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Gyrokinetic simulations of electromagnetic turbulence in magnetically confined
torus plasmas including tokamak and heliotron/stellarator are reviewed. Numerical
simulation of turbulence in finite beta plasmas is an important task for predict-
ing performance of fusion reactors and a great challenge in computational science
due to multiple spatio-temporal scales related to electromagnetic ion and electron
dynamics. The simulation becomes further challenging in non-axisymmetric plas-
mas. In finite beta plasmas, magnetic perturbation appears and influences some
key mechanisms of turbulent transport, which include linear instability and zonal
flow production. Linear analysis shows that the ion-temperature gradient (ITG)
instability, which is essentially an electrostatic instability, is unstable at low beta
and its growth rate is reduced by magnetic field line bending at finite beta. On the
other hand, the kinetic ballooning mode (KBM), which is an electromagnetic in-
stability, is destabilized at high beta. In addition, trapped electron modes, electron
temperature gradient modes, and micro-tearing modes can be destabilized. These
instabilities are classified into two categories: ballooning parity and tearing parity
modes. These parities are mixed by nonlinear interactions, so that, for instance, the
ITG mode excites tearing parity modes. In the nonlinear evolution, the zonal flow
shear acts to regulate the ITG driven turbulence at low-beta. On the other hand, at
finite beta, interplay between the turbulence and zonal flows becomes complicated
because the production of zonal flow is influenced by the finite beta effects. When
the zonal flows are too weak, turbulence continues to grow beyond a physically
relevant level of saturation in finite-beta tokamaks. Nonlinear mode coupling to
stable modes can play a role in the saturation of finite beta ITG mode and KBM.
Since there is a quadratic conserved quantity, evaluating nonlinear transfer of the
conserved quantity from unstable modes to stable modes is useful for understanding
the saturation mechanism of turbulence.

1. Introduction

Micro-turbulence causes anomalous transport of heat and particles in magnetically
confined plasmas [1]. The plasma pressure normalized by the magnetic energy β =
8πp/B2 is called plasma beta, and is one of the important parameters of fusion
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plasmas because it is linked to the fusion reaction rate (Sec. 3.5 in [2] and Sec. 5.3
in [3]) and also related to the production of bootstrap current (Sec. 11.4 in [4]) that
is important for steady state operations of tokamaks. Thus, the beta dependence of
turbulent transport is one of the central issues in fusion plasma research. In order to
understand the dependence, the influence of magnetic perturbation on the balance
between zonal flow and micro-turbulence should be investigated. In addition, the
validity of the Rechester-Rosenbluth model [5] describing direct effects of magnetic
perturbation on heat transport should be understood.

Gyrokinetic simulation is a reliable tool for understanding and predicting tur-
bulent transport in magnetically confined plasmas. The turbulent transport due
to ion temperature gradient instability has been extensively studied by assuming
the adiabatic response of electrons along the magnetic field line [6] (See Sec. 4.2).
When we explore problems of turbulent transport at finite beta, we need to include
magnetic perturbation and kinetic electrons because the current density is mainly
carried by electrons. Including kinetic electrons to numerical simulations requires
much more computational resources compared to the adiabatic electron simulations
because the thermal velocity of electrons is much greater than the ion thermal veloc-
ity vTe =

√

Te/me ≫ vTi =
√

Ti/mi when the ion and electron temperatures are
comparable, and thus the parallel circulation time of electrons along the magnetic
field line is much faster than that of ions. In order to capture such fast electron mo-
tion the time step is normally required to be small. In addition, the kinetic electron
effect elongates the mode structure along the field line, and thus a large simulation
domain along the field line is required. Large computational resources which meet
the requirements are the reason why numerical simulations of turbulence based
on the electromagnetic gyrokinetic model [7, 8, 9, 10, 11] are mainly carried out
in the flux-tube geometry [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]
which is along a magnetic field line and is localized in the radial direction to re-
duce computational cost [26]. Although there are some gyrokinetic simulations on
electromagnetic turbulence in global domain covering a whole torus plasma and
also some electromagnetic gyrokinetic studies on space plasmas [27], we focus on
gyrokinetic simulations in local flux-tube domain in this review.

Electromagnetic gyrokinetic simulations are applied to the studies of turbu-
lent transport in finite-beta tokamak plasmas and the beta-scan is carried out
[18, 19, 21]. In finite-beta tokamak plasmas the growth rate of the ion temper-
ature gradient (ITG) instability is suppressed by magnetic field line bending as
plasma beta increases [28] (Sec. 6). The production of zonal flow is also influenced
by magnetic perturbation in finite beta plasmas [21]. The weak zonal flow leads
to a situation in which instabilities continue to grow beyond a physically relevant
level of saturation in finite-beta regime (Sec. 7.3) [22, 24]. This is in contrast with
the ITG driven turbulence regulated by zonal flows in low-beta torus plasmas. The
difficulties are related to the weak zonal flow production, and thus the production
process of zonal structures is investigated [22, 24, 29, 30]. The identification of the
saturation mechanism of microturbulence in regimes where zonal flow generation is
weak at finite beta is one of the open issues.

Some properties of the gyrokinetic equations are useful for understanding the
physics of numerical simulation results (Sec. 3). One is a quadratic conserved quan-
tity of the electromagnetic gyrokinetic equation (Sec. 3.1). The saturation process of
turbulence can be investigated by evaluating the nonlinear transfer of the quadratic
quantity from unstable modes to stable modes in the Fourier mode space. Another
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is the conservation of the parity symmetry of perturbation against the coordinate
along the magnetic field line during the linear growth of instability (Sec. 3.3). The
parity symmetry of magnetic perturbation is linked to the violation of magnetic
surfaces, which enhances turbulent transport. The symmetry is broken through
nonlinear interactions.

