

Aalborg Universitet

Scenario prediction for power loads using a pixel convolutional neural network and an
optimization strategy

Liao, Wenlong; Ge, Leijiao; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna; Yang,
Zhe
Published in:
Energy Reports

DOI (link to publication from Publisher):
10.1016/j.egyr.2022.05.028

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Liao, W., Ge, L., Bak-Jensen, B., Pillai, J. R., & Yang, Z. (2022). Scenario prediction for power loads using a
pixel convolutional neural network and an optimization strategy. Energy Reports, 8, 6659-6671.
https://doi.org/10.1016/j.egyr.2022.05.028

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.egyr.2022.05.028
https://vbn.aau.dk/en/publications/480c05aa-3d4a-4bf2-9ad4-47f9111c7c21
https://doi.org/10.1016/j.egyr.2022.05.028

Energy Reports 8 (2022) 6659–6671

W

i
p
p
f
p
w
r
t
t

m
t
d
l
m

(
z

h
2

Contents lists available at ScienceDirect

Energy Reports

journal homepage: www.elsevier.com/locate/egyr

Research paper

Scenario prediction for power loads using a pixel convolutional neural
network and an optimization strategy✩

enlong Liao a, Leijiao Ge b, Birgitte Bak-Jensen a, Jayakrishnan Radhakrishna Pillai a,
Zhe Yang a,∗

a AAU Energy, Aalborg University, Aalborg, Denmark
b The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin, China

a r t i c l e i n f o

Article history:
Received 30 January 2022
Received in revised form 20 April 2022
Accepted 10 May 2022
Available online xxxx

Keywords:
Scenario prediction
Power load
Pixel convolutional neural network
Deep learning
Stochastic behavior

a b s t r a c t

Accurate and reliable prediction of power load is critical to ensure the economy and stability of power
systems. However, deterministic point prediction can scarcely be accurate due to the fluctuating and
stochastic behavior of power load series, resulting in high risks for the system operation. Scenario
prediction is a widely used method to model stochastic behavior by generating a group of possible
power load scenarios rather than deterministic point predictions, so that system operators can account
for the uncertainty of power loads. In this paper, a new deep generative network-based method is
proposed for scenario prediction of power loads, in which structure and parameters are redesigned
on the original pixel convolutional neural network (PixelCNN). An optimization model is presented to
search for a range of power load scenarios with similar shapes, temporal dependency, and probability
distribution as the real ones. Numerical simulations on a real-world power load dataset show that the
PixelCNN outperforms other generative networks for the scenario prediction of power loads.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Regarding the time horizon, load prediction can be divided
nto very short-term load prediction for the online monitoring of
ower equipment, short-term load prediction for daily scheduling
lan and weekly scheduling plan, medium-term load prediction
or the maintenance plan for equipment, and long-term load
rediction for the transformation and expansion of power grid,
ith the time horizon of minutes, hours, months, and years,
espectively (Zhu et al., 2020). This paper focuses on the short-
erm load prediction, since accurate short-term load prediction is
he basis for daily safe and economic operation of power systems.

Traditionally, deterministic point prediction only provides the
ost likely prediction values as a single estimate for the fu-

ure power load (Powell et al., 2014). The main methods of
eterministic point prediction for the short-term load can be
isted as follows: statistical methods and machine learning-based
ethods. In particular, common statistical methods (Azeem et al.,

✩ This work was supported by the State Key Laboratory of Reliability and
Intelligence of Electrical Equipment, Hebei University of Technology, China [grant
number: EERI_KF20200014].

∗ Corresponding author.
E-mail addresses: weli@energy.aau.dk (W. Liao), legendglj99@tju.edu.cn

L. Ge), bbj@energy.aau.dk (B. Bak-Jensen), jrp@energy.aau.dk (J.R. Pillai),
ya@energy.aau.dk (Z. Yang).
ttps://doi.org/10.1016/j.egyr.2022.05.028
352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
2021) include the grey prediction model, auto-regressive inte-
grated moving average, auto-regressive moving average, persis-
tence method, and auto-regressive which predict future values
only based on historical loads. Their inability to take into account
the correlation between loads and other factors (e.g., weather
and calendar information) leads to limited prediction accuracy,
especially for highly volatile load profiles. To consider the effect of
weather and calendar information on prediction accuracy, some
machine learning-based methods (e.g., support vector machine,
multi-layer perceptron, and random forest) were developed in
the early stage (Lindberg et al., 2019), but they failed to model
the time temporal of the load curve accurately. To address this
issue, various deep neural networks have been proposed recently.
Especially, the long short-term memory (LSTM) has shown out-
standing performance in capturing the temporal dependence of
load curves (Tan et al., 2020; Kong et al., 2019; Li et al., 2021; Lin
et al., 2022).

Deterministic point prediction ignores the prediction error
caused by the volatility of power loads, which poses poten-
tial risks to the operation of power systems. Over the past few
decades, a large number of methods have been developed to
represent the uncertainty of power loads. Mainstream methods
generally include (Zhang et al., 2016): interval prediction (Zhao
et al., 2020b), probabilistic prediction (Wen et al., 2021), and
scenario prediction (Liao et al., 2021a). Specifically, the interval
prediction, and probabilistic prediction are developed based on
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.egyr.2022.05.028
http://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2022.05.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:weli@energy.aau.dk
mailto:legendglj99@tju.edu.cn
mailto:bbj@energy.aau.dk
mailto:jrp@energy.aau.dk
mailto:zya@energy.aau.dk
https://doi.org/10.1016/j.egyr.2022.05.028
http://creativecommons.org/licenses/by/4.0/

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

i
v
o
f
d
a
u
p
m
b
p
l
o
s
p
l
m

t
b
c
b
f
e
e
G
t
C
t
I
t
d
t
w
w
a
i
c
b
h
s
i
o
c
e
o
p
m
m
C
m
t
o
s

b
o
a
t
e
b
w
s
t
w
G
t

nterval and density, respectively. In addition, their predicted
alues are usually used for probabilistic optimization or interval
ptimization, which cannot ensure that the dispatch decision is
easible to all extreme load conditions. Relatively, the reliable
ispatch decision of robust optimization is always applicable for
ny common and extreme load conditions, and their solutions are
sually derived from the robust optimization model and scenario
rediction (Zhao et al., 2020a), which is one of the widely used
ethods to model the uncertainty of future power load curves
y generating a series of possible power load scenarios. Scenario
rediction not only captures the temporal dependence of power
oads, but also reflects future uncertainty by generating a group
f plausible power load curves (Wang et al., 2020b). Especially,
cenario prediction plays a role in risk-based decision-making
roblems (e.g., robust optimization), since these generated power
oad scenarios can be considered inputs of a robust optimization
odel to obtain a conservative dispatch decision.
In respect to scenario prediction of power load curves,

raditional methods can be divided into two categories: noise-
ased methods and feature condition-based methods. Specifi-
ally, noise-based methods obtain a group of possible scenarios
y adding noises to the future power load curves that are coming
rom conventional deterministic point prediction models. For
xample, the work in Shepero et al. (2018) assumes that the
rrors between the real and predicted power loads belong to
aussian noises, which are added back to the original predictions
o obtain a stochastic scenario. In Chen et al. (2019), the Monte
arlo method is employed to calculate prediction errors given
he expectation and variations from a deep residual network.
n Wang et al. (2018), a quantile regression method is used
o fit prediction errors that are conditional on both the input
ata and point predictions. A key weak point of this category is
hat it generates scenarios centered on point prediction values,
hich may not capture the diversity of load behavior, especially
hen there are multiple patterns in the power load curves. In
ddition, they require artificial assumptions about the probabil-
ty distribution that prediction errors obey. (2) For the feature
ondition-based methods, they make full use of the relationship
etween power loads and feature conditions (e.g., temperature,
umidity, wind speed, weekdays, holidays), and obtain predicted
cenarios of power loads according to simulated features. For
nstance, the work in Dordonnat et al. (2016) produces a range
f power loads by inputting simulated feature scenarios to a
onventional deterministic point prediction model. In McSharry
t al. (2005), a statistical model is designed to fit the main sources
f variations in the power load demand and generate possible
rediction values of future peak loads. Further, an empirical for-
ula is proposed to quantitatively evaluate temperature scenario
ethods for scenario prediction of loads in Xie and Hong (2018).
ompared with noise-based methods, feature condition-based
ethods produce more diverse scenarios, but they do not solve

he fundamental problem, since they push the problem to how to
btain a good deterministic point prediction model and feature
cenarios.
In recent years, many deep generative neural networks have

een applied to scenario generations and scenario prediction
f power loads and renewable energy sources to overcome the
bove-mentioned challenges in traditional methods. For example,
he works in Zhang and Zhang (2020), Pan et al. (2019) and Ge
t al. (2020) use the Variational auto-encoder (VAE) and flow-
ased generative network to generate scenarios for power loads,
hile the works in Chen et al. (2018) and Wang et al. (2020a) de-
ign different variants of generative adversarial networks (GAN)
o model power curves of renewable energy sources, such as
ind farms and photovoltaic (PV) plants. Further, an improved
AN model and a non-linear independent component estima-
ion (NICE) model are extended to produce scenarios for wind
6660
power and power loads (Jiang et al., 2021; Hu et al., 2021). The
simulation results show that the GAN and NICE have stronger
performance than traditional methods. However, these genera-
tive networks have inaccurate loss functions or training issues,
limiting the quality of predicted scenarios significantly. For ex-
ample, the VAE involves an intractable inference step, while non-
convergence and mode collapse problems are still challenges in
the GAN (Wu et al., 2020). On these grounds, there is a need to
develop a new model with a stable training process and strong
performance.

