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Abstract. Turbulent transport in a high ion temperature discharge of the Large

Helical Device (LHD) is investigated by means of electromagnetic gyrokinetic

simulations, which include kinetic electrons, magnetic perturbations, and full

geometrical effects. Including kinetic electrons enables us to firstly evaluate the particle

and the electron heat fluxes caused by turbulence in LHD plasmas. It is found that

the electron energy transport reproduces the experimental result, and that the particle

flux is negative. The contribution of magnetic perturbation to the transport is small

because of very low beta. The turbulence is driven by the ion temperature gradient

(ITG) instability, and the effect of kinetic electrons enhances the growth rate larger

than that from the adiabatic electron calculation. The ion energy flux is larger than

that observed in the experiment, while the flux is close to the experimental observation

when the temperature gradient is reduced 20% in the simulation. This significant

sensitivity of the energy flux implies that the profile in the experiment is close to the

critical temperature gradient. The critical gradient for turbulent energy flux is similar

to that for the linear instability, i.e., the Dimits shift is small. This is because the

zonal flow in the LHD is weaker than that in tokamaks.

PACS numbers: 52.35.Ra, 52.65.Tt, 52.25.Fi, 52.35.Mw
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1. Introduction

Helical plasmas in heliotron and stellarator systems are confined by an externally

produced magnetic field, and thus are advantageous in maintaining a steady discharge.

The confinement of the helical plasmas is optimized to reduce the MHD instability

and the neoclassical transport by utilizing the freedom of three dimensionality, and

further optimization is expected by improving anomalous transport due to turbulence

driven by micro-instabilities [1] [2]. The turbulent transport is normally larger than the

neoclassical transport in helical plasmas, and thus it is one of the critical issues of the

confinement. The gyrokinetic analysis is applied to the turbulent transport in helical

plasmas [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] as well as the turbulent transport in tokamak

plasmas [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

The Large Helical Device (LHD) is a heliotron system that confines a plasma by

a magnetic field produced by two helical coils [31]. Most gyrokinetic simulations of

helical plasmas are carried out in a flux tube geometry, and they require much more

computational resources than those of tokamak plasmas because the large number

of grid-points along the magnetic field line is needed to capture the helical ripple

structure. The turbulent transport in model configurations of LHD plasmas is studied

by means of gyrokinetic simulations with the adiabatic electron model [5], and it is found

that an optimization of magnetic field configuration against the neoclassical transport

improvement enhances the zonal flow production. Thus, the optimization improves the

turbulent transport due to ion temperature gradient (ITG) modes through the interplay

between the ITG turbulence and the zonal flows. The study is extended to include

the kinetic electrons and the magnetic perturbations, and reveals that the finite beta

effects reduce the growth of the ITG mode, and the kinetic ballooning mode (KBM) is

destabilized when the beta exceeds 2% or 3% [10]. The most unstable KBM has a finite

ballooning angle, and its mode structure causes a new saturation mechanism of the KBM

turbulence which normally produces very weak zonal flows [12]. The new saturation

mechanism is significant in high beta helical plasmas. A validation of the gyrokinetic

simulation with the adiabatic electron is carried out for a high ion temperature discharge

of LHD (discharge number 88343) [9]. It is found that the ion heat flux caused by the

ITG turbulence is in good agreement with the experimental observation.

The effects of kinetic electrons normally enhance the growth rate of ITG modes

[15, 32], while the finite beta effects reduce the growth rate of the ITG modes

[13, 16, 18, 37], and thus validation including these effects is important. In this work,

the electromagnetic gyrokinetic analysis is applied to the high ion temperature discharge

of LHD #88343 to clarify the effects of kinetic electrons and finite beta.