In high-beta torus plasmas, microturbulence can be driven by the kinetic bal-
looning mode (KBM) [28, 32, 33]. The difference between ITG turbulence at low
beta and KBM turbulence is caused by zonal flow production. The mode structures
of the ITG mode and KBM are similar in their linear growth phase. Both of them
have a ballooning structure that appears around the outside of the torus, i.e., the
bad curvature region. However, when the ITG mode and KBM grow, they exhibit
significant differences from each other. The ITG mode produces zonal flows, and
the flows regulate the amplitude of ITG turbulence at low beta. On the other hand,
zonal flows in KBM turbulence are very weak, and thus it is difficult for KBM
turbulence to become a saturated state compared with the low beta ITG turbu-
lence. In fact, even MHD ballooning modes sometimes continue to grow without
saturation by forming a finger-like structure. It is noticed that an MHD simulation
corresponds to a very high-beta gyrokinetic simulation. Even though the zonal flow
is normally weak, the KBM turbulence can be saturated at a physically relevant
level when the electron temperature gradient is small and the beta value is just
above the linear instability threshold. The saturation mechanism is related to the
mode structure along the magnetic field line rather than zonal flow shear. Details
of the mechanism are explained in Sec. 8.1.1.

We review micro-instability, micro-turbulence, and transport due to the turbu-
lence in finite beta plasmas by reproducing the previous work cited in each section
by means of the electromagnetic gyrokinetic simulation code GKV+ [34, 35, 36]. In
Sec. 2, the electromagnetic gyrokinetic equation, Poisson equation, and Ampère’s
law are described. The conserved quantities of the gyrokinetic equation is presented
in Sec. 3. Some difficulties of numerical simulations of the electromagnetic gyroki-
netic equation are described in Sec. 4. Numerical setting is shown in Sec. 5. Linear
instabilities are described in Sec. 6. Nonlinear evolution of turbulence is presented
in Sec. 7. Saturation of KBM turbulence is discussed in Sec. 8. Magnetic islands
and magnetic reconnection related to the turbulence is briefly reviewed in Sec. 9.
Finally, summaries are given in Sec. 10.

2. Electromagnetic gyrokinetic equation

The electromagnetic gyrokinetic model for studying micro-turbulence in finite beta
plasmas is described in this section [7, 8, 9, 10]. The distribution functions, which
are governed by the kinetic equation

[

∂

∂t
+ v · ∇ +

qs
ms

(

E +
1

c
v × B

)

· ∂
∂v

]

Fs = Cs(Fs), (2.1)

can be divided into the Maxwellian part and a perturbed part Fs = FMs + δfs

where FMs = n0

(2πTs/ms)3/2 exp(−msv
2
‖

2Ts
− µB

Ts
) and v = v‖B/B + v⊥, and µ =

msv
2
⊥/(2B) is the magnetic moment. The subscript s denotes particle species such

as for ions s = i and electrons s = e. In magnetically confined torus plasmas,
a perturbation varies slowly along the magnetic field line, while it varies rapidly
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perpendicular to the field line. The eikonal representation is useful for describing
these fast and slow changes of the perturbation in the space as δfs(X, v‖, µ, t) =
∑

k⊥
δfsk⊥

(kx, ky, z, v‖, µ, t) exp(iSk⊥
), where ∇Sk⊥

= k⊥ = (kx, ky) and z is the
coordinate along the magnetic field line. We can easily make the flute approximation
1/L ≈ k‖ ≪ k⊥ in terms of the eikonal representation [11], where L is the size
of the plasma. In addition, the finite Larmor radius effects can be written in an
analytic form when we use the eikonal representation. The gyrokinetic equation for
perturbed ion and electron gyro-center distribution functions δfsk⊥

, the gyrokinetic
Poisson equation for electrostatic potential φk⊥

, and gyrokinetic Ampère’s law for
parallel component of perturbed vector potential A‖k⊥

are derived by assuming

δfsk⊥

FMs
≈ ρs

L
≈ k‖

k⊥
≈ ω

Ωs
≈ qsφk⊥

Ts
≈ A‖k⊥

Bρs
≪ 1, (2.2)

where ρs = vT s

Ωs
and Ωs = qsB

msc
. The equations are

∂δfsk⊥

∂t
+ vTsv‖(b

∗
s · ∇δfs)k⊥

− vTsµb · ∇B∂δfsk⊥

∂v‖

= −ivds · k⊥

(

δfsk⊥
+
qs
Ts
FMsφk⊥

J0s

)

− (ṽEs · ∇δfs)k⊥

+iv∗s · k⊥
qs
Ts
FMs

(

φk⊥
− vTsv‖A‖k⊥

)

J0s + vTsv‖
qs
Ts
FMsE‖sk⊥

+ Cs,(2.3)

λ2
Dik

2
⊥φk⊥

=
∑

s

qsδn
(p)
sk⊥

, (2.4)

k2
⊥A‖k⊥

=
βi
2

∑

s

qsvTsδu
(p)
sk⊥

, (2.5)

respectively, where E‖sk⊥
= −(b∗

s ·∇J0sφ)k⊥
− ∂
∂tA‖k⊥

J0s, δn
(p)
sk⊥

=
∫

δfsk⊥
J0sd

3v−
qs

Ts
(1 − Γ0s)φk⊥

, δu
(p)
sk⊥

=
∫

v‖δfsk⊥
J0sd

3v, are the parallel component of the per-
turbed electric field, the perturbed density measured at the particle position, and
the parallel component of perturbed velocity measured at the particle position, re-
spectively. Nonlinear terms are included in the convective derivative by perturbed
E×B flow (ṽEs · ∇f)k⊥

= [φJ0s, f ]k⊥
and the parallel component of spatial gra-

dient including magnetic perturbation (b∗
s · ∇f)k⊥

= b · ∇fk⊥
+ (b̃s · ∇f)k⊥

=
b · ∇fk⊥

− [A‖J0s, f ]k⊥
, where b̃s = −b × ik⊥A‖k⊥

J0s. The unit vector of the

equilibrium magnetic field is b = B0/B0, and b∗
s = b + b̃s includes the perturbed

part of the magnetic field, and the subscript 0 of the equilibrium magnetic field
is omitted below. In the equation [f, g]k⊥