The pixel convolutional neural network (PixelCNN) is a pow-
erful deep generative network with a tractable likelihood. Com-
pared with other generative networks (e.g., GANs), the PixelCNN
shows a more stable training process, since it can accurately
calculate the likelihood of samples through the chain rule (Oord
et al., 2016a). So far, the PixelCNN has shown convincing per-
formance in various fields, such as image generation, missing
data imputation, and speech processing (Guo et al., 2017). The
successful applications of the PixelCNN in computer vision prove
that they can accurately mine the complex intrinsic nature of
high-dimensional data (e.g., image and speech signal) through
unsupervised training. These unique characteristics of the Pixel-
CNN make it an ideal candidate for the scenario prediction task
of power loads. Normally, power load curves are stored as time
series, which can be treated as a special image with different
sizes of rows and columns. Therefore, the PixelCNN should have
the potential to model the uncertainty of power load curves.
However, the structures of existing PixelCNN cannot be directly
used for the scenario prediction, because the dimension of images
significantly varies from power load curves. It is necessary to re-
design the structure of PixelCNN for scenario prediction according
to the characteristics of power load curves.

In this paper, the PixelCNN is migrated into the scenario
prediction task of power loads. Compared with traditional sce-
nario prediction methods (e.g., noise-based methods and feature
condition-based methods), the proposed method is free from
statistical hypotheses about the probability density function of
power load curves or prediction errors. After unsupervised train-
ing, it can generate a lot of realistic power load scenarios with
similar shapes, temporal dependence, and probability distribution
as real ones. Besides, there is no restriction on the number of
generated scenarios. Compared with other generative networks,
the PixelCNN shows a more stable training process, since it can
accurately calculate the likelihood of samples through the chain
rule. The key contributions of this paper are:

(1) The PixelCNN is generalized from image generations into
the scenario prediction task of power loads. The structure of the
original PixelCNN is redesigned to model the uncertainty of load
curves.

(2) An optimization strategy is proposed to select a group of
possible power load scenarios given deterministic point predic-
tion values and new scenarios from the pre-trained PixelCNN.
This optimization strategy can generate a group of possible sce-
narios for future power loads without any restrictions of time
horizons (e.g., hours or days) by simply fine-tuning parameters.

(3) The influence of key hyper-parameters (e.g., the train-
ing epoch, optimizer, and learning rate) on the performance is
analyzed, and some suggestions about how to select these hyper-
parameters are presented.

The rest of the paper is organized as follows. Section 2 intro-
duces the structure and loss function of the PixelCNN, and Sec-
tion 3 formulates the proposed optimization strategy. Section 4
presents the process of the proposed method. Extensive experi-
ments are performed in Section 5. Finally, Section 6 summarizes
the paper and shows possible future works.

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

2

2

i
t
a
s

Z

Fig. 1. The framework of the PixelCNN.

. Scenario generation using the PixelCNN

.1. The framework of the PixelCNN

The framework of the PixelCNN is shown in Fig. 1. Its main
dea is to train a powerful deep neural network based on the his-
orical power load curves, so as to project noise vectors obeying
priori distribution (e.g., Gaussian distribution in this paper) into
tochastic scenarios with similar patterns.

∼ N(0, 1), X = G(Z) (1)

where X is the stochastic scenarios; Z is the Gaussian noise; and
G is the deep neural network(i.e., the generator in the PixelCNN).

Normally, the distance between the generated stochastic sce-
narios and the real scenarios is defined as the loss function, which
is used to update the parameters (e.g., weights) of the generator
in the PixelCNN. Note that noise vectors in the PixelCNN are
used to generate new scenarios rather than represent prediction
errors like traditional noise-based methods. In other words, the
traditional noise-based methods assume that the prediction er-
rors obey the Gaussian distribution, which may be inaccurate.
Relatively, the PixelCNN does not require statistical hypotheses
about the probability density function of power load curves or
prediction errors. After unsupervised training, the PixelCNN can
generate a lot of realistic power load scenarios, which will be
filtered to a set of suitable scenarios by an optimization model
in Section 3.

In the following sections, each module in the PixelCNN will be
introduced in detail, including the principles of generators, the
structure of generators, and the design of loss functions.

2.2. The basic principle of the generator

Without loss of generality, each stochastic scenario can be
regarded as a time series X = {x1, x2, . . . , xn}, which is composed
of n power loads (called pixels in the image generation). Then,
the joint probability distribution P(X) of these power loads can
be represented as:

p(X) = p(x1, x2, . . . , xn) (2)

Further, this joint probability distribution can be factorized,
i.e., the time series X can be decomposed into a product of
multiple 1-dimensional probability distributions using the chain
rule:

p(X) = p(x1)p(x2) . . . p(xn) (3)

where P(x) is the probability distribution of the power load x .
n n

6661
Previous publications have shown that power load curves
have strong time dependence (Ge et al., 2020). Therefore, for the
stochastic scenario generation task of power load curves, this
paper employs the first i − 1 power loads as the input data to
estimate the ith power load. The stochastic scenario generation
proceeds row by row and pixel by pixel. The specific steps are as
follows:

(1) Taking x1 as the input data, the first conditional probability
p(x1, x2) = p(x1)p (x2|x1) is utilized to get x2.

(2) The x1 and x2 are input to the second conditional probabil-
ity p(x1, x2, x3) = p(x1)p (x2|x1) p (x3|x1, x2) to obtain x3.

(3) Similarly, the power loads x1, x2, . . . , xn−1 are input to the
(i − 1)th conditional probability to obtain the last power load xn.

(4) Therefore, the joint probability distribution of power loads
can be expressed by a product of conditional distributions:

p(x1, . . . , xi) =

n∏
i=2

p (xi|x1, . . . , xi−1) (4)

where Π is the multiplication operation.
After defining the probability distribution of stochastic sce-

narios, the PixelCNN of power loads can be obtained by maxi-
mizing the likelihood of the training samples. Considering that
the conditional probabilities of load curves are generally dif-
ficult to be accurately represented by mathematical formulas,
this paper employs deep neural networks to replace conditional
probabilities.

2.3. Structural design of the generator

As one of the classical algorithms of deep learning, the convo-
lutional neural network (CNN) is a feed-forward neural network
that uses convolutional operations to extract features from high-
dimensional data. The CNN has greatly promoted the develop-
ment of a new generation of artificial intelligence. Compared with
recurrent neural networks (RNN), CNN has a more powerful fea-
ture extraction ability, and its parallel operation greatly reduces
the time cost of model training (Nguyen et al., 2020). At present,
CNN has been widely used in drug discovery, fault diagnosis, time
series prediction, and style transfer (Liao et al., 2021b). In this
context, this paper reshapes the original power load curves into
a two-dimensional matrix, and then uses CNN to fit the above-
mentioned conditional probability in Section 2.2. In other words,
the CNN is employed to construct the generator of the PixelCNN.

As described in Section 2.1, the first i − 1 power loads are
fed to the conditional probability to estimate the ith power load,
while the standard convolutional operation extracts all the time-
series information to estimate the ith power load, which means
that the standard CNN cannot be directly used to replace the
conditional probability. Specifically, Fig. 2(a) shows the stan-
dard convolutional operation whose mathematical formula is as
follows:

X l+1
cov = σcov

(
X l
cov ∗ Wcov + Bcov

)
(5)

where X l
cov is the input data of the lth convolutional layer; σcov (·)

is the activation function, such as the linear rectified unit (ReLU)
function; ∗ is the convolutional operation; Wcov and Bcov are
the weights and offset vectors (i.e., parameters to be trained) of
convolutional layers, respectively.

Further, a mask matrix is employed to block the later infor-
mation before performing the standard convolutional operation,
as shown in Fig. 2(b). Specifically, the first i−1 value in the mask
matrix is 1, and the remaining values are all 0. The mathematical
formula of masked convolution is as follows:

X l+1
cov = σcov

((
X l
cov ⊙ Ms

)
∗ Wcov + Bcov

)
(6)

where ⊙ is the Hadamard product; and M is the mask matrix.
s

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

e
t

L

Fig. 2. Visualization of the convolutional operations.

Generally, the mask convolution is regarded as the input layer
of the generator, and its outputs will be fed to the middle layers
of the generator. Previous works have shown that appropriately
increasing the number of convolutional layers helps to improve
the performance of feature learning and generalization (Zhang
et al., 2018). However, too many convolutional layers may also
lead to over-fitting and network degradation problems. This is
because the original data information contained in the extracted
features decreases as the number of layers deepens during the
forward transmission.