The paper is organized as follows. The numerical simulation model and the profiles

of the temperatures, the density and the magnetic field of LHD discharge #88343 are

described in Sec. 2. Results by linear analysis are given in Sec. 3. Nonlinear simulation

results are presented in Sec. 4. And, summary is given in Sec. 5.
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2. Simulation model

The profiles used in this paper are described here. The ion and electron temperature

profiles at t = 2.2[s] of LHD #88343, which is a high ion temperature discharge [34],

are shown in Fig. 1. The temperatures are higher than 3 [KeV] at the core, and the

density is about 1 × 1019[m−3]. The plasma beta is about 0.4 % at the core, and the

safety factor decreases from 2.8 at the magnetic axis to 0.8 at the edge. The magnetic

field configuration is obtained from the MHD equilibrium code VMEC [35]. Parameters

for the gyrokinetic simulations at ρ = 0.46, 0.65, and 0.83 are listed in Table 1.

We consider micro-turbulence in a flux tube that is along a chosen magnetic field line

represented by the coordinates (x, y, z), where x = q(ψ0)
B0r(ψ0)

(ψ − ψ0), y = −r(ψ0)
q(ψ0)

(α− α0),

and z = θ, (ψ, θ, ζ) is a flux coordinate, α = ζ − q(ψ)θ is the magnetic field line label,

ψ is the magnetic flux, θ is the poloidal angle, and the tube is located on a field line

with ψ = ψ0 and α = α0 [39]. The gyro-center distribution function for a species s is

divided into the Maxwellian and the perturbed parts fs(x, y, z, v‖, µ) = FMs + δfs. In

the flux tube coordinate system the gyrokinetic equation for the non-adiabatic part of

the perturbed part hsk⊥
= δfsk⊥

+ qs
Ts

φk⊥
J0sFMs is written as

∂hsk⊥

∂t
= − vTsv‖b · ∇hsk⊥

− ivds · k⊥hsk⊥

+ vTsµb · ∇B
∂hsk⊥

∂v‖
+ qs

FMs

Ts

∂χsk⊥

∂t

+ iv∗s · k⊥qs
FMs

Ts
χsk⊥

− [χs, hs]k⊥
+ Cs(hsk⊥

), (1)

where χsk⊥
= (φk⊥

− vTsv‖A‖k⊥
)J0s is the generalized potential, [χs, hs]k⊥

=
∑

k′

⊥
,k′′

⊥

δk⊥,k
′

⊥
+k′′

⊥
b · k′

⊥ × k′′
⊥χsk′

⊥
hsk′′

⊥
is the Poisson bracket, J0s = J0(ρsk⊥) is the

zeroth order Bessel function, and k⊥ = (kx, ky). The quantities are normalized as

(tvT i/R0, k⊥ρT i, v‖/vTs, FMsv
3
Ts/n0, hsR0v

3
Ts/(ρT in0), φeR0/(ρT iTi), A‖eR0/(ρT iTi),

ms/mi, Ts/Ti, n/n0, B/B0, qs/e, λDi/ρT i) → (t, k⊥, v‖s, FMs, hs, φ, A‖, Ms, Ts, n,

B, qs, λDi), where ms, Ts, qs, and vTs =
√

Ts/ms are the mass, the temperature, the

electric charge, and the thermal velocity, respectively. The ion Debye length is denoted

by λDi =
√

Ti/(4πe2n0) and the leading order of Larmor radius ρi = v⊥/Ωi is written

as ρT i = vT i/Ωi, where Ωi = eB/(mic) is the ion cyclotron frequency. The gyrokinetic

Poisson equation for the electrostatic potential φ and Ampère’s law for the parallel

component of the vector potential A‖ are

λ2
Dik

2
⊥φk⊥

=
∑

s

qs

(
∫

hsk⊥
J0sd

3v −
qs
Ts
φk⊥

)

(2)

and

k2
⊥A‖k⊥

=
βi
2

∑

s

qsvTs

∫

v‖hsk⊥
J0sd

3v, (3)

respectively, where βi = 8πn0Ti/B
2
0 is the ion beta. The magnetic and diamagnetic

drift-velocities are vds = 1
qsB

b × (µ∇B +msv
2
‖b · ∇b) and v∗s = Ts

qsB
b ×∇ lnFMs, and



4

the collision operator is denoted by Cs(hsk⊥
). The parallel component of the perturbed

magnetic field and the finite beta term in the magnetic drift-velocity are neglected by

assuming that the plasma beta is not high. The electromagnetic gyrokinetic equation

Eq. (1) for ions and electrons, the Poisson equation Eq. (2), and Ampère’s law Eq. (3)

are solved by the GKV+ code [40, 10, 41].

