period is from December 1, 2021, to January 31, 2022, for 

the rehab institution and from January 11 to January 31, 

2022, for the theater. The resolution of the measured data 

is a 15-minute time step. 

The local weather data (global solar radiation and air 

temperature with hourly time step) has been provided by 

the Arpav Meteorological Institute of Teolo. 

Methodology 

The methodology starts with the premise that the SH 

system runs continuously during the heating season while 

the DHW usage is sporadic throughout the day. Hence, 

during a day (which has around 24 recorded heating 

measurements), only a few of those consist of combined 

SH and DHW usage (ETotal = ESH + EDHW). The other 

recorded data points are SH usage alone (ETotal = ESH). 

Following this premise, the method has two stages. The 

first is to segregate the data points with and without DHW 

production. The second is to estimate the SH share 

(ESH,estim) in the points identified with DHW usage. From 

the SH estimation, the DHW is calculated through 

Equation 1: 

𝐸𝐷𝐻𝑊,𝑒𝑠𝑡𝑖𝑚 = 𝐸𝑇𝑜𝑡𝑎𝑙 − 𝐸𝑆𝐻,𝑒𝑠𝑡𝑖𝑚 (1) 

The estimation results are compared with the separated 

measurements (SH and DHW usage) for each dataset. The 

DHW values obtained by the disaggregation methodology 

with the DHW prediction from the different countries’ 

compliance calculations. The disaggregation 

methodology is disclosed in more detail below. 

Furthermore, the algorithm presented in this work is 

coded with the software Rstudio (RStudio (2022)). 

Energy separation 

This first part of the method starts from the same premise 

as Bacher et al. (2016) that moderate variations of outdoor 

temperature during the day combined with the inertia of 



the building environment contribute to smooth SH daily 

fluctuations. Hence, all peaks recorded by the meters can 

be accounted for DHW usage. Therefore, the method 

detects all daily highest points (ETotal) and identifies them 

containing DHW and SH usage (ETotal = ESH + EDHW). For 

each day, the method assumes the seven-highest recorded 

values as DHW usage, while the other measurements are 

considered SH alone. It is also assumed a sleeping period 

from 1:00 – 4:00 hours every day. Thus, there is no DHW 

demand during the sleeping period, and the high values 

recorded are because of the SH system operation. In 

Figure 1, one can see a schematic representation of the 

separation method. 

 

Figure 1: Separation method’s representation. 

All points identified with DHW production are removed 

from the dataset in order to have only SH measurements. 

The remaining SH data points will be used to estimate the 

SH from the removed recordings. The estimation 

algorithm is explained in the following subsection. 

SH and DHW estimation 

At this stage, the smart meters’ dataset consists of 

measurements without DHW production (ETotal = ESH). 

The next stage of the methodology is to estimate the SH 

usage (ESH,estim) at the data gaps. After determining the 

ESH,estim, the DHW usage (EDHW,estim) is calculated with 

Equation 1. 

From the same starting argument of the energy separation, 

the SH demand will vary smoothly due to small outdoor 

temperature oscillations. Therefore, the SH share in the 

removed data points is predicted from its known 

neighboring SH measurements that remained in the 

dataset. To estimate the SH, a smoothed Kalman filter 

algorithm is applied. This algorithm is based on a 

structural time series model from the function “StructTS” 

in the R-package imputeTS (Moritz and Bartz-Beielstein 

(2017)). The package’s selected function consists of a 

linear Gaussian state-space model for univariate time 

series. 

From the results in Leiria et al. (under review), the 

Kalman smoothing technique is a good method to predict 

the SH demand in the missing values. However, as 

mentioned, these values are calculated by their 

neighboring points. Basing this estimation on the adjacent 

points raises the risk of inaccuracy when several points 

are removed sequentially (large gap). To solve this 

problem, the algorithm is refined to use the smoothed 

Kalman filter only when the number of hours removed 

consecutively is equal to or below 2 hours (gap ≤ 2 hours). 

If the data gap is larger, a support vector regression (SVR) 

is applied instead. The SVR is a machine learning 

regressor that is trained with the known SH points that 

remained in the dataset and takes into account other inputs 

to calculate the SH usage instead of the neighboring 

points. The input data to estimate a given SH share is the 

outdoor temperature and global solar radiation measured 

two and one hours prior to the missing point and the smart 

meter measurements before and after the missing point. 