=
∑

k′
⊥,k

′′
⊥
δk⊥,k′

⊥+k′′
⊥
b · k′

⊥ × k′′
⊥fk′

⊥
gk′′

⊥

and J0s = J0(ρsk⊥) are the Poisson bracket and the zeroth order Bessel function,
respectively. The magnetic drift, the diamagnetic drift, and the perturbed E×B
drift velocities are vds = 1

qsB
b × (µ∇B + msv

2
‖b · ∇b), v∗s = Ts

qsB
b × ∇ lnFMs,

and ṽEsk⊥
= − 1

B (ik⊥φk⊥
J0s) × b, respectively. The collision operator is denoted

by Cs(hsk⊥
), where hsk⊥

= δfsk⊥
+ qs

Ts
φk⊥

J0sFMs is the non-adiabatic part of
the perturbed part of the gyro-center distribution function. The normalizations
used in the equations are (tvTi/Ln, k⊥ρTi, v‖/vTs, FMsv

3
Ts/n0, δfsLnv

3
Ts/(ρTin0),

φeLn/(ρTiTi), A‖Ln/(ρ
2
TiB0), ms/mi, Ts/Ti, n/n0, B/B0, qs/e, λDi/ρTi) → (t,

k⊥, v‖s, FMs, δfs, φ, A‖, Ms, Ts, n, B, qs, λDi), where λDi =
√

Ti/(4πe2n0)

and vTs =
√

Ts/ms, and the leading order of Larmor radius ρi is written as



Electromagnetic gyrokinetic simulation of turbulence 5

ρTi = vTi/Ωi. The dimensional form of the gyrokinetic equation is shown in Ap-
pendix A.

The second term in the l.h.s. of Eq. (2.3) represents the parallel convection and is
important for parallel streaming, the Landau damping, and the magnetic field line
bending effect, which stabilizes the ITG mode at finite beta, as shown in Appendix
B. The first term in the r.h.s. is the magnetic drift term and causes instability by
combining with the diamagnetic drift term (the fourth term in the r.h.s.). The sec-
ond term in the r.h.s. is the parallel acceleration by the perturbed electric field. The
third term in the r.h.s. is the mirror term causing particle trapping in a weak mag-
netic field region. The polarization effects due to finite Larmor radius is represented

by 1−Γ0s term in the Poisson equation through n
(p)
sk⊥

, where Γ0s = e−ρ
2
sk

2
⊥I0(ρ

2
sk

2
⊥)

and I0 is the zeroth order modified Bessel function. The parallel component of the
perturbed magnetic field and the finite beta term in the magnetic drift velocity
are neglected by assuming that the plasma beta is not so high and does not affect
the equilibrium. Temperature and density gradients are assumed to be uniform in
local simulations and direct to the radial direction x, and the temperature gradi-
ent is represented by the parameter ηs = Ln/LTs

in terms of density scale length
Ln = −(d lnn/dx)−1 and temperature scale lengths LTs = −(d lnTs/dx)

−1.

It is noted that the ion beta βi = 8πn0Ti/B
2
0 appears only in the Ampère’s

law Eq. (2.5) and is the relevant parameter representing the electromagnetic effect,
because the magnetic perturbation A‖ disappears when βi = 0.

3. Conserved quantities

3.1. Conservation of quadratic quantities (Entropy balance equation)

There is a quadratic conserved quantity called the entropy variable [37]. The name
comes from the fact that it is the perturbed part of the Shanon entropy δSs =
Ss−Ss0, where Ss = −〈

∫

Fs lnFsd
3v〉, Fs = FMs+δfs, Ss0 = −〈

∫

FMs lnFMsd
3v〉,

and 〈Fs〉 = FMs. The equation governing the quadratic form of the perturbed

part of the distribution function δSs =
〈

∫

d3v |δfs|
2

2FMs

〉

is obtained by multiplying

h∗sk⊥
= δf∗sk⊥

+ qs

Ts
φ∗
k⊥
J0sFMs with Eq. (2.3), integrating over the velocity space,

and making flux surface average with Eqs. (2.4) and (2.5) (Details are given in
Appendix C), where ∗ denotes the complex conjugate. The equation is written as

d

dt

(

∑

s

δSs +Wes +Wem

)

=
∑

s

(

Θs

LTs
+
TsΓs
Lps

+Ds

)

, (3.1)

where 1/Lps = 1/LTs + 1/Ln, Θs = Θes,s + Θem,s, Γs = Γes,s + Γem,s, δSs =
∑

k⊥
δSsk⊥

, Wes =
∑

k⊥
Wesk⊥

, Wem =
∑

k⊥
Wemk⊥

, Θes,s =
∑

k⊥
Θes,sk⊥

,
Θem,s =

∑

k⊥
Θem,sk⊥

, Γes,s =
∑

k⊥
Γes,sk⊥

, Γem,s =
∑

k⊥
Γem,sk⊥

. In the equa-
tions

δSsk⊥
=

〈
∫

d3v
Ts|δfsk⊥

|2
2FMs

〉

, (3.2)

Dsk⊥
=

〈
∫

d3v
Ts
FMs

(

δf∗sk⊥
+
qs
Ts
φ∗
k⊥
J0sFMs

)

Cs(hsk⊥
)

〉

, (3.3)
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Wesk⊥
=

〈(

λ2
Dik

2
⊥ +

∑

s

q2s
Ts

[1 − Γ0(bsk)]

)

|φk⊥
|2

2

〉

,Wemk⊥
=

〈

2

βi

k2
⊥|A‖k⊥

|2
2

〉

,

(3.4)

Θes,sk⊥
=

〈

Re

[(

1

2
δp̂‖sk⊥

+ δp̂⊥sk⊥
− 5

2
Tsδn̂sk⊥

)(−ikyφk⊥

B

)∗]〉

, (3.5)

Θem,sk⊥
=

〈

Re

[(

1

2
δq̂‖sk⊥

+ δq̂⊥sk⊥

)(

ikyA‖k⊥

B

)∗]〉

, (3.6)