3. Linear analysis of micro-instability

Micro-instabilities in the LHD experiment #88343, which is a high ion temperature

discharge, are studied in this section. In the simulations, 2560, 128, and 32 grid points

are distributed in −10π ≤ z ≤ 10π, −4 ≤ v‖ ≤ 4, and 0 ≤ µ ≤ 8, respectively. It is

remarked that the flux tube covers whole full flux surface by setting −10π ≤ z ≤ 10π.

Figure 2 shows the growth rate and real frequency of micro-instabilities as a function

of the wavenumber in the binormal direction, ky, at ρ = 0.46, 0.65, and 0.83. The

instabilities are the ion temperature gradient (ITG) mode because the mode rotates

toward the ion diamagnetic direction. The core region ρ = 0.46 is more stable than

the location near the edge ρ = 0.83. The growth rate of the most unstable mode

at ρ = 0.65 is about two times larger than that at ρ = 0.46, and the growth rate

at ρ = 0.83 is about three times larger than that at ρ = 0.46. The wavenumber

of the most unstable mode decreases from kyρT i ≈ 0.4 at ρ = 0.46 to kyρT i ≈ 0.3 at

ρ = 0.83. Figure 3 shows that the electron temperature gradient (ETG) mode is unstable

around ky ≈ 10/ρT i ≈ 0.25/ρTe at ρ = 0.65, and the mode rotates toward the electron

diamagnetic direction. Figure 4 shows the profiles of the amplitude of the magnetic

field B, the electrostatic potential φ, the ion magnetic drift frequency ωdi = vdi · k⊥,

and the norm of the perpendicular wavenumber |k⊥| for (kx, ky) = (0, 0.3/ρT i) along

the magnetic field line at ρ = 0.46, 0.65, and 0.83. The electrostatic potential profile

has a peak at z = 0 that is the outside of the torus. The profile has a small oscillation

due to particles trapped in the helical ripples, which is represented by the amplitude

of magnetic field. The ripple has ten cycles for one period along the parallel direction.

The period of the ripple is longer at the radial location for smaller q, and the amplitude

of the ripple is large in the edge region. The instability has a ballooning structure

which is a peaked profile around z = 0, and the peaked structure is narrow for strong

instability. The ballooning structure is linked to the small amplitude of k2
⊥ and the

negative amplitude of the ion magnetic drift frequency, ωdi < 0, around z = 0. Figure

5 shows that the growth rate from the electromagnetic calculation is about two times

larger than that from the adiabatic electron calculation.

Figure 6 shows the growth rate as a function of β at ρ = 0.65, where β is

changed with using the same the magnetic configuration and density and temperature

profiles. The black point represents the growth rate for the experimental value of beta

(β = 0.3%). The growth rate obtained from the electromagnetic calculation is about

two times larger than that obtained from the adiabatic electron calculation indicated

by the horizontal cyan line. The increase of the growth rate is attributed to the kinetic
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electrons, because the similar increase of the growth rate is observed for the β = 0 case.

The beta of #88343 is so small that the growth rate is close to that for the β = 0, and

thus the effect of magnetic perturbation on the instability is negligible. When the beta

is increased with using the same magnetic field, temperature, and density profiles, the

growth rate of ITG mode is suppressed by magnetic field line bending effects, while the

KBM is destabilized at high beta [36]. The blue open circles represent the growth rate

with kx = 0, which has zero ballooning angle θk = −kx/(kyŝ) = 0. The plasma beta

in the experiment is much lower than the critical beta of the KBM, β/βKBM ≈ 0.08.

The most unstable KBM has a finite radial wavenumber, which is denoted by the red

open circles, and this typical feature of KBMs in helical plasmas causes a new saturation

mechanism of KBM turbulence, which barely produces zonal flows [12]. The curve of the

growth rate is a typical beta dependence of the ITG mode and KBM in torus plasmas

[13, 14, 15, 16, 18, 37].