In order to improve the performance of the model and allevi-
ate over-fitting problems, this paper uses residual blocks, which
are commonly used in image generations, to form the middle
layer of the generator. The structure of the residual block is
shown in Fig. 3, and its operation process includes two parts:
skip-connections and residual connections. Specifically, the main
function of residual connections is to extract latent features
through multiple 2-dimensional convolutional (Conv2D) layers,
while the skip-connections are to add the original information of
input data to the output data. In this case, later layers contain
more feature information than the previous layers, and then
network degradation can be avoided. The calculation process of
residual block can be represented as follows:

X l+1
res = X l

res + Fcov
(
X l
res

)
(7)

where Fcov (·) denote multiple convolutional layers; and X l
res is the

input data of the lth residual block. Note that the input data of
the first residual block is the output of the masked convolutional
layer.

To sum up the structure of the generator, the input layer of the
generator is a masked convolutional layer, and the middle layer
consists of residual blocks (the number of residual blocks will be
explored in the simulation session). The output layer is a standard
convolutional layer.

2.4. Design of the loss function

For most of existing generative networks (e.g., VAE and GAN),
they project 1×m noise vectors into 1×n stochastic scenarios of
power loads, and then calculate the statistical distance (e.g., mean
square error, Kullback–Leibler divergence, and maximum mean
discrepancy) between the real scenarios and generated scenarios
as the loss function to update the weights in the model (Gm
et al., 2020). Obviously, these generative networks use the real
encoding method to represent stochastic scenarios of power load
with real numbers ranging from 0 to 1 (Turhan and Bilge, 2018).
6662
Fig. 3. Structure of the residual block.

Normally, the activation function in the last layer can be chosen
from the ReLU, sigmoid, and hyperbolic tangent (Tanh), which are
suitable for dealing with continuous real numbers.

Previous publications have shown that the one-hot coding
method can also be used to represent stochastic scenarios for the
calculation of loss functions (Oord et al., 2016b). Compared with
the traditional real encoding method, the loss function encoded
by the one-hot coding method is not only easy to train, but also
has better performance. Therefore, this paper chooses the one-hot
coding method to encode stochastic scenarios of power loads.

Specifically, the PixelCNN projects a noise vector into a
stochastic scenario of power loads, which is represented as using
an n×k 2-dimensional matrix by the one-hot coding method (Liao
t al., 2021b). The categorical cross-entropy is used to measure
he statistical distance between the real and generated scenarios:

=

k∑
i=1

yi lg (pi) (8)

where L is the categorical cross-entropy; pi is the output of neural
networks, i.e., the probability that the sample belongs to class i;
k is an integer that represents the length of the outputs; and yi is
a label. yi is equal to 1, if the sample belongs to class i, otherwise
yi is equal to 0.

Note that this n×k 2-dimensional matrix can be decoded into
a 1×n integer vector, where the element is divided by k to obtain
a stochastic scenario of power loads. Normally, the activation
function of the last layer in the PixelCNN selects the softmax
function, which is suitable for dealing with binary numbers.

3. An optimization model for scenario prediction

Obviously, a large number of stochastic scenarios produced
by feeding noise vectors into the pre-trained PixelCNN are disor-
dered, i.e., generated power load curves are not correlated with
the estimated values from deterministic point prediction models.
To make full use of the historical loads from the past time t − h
to time t and the estimated loads from the future time t + 1
to time t + m from the deterministic point prediction models,
an optimization problem is formulated to achieve this goal. m
denotes time horizons of predictions.

Fig. 4 visualizes the framework of the optimization strategy.
First of all, Gaussian noises are input to the pre-trained PixelCNN
to generate a large number of disordered stochastic scenarios.
Then, an optimization model with the objective function and con-
straints are defined given deterministic point prediction values

from time t + 1 to time t + m, historical power load from time

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

t
t
a

t

Fig. 4. The framework of the optimization strategy.

−h to time t, and generated stochastic scenarios from time t−h
o time t + m. Lastly, the optimization model is solved to obtain
group of possible power load scenarios that may occur.
Suppose Xhist = (xt , xt−1, . . . , xt−h) be power loads from time

−h to time t, and Xpred = (xt+1, xt+2, . . . , xt+m) be deterministic
point prediction values from time t + 1 to time t + m. The pre-
trained PixelCNN is used to model the uncertainty of power load
curves by generating a lot of possible stochastic scenarios S =

(X ′

1, X
′

2, . . . , X
′

N). For ease of discussion, the generated stochastic
scenario X ′

i is divided into two components, which include the
former X ′

former from time t − h to time t and the latter X ′

latter from
time t + 1 to time t + m:

X ′

i =
[
X ′

former, X
′

latter

]
= G (Z) (9)

X ′

former = (x′

t , x
′

t−1, . . . , x
′

t−h); X
′

latter = (x′

t+1, x
′

t+2, . . . , x
′

t+m) (10)

Normally, the generated power load curves S are disordered.
In order to screen out some stochastic scenarios related to the
deterministic point prediction values, the following two condi-
tions should be satisfied to capture the uncertainty of power load
curves:

(1) The former X ′

former of generated power load curves from
time t − h to time t should be close to the historical power load
Xhist at the same moment.

(2) The latter X ′

latter of generated power load curves from time
t+1 to time t+m should be realistic and around the deterministic
point prediction values Xpred.

Note that the above-mentioned stochastic scenarios S are not
derived from historical power load curves of the database, but
are generated by a generative network, which is trained with
historical power load curves. The reason for this is that the data
of historical load curves are generally insufficient, which makes
it difficult to fully cover the different changes that may occur in
the future power loads. In contrast, the generative network can
not only produce power curves with similar characteristics to the
training samples, but also have strong generalization ability (Pan
et al., 2019; Ge et al., 2020; Chen et al., 2018; Wang et al., 2020a),
i.e., it can generate power load scenarios that are not in the
training set but may appear.

To ensure that generated stochastic scenarios do not con-
flict with the above-mentioned two conditions, a constrained
optimization model is defined as follows:

min
z

Xhist − X ′

former


2

s.t. z ∈ Z

Lα(Xpred) ≤ X ′

latter ≤ Uα(Xpred)

(11)

where Lα(Xpred) is the lower bound of prediction intervals (PIs);
U (X) is the upper bound of PIs; and the parameter α (also
α pred

6663
called the prediction confidence) is used to control the width of
PIs.

There exist a large number of methods for constructing PIs,
such as Gaussian (Wan et al., 2017), Delta (Khosravi et al., 2010),
mean–variance estimation (Khosravi et al., 2012), and bootstrap
techniques (Khosravi et al., 2015). It is hard to determine which
method is the best, because each method has its own advantages
and characteristics. Further, the PIs from the previous works (Liao
et al., 2021a; Chen et al., 2018) are employed as a simple example
to facilitate the comparison between baselines and the proposed
method:
Lα(Xpred) = Xpred − α × max(Xpred)

Uα(Xpred) = Xpred + α × max(Xpred)
(12)

Compared with constrained optimization problems, uncon-
strained optimization problems are easier to solve. In light of this,
the proposed constrained optimization model is transformed into
an unconstrained optimization model by replacing constraints
with penalty terms in the objective function:

min
z

Xhist − X ′

former


2 +

M
[
ε
(
X ′

latter − Uα(Xpred)
)
+ ε

(
Lα(Xpred) − X ′

latter

)] (13)

where M is a penalty coefficient, which is much larger than the
first term of the objective function; and ε(·) is the Heaviside
function.

4. Process of the proposed method

The framework of scenario prediction for power loads based
on PixelCNN is shown in Fig. 5. Firstly, historical power load
curves are utilized to train a PixelCNN. Secondly, historical power
load curves and corresponding feature conditions (e.g., tempera-
ture, humidity, wind speed, weekdays, weekends, holidays) are
considered as the input data of a deterministic point prediction
model (e.g., RNN) to obtain the estimated power loads from time
t + 1 to time t + m. To obtain a set of possible scenarios, an
optimization algorithm (e.g., genetic algorithm) is employed to
solve the proposed unconstrained optimization model. Finally,
some indicators are proposed to analyze results. The detailed
steps are as follows:

(1) Normalize and divide datasets.
The 80% and 10% of measured power load time series curves

are randomly selected as the training set and validation set,
respectively. The remaining part is used as a test set to evaluate
the performance of the proposed method. Before inputting power
load curves to the PixelCNN and deterministic point prediction
model, the power loads and the corresponding feature conditions
need to be normalized, and otherwise the loss functions of models
may fail to converge. Therefore, this paper employs the min–max
normalization method to transform the original data into values
that vary from 0 to 1.