Γes,sk⊥
=

〈

Re

[

δn̂sk⊥

(−ikyφk⊥

B

)∗]〉

,Γem,sk⊥
=

〈

Re

[

δûsk⊥

(

ikyA‖k⊥

B

)∗]〉

,

(3.7)
are the entropy variable, the collisional dissipation, the electrostatic energy includ-
ing the polarization field, the magnetic energy, the entropy production due to the
turbulent thermal transport flux caused by the electrostatic and the magnetic per-
turbations, the entropy production due to the particle transport flux caused by
the electrostatic and the magnetic perturbations. The flux surface average is rep-
resented by 〈〉. The l.h.s. of Eq. (3.1) is called the generalized energy in Ref. [27].
It is remarked that Eqs. (3.5)-(3.7) correspond to the free energy of instabilities. In
these equations

δn̂sk⊥
=

∫

δfsk⊥
J0sd

3v, δûsk⊥
=

∫

v‖δfsk⊥
J0sd

3v, (3.8)

δp̂‖sk⊥
=

∫

msv
2
‖δfsk⊥

J0sd
3v, δp̂⊥sk⊥

=

∫

µBδfsk⊥
J0sd

3v, (3.9)

δq̂‖sk⊥
=

∫

msv
3
‖δfsk⊥

J0sd
3v − 3Tsδûsk⊥

, (3.10)

and

δq̂⊥sk⊥
=

∫

µBv‖δfsk⊥
J0sd

3v − Tsδûsk⊥
. (3.11)

We can evaluate the transfer of entropy (free energy) from a particle species to the
other species by evaluating Rs = dδSs/dt− Θs/LTs − ΓsTs/Lps −Ds because Eq.
(3.1) can be written as

∑

s

Rs +
d

dt
(Wes +Wem) = 0, (3.12)

in terms of Rs. For instance, the entropy is transferred from ions to electrons in the
slab ITG turbulence [38] and in the KBM turbulence [39].

Some conclusions can be derived from the entropy balance equations without
carrying out numerical simulations. When we have a statistical steady state, the
time derivative terms in Eq. (3.1) are very small, and the entropy production due
to the transport flux should balance with collisional dissipation terms [40]

∑

s

(

Θs

LTs
+
TsΓs
Lps

)

= −
∑

s

Ds. (3.13)

It is to be noted that the ion and electron particle flux caused by electrostatic
(magnetic) perturbation are the same, Γes,i = Γes,e (Γem,i = Γem,e), so that Γi =



Electromagnetic gyrokinetic simulation of turbulence 7

Γe ≡ Γ, because of the Poisson equation Eq. (2.4) (the Ampère’s law Eq. (2.5))
[41].

3.2. Nonlinear entropy transfer in the Fourier space

The entropy balance equation for a Fourier mode k⊥ is written as

d

dt

(

∑

s

δSsk⊥
+Wesk⊥

+Wemk⊥

)

=
∑

s

(

Tsk⊥
+

Θsk⊥

LTs
+
TsΓsk⊥

Lps
+Dsk⊥

)

,

(3.14)
where

Tsk⊥
=
∑

k′
⊥

∑

k′′
⊥

Ts(k⊥;k′
⊥,k

′′
⊥) (3.15)

originates from the nonlinear terms in Eq. (2.3). Equation (3.14) implies that the
saturation mechanism of turbulence can be studied by evaluating the nonlinear
entropy transfer function

T (k⊥;k′
⊥,k

′′
⊥) =

∑

s

Ts(k⊥;k′
⊥,k

′′
⊥), (3.16)

where

Ts(k⊥;k′
⊥,k

′′
⊥) = Re

〈
∫

d3v
Tshsk⊥

2FMs
δk⊥,−k′

⊥−k′′
⊥
b · k′

⊥ × k′′
⊥(χsk′

⊥
hsk′′

⊥
− hsk′

⊥
χsk′′

⊥
)

〉

,

(3.17)
where hsk⊥

= δfsk⊥
+ qs

Ts
φk⊥

J0sFMs is the non-adiabatic part of the perturbed
part of the gyro-center distribution function and χsk⊥

= (φk⊥
− v‖A‖k⊥

)J0s is
the generalized potential [42]. In the electrostatic limit (A‖ → 0), the transfer
function is reduced to that in Ref. [43]. The transfer function satisfies the de-
tailed balance equation, Ts(k⊥;k′

⊥,k
′′
⊥) + Ts(k′

⊥;k′′
⊥,k⊥) + Ts(k′′

⊥;k⊥,k
′
⊥) = 0,

and Ts(k⊥;k′
⊥,k

′′
⊥) = Ts(k⊥;k′′

⊥,k
′
⊥) = Ts(−k⊥;−k′

⊥,−k′′
⊥). The detailed bal-

ance equation leads to the relation
∑

k⊥
Tsk⊥

= 0. The diagram of the nonlinear
entropy transfer illustrated in Fig. 1 (a) shows an example of nonlinear interac-
tion among k⊥, k′

⊥, and k′′
⊥ modes. The k⊥ and k′

⊥ modes lose the free energy
and k′′

⊥ mode gains the free energy. An example of the entropy transfer process in
the ITG turbulence regulated by zonal flows is illustrated in Fig. 1 (b) in terms
of the diagram. There are three arrows connected to a triangle. The first arrow
starting from the ITG mode k⊥ITG = (kxITG, kyITG) and pointing to the trian-
gle represents the transfer function T (k⊥ITG;k′

⊥ZF,k
′′
⊥) < 0, which implies that

the entropy is transferred from the ITG mode with k⊥ITG = (kxITG, kyITG) to
the zonal flow with k′

⊥ZF = (kxZF, 0) and a higher radial wavenumber mode with
k′′
⊥ = (−kxITG − kxZF,−kyITG), where f(kx, ky) = f(−kx,−ky)∗ is used to satisfy

k⊥ + k′
⊥ + k′′

⊥ = 0. The second arrow starting from the triangle and pointing to
”Zonal flow (kxZF, 0)” represents the transfer function T (k′

⊥ZF;k′′
⊥,k⊥ITG) > 0,

which presents that the entropy is transferred to the zonal flow. The third ar-
row starting from the triangle and pointing to a higher radial wavenumber mode
represents the transfer function T (k′′

⊥;k⊥ITG,k⊥ZF
′
) > 0, which implies that the

entropy of the ITG mode is transferred into a higher radial wavenumber mode
k′′
⊥ = (−kxITG − kxZF,−kyITG). It is remarked that the transfer to the zonal flow

is significant in the saturation of the growth of the ITG mode. On the other hand,
the transfer to the zonal flow is small in the steady state of the turbulence, and the
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entropy is mainly transferred from the ITG mode to the higher radial wavenumber
mode through the interaction with the zonal flow. The diagram illustrated in Fig.
1 (b) presents a typical transfer process of the entropy in the ITG turbulence with
the adiabatic electrons, which is shown in Fig. 8 of Ref. [43]. The transfer function
can be used to study the zonal flow production process and the saturation process
of microturbulence, as shown in Sec. 7.1.