4. Turbulent transport

Nonlinear simulation results at ρ = 0.65 are presented in this section. The nonlinear

simulations of LHD plasmas require very large computer resources because of the large

number of grid-points and Fourier modes in the simulation. The total Fourier mode

number in the x direction and the y direction are 256 and 128, respectively, and the

total grid-points number in the parallel direction, the parallel velocity direction, and

the perpendicular velocity direction are 512, 128, and 32, respectively. Thus, we carried

out only one nonlinear simulation for ρ = 0.65. The position ρ = 0.65 is chosen for its

clear linear ITG signature and to avoid any plasma edge effects.

First, we show that a statistical steady state of the ITG turbulence is obtained

in terms of the entropy balance. The entropy balance equation, which shows the

conservation of a quadratic quantity [42], is written as

d

dt
(
∑

s

TsδS
(h)
s +W (h)

es +Wem) =
∑

s

(Fs +Ds) , (4)

where

δS(h)
s =

〈

∑

k⊥

∫

d3v
1

2FMs

|hsk⊥
|2
〉

, (5)

W (h)
es =

∑

k⊥

〈(

λ2
Dik

2
⊥ +

∑

s

q2
s

Ts

)

|φk⊥
|2

2

〉

,Wem =
∑

k⊥

〈

2

βi

k2
⊥|A‖k⊥

|2

2

〉

, (6)

Fs = Re

〈

∑

k⊥

∫

d3vv∗s · ik⊥h
∗
sk⊥

qs
2
χsk⊥

〉

, (7)

Ds = Re

〈

∑

k⊥

∫

d3v
Ts

2FMs

h∗sk⊥
Cs(hsk⊥

)

〉

, (8)

where <> is the flux surface average and Re[f ] is the real part of f . The time derivative

term d(
∑

s TsδS
(h)
s + W (h)

es + Wem)/dt and the free energy term Fs are the same as
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d(
∑

s δSs+Wes+Wem)/dt and (Θes,s+Θem,s)/LTs+(TsΓes,s+TsΓes,s)/Lps in the previous

work [10, 12, 13], respectively. Figure 7 shows the time history of each term in the

entropy balance equation Eq. (4). The time derivative term is very small on average

after t ≈ 35, and thus the ITG turbulence is in a statistical steady state. In the steady

state the ion (electron) free energy term Fi (Fe) almost balances with the ion (electron)

collisional dissipation term Di (De).

Figure 8 shows the ion and electron energy fluxes Qi and Qe obtained by the

electromagnetic simulation, the adiabatic electron simulation, experimental observation,

and the anomalous part of the experimental observation, where Qs = Qes,s +Qem,s,

Qes,s = Re

〈

∑

k⊥

1

2

∫

(msv
2
‖ + µB)hsk⊥

J0sd
3v

(

−ikyφk⊥

B

)∗〉

, (9)

Qem,s = Re

〈

∑

k⊥

1

2

∫

vTsv‖(msv
2
‖ + µB)hsk⊥

J0sd
3v

(

ikyA‖k⊥

B

)∗〉

. (10)

The ion energy flux is saturated around t ≈ 35 and is in a statistical steady state after

t ≈ 40. The ion energy flux (red line) obtained by the electromagnetic gyrokinetic

simulation is about three times larger than the experimentally observed anomalous

transport (black line), which is obtained by subtracting the neoclassical transport

part from the observed value in the experiment (cyan line). The flux obtained by

the adiabatic electron model is indicated by the blue line and is very close to the

experimentally observed anomalous part. The electron energy flux, which is the red line,

is in good agreement with the anomalous part of the observed value in the experiment.

The anomalous part is again obtained by subtracting the neoclassical transport part

from the experimental observation. Figure 9 shows the time history of the particle flux

Γ = Γi = Γe, where Γs = Γes,s + Γem,s,

Γes,s = Re

〈

∑

k⊥

∫

hsk⊥
J0sd

3v

(

−ikyφk⊥

B

)∗〉

, (11)

Γem,s = Re

〈

∑

k⊥

∫

vTsv‖hsk⊥
J0sd

3v

(

ikyA‖k⊥

B

)∗〉

. (12)

The particle flux is negative, and this implies that the particles are transported toward

the magnetic axis by the ITG turbulence, i.e., the electromagnetic ITG turbulence

has a pinch effect on particles. The density gradient at ρ = 0.65 is slightly negative,

so that the particle transport coefficient has positive sign. The particle pinch is also

observed in the gyrokinetic simulations for tokamaks, and the sign of the particle flux

significantly influenced by the electron-ion collisions, as shown in Ref. [33]. Figure 10

shows the contribution of magnetic perturbation to the energy fluxes and particle flux.