(2) Train the PixelCNN.
After initializing the structure and parameters of PixelCNN,

the weights in the model are updated by unsupervised train-
ing. As a most widely used algorithm for training neural net-
works, the back propagation can calculate how much each weight
contributes to this error and the amount that needs to be ad-
justed. Note that heuristic algorithms (e.g., genetic algorithms)
can also be used to optimize the weights of neural networks
for early-stage shallow neural networks (e.g., multi-layer percep-
tron). However, deep neural networks have so many parameters
(e.g., millions of parameters) that it is difficult for heuristic al-
gorithms to optimize such a large number of parameters, while
back propagation algorithms can quickly optimize the weights
by employing an optimizer such as gradient descent. Therefore,

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

t
t
s
i
v
p
t
o
t
u
a
t
t

l

Fig. 5. Process of the proposed method.

he back propagation is employed to train the proposed model
hrough an optimizer, which will be discussed in the simulation
ection below. Specifically, the Gaussian distribution (The mean
s 0 and the variance is 1) is sampled to obtain a set of noise
ectors as the input data of the PixelCNN. The noise vectors are
rocessed by a masked convolutional layer and residual blocks
o form stochastic scenarios with the same dimension as real
nes. Then, the categorical cross-entropy loss function between
he generated scenarios and the real scenarios is calculated to
pdate the weights of the PixelCNN through the back propagation
lgorithm. When the training epoch exceeds the pre-set size, the
rained PixelCNN is used for the stochastic scenario generation
ask of power loads.

(3) Train a deterministic point prediction model.
The conventional deterministic point prediction model is uti-

ized to estimate power loads from time t+1 to time t+m, which
is part of the input data of the unconstrained optimization model.
To make predicted scenarios cover real power loads as much as
possible, a point prediction model with strong performance is
necessary, since generated power load curves should be around
deterministic point prediction values. In other words, a good
point prediction model helps the predicted scenarios to cover the
real power loads with a small PI. Previous works have shown
that LSTM can solve the long-term dependence problem in tradi-
tional RNNs, and achieve state-of-art performance with superior
accuracy in short-term power load prediction (Tan et al., 2020;
Kong et al., 2019; Li et al., 2021; Lin et al., 2022). Therefore, this
paper selects LSTM as the deterministic point prediction model to
6664
estimate the short-term power loads. Normally, the control vari-
able method (Ge et al., 2020) is used to adjust the structure and
parameters of LSTM, which are related to the prediction accuracy.
After many tests, a suitable structure of LSTM is determined as
follows:

The middle layer consists of 4 LSTM layers, and their units are
20, 15, 10, and 10, respectively. The dense layer with 1 unit is
used as the output layer. The activation function in the output
layer is the sigmoid function, and the activation functions of other
layers are ReLU functions.

(4) Solve an unconstrained optimization model.
The genetic algorithm (GA) is a kind of population evolution-

ary algorithm which simulates the process of biological evolution.
At present, GA has been widely used in different fields (e.g., signal
processing, combinatorial optimization, machine learning) be-
cause of its strong global optimization ability (Abdelhady et al.,
2020). Therefore, this paper employs GA to solve the proposed
unconstrained optimization model, so as to get a group of possi-
ble scenarios to represent the uncertainty of power load curves.
After adjusting the parameters by the control variable method (Ge
et al., 2020), the structure and parameters of the GA are deter-
mined as follows:

The variable to be optimized is the noise vector z. The fitness
function is Eq. Eq. (13). The population size of the chromo-
some is 50, the probability of crossover operation is 0.9, and the
probability of variation operation is 0.1. The training epoch is 400.

(5) Evaluate results.
Normally, the prediction interval normalized average width

(PINAW) and prediction interval coverage percentage (PICP) are
used as indicators to evaluate the results of predicted scenarios.

Specifically, the PICP is the probability that the real power
loads fall within prediction intervals(PIs) of the generated sce-
nario sets. When parameter α is fixed, the larger the PICP, the
better the performance of the model.

PICP =
1

Ntest

Ntest∑
i=1

ci (14)

where Ntest is the number of sample in the test set; and ci is a
Boolean values. If the prediction value is out of bounds, ci = 0,
and otherwise ci = 1.

Obviously, the PICP is positively correlated with parameter α.
To avoid the single pursuit of interval coverage and unlimited
increase of parameter α, the PINAW should be considered:

PINAW =
1

Ntest

Ntest∑
i=1

(Ui − Li) (15)

where Ui is the upper bound of PIs for the ith sample; Li is the
lower bound of PIs for the ith sample. When other parameters
are the same, the smaller the PINAW, the better the performance
of the model.

5. Case study

5.1. Data description and simulation platforms

To verify the predictive superiority of the proposed method for
the scenario prediction of power loads, numerical simulations are
performed on a real-world power load dataset from the Univer-
sity of Texas at Austin Powell et al. (2014). This dataset records
the hourly cooling, heating, and power load, and corresponding
feature conditions (e.g., wind speed, humidity, pressure, and dry
bulb temperature) from July 2011 to September 2012. The lack
of weekdays, weekends, and holidays in the feature conditions of
this dataset may slightly limit the performance of the LSTM, but
it does not matter. Any point prediction model cannot perfectly

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

v
i
T
t
a
L
l
p
i
p
t
e

o
l
a

5

h
o
i
f
I
s
e
d
S
p

t
l
k

a
t
T
t

v
a
a

P
c
c
l
r
g
1
t
f

o
l
N
a
b
t
s
o
f

A
t
P
t
a
t
o

c
s
a
t
2
i

(
r
W
h
d
s
n
t
T
a
O
v

Table 1
Average results of models with different structures.
Number of
residual blocks

Loss function values
of the validation set

Training time (min) Number of
parameters

2 1.238 17.29 162944
4 0.465 28.28 269952
6 0.314 37.48 376960
8 0.272 47.44 483968
10 0.259 57.12 590976
12 0.224 70.81 697984
14 0.215 91.55 804992
16 0.200 107.19 912000
18 0.218 122.73 1019008
20 0.216 133.23 1126016

predict the real future load without errors, which is why the
proposed method is needed to represent the uncertainty of power
loads. The case study focuses on whether the generated scenario
can cover real power load curves and capture the time correlation
and probability density functions of power load curves.

To ensure the diversity of power load curves used for training,
erifying, and testing the model, the samples are randomly split
nto the training set, validation set, and test set without overlap.
he proportion of the training set is 80%, and the proportion of
he validation set and test set is 10%. Further, historical loads
nd historical meteorological features are fed into the pre-trained
STM to obtain deterministic point prediction values of power
oads from time t + 1 to time t + m. Note that the focus of this
aper is not on point prediction models. In case the reader is
nterested in point prediction models, the inputs and outputs of
oint prediction models can be found in Powell et al. (2014), and
he principles of LSTM can be found in Tan et al. (2020), Kong
t al. (2019), Li et al. (2021) and Lin et al. (2022).
All programs in this paper are tested in an integrated devel-

pment environment (IDE) named Spyder 3.6. The programming
anguage is Python 3.7, and the deep learning frameworks used
re Keras 2.2.4 and Tensorflow 1.12.0.

.2. Discussion on hyper-parameters

Before training the PixelCNN, it is necessary to initialize the
yper-parameters, which have a great impact on the performance
f the model. The hyper-parameters of the PixelCNN mainly
nclude the numbers of residual blocks, parameter k in the loss
unction, optimizer and its learning rate (LR), and training epoch.
t is difficult to give perfect parameters suitable for all data sets,
o this section shows how to use the control variable method (Ge
t al., 2020) to fine-tune these hyper-parameters on a specific
ataset. Lastly, a good starting point for each parameter is given.
pecifically, when one of the parameters is adjusted, the other
arameters use the initial values:
The middle layer includes 3 residual blocks. The optimizer is

he root mean square propagation (RMSprop) algorithm, and its
earning rate is 0.001. The training epoch is 1000, and parameter
is 256.
To find a suitable structure for the middle layer of the gener-

tor, the number of residual blocks is varied from 2 to 20, and
hen the models with different structures are trained 30 times.
able 1 shows the average loss functions of the validation set,
raining time, and the number of parameters.

As the number of residual blocks increases, the loss function
alue first decreases and then increases, while the training time
nd the parameters to be trained increase linearly. When there

re a few numbers of residual blocks in the middle layer, the e

6665
Fig. 6. The average loss functions of models with different optimizers.

ixelCNN can only learn a few useful features from power load
urves, and lose some important information due to the limited
apacity of the model. Relatively, if the middle layer consists of a
arge number of residual blocks, the PixelCNN will learn too many
epresentations which are specific to the training set, and do not
eneralize to other data, such as the validation set and test set.
6 is a good starting point for the number of residual blocks in
he middle layer, and higher values or lower values may be fine
or some datasets.

There is a need to choose an optimizer to update the weights
f the PixelCNN after initializing the middle layer. The popu-
ar optimizers include the root mean square prop (RMSProp),
esterov-accelerated adaptive moment estimation (Nadam),
daptive delta (Adadelta), adaptive moment estimation extension
ased on infinity norm (Adamax), adaptive moment estima-
ion (Adam), adaptive gradient descent algorithm (Adagrad), and
tochastic gradient descent (SGD). The models with different
ptimizers are trained 30 times, respectively. Their average loss
unctions of the validation set are shown in Fig. 6.