The SVR model uses a radial kernel function with the 

parameters C (cost) and γ (gamma) equal to 7 and 0.01, 

respectively. The SVR algorithm is retrieved from the R-

package e1071 (Meyer et al. (2020)). One can see in Table 

1 the details regarding the estimation algorithms. 

Table 1: Methods’ description. 

Method Parameters Input Condition 

Kalman 

filter 

Model: StructTS 

Smoothed: True 

ETotal [i] Gap ≤ 2 

hours 

SVR Kernel: Radial 

C = 7 

γ = 0.01 

Tout [i-1, i-2] 

Rad [i-1] 

ETotal [i-1, i+1] 

Gap > 2 

hours 

The final part of the present methodology compares the 

estimated values from the methodology and the actual 

measurements. Also, it explicitly compares the DHW 

method’s prediction on the rounded measurements 

(present case buildings), prediction on the decimal values 

(from the study in Leiria et al. (under review)), and the 

DHW estimation from the compliance calculations in the 

different countries (as described below). 

Danish DHW compliance calculations 

In Denmark, the DHW consumption in residential 

buildings is currently estimated using the compliance 

calculation of 250 liters/m2 per year (Aggerholm and 

Skovgaard (2018)). Similarly, the supplied cold water and 

DHW temperatures are 10⁰C and 55⁰C, respectively 

(Dansk Standard (2000)). By using the floor area of the 

different apartments, the yearly DHW energy production 

is calculated through Equation 2: 

𝐸𝐷𝐻𝑊
𝐷𝐾 =

1

3600
∙ 0.25𝐴 ∙ 𝜌𝑤𝑐𝑝,𝑤 ∙ (𝑇𝐷𝐻𝑊 − 𝑇𝑐) (2) 

Swiss DHW compliance calculations 

In Switzerland, the DHW consumption in residential 

apartment buildings is currently predicted using the 

compliance calculation of 35 liters/day per person, and 

each person is considered to occupy 30 m2 of floor area 

(Société suisse des ingénieurs et des architectes (2015)). 

Similarly, the supplied cold water and DHW water 

temperatures are 10⁰C and 60⁰C, respectively (Société 

suisse des ingénieurs et des architectes (2015)). Thus, by 

knowing the building’s floor area, the yearly DHW 

energy production is calculated through Equation 3: 

𝐸𝐷𝐻𝑊
𝐶𝐻 =

365

3600
∙
0.035

30
𝐴 ∙ 𝑛 ∙ 𝜌𝑤𝑐𝑝,𝑤 ∙ (𝑇𝐷𝐻𝑊 − 𝑇𝑐) (3) 

Italian DHW compliance calculations 

In Italy, the DHW consumption in specific (commercial) 

buildings is estimated using particular compliance 

calculations and standards. The Italian dataset has the 

heating measurements of a rehab institution and a theatre, 



therefore, the DHW consumption (volume) is calculated 

accordingly for each building case. The rehab institution 

accounts for a water volume (Vw) of 80 liters/day per 

existing bed in the building (Ente Nazionale Italiano di 

Unificazione (2014)), and the number of days regarding 

the calculation period (G) is equal to 365. The theatre’s 

DHW consumption (Vw) is given at 3.8 liters/day per 

person (ISO (2016)). The theatre is divided into zones 

where the number of people will variate accordingly. The 

number of days (G) for this case is 251 (ISO (2016)). For 

both cases, the supplied cold water and DHW 

temperatures are 13⁰C and 40⁰C, respectively (Ente 

Nazionale Italiano di Unificazione (2014)). Thus, by 

knowing the buildings’ bed number or occupants’ number 

(n), the yearly DHW energy production is calculated 

through Equation 4: 

𝐸𝐷𝐻𝑊
𝐼𝑇 =

𝐺

3600
∙ 10−3𝑉𝑤 ∙ 𝑛 ∙ 𝜌𝑤𝑐𝑝,𝑤 ∙ (𝑇𝐷𝐻𝑊 − 𝑇𝑐) (4) 

Results and Discussion 

The first set of results from this research is from applying 

the energy separation algorithm to identify the 

measurements with DHW usage. To assess the 

identification accuracy, the percentage of incorrectly 

identified measurements is shown per case building in 

Figure 2. 

 

Figure 2: Incorrectly identified points percentage per 

building type. 

The results show that the separation approach is quite 

inaccurate in identifying the DHW draw-off events. The 

lowest percentages belong to the Danish cases (single-

family apartments), with the lowest value of 16%. The 

largest inaccurate identified points belong to the Italian 

cases with the extreme of 67%. The plot corroborates the 

hypothesis that this separation approach performs better 

for households than commercial buildings. 