3.3. Conservation of parity

Here we discuss the parity symmetry of the gyrokinetic equation Eq. (2.3) against
the coordinate along the magnetic field line. The parity transformation is the inver-
sion of the coordinate direction along the magnetic field line in the magnetic field
coordinate as illustrated in Fig. 1 of Ref. [45]. The linearized gyrokinetic equation
is invariant under parity transformation z → −z, v‖ → −v‖, θk → −θk (kx → −kx)
as shown below.

In order to understand the invariance, we rewrite the gyrokinetic equation Eq.
(2.3) in terms of the non-adiabatic part of the perturbed part of gyro-center distri-
bution function hsk⊥

= δfsk⊥
+ qs

FMs

Ts
φk⊥

J0s, as

∂hsk⊥

∂t
= −ivds · k⊥hsk⊥

− vTs[H,hsk⊥
]‖ + qs

FMs

Ts

∂χsk⊥

∂t

+iv∗s · k⊥qs
FMs

Ts
χsk⊥

+ [χs, hs]k⊥
+ Cs(hsk⊥

), (3.18)

where χsk⊥
= (φk⊥

− vTsv‖A‖k⊥
)J0s is the generalized potential, [H,hsk⊥

]‖ ≡
∇‖H

∂hsk⊥

∂v‖
− ∂H
∂v‖

∇‖hsk⊥
= v‖∇‖hsk⊥

−µ∇‖B
∂hsk⊥

∂v‖
,H = v2

‖/2+µB, and ∇‖ = b·∇.

The Poisson equation and the Ampère’s law (Eqs. (2.4) and (2.5)) are

λ2
Dik

2
⊥φk⊥

=
∑

s

qs

(
∫

hsk⊥
J0sd

3v − qs
Ts
φk⊥

)

, (3.19)

k2
⊥A‖k⊥

=
βi
2

∑

s

qsvTs

∫

v‖hsk⊥
J0sd

3v. (3.20)

We assume that the magnetic field is invariant under the transformation B(−z) =
B(z). The squarer of the perpendicular wavenumber k2

⊥ = k2
y[1 + ŝ2(θ − θk)

2] =
(kx + ŝzky)

2 + k2
y is invariant under parity, where θk = −kx/(ky ŝ) is the bal-

looning angle. We have ∇‖ → −∇‖, vds · k⊥ → vds · k⊥, v∗s · k⊥ → v∗s · k⊥,
FMs → FMs, Cs → Cs under the transformation. We can confirm the invariance of
magnetic and diamagnetic drift terms, for instance, for a large aspect ratio toka-

mak with concentric magnetic surface v∗s · k⊥ = ky
−Ts

qsLnB
[1 + (

v2‖
2 + µB − 3

2 )ηs]

and vds · k⊥ = −Ts

qsRB
(v2

‖ + µB) (kx sin z + ky(cos z + ŝz sin z)) . It is noticed that

the Poisson equation and Ampère’s law (Eqs. (3.19) and (3.20)) imply that the
parity of electrostatic potential is the same as that of the distribution function,
while the parallel component of the vector potential has the opposite parity as the
distribution function. Hence, the linearized gyrokinetic equation is invariant under
the parity. By utilizing the invariance for the parity transformation, the perturbed
distribution function can be divided into the even and the odd parity parts

δfsk⊥
= δf+

sk⊥
+ δf−sk⊥

, (3.21)
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where

δf+
sk⊥

=
1

2

{

δfsk⊥
(z, v‖, kx) + δfsk⊥

(−z,−v‖,−kx)
}

, (3.22)

δf−sk⊥
=

1

2

{

δfsk⊥
(z, v‖, kx) − δfsk⊥

(−z,−v‖,−kx)
}

. (3.23)

The even parity mode does not change the sign of the perturbed distribution func-
tion against the parity transformation δf+

sk⊥
(−z,−v‖,−kx) = δf+

sk⊥
(z, v‖, kx) and

is called the ballooning parity mode, while the odd parity mode changes the sign of
the distribution function δf−sk⊥

(−z,−v‖,−kx) = −δf−sk⊥
(z, v‖, kx) and is called the

tearing parity mode. The parities of perturbations are summarized in table 1. The
parity is conserved during the linear growth of instabilities because the linearized
gyrokinetic equation is invariant.

We have seen that the linearized gyrokinetic equation is invariant under the parity
transformation. The parity is discussed in relation with the momentum transport
[44, 45], and it is also useful for understanding the mode structure of instabilities
especially in the electromagnetic simulations. Instabilities are classified into two
groups: ballooning parity modes and tearing parity modes. The former includes
the ITG mode, the trapped electron mode (TEM) mode, the electron temperature
gradient mode, and the KBM, while the latter includes the micro-tearing mode.
Typically, the most unstable mode has zero ballooning angle θk = 0, i.e., it has no
radial wave number kx = 0, where kx = −ky ŝθk. We will see the typical profile of
perturbations along the field line for the zero ballooning angle case kx = 0 in Sec.
6.