The PixelCNN can achieve good performance when Nadam,
dam, and RMSprop algorithms are used as optimizers. Among
hem, the RMSprop algorithm is the optimal optimizer for the
ixelCNN, because it has the smallest loss function. In addition,
he average loss functions of Adadelta, Adamax, SGD, and Adagrad
re significantly larger than those of other optimizers, indicating
hat they are not suitable for the PixelCNN in scenario generations
f power loads.
Before using the selected optimizer, the LR needs to be set to

ontrol the speed at which the model learns. Normally, LR is a
mall positive value, which ranges from 0 to 1. In order to find
n appropriate LR, the models with different learning rates are
rained 30 times, respectively. The training epoch is extended to
000. The average loss functions of the validation set are shown
n Figs. 7 and 8.

The following conclusions can be drawn from Figs. 7 and 8:
1) A too large LR (e.g., LR = 0.1) will cause the gradient to
emain almost constant rather than reducing the training error.
hen the LR is equal to 0.01, the loss function of the PixelCNN
as converged after 500 training epochs, but it oscillates severely
uring the training period. (2) On the contrary, if the LR is too
mall (e.g., LR = 0.0001 and LR = 0.00001), convergence speed is
ot only very slow, but stuck with a high training error. Therefore,
he PixelCNN should not use an LR that is too large or too small.
he suitable range of LR is less than 0.01 and greater than 0.0001,
nd a default value of 0.001 may work well for other datasets. (3)
n the premise of selecting an appropriate LR, the loss function
alue of the PixelCNN converges to a constant after 1600 training

pochs, which indicates that the PixelCNN has been trained well.

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

o
r
b
p
p

f
w
d
m
a
w
a
s

s

v
d
c
b
s
s
o
a
e
1
f
R

5

s
s
i
s
a

t

Fig. 7. The training process of different learning rates.

Fig. 8. The average loss functions of models with different learning rates.

Fig. 9. MMD between generated samples and real samples.

Unlike other generative networks (e.g., GAN) where the loss func-
tions involve unstable training problems (e.g., non-convergence
and mode collapse), the training process of the PixelCNN is very
stable.

The parameter k is an integer that denotes the length of the
utputs. In the field of image generations, the parameter k is 256,
epresenting different RGB color codes. However, 256 may not
e the best choice of the parameter k for scenario generation of
ower load curves, which makes it necessary to explore a suitable
arameter k for the PixelCNN.
Considering that the change of parameter k will affect the loss

unction, it is unfair to compare the loss function values of models
ith different sizes of parameter k. Therefore, maximum mean
iscrepancy (MMD) is employed to evaluate the performance of
odels by comparing the statistical distance between the gener-
ted samples and the real samples (Liao et al., 2021a). The models
ith different parameters are trained 30 times, respectively. The
verage MMD between generated samples and real samples are
hown in Fig. 9.
Similar to LR, the parameter k should not be too large or too

mall, and a suitable parameter k for scenario generation of power

load curves varies from 32 to 128.

6666
Fig. 10. A simple PixelCNN for scenario generation.

To sum up, hyper-parameters of the PixelCNN are set as fol-
lows: The middle layer includes 16 residual blocks. The optimizer
is the RMSprop algorithm, and its learning rate is 0.001. The
training epoch is 2000, and parameter k is 32.

As a simple example, Fig. 10 shows the structure of the Pix-
elCNN for scenario generation of daily power load curves with
1-hour time resolution. The structure and parameters of the
PixelCNN only need to be simply fine-tuned for datasets with
different time resolutions. Specifically, a 0 element is added to
the end of power load curves or noise vector to form a 1 × 25
ector, which is reshaped into a 5 × 5×1 tensor as the input
ata of the PixelCNN. The input layer is a 2-dimensional masked
onvolutional (MaskConv2D) layer, which extracts features and
locks unnecessary temporal information. The middle layer con-
ists of 16 residual blocks whose parameters and structure are
hown in Fig. 3. A 2-dimensional convolution is employed as the
utput layer to output 5 × 5×32 tensor, which is decoded into
5 × 5×1 tensor using one-hot coding method. Finally, the last
lement is discarded, and the output vector is reshaped into a
× 24 generated load curve. The output layer uses the Softmax

unction as the activation function, and the other layers use the
eLU function as the activation function.

.3. Results of scenario generation using PixelCNN

To visualize the adaptability of the proposed method to
tochastic scenarios with different prediction time horizons, a
ample in the test set is randomly selected, and then the GA
s employed to optimize noise vectors to obtain a group of
cenarios ranging from 6 h to 24 h. Among them, 100 scenarios
re randomly selected, as shown in Fig. 11.
By simply changing the parameter m (a parameter to control

ime horizon), PixelCNN can easily generate reliable power load

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

P

s
l
t
a
p
d

g
l
h
C
P
3

Fig. 11. Real scenarios and generated scenarios with different time horizons.
Fig. 12. The Pearson correlation matrices. (a) Pearson correlation matrix of real power loads; (b) Pearson correlation matrix of generated power loads; (c) Error of
earson correlation matrices between real power loads and generated ones.
cenarios with different time horizons, which cover real power
oad curves. In addition, the auto-correlation (Auto-corr) func-
ions (Zhao et al., 2020a) of the generated power load scenarios
re extremely close to the real ones, indicating that generated
ower load scenarios can represent the temporal dependence of
ifferent time horizons.
In addition to comparing the auto-correlation function in sin-

le time series, previous publications often use the Pearson corre-
ation coefficient to analyze whether all the generated scenarios
ave a similar temporal correlation with real ones (Ge et al., 2020;
hen et al., 2018). Therefore, Fig. 12 visualizes the heat map of
earson correlation matrices of 24 h real power loads, along with
000 generated power load scenarios for each realization.
In Fig. 12, the x-axis and y-axis denote the time horizon.

Obviously, the errors of Pearson correlation matrices between
real power loads and generated ones are smaller than 0.13. Sim-
ilar values in Pearson correlation matrices of real and generated
power loads indicate that the PixelCNN can accurately capture the
temporal dependency of power load curves with different time
horizons.

Normally, the probability density function is widely used to
evaluate the overall similarity between the generated samples
and the actual samples. In order to analyze the ability of PixelCNN
to capture the probability distribution characteristics of power
load curves, the popular generative networks (e.g., VAE, GAN,
and NICE) are used as baselines to generate a large number of
scenarios, and then the proposed optimization model is solved to
6667
obtain a group of suitable scenarios. Similarly, the control variable
method is employed to select the structure and parameters as
follows:

(1) VAE consists of an encoder and a decoder. Specifically, the
encoder includes 4 Conv2D layers, 1 flatten layer, and 1 dense
layer. The size of strides in the first 2 Conv2D layers is 2, and
that in the last 2 Conv2D layers is 1. The size of all convolutional
kernels is 2. The number of neurons in the dense layer is 64. The
decoder includes 2 dense layers, 3 transposed Conv2D layers, and
1 Conv2D layer. The number of neurons in the dense layer is 64
and 144, respectively. The size of strides in the first 2 transposed
Conv2D layers is 1, and that in the last transposed Conv2D layer
is 2. The size of all transposed convolutional kernels is 2. The size
of the stride is 1, and the convolutional kernel is 2 in the Conv2D
layer. The Conv2D layer of the decoder uses the sigmoid function
as the activation function, and other layers of the VAE use the
ReLU function as the activation function. Lastly, the optimizer
is Adam optimization, and the training epoch is 300. (2) GAN
consists of a generator and a discriminator. Specifically, the gen-
erator includes a dense layer and 4 transposed Conv2D layers. The
number of neurons in the dense layer is 256. The size of strides
is 1 and size of transposed convolutional kernels is 2. The last
transposed Conv2D layer uses the Tanh function as the activation
function, and other layers use ReLU functions. The sizes of filters
in transposed Conv2D layers are 32,16,8, and 1, respectively.
The discriminator include 3 Conv2D layers, 1 flatten layer, and
1 dense layer. The size of strides is 2, and size of transposed

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

s
d
e

s
c
c
p
P
G
s
V

s
t
T
f
e
s
a
m
t
a
t
l
s

5

f
l
l

Fig. 13. The probability density functions of the real samples and generated
samples.

Table 2
The average computation time for different models.
Model Time to train the model

(min)
Time to generate scenarios
(s)

PixelCNN 204.38 219.32
VAE 1.76 0.45
GAN 14.47 0.29
NICE 5.83 0.64

convolutional kernels is 2. The last Conv2D layer uses the sigmoid
function as the activation function, and other layers use Leaky
ReLU functions. The sizes of filters in Conv2D layers are 8, 16, and
32, respectively. The number of neurons in the dense layer is 1.
In the end, the optimizer is Adam optimization, and the training
epoch is 10000. (3) NICE consists of four additive coupling layers
whose parameters can be found in Hu et al. (2021).