The following step in the methodology is the estimation 

of the SH usage in the detected DHW points. The 

estimation algorithm combines two methods, smoothed 

Kalman filter estimator and SVR, as described in the 

Methodology. In Figure 3, it is presented the overall error 

between the estimated values (SH – upper area; DHW – 

down area) and the real measurements.  

 

Figure 3: Overall error of the SH and DHW estimation 

for each building. 

As one can see from Figure 3, the overall SH error (upper 

area) is mainly negative (underestimated) and has a lower 

error than the estimated DHW, with the buildings having 

a SH error between -65% and 17%. 

Concerning the DHW prediction (down area), the error 

distribution is much wider than the SH predictions. In this 

case, 13 of the buildings on the dataset have an 

overestimation of the DHW demand above +100%. The 

extreme DHW prediction is one single-family dwelling 

with an overestimation of +510% and only two 

apartments being underestimated. 

Several reasons can be outlined to explain these energy 

predictions and their overall error. Foremost, the 

separation method inaccurately identifies several 

measurements, decreasing the estimation’s accuracy from 

the start. From Leiria et al. (under review), it is seen that 

in this research work, the separation approach 

underperforms more in single-family apartments. This is 

due to the coarse measurements (rounded values), which 

hinder the algorithm from finding the maximum values 

because most data points have the same value (e.g., 1, 2, 

3 kWh). Also relevant is that this method has a significant 

inaccuracy for the commercial buildings. To overcome 

this challenge, a separation approach can be developed, 

taking into account the maximum values (as done in this 

manuscript) and the occupancy schedule. Because these 

buildings have such strict schedules (e.g., opening and 

closing hours), a more precise method can be developed 

to account for these characteristics. 

Another factor is the occurrence of missing measurements 

in the initial dataset. As one can see in the Study Case, the 

different countries’ datasets are comprised of large 

missing measurement gaps (Denmark and Switzerland) or 

small timespan measurements (Italy). Because the 

prediction relies on determining the SH usage based on its 

neighboring points, several missing points negatively 

impact the overall method’s accuracy. 

Furthermore, the different heating systems and people’s 

social cultures significantly impact the methodology. As 

described, some of the DHW systems are of instantaneous 

heat production (Denmark). However, others have a 

storage tank (Switzerland), which in itself affects the 

DHW usage detection. Besides the production system, the 



unique dwellers’ consumption habits or the DHW usage 

being equal to zero (no occupancy) may influence the 

method’s performance, which might explain the extreme 

error estimated cases.  

The present work also assesses the estimated DHW values 

from the method with the different countries’ compliance 

calculations used to predict the DHW demand in the 

buildings. In this comparison, the values presented in the 

manuscript Leiria et al. (under review) are also displayed 

(“decimal” column). The results of this comparison are in 

Table 2. 

Table 2: Comparison between the countries’ compliance 

predictions and the method’s estimation results. The 

green-colored cells indicate the best (orange color – the 

worst) performing method between this research’s 

method (rounded and decimal measurements) and the 

compliance calculations when comparing with the actual 

DHW measurements. 

Data 
Case-

building 

Error 

Compliance Round Decimal 

DK Apart 666 -47% 97% 0% 

DK Apart 668 -42% 103% 21% 

DK Apart 669 -11% 102% 22% 

DK Apart 670 -72% 21% -6% 

DK Apart 671 -34% 108% 20% 

DK Apart 697 -76% 12% -12% 

DK Apart 698 -75% 21% -7% 

DK Apart 699 -76% 10% -13% 

DK Apart 700 123% 510% 85% 

DK Apart 701 -1% 93% 18% 

DK Apart 702 87% 182% 32% 

DK Apart 724 -28% 89% 11% 

DK Apart 726 43% 70% 14% 

DK Apart 727 61% 149% 18% 

DK Apart 728 11% 152% 37% 

DK Apart 729 14% 119% 12% 

DK Apart 730 -57% 43% 5% 

DK Apart 731 90% 273% 63% 

DK Apart 732 -60% 24% -15% 

DK Apart 734 59% 144% 17% 

DK Apart 735 -50% 44% 6% 

DK Apart 736 -51% 40% 1% 

DK Apart 739 -68% 34% 7% 

DK Apart 740 1% 75% -3% 

DK Apart 741 -30% 59% 7% 

DK Apart 742 0% 121% 15% 

DK Apart 743 -64% 29% -13% 

DK Apart 745 78% 265% 69% 

CH 
Apart. 