The electromagnetic part is very small compared with the electrostatic part because of

low beta, β = 0.3%. The contribution of magnetic perturbation to the electron energy

flux is about 3%, and is larger than that to the ion energy flux, which is negative. Thus

the electron energy flux is much more influenced by the magnetic perturbation than the
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ion energy flux. The contribution of magnetic perturbation to the particle flux is about

3% and has small pinch effects.

Figure 11 (a) shows the spectrum of the square of the electrostatic potential

averaged over the steady state for the LHD 88343. The amplitude of the ITG modes

has a peak around kyρT i ≈ 0.1 for both electromagnetic and the adiabatic electron

simulations. The amplitude of the ITG mode at kyρT i = 0.1, < |φk(kyρT i = 0.1)|2 >,

is comparable with that of zonal component, < |φk(kyρT i = 0)|2 >. The amplitude of

the ITG mode obtained from the electromagnetic simulation is about three times larger

than that from the adiabatic simulation around kyρT i = 0.1. That is consistent with the

fact that the ion energy flux by the electromagnetic simulation is three times larger than

that by the adiabatic electron simulation in Fig. 8. Figure 11 (b) shows the spectrum

for the Cyclone base case tokamak, where numerical settings for the CBC is described

in Refs. [10, 13]. The amplitude of the zonal component, < |φk(kyρT i = 0)|2 >, is much

larger than that of the ITG mode < |φk(kyρT i = 0.2)|2 >. Thus, the zonal flow in the

LHD is weak compared with the CBC.

Finally, we discuss the sensitivity of the energy flux to the temperature gradient

which drives the ITG instability, because the ion energy flux from the simulation is

about three times larger than that from the experiment in Fig. 8. Figure 12 shows

the linear growth rate and the energy fluxes due to the ITG turbulence driven by

reduced temperature gradients. We made concurrent changes in both ion and electron

temperature gradients, and the gradient 1/LTs is reduced to 1/LTs = 0.9/LTexp,s and

1/LTs = 0.8/LTexp,s for both of s = i and s = e, where 1/LTexp,s is the value in Table

1 for ρ = 0.65. The x-axis of the figure is the gradient normalized by the experimental

value, LTexp/LT ≡ LTexp,i/LT i = LTexp,e/LTe. The red line represents the linear growth

rate obtained from the reduced gradient simulations. The growth rate is normalized by

that from the calculation with the experimental value of the gradient γ(LTexp), which

is the largest value in Fig. 5. The threshold of the linear instability is about 60% of

the temperature gradient observed in the experiment. The blue (black) line represents

the ion (electron) energy flux from the reduced gradient simulations. The fluxes are

averaged over the statistical steady state in the simulation and are normalized by the

flux with the gradient of the experiment, as Qs/Qs(LTexp). The energy flux decreases

by reducing the gradient, and the ion energy flux with the gradient reduced 20% is

close to the experimentally observed value. The electron energy flux decreases, as well.

Thus, the energy flux is very sensitive to the temperature gradient. This implies that

the temperature profile in the experiment is close to the critical gradient at which

turbulence appears. The threshold of the linear instability and that of the energy flux

are very close, and thus the Dimits shift is very small. This is in contrast with the CBC

tokamak, which has a finite shift [43]. This is because the zonal flow in the tokamak

case is stronger than that in LHD 88343, as shown in Fig. 11.
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5. Summary

Turbulent transport in a high ion temperature LHD discharge (number 88343) is studied

by means of the electromagnetic gyrokinetic simulations as a validation. The plasma

is unstable against the ITG mode from the core to the edge, ρ = 0.46, 0.65, and

0.83, and the edge region is more unstable than the core region. The kinetic electron

effects enhance the growth rate two times larger than that from the adiabatic electron

model. The mode structure along the magnetic field line has a ballooning structure with

oscillation due to trapped particles in the helical ripples. The reduction of the growth

rate by the finite beta effect is negligible because of the very small beta, β = 0.3%.