Fig. 13 shows the probability density functions of the real
amples and 3000 generated samples. In addition, the statistical
istance between the generated samples and the real samples is
valuated by the MMD.
In general, the probability density functions of power load

cenarios generated by these four generative models are basically
onsistent with the real ones. This phenomenon shows that they
an account for the probability distribution characteristics of
ower load scenarios through unsupervised learning. Further, the
ixelCNN significantly outperforms popular baselines (e.g., VAE,
AN, and NICE), since the MMD between real samples and fake
amples generated by the PixelCNN is smaller than those of the
AE, GAN, and NICE.
Further, the scenario generation of 3000 new samples is con-

idered as an example. Each model is repeated 30 times, respec-
ively. The average computation time of each model is shown in
able 2. Specifically, PixelCNN’s training time and running time
or generating new scenarios are much longer than other gen-
rative models (e.g., VAE, GAN, and NICE), because its stochastic
cenario generation proceeds row by row and pixel by pixel,
s described in Section 2.2. The large time consumption is the
ain limitation of PixelCNN. Note that a few hours of training

ime and a few minutes of running time to generate scenarios
re acceptable in real engineering. For example, there is no real-
ime requirement when the system operators use the generated
oad scenarios as inputs to the day-ahead robust optimization
cheduling of power systems.

.4. Results of scenario prediction

In order to visualize the effectiveness of the proposed method
or the scenario prediction of power loads, the LSTM is uti-
ized to obtain deterministic point prediction values of 3 power

oad curves randomly selected from the test set, and the GA

6668
is employed to search for a group of appropriate scenarios by
solving unconstrained optimization model in Section 3. For each
real power load curve and point prediction value, 100 predicted
scenarios are randomly selected. Then, Fig. 14 shows the shapes
of real power load curves, point prediction values, predicted
scenarios, and their distribution characteristics.

The following conclusions can be drawn from Fig. 14: (1) From
the box-plot, it can be found that there are large differences in
the data distributions between the point prediction values and
real values. For example, when the forecasting time horizon is
48 h, the maximum point prediction value is much smaller than
the real peak. If the point prediction values are used to obtain
the dispatching scheme of power systems, the point prediction-
based solutions may not guarantee the security of power systems.
The predicted scenarios can cover the full range of real values if
the parameter α is large enough. In this case, a group of realistic
scenarios generated by the proposed method can be utilized for
risk-based decision-making problems (e.g., robust optimization)
with strong robustness for large error cases. (2) The balance be-
tween sharpness and reliability can be controlled by fine-tuning
the parameter α. The increase of the parameter α will make
PINAW and PICP increase at the same time. For example, when
parameter α is 1.1 and the prediction time horizon is 48 h or 72 h,
the predicted power load scenarios are close to deterministic
point prediction values, but they may not be able to cover the
peak or valley of real power load curves. With the increase of
parameter α, although predicted power load scenarios are less
concentrated, they are more likely to cover all the real power
loads. Generally, parameter α can be fine-tuned freely based on
the system operator’s requirements.

Besides qualitative observations, the performance of the pro-
posed method is also verified by quantitatively calculating the
PICP and PINAW of different models. The proposed method, the
VAE, GAN, and NICE are trained 30 times, respectively. The aver-
age PICP and PINAW of the test set are shown in Table 3.

The following conclusions can be drawn from Table 3:
(1) Obviously, NICE is worse than the VAE, because it has a

larger PINAW than VAE and a smaller PICP than VAE. Although the
PINAW of the VAE is the smallest, it also has the worst relatively
worse. In contrast, the PICP of GAN is the largest, but it pays the
price, i.e., the PINAW of the GAN is much larger than those of
other generative networks. The PICP of PixelCNN is not only much
larger than that of VAE, and its PINAW is smaller than that of GAN.
In other words, the PixelCNN keeps the trade-off between PINAW
and PICP well. For example, when the prediction time horizon is
24 h and the parameter α is 1.1, the PICPs of the PixelCNN and
the GAN are increased by approximately 26.82% and 28.84% com-
pared with the VAE, and the PINAWs are approximately 28.93%
and 70.87% higher than that of the VAE. Practically, the predicted
scenarios produced by the VAE fail to cover as many real power
loads as possible. It is hard to ensure the security of power
systems (i.e., small PIs may not cope with possible extreme cases).
For GAN, the PINAW of the predicted scenarios is too large, which
will increase the reserve capacity for risk-based decision-making
problems of power systems (i.e., economic waste is caused by
excess reserve capacity). The PixelCNN is superior to VAE, GAN,
and NICE in taking into account both PINAW and PICP. In other
words, PixelCNN balances economy and security.

(2) When parameter α is fixed, the larger the prediction
time horizon, the smaller the PICP of each model. For example,
when the parameter α is 1.2 in the PixelCNN, the PICP of the
48-hour time horizon and 72-hour time horizon are reduced
by approximately 6.24% and 10.47% compared with the 24-hour
time horizon. This is because the accuracy of deterministic point
prediction models deteriorates with the increase of time horizons,
i.e., the increase of time horizons intensifies the uncertainty of
power loads.

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

b

6

l
p
l
c

r
t

Fig. 14. Real values, point prediction values, and predicted scenarios of different parameters.
Table 3
Average PICP and PINAW of the test set.
Different parameters PINAW (MW) PICP (%)

PixelCNN GAN VAE NICE PixelCNN GAN VAE NICE

Forecasting time
horizon is 24 h

α = 1.1 6.64 8.80 5.15 5.75 85.15% 87.17% 58.33% 56.75%
α = 1.15 10.52 12.84 9.06 9.85 94.92% 96.94% 88.61% 85.69%
α = 1.2 13.86 16.33 12.50 13.11 99.37% 99.58% 96.25% 93.50%

Forecasting time
horizon is 48 h

α = 1.1 5.84 8.69 4.88 5.46 77.60% 79.65% 49.43% 50.13%
α = 1.15 9.65 12.76 8.74 8.93 88.68% 91.25% 77.99% 75.46%
α = 1.2 13.41 16.37 12.44 12.75 96.20% 97.08% 90.56% 88.95%

Forecasting time
horizon is 72 h

α = 1.1 5.98 8.11 4.93 5.53 66.05% 68.29% 44.58% 44.54%
α = 1.15 8.75 12.24 7.20 8.16 84.45% 86.11% 54.54% 53.87%
α = 1.2 10.10 15.90 9.80 10.42 90.06% 93.52% 70.19% 69.25%
(3) In practical applications, the choice of parameter α is
crucial. In fact, when selecting the α, the system operators should
fully consider PICP and PINAW, which depend on the dataset,
time horizon, point prediction model, and generative model. For
example, when the parameter α is 1.15 and the time horizon
is 24 h, the PICP of PixelCNN is 94.92%, which can be consid-
ered as the probability that the scenarios generated by PixelCNN
cover the true value. In other words, the robust optimization
solutions obtained based on these generation scenarios have a
94.92% probability to ensure that the limits are not crossed. If
the system operators want higher security, they can choose to
increase the α, but they will also pay an economical price, because
the solutions of the robust optimization will be more conservative
after parameter α is increased. In general, system operators need
to test the PICP and PINAW corresponding to different α values
before making a decision. Then, a suitable α value can be selected
ased on the balance of economy and safety.

. Conclusion

To improve the accuracy of scenario prediction for power
oads, a PixelCNN-based method is proposed in this paper. After
erforming the simulation and analysis on a real-world power
oad dataset from the University of Texas at Austin, the following
onclusions are obtained:
(1) The number of residual blocks in the middle layer, learning

ate, and the parameter k in the loss function should not be
oo large or too small. Normally, 16, 0.001, and 32 are good
6669
starting points for the number of residual blocks, learning rate,
and the parameter k, respectively. Higher values or lower values
may be fine for some datasets. Besides, the RMSprop algorithm
outperforms other popular optimizers, such as Nadam, Adadelta,
Adamax, Adam, Adagrad, and SGD. Unlike other generative net-
works (e.g., GAN) where the loss functions involve unstable train-
ing problems (e.g., non-convergence and mode collapse), the
training process of the PixelCNN is very stable, which is one of
its strengths.

(2) The PixelCNN can not only accurately capture the temporal
dependency of power load curves with different prediction time
horizons (e.g., the time horizon range from 0 h to 24 h), but also
fit the probability distribution of power load scenarios through
unsupervised learning. Further, the PixelCNN can easily generate
power load scenarios with different time horizons (e.g., the time
horizon range from 24 h to 72 h) by fine-tuning the parameter m
in the unconstrained optimization model.

(3) The balance between sharpness and reliability can be con-
trolled by fine-tuning the parameter α. when parameter α is
small, the predicted power load scenarios are close to determinis-
tic point prediction values, but they may not be able to cover the
peak or valley of real power load curves. On the contrary, large
parameter α disperses predicted power load scenarios, which
are more likely to cover all the real power loads. Compared
with other generative networks (e.g., VAE, GAN, and NICE), Pix-
elCNN shows better performance on taking into account both
PINAW and PICP. In other words, PixelCNN balances economy and
security in practical applications.