block 
4% -9% - 

IT 
Rehab 

inst. 
-59% -79% - 

IT Theater -35% 154% - 

As shown in Table 2, there are three calculated errors per 

DHW usage. The error between the measured DHW 

usage and the DHW compliance calculations 

(“Compliance”), the error between the actual 

measurements and the results from the methodology 

applied on this manuscript dataset (“Round”), and the 

error between the DHW measurements and the results 

from the methodology applied on the Leiria et al. (under 

review) dataset (“Decimal”). The error calculation is 

performed using the aggregated DHW usage divided by 

the number of data points (hours). For the case of the 

DHW measurements and the disaggregation method, the 

number of data points is the number of measurement 

hours in each building. For the compliance case, the 

number of data points is the number of hours in a year. In 

most cases, the compliance calculations outperform 

(green color) the disaggregation methodology when 

applied to rounded values. However, the total heating 

values are recorded with decimal number, its accuracy 

increases and outperforms the DHW compliance 

prediction. The main reasons behind this performance are 

stated above. However, it is relevant to highlight that even 

though the compliance calculations are in some cases 

more accurate, the methodology should be reviewed or 

changed because the results are still too high and might be 

one of the main reasons for the observed building energy 

performance gap. 

Conclusion 

This article presents a validation study on a new data-

driven methodology to estimate the SH and DHW from 

hourly resolution heat meters data. The validation novelty 

is the application of different building cases with different 

characteristics, e.g., different measurements resolution, 

building types, heating systems, and countries 

(consumption habits).  

The validation process shows that the method is quite 

inadequate to detect DHW usage in rounded 

measurements or commercial buildings. To solve these 

challenges, it is argued that the measurements cannot be 

rounded and should be recorded with decimals, and that 

the separation algorithm must be refined by taking into 

account the occupancy schedules in large buildings. The 

overall methodology predicts better the SH demand with 

an error between -65% and 17%. Concerning DHW 

prediction, the error is much wider, with most building 

cases falling between 0% and 200%. Additionally, this 

study compared the estimated DHW demand predicted by 

the method with the actual measurements and the DHW 

compliance calculations used in Denmark, Switzerland, 

and Italy. This comparison concludes that the compliance 

estimations outperform this method for most building 

cases, when the used rounded values. However, it is 

argued that the compliance calculations must be updated 

or replaced to estimate more precisely the buildings’ 

DHW demand, hence decreasing the energy performance 

gap and improving the EPCs’ accuracy. 

Suggestions for Further Work 

A suggestion for further work is the application of this 

methodology with other datasets for further validation and 

robustness analysis. Improving the separation 

methodology for rounded measurements and commercial 

cases is highly needed. 



It is also advised to benchmark this methodology with 

other existing disaggregation techniques on a common 

dataset. Additionally, a more extensive endeavor must be 

made to collect good quality datasets and share them with 

our research peers. 
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Nomenclature 

Acronyms 

CH Switzerland (country code) 

DHW Domestic hot water 

DK Denmark (country code) 

EPC Energy performance certificate 

EU European Union 

IT Italy (country code) 

SH Space heating 

SVR Support vector regression 

Symbols and variables 

A Floor area [m2] 

C Cost (SVR parameter) [-] 

Cp,w 
Water specific heat capacity – Constant: 4.18 

[kJ/kg⁰C] 

EDHW 
Measured domestic hot water energy usage 

[kWh] 

EDHW,compl 
Estimated annual DHW energy usage from any 

compliance [kWh/year] 

EDHW,estim 
Estimated domestic hot water energy usage 

[kWh] 

EDHW
DK Estimated annual DHW energy usage from 

Danish compliances [kWh/year]  

EDHW
CH Estimated annual DHW energy usage from 

Swiss compliances [kWh/year]  

EDHW
IT Estimated annual DHW energy usage from 

Italian compliances [kWh/year]  

ESH Measured space heating energy usage [kWh] 

ESH,estim Estimated space heating energy usage [kWh] 

ETotal 
Measured total heat usage (smart meter 

measurements) [kWh] 

G Number of days in calculation period [days] 

n Number of people or beds [-] 

Rad Global solar radiation [W/m2] 

Tc Temperature of inlet cold water [⁰C] 

TDHW Temperature of outlet DHW water [⁰C] 

Tout Outdoor temperature [⁰C] 

γ Gamma (SVR parameter) [-] 

ρw Water density – Constant: 1000 [kg/m3] 
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