The parity of perturbation is important in electromagnetic calculations because
it is linked to the violation of magnetic surface. A magnetic field line is obtained
by integrating the equation dx

Bx
= dy

By
= dz

Bz
. The radial position of the field line

is represented by
∫

dx =
∫

Bx

Bz
dz =

∫

b̃x

B0
dz =

∫ ikyA‖

B0
dz. It is considered that the

magnetic surface is broken, when the radial position of a magnetic field line, which
starts from one edge of the simulation box, does not go back to the original radial
position at the another edge. Thus, the violation of the magnetic surface occurs,
when the perturbation has the tearing parity and the integral of A‖ along the field

line does not vanish
∫∞

−∞
A−

‖k⊥
dz 6= 0. On the other hand, the violation does not

occur, when the perturbation has the ballooning parity
∫∞

−∞
A+

‖k⊥
dz = 0.

The nonlinear term in the gyrokinetic equation causes interaction between differ-
ent parity modes. The even/odd part of the nonlinear term in Eq. (3.18) is written
as

[χs, hs]
±
k⊥

=
1

2

∑

k′
⊥,k

′′
⊥

δk⊥,k′
⊥+k′′

⊥
b · k′

⊥ × k′′
⊥

{

χsk′
⊥
(z, v‖, k

′
x)hsk′′

⊥
(z, v‖, k

′′
x)

∓χsk′
⊥
(−z,−v‖,−k′x)hsk′′

⊥
(−z,−v‖,−k′′x)

}

. (3.24)

We have [χ+
s , h

+
s ]+

k⊥
= 0, [χ−

s , h
−
s ]+

k⊥
= 0, [χ+

s , h
−
s ]−

k⊥
= 0, [χ−

s , h
+
s ]−

k⊥
= 0, [χ+

s , h
−
s ]+

k⊥
=

[χ+
s , h

−
s ]k⊥

6= 0, [χ−
s , h

+
s ]+

k⊥
= [χ−

s , h
+
s ]k⊥

6= 0, [χ+
s , h

+
s ]−

k⊥
= [χ+

s , h
+
s ]k⊥

6= 0,

[χ−
s , h

−
s ]−

k⊥
= [χ−

s , h
−
s ]k⊥

6= 0. Thus, the nonlinear terms in the gyrokinetic equa-
tion mix the parities. The parity mixing is important for the production of magnetic
perturbation that violates the magnetic surface, as shown in Sec. 7.4.
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δfsk⊥ φk⊥ A‖k⊥
χsk⊥ hsk⊥

Ballooning parity (+) even even odd even even
Tearing parity (−) odd odd even odd odd

Table 1. Parities of perturbations, where χsk⊥ = (φk⊥ − vTsv‖A‖k⊥
)J0s and

hsk⊥ = δfsk⊥ + qs
FMs
Ts

φk⊥J0s.

4. Difficulties of electromagnetic gyrokinetic simulations

4.1. Cancellation problem

The gyrokinetic equation Eq. (2.3) includes not only the time derivative of the
gyro-center distribution function δfsk⊥

but also the time derivative of A‖k⊥
, which

is the induction part of the electric field. In numerical simulations, we normally use
a variable

δf
(h)
sk⊥

= δfsk⊥
− qs

FMs

Ts
vTsv‖J0sA‖k⊥

(4.1)

= hsk⊥
− qs

FMs

Ts
χsk⊥

, (4.2)

to eliminate
∂A‖

∂t term, so that the gyrokinetic equation contains one time derivative

term
∂δf

(h)
sk⊥

∂t as

∂δf
(h)
sk⊥

∂t
+

(

ivds · k⊥ + vTsv‖b · ∇ − vTsµb · ∇B ∂

∂v‖

)(

δf
(h)
sk⊥

+ qs
FMs

Ts
χsk⊥

)

= iv∗s · k⊥qs
FMs

Ts
χsk⊥

− [χs, f
(h)
s ]k⊥

+ Cs(hsk⊥
),(4.3)

where χsk⊥
= (φk⊥

− vTsv‖A‖k⊥
)J0s is the generalized potential. By numerically

solving Eq. (4.3) we have δf
(h)
sk⊥

(t+∆t) from δf
(h)
sk⊥

(t), φk⊥
(t), and A‖k⊥

(t). In order
to obtain φk⊥

(t + ∆t) and A‖k⊥
(t + ∆t), we must solve the Poisson and Ampere

equations Eqs. (2.4) and (2.5). Substituting Eq. (4.1) into the Poisson equation
yields

λ2
Dik

2
⊥φk =

∑

s

qs

(
∫

δf
(h)
sk J0sd

3v − qs
Ts

(1 − Γ0s)φk

)

, (4.4)

which has the same form as Eq. (2.4) because
∫

FMsv‖J0sd
3v = 0. On the other

hand, the form of Ampère’s law is modified to
(

k2
⊥ + βi

∑

s

q2s
ms

∫

v2
‖J

2
0sFMsd

3v

)

A‖k = βi
∑

s

qs

∫

v‖δf
(h)
sk J0sd

3v, (4.5)

where the velocity space integral in the l.h.s. can be represented by the analytic
form

∫

v2
‖J

2
0sFMsd

3v = Γ0s.
The cancellation problem stems from the fact that the second term is much larger

than the first term in the l.h.s. of Eq. (4.1) for electrons qe
FMs

Ts
vTev‖J0eA‖k ≫ δfek.

The contribution of the second term of Eq. (4.1) −qe FMe

Te
vTev‖J0eA‖k in the r.h.s.

of Eq. (4.5) should cancel out the second term of l.h.s. of Eq. (4.5). In practice,
errors of the cancellation of the two terms can be comparable with the first term of
the l.h.s. of Eq. (4.5) and lead to numerical instabilities. The numerical instability
is called the cancellation problem and occurs when we evaluate the second term
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in the l.h.s. of Eq. (4.5) by the analytic form Γ0s. The cancellation problem can
be avoided by integrating the two terms in the same numerical method over the
velocity space for both the second term in the l.h.s. and the r.h.s. of Eq. (4.5)
[16, 20]. If we do not integrate the second term of the l.h.s. in the same method
as the r.h.s., then the difference between them is comparable with the first term of
the l.h.s. k2

⊥A‖ and numerical instabilities occur.