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

r
o
h
g

t
m
v
s
o
p
i

C

C
W
&
e

D

c
t

R

A

A

C

C

D

G

G

G

H

J

K

K

K

K

L

L

L

L

L

M

N

O

O

P

P

S

T

T

W

W

W

W

W

W

X

Z

Z

(4) The main limitation of PixelCNN is that training time and
unning time for generating new scenarios are much longer than
ther generative models (e.g., VAE, GAN, and NICE), but a few
ours of training time and a few minutes of running time to
enerate scenarios are acceptable in real engineering.
In this paper, PIs from previous works are used to validate

he proposed method, and future work may extend the proposed
ethod for other PIs constructed by Gaussian, Delta, mean–
ariance estimation, and bootstrap techniques. Besides, the ab-
ence of special days (e.g., holidays) in the feature conditions
f the real-world dataset may affect the performance of point
rediction, but these missing feature conditions can be easily
ncluded in future work.

RediT authorship contribution statement

Wenlong Liao: Methodology, Roles/Writing – original draft,
onceptualization, Data curation, Formal analysis. Leijiao Ge:
riting – review & editing. Birgitte Bak-Jensen:Writing – review
editing. Jayakrishnan Radhakrishna Pillai: Writing – review &
diting. Zhe Yang: Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

bdelhady, S., Osama, A., Shaban, A., Elbayoumi, M., 2020. A real-time optimiza-
tion of reactive power for an intelligent system using genetic algorithm. IEEE
Access 8, 11991–12000. http://dx.doi.org/10.1109/ACCESS.2020.2965321.

zeem, A., Ismail, I., Jameel, S.M., Harindran, V.R., 2021. Electrical load fore-
casting models for different generation modalities: a review. IEEE Access 9,
142239-142263. http://dx.doi.org/10.1109/ACCESS.2021.3120731.

hen, K., Chen, K., Wang, Q., He, Z., Hu, J., He, J., 2019. Short-term load forecasting
with deep residual networks. IEEE Trans. Smart Grid 10 (4), 3943–3952.
http://dx.doi.org/10.1109/TSG.2018.2844307.

hen, Y., Wang, X., Zhang, B., 2018. An unsupervised deep learning approach for
scenario forecasts. In: 2018 Power Systems Computation Conference (PSCC).
pp. 1–7. http://dx.doi.org/10.23919/PSCC.2018.8442500.

ordonnat, V., Pichavant, A., Pierrot, A., 2016. GEFCom2014 probabilistic electric
load forecasting using time series and semi-parametric regression models.
Int. J. Forecast. 32 (3), 1005–1011. http://dx.doi.org/10.1016/j.ijforecast.2015.
11.010.

e, L., Liao, W., Wang, S., Bak-Jensen, B., Pillai, J.R., 2020. Modeling daily load
profiles of distribution network for scenario generation using flow-based
generative network. IEEE Access 8, 77587–77597. http://dx.doi.org/10.1109/
ACCESS.2020.2989350.

m, H., Gourisaria, M.K., Pandey, M., Rautaray, S.S., 2020. A comprehensive
survey and analysis of generative models in machine learning. Comp. Sci.
Rev. 38, 1–29. http://dx.doi.org/10.1016/j.cosrev.2020.100285.

uo, P., Ni, X., Chen, X., Ji, X., 2017. Fast PixelCNN: Based on network acceleration
cache and partial generation network. In: 2017 International Symposium
on Intelligent Signal Processing and Communication Systems (ISPACS). pp.
71–76. http://dx.doi.org/10.1109/ISPACS.2017.8266448.

u, S., Zhu, R., Li, G., Song, L., 2021. Scenario forecasting for wind power using
flow-based generative networks. Energy Rep. 7, 369–377. http://dx.doi.org/
10.1016/j.egyr.2021.08.036.

iang, C., Mao, Y., Chai, Y., Yu, M., 2021. Day-ahead renewable scenario fore-
casts based on generative adversarial networks. Int. J. Energy Res. 45 (5),
7572–7587. http://dx.doi.org/10.1002/er.6340.

hosravi, A., Nahavandi, S., Creighton, D., 2010. Construction of optimal predic-
tion intervals for load forecasting problems. IEEE Trans. Power Syst. 25 (3),
1496–1503. http://dx.doi.org/10.1109/TPWRS.2010.2042309.

hosravi, A., Nahavandi, S., Creighton, D., Jaafar, J., 2012. Wind farm power
uncertainty quantification using a mean–variance estimation method. In:
Proceedings of the 2012 IEEE International Conference on Power System
Technology. pp. 1–6. http://dx.doi.org/10.1109/PowerCon.2012.6401280.

hosravi, A., Nahavandi, S., Srinivasan, D., Khosravi, R., 2015. Constructing
optimal prediction intervals by using neural networks and bootstrap method.
IEEE Trans. Neural Netw. Learn. Syst. 26 (8), 1810–1815. http://dx.doi.org/
10.1109/TNNLS.2014.2354418.
6670
ong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., Zhang, Y., 2019. Short-term residen-
tial load forecasting based on LSTM recurrent neural network. IEEE Trans.
Smart Grid 10 (1), 841–851. http://dx.doi.org/10.1109/TSG.2017.2753802.

i, J., Deng, D., Zhao, J., Cai, D., Hu, W., Zhang, M., et al., 2021. A novel hybrid
short-term load forecasting method of smart grid using MLR and LSTM
neural network. IEEE Trans. Ind. Inf. 17 (4), 2443–2452. http://dx.doi.org/
10.1109/TII.2020.3000184.

iao, W., Yang, Z., Chen, X., Li, Y., 2021a. WindGMMN: Scenario forecast for wind
power using generative moment matching networks. IEEE Trans. Artif. Intell.
1–8. http://dx.doi.org/10.1109/TAI.2021.3128368.

iao, W., Yang, D., Wang, Y., Ren, X., 2021b. Fault diagnosis of power transformers
using graph convolutional network. CSEE J. Power Energy Syst. 7 (2),
241–249. http://dx.doi.org/10.17775/CSEEJPES.2020.04120.

in, J., Ma, J., Zhu, J., Cui, Y., 2022. Short-term load forecasting based on LSTM
networks considering attention mechanism. Int. J. Electr. Power Energy Syst.
137, 1–10. http://dx.doi.org/10.1016/j.ijepes.2021.107818.

indberg, K., Seljom, P., Madsen, H., Fischer, D., Korpas, M., 2019. Long-term elec-
tricity load forecasting: current and future trends. Util. Policy 58, 102–119.
http://dx.doi.org/10.1016/j.jup.2019.04.001.

cSharry, P.E., Bouwman, S., Bloemhof, G., 2005. Probabilistic forecasts of the
magnitude and timing of peak electricity demand. IEEE Trans. Power Syst.
20 (2), 1166–1172. http://dx.doi.org/10.1109/TPWRS.2005.846071.

guyen, T.T., Nguyen, N.D., Nahavandi, S., 2020. Deep reinforcement learning
for multiagent systems: a review of challenges, solutions, and applications.
IEEE Trans. Cybern. 50 (9), 3826–3839. http://dx.doi.org/10.1109/TCYB.2020.
2977374.

ord, A.V.D., Kalchbrenner, N., Kavukcuoglu, K., 2016a. Pixel recurrent neural
networks. In: Proceedings of the 33rd International Conference on Interna-
tional Conference on Machine Learning. pp. 1747–1756, https://dl.acm.org/
doi/10.5555/3045390.3045575.

ord, Avd, Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., Kavukcuoglu, K.,
2016b. Conditional image generation with pixelcnn decoders. In: Proceedings
of the 30th International Conference on Neural Information Processing
Systems. pp. 4797–4805, https://dl.acm.org/doi/10.5555/3157382.3157633.

an, Z., Wang, J., Liao, W., Chen, H., Yuan, D., Zhu, W., Fang, X., Zhu, Z., 2019.
Data-driven EV load profiles generation using a variational auto-encoder.
Energies 12 (5), 1–15. http://dx.doi.org/10.3390/en12050849.

owell, K.M., Sriprasad, A., Cole, W.J., Edgar, T.F., 2014. Heating, cooling, and
electrical load forecasting for a large-scale district energy system. Energy
74, 877–885. http://dx.doi.org/10.1016/j.energy.2014.07.064.

hepero, M., van der Meer, D., Munkhammar, J., Widén, J., 2018. Residential
probabilistic load forecasting: a method using Gaussian process designed
for electric load data. Appl. Energy 218, 159–172. http://dx.doi.org/10.1016/
j.apenergy.2018.02.165.

an, M., Yuan, S., Li, S., Su, Y., Li, H., He, F., 2020. Ultra-short-term industrial
power demand forecasting using LSTM based hybrid ensemble learning. IEEE
Trans. Power Syst. 35 (4), 2937–2948. http://dx.doi.org/10.1109/TPWRS.2019.
2963109.