When the beta is increased while keeping the magnetic configuration and the

profiles, the kinetic ballooning mode (KBM) becomes unstable above β ≈ 3.5%. The

threshold of the KBM may be influenced by the effect of the parallel component of the

perturbed magnetic field δB‖ as shown in Ref. [8]. The most unstable KBM has a

finite ballooning angle which corresponds to a finite radial wavenumber in the flux tube

coordinate.

In the nonlinear simulation, the turbulent ion energy flux is about three times

that of the anomalous part of the experimental observation, while the flux is close

to the experimental observation when the temperature gradient is reduced 20% in

the simulation. Thus, the local flux tube simulation implies that the energy flux is

very sensitive to the temperature gradient, and that the temperature profile realized in

the experiment is close to the critical gradient of the ITG turbulence. The turbulent

electron energy flux is in good agreement with the anomalous part of the experimental

observation. The turbulent particle flux is negative and has pinch effect. The spectrum

of the electrostatic potential has a peak at kyρT i ≈ 0.1 and the zonal component ky = 0

has a similar level with the peak. Although the amplitude of the zonal flow is comparable

with the ITG turbulence, the Dimits shift is small. This is because the zonal flow is

weaker than that in the CBC tokamak which exhibits a finite Dimits shift. In helical

systems, radial drift motions of particles trapped in helical ripples decrease the radial

potential difference and the residual zonal flow level as shown in Refs. [44, 45]. This

mechanism is considered to cause weaker zonal flow generation in the LHD case than

in the CBC tokamak. In our future work we will carry out nonlinear simulations at the

edge region ρ = 0.83, so that we will see whether the gyrokinetic study of LHD has the

short fall problem [28, 29, 30].
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Figure 1. Radial profiles of ion temperature Ti, electron temperature Te, electron

density ne, safety factor q, and plasma beta β at t = 2.2 of the high ion temperature

discharge LHD 88343.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

G
ro

w
th

 r
at

e 
γ 

[v
ti/

R
0]

ky ρTi

LHD 88343  t=2.2  

ρ=0.46
ρ=0.65
ρ=0.83

-4

-3

-2

-1

 0

 1

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
ea

l f
re

qu
en

cy
 ω

 [v
ti/

R
0]

ky ρTi

LHD 88343  t=2.2 

ρ=0.46
ρ=0.65
ρ=0.83

Figure 2. Growth rate and real frequency of the micro-instability at t = 2.2 in LHD

88343 as a function of binormal wavenumber ky. The irregular features at position

ρ = 0.46 are presently not well-understood and require further study.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12

G
ro

w
th

 r
at

e 
γ 

[v
ti/

R
0]

ky ρTi

LHD 88343  t=2.2 

ρ=0.46
ρ=0.65
ρ=0.83

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  1  2  3  4  5  6  7  8  9  10

R
ea

l f
re

qu
en

cy
 ω

 [v
ti/

R
0]

ky ρTi

LHD 88343  t=2.2 

ρ=0.46
ρ=0.65
ρ=0.83

Figure 3. Growth rate and real frequency of the micro-instability at t = 2.2 in LHD

88343 as a function of binormal wavenumber ky.
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Figure 5. Growth rate and real frequency of the micro-instability at ρ = 0.65 and

t = 2.2 in LHD 88343 as a function of binormal wavenumber ky.
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Figure 8. Time evolution of the ion and electron energy fluxes, Qi and Qe.
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2
LT exp / LT

LHD 88343  t=2.2  ρ=0.65

γ / γ(LT exp)
Qi / Qi(LT exp)

Qe / Qe(LT exp)

Figure 12. The energy fluxes and the linear growth rate as a function of

reduced temperature gradient normalized by the experimental value, LTexp/LT ≡

LTexp,i/LTi = LTexp,e/LTe. The red line is the linear growth rate, and the blue

(black) line represents the ion (electron) energy flux.