4.2. Kinetic electrons and adiabatic electrons

Most of the difficulties in the electromagnetic gyrokinetic simulation originate from
the large mass ratio between ions and electrons. When the kinetic electrons are
included, the mode structure along the magnetic field line is elongated. This is
mainly due to the trapped electrons, and thus the elongation is significant for
the TEM. In order to capture the elongated mode structure, we need to set the
computation domain, −Nθπ 6 z 6 Nθπ, to be very large along the field lineNθ ≫ 1,
as will be shown in Sec. 6, where z is the coordinate along the magnetic field line,
as shown in Sec. 5.1, and Nθ corresponds to N in the equation around Eq. (16) of
Ref. [26]. In nonlinear simulations, we normally set Nθ = 1 and set the boundary
condition at z = ±π so as to f(kx, ky, z = ±π) = f(kx+2πŝky, ky, z = ∓π) to take
into account the magnetic shear. This boundary condition requires a large mode
number in the radial direction, because the magnetic shear produces high radial
wave number modes. An example is presented in Sec. 8.1.2.

In order to elucidate the kinetic electron effect, here we consider the adiabatic
electron approximation. In the large electron thermal velocity limit vTe → ∞ and
βi = 0 limit, the gyrokinetic equation for electrons Eq. (2.3) is reduced to

v‖b · ∇δfek⊥
= v‖

qe
Te
FMeb · ∇φk⊥

J0e + µb · ∇B∂δfek⊥

∂v‖
. (4.6)

Since A‖ = 0 from Ampère’s law, the perturbed magnetic field vanishes b̃ = 0, so
that b∗ = b. When the mirror term, the second term in the r.h.s. of Eq. (4.6), is
neglected, i.e., the trapping of electrons is omitted, we have the adiabatic electron
response equation

b · ∇δfek⊥
=
qe
Te
FMeb · ∇φk⊥

J0e. (4.7)

For the analysis of micro-instability in the ion scale, k⊥ ≈ 1/ρTi ≪ 1/ρTe, the
electron finite Larmor radius can be neglected, J0e = 1 and Γ0e = 1. Integrating
the equation over the velocity space, and then integrating it along the magnetic
field line, we have the electron adiabatic response relation

δn̂ek⊥
=

−qe
Te

φk⊥
for ky 6= 0, (4.8)

=
−qe
Te

(φk⊥
− 〈φk⊥

〉) for ky = 0,

where δn̂ek⊥
=
∫

δfek⊥
d3v. Substituting Eq. (4.9) into Eq. (2.4) and neglecting the

l.h.s. of Eq. (2.4) because k⊥ ≪ 1/λDi for ion scale turbulence, we have a simplified
version of Poisson equation Eq. (2.4) for the adiabatic electrons,

qi

∫

δfik⊥
J0id

3v =
q2i
Ti

(1 − Γ0i)φk⊥
+
q2e
Te
φk⊥

for ky 6= 0, (4.9)
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=
q2i
Ti

(1 − Γ0i)φk⊥
+
q2e
Te

(φk⊥
− 〈φk⊥

〉) for ky = 0.

The equation can be solved by coupling only with the ion gyrokinetic equation.
We have seen the derivation of the adiabatic electron model by neglecting mag-

netic perturbation and some dynamics of electrons such as particle trapping. In
other words, the neglected dynamics is the typical feature additionally included in
the electromagnetic gyrokinetic model extended from the adiabatic electron model.
Those are trapped electrons and electron inertia effects as well as the magnetic
perturbation. The additional physics causes waves which may limit the time step
of numerical simulations, as shown in the next subsection.

4.3. Waves in electromagnetic gyrokinetic system

The time step of numerical simulation ∆t can be limited by waves propagating
with high frequency. In the electromagnetic gyrokinetic systems we have the kinetic
Alfvén wave (KAW) and the high frequency modes in addition to the drift-wave
and the sound wave. When ω∆t is too large, this can lead to numerical instabilities
for explicit time-integration schemes, where ω is a typical frequency of the waves.

We consider a uniform plasma slab, so that the magnetic drift terms and the
mirror term can be neglected in Eq. (2.3). The finite Larmor radius effect is ap-
proximated to Γ0i ≈ ρ2

Tik
2
⊥ and Γ0e ≈ 0 by assuming k⊥ρTi ≪ 1. The dispersion

relation of waves propagating in the plasma is

−ρ2
Tik

2
⊥ =

(

ω2

v2
Ak

2
‖

− 1

)(

∑

s

Te
Ts

[1 + ζsZ(ζs)]

)

, (4.10)

where Z(ζ) is the plasma dispersion function [46] and ζ = ω/(
√

2vTsk‖). When
k‖vTi ≪ ω ≪ k‖vTe, Eq. (4.10) is reduced to the dispersion relation of the kinetic
Alfvén wave (Eq. (16) in Ref. [47])

ω2 = v2
Ak

2
‖(1 − ρ2

Tik
2
⊥). (4.11)

On the other hand, when k‖vTe ≪ ω ≪ k‖vA (βe ≪ me/mi) Eq. (4.10) is reduced
to

ω2
H =

k2
‖

k2
⊥

Ω2
Ti

mi

me
. (4.12)

This mode has very high frequencies and restricts the time step of numerical sim-
ulations ∆t for low k⊥ modes at very low beta βi ≪ me/mi. It is noticed that this
mode remains even in fluid models when we retain the electron inertia, as shown
in Appendix D.

5. Setting of numerical simulations

5.1. Flux tube geometry

In order to describe micro-instabilities, it is convenient to use the magnetic field
coordinate system, which consists of a coordinate along the magnetic field line
and coordinates normal to the field line. Here, we briefly describe the flux tube

coordinate (x, y, z, v‖, µ), where x = q(ψ0)
B0r(ψ0)

(ψ − ψ0), y = −r(ψ0)
q(ψ0)

(α − α0), and

z = θ, where α = ζ − q(ψ)θ is the magnetic field line label, ψ is the magnetic flux,
θ is the poloidal angle, and the tube is located on a field line with ψ = ψ0 and
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α = α0 [26], where (ψ, θ, ζ) is a flux coordinate. The parallel gradient along the
equilibrium field is written as b · ∇ = 1

q0R
∂
∂z in terms of the magnetic field aligned

coordinate z in Eq. (2.3). The periodic boundary conditions are assumed in the
poloidal and toroidal directions. The square of the perpendicular wavenumber and
the diamagnetic drift frequencies are written as k2