urhan, C.G., Bilge, H.S., 2018. Recent trends in deep generative models: a review.
In: 3rd International Conference on Computer Science and Engineering
(UBMK). pp. 574–579. http://dx.doi.org/10.1109/UBMK.2018.8566353.

an, C., Lin, J., Song, Y., Xu, Z., Yang, G., 2017. Probabilistic forecasting of
photovoltaic generation: an efficient statistical approach. IEEE Trans. Power
Syst. 32 (3), 2471–2472. http://dx.doi.org/10.1109/TPWRS.2016.2608740.

ang, Y., Chen, Q., Zhang, N., Wang, Y., 2018. Conditional residual modeling
for probabilistic load forecasting. IEEE Trans. Power Syst. 33 (6), 7327–7330.
http://dx.doi.org/10.1109/TPWRS.2018.2868167.

ang, Y., Hug, G., Liu, Z., Zhang, N., 2020a. Modeling load forecast uncertainty
using generative adversarial networks. Electr. Power Syst. Res. 189, 1–8.
http://dx.doi.org/10.1016/j.epsr.2020.106732.

ang, Z., Wang, W., Liu, C., Wang, B., 2020b. Forecasted scenarios of regional
wind farms based on regular vine copulas. J. Mod. Power Syst. Clean Energy
8 (1), 77–85. http://dx.doi.org/10.35833/MPCE.2017.000570.

en, H., Gu, J., Ma, J., Yuan, L., Jin, Z., 2021. Probabilistic load forecasting via
neural basis expansion model based prediction intervals. IEEE Trans. Smart
Grid 12, 3648–3660. http://dx.doi.org/10.1109/TSG.2021.3066567.

u, C., Chen, L., Wang, G., Chai, S., Jiang, H., Peng, J., et al., 2020. Spatiotemporal
scenario generation of traffic flow based on LSTM-GAN. IEEE Access 8,
186191-186198. http://dx.doi.org/10.1109/ACCESS.2020.3029230.

ie, J., Hong, T., 2018. Temperature scenario generation for probabilistic load
forecasting. IEEE Trans. Smart Grid 9 (3), 1680–1687. http://dx.doi.org/10.
1109/TSG.2016.2597178.

hang, Y., Liu, K., Liang, Q., An, X., 2016. Deterministic and probabilistic interval
prediction for short-term wind power generation based on variational mode
decomposition and machine learning methods. Energy Convers. Manage. 112,
208–219. http://dx.doi.org/10.1016/j.enconman.2016.01.023.

hang, K., Sun, M., Han, T.X., Yuan, X., Guo, L., Liu, T., 2018. Residual networks
of residual networks: multilevel residual networks. IEEE Trans. Circuits
Syst. Video Technol. 28 (6), 1303–1314. http://dx.doi.org/10.1109/TCSVT.
2017.2654543.

http://dx.doi.org/10.1109/ACCESS.2020.2965321
http://dx.doi.org/10.1109/ACCESS.2021.3120731
http://dx.doi.org/10.1109/TSG.2018.2844307
http://dx.doi.org/10.23919/PSCC.2018.8442500
http://dx.doi.org/10.1016/j.ijforecast.2015.11.010
http://dx.doi.org/10.1016/j.ijforecast.2015.11.010
http://dx.doi.org/10.1016/j.ijforecast.2015.11.010
http://dx.doi.org/10.1109/ACCESS.2020.2989350
http://dx.doi.org/10.1109/ACCESS.2020.2989350
http://dx.doi.org/10.1109/ACCESS.2020.2989350
http://dx.doi.org/10.1016/j.cosrev.2020.100285
http://dx.doi.org/10.1109/ISPACS.2017.8266448
http://dx.doi.org/10.1016/j.egyr.2021.08.036
http://dx.doi.org/10.1016/j.egyr.2021.08.036
http://dx.doi.org/10.1016/j.egyr.2021.08.036
http://dx.doi.org/10.1002/er.6340
http://dx.doi.org/10.1109/TPWRS.2010.2042309
http://dx.doi.org/10.1109/PowerCon.2012.6401280
http://dx.doi.org/10.1109/TNNLS.2014.2354418
http://dx.doi.org/10.1109/TNNLS.2014.2354418
http://dx.doi.org/10.1109/TNNLS.2014.2354418
http://dx.doi.org/10.1109/TSG.2017.2753802
http://dx.doi.org/10.1109/TII.2020.3000184
http://dx.doi.org/10.1109/TII.2020.3000184
http://dx.doi.org/10.1109/TII.2020.3000184
http://dx.doi.org/10.1109/TAI.2021.3128368
http://dx.doi.org/10.17775/CSEEJPES.2020.04120
http://dx.doi.org/10.1016/j.ijepes.2021.107818
http://dx.doi.org/10.1016/j.jup.2019.04.001
http://dx.doi.org/10.1109/TPWRS.2005.846071
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://dx.doi.org/10.1109/TCYB.2020.2977374
http://dx.doi.org/10.1109/TCYB.2020.2977374
https://dl.acm.org/doi/10.5555/3045390.3045575
https://dl.acm.org/doi/10.5555/3045390.3045575
https://dl.acm.org/doi/10.5555/3045390.3045575
https://dl.acm.org/doi/10.5555/3157382.3157633
http://dx.doi.org/10.3390/en12050849
http://dx.doi.org/10.1016/j.energy.2014.07.064
http://dx.doi.org/10.1016/j.apenergy.2018.02.165
http://dx.doi.org/10.1016/j.apenergy.2018.02.165
http://dx.doi.org/10.1016/j.apenergy.2018.02.165
http://dx.doi.org/10.1109/TPWRS.2019.2963109
http://dx.doi.org/10.1109/TPWRS.2019.2963109
http://dx.doi.org/10.1109/TPWRS.2019.2963109
http://dx.doi.org/10.1109/UBMK.2018.8566353
http://dx.doi.org/10.1109/TPWRS.2016.2608740
http://dx.doi.org/10.1109/TPWRS.2018.2868167
http://dx.doi.org/10.1016/j.epsr.2020.106732
http://dx.doi.org/10.35833/MPCE.2017.000570
http://dx.doi.org/10.1109/TSG.2021.3066567
http://dx.doi.org/10.1109/ACCESS.2020.3029230
http://dx.doi.org/10.1109/TSG.2016.2597178
http://dx.doi.org/10.1109/TSG.2016.2597178
http://dx.doi.org/10.1109/TSG.2016.2597178
http://dx.doi.org/10.1016/j.enconman.2016.01.023
http://dx.doi.org/10.1109/TCSVT.2017.2654543
http://dx.doi.org/10.1109/TCSVT.2017.2654543
http://dx.doi.org/10.1109/TCSVT.2017.2654543

W. Liao, L. Ge, B. Bak-Jensen et al. Energy Reports 8 (2022) 6659–6671

Z

Z

hang, L., Zhang, B., 2020. Scenario forecasting of residential load profiles. IEEE
J. Sel. Areas Commun. 38 (1), 84–95. http://dx.doi.org/10.1109/JSAC.2019.
2951973.

hao, Q., Liao, W., Wang, S., Pillai, J.R., 2020a. Robust voltage control considering
uncertainties of renewable energies and loads via improved generative
adversarial network. J. Mod. Power Syst. Clean Energy 8 (6), 1104–1114.
http://dx.doi.org/10.35833/MPCE.2020.000210.
6671
Zhao, C., Wan, C., Song, Y., Cao, Z., 2020b. Optimal nonparametric prediction
intervals of electricity load. IEEE Trans. Power Syst. 35, 2467–2470. http:
//dx.doi.org/10.1109/TPWRS.2020.2965799.

Zhu, R., Liao, W., Wang, Y., 2020. Short-term prediction for wind power based
on temporal convolutional network. Energy Rep. 6, 424–429. http://dx.doi.
org/10.1016/j.egyr.2020.11.219.

http://dx.doi.org/10.1109/JSAC.2019.2951973
http://dx.doi.org/10.1109/JSAC.2019.2951973
http://dx.doi.org/10.1109/JSAC.2019.2951973
http://dx.doi.org/10.35833/MPCE.2020.000210
http://dx.doi.org/10.1109/TPWRS.2020.2965799
http://dx.doi.org/10.1109/TPWRS.2020.2965799
http://dx.doi.org/10.1109/TPWRS.2020.2965799
http://dx.doi.org/10.1016/j.egyr.2020.11.219
http://dx.doi.org/10.1016/j.egyr.2020.11.219
http://dx.doi.org/10.1016/j.egyr.2020.11.219

	Scenario prediction for power loads using a pixel convolutional neural network and an optimization strategy
	Introduction
	Scenario generation using the PixelCNN
	The framework of the PixelCNN
	The basic principle of the generator
	Structural design of the generator
	Design of the loss function

	An optimization model for scenario prediction
	Process of the proposed method
	Case study
	Data description and simulation platforms
	Discussion on hyper-parameters
	Results of scenario generation using PixelCNN
	Results of scenario prediction

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