⊥ = (kx + ŝzky)
2 + k2

y and

v∗s · k⊥ = ky
−Ts
qsLnB

[

1 +

(

v2
‖

2
+ µB − 3

2

)

ηs

]

, (5.1)

respectively. The ion and electron temperatures are set to be equal Ti = Te in
the following simulations, so that βi = βe = β/2. In numerical simulations the
Lenard-Bernstein collision operator [34, 48],

Cs(hsk⊥
) = νss

[

∂

∂v‖

(

v‖hsk⊥
+ v2

Ts

∂hsk⊥

∂v‖

)

+
1

v⊥

∂

∂v⊥

(

v2
⊥hsk⊥

+ v2
Tsv⊥

∂hsk⊥

∂v⊥

)]

,

(5.2)
is used, where hsk⊥

= δfsk⊥
+ qs

Ts
φk⊥

J0sFMs is the non-adiabatic part of the per-
turbed part of the gyro-center distribution function.

In our numerical simulations, the time integration is made by the fourth-order
Runge-Kutta-Gill method, and the z and v‖ derivatives are approximated by a
finite-difference method.

5.2. Cyclone base case (CBC) tokamak

Calculations are mainly carried out for the Cyclone base case (CBC) tokamak
parameters [6]: q0 = 1.4, ŝ = 0.786, ηi = ηe = 3.1, R/Ln = 2.22, R/LTi = R/LTe =
6.88, ǫ = r0/R = 0.18, Ti = Te, and mi/me = 1836, where ηs = Ln/LTs. We
assume a large aspect ratio tokamak with concentric circular magnetic surfaces. The
magnetic field is given by B = B0/(1 + ǫ cos z), and the magnetic drift frequencies
are written as

vds · k⊥ =
−Ts
qsRB

(v2
‖ + µB) (kx sin z + ky(cos z + ŝz sin z)) . (5.3)

Wavenumbers in Fourier space are represented by kx = kx,minm and ky =
ky,mink, where the total number of Fourier modes for kx and ky are 288 and 72,
respectively, and the minimum wavenumbers are set to kx,min = 0.031/ρTi and
ky,min = 0.05/ρTi. In the z, v‖, and µ directions, 64, 64, and 16 grid points are
distributed in −π 6 z 6 π, −4vTs 6 v‖/vTs 6 4, 0 6 µB0/Ts 6 8, respectively.
In order to study turbulence in weakly collisional plasmas, the collision frequency
should be sufficiently small, so that it does not influence the growth of instabilities.
On the other hand, the collision frequency should be finite in order to obtain a
steady state in nonlinear simulations [40], as suggested by Eq. (3.13) and as will
be shown in Sec. 7.1. The collision frequencies and the Debye length are set to
νii = 2 × 10−3, νee =

√

mi/meνii, and λDi/ρTi = 0, respectively.

5.3. Helical plasmas

Heliotron/stellarator devices confine plasmas with three-dimensional magnetic fields
produced by external coils, and thus are advantageous in maintaining a steady dis-
charge. The importance of the interplay between the ITG turbulence and zonal
flows in the Large Helical Device (LHD) [49], which is a heliotron device, was re-
ported by means of electrostatic gyrokinetic simulations with adiabatic electrons
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[50], and it is reported that a neoclassical optimization of the magnetic configura-
tion leads to reduction of heat transport through the enhancement of zonal flows.
The LHD plasma is normally free from the current driven instability, while the
pressure driven instabilities such as ballooning modes can degrade the confinement
of plasmas in high-beta discharges [51], and the threshold of KBM is normally lower
than that of the ideal MHD ballooning mode [32, 33].

Gyrokinetic simulations of finite beta LHD plasmas are presented here as a typical
example of electromagnetic turbulent transport study in three-dimensional systems.
The GKV+ code is applied to the analysis of turbulent transport due to micro-
instabilities at finite-beta in a model configuration of standard LHD plasmas [50,
52]. The magnetic field strength of the model LHD plasma is given by

B = B0

(

1 − ǫ00 − ǫt cos z −
l=L+1
∑

l=L−1

ǫl cos[(l −Mq0)z −Mα]

)

, (5.4)

in terms of the flux tube coordinate (x, y, z, v‖, µ) [26], and the magnetic drift
frequency is given by

vds · k⊥ =
−1

qsB
(v2

‖ + µB)
ǫt
r

[

ky

(

rǫ′00
ǫt

+
rǫ′t
ǫt

cos z +

l=L+1
∑

l=L−1

rǫ′l
ǫt

cos[(l −Mq0)z −Mα]

)

+(kx + ŝzky)

(

sin z +

l=L+1
∑

l=L−1

l
ǫl
ǫt

sin[(l −Mq0)z −Mα]

)]

,(5.5)

where ŝ = r
q
dq
dr and ǫ′ = a dǫdr , L = 2, M = 10, and α = 0. Other parameters for the

standard LHD configuration are q0 = 1.9, ŝ = −0.85, ηi = ηe = 3, R/Ln = 3.33,
R/LT = 10, Ti = Te, ǫ00 = 0, ǫt = 0.087, and (ǫL−1, ǫL, ǫL+1) = ǫt(−0.28, 0.91, 0).
Turbulent transport due to the KBM at βi = 1.7% is investigated and is com-
pared with the ITG turbulence at βi = 0.2%. In the simulations, the number of
Fourier modes is (144,±36) with (kx,minρTi, ky,minρTi) = (0.077, 0.058) for KBM
and (kx,minρTi, ky,minρTi) = (0.12, 0.046) for ITG, and 256, 64, and 32 grid points
are distributed in the z, v‖, and µ direction, respectively. The resolution in the radial
direction is required to capture an elongated mode structure along the magnetic field
line by taking into account the magnetic shear that causes high-radial wavenumber
Fourier modes. The resolution in the velocity space is required to reduce numerical
error, so that numerical solutions satisfy the entropy balance equation Eq. (3.1). The
collisions between ions and electrons are neglected, and the collision frequency and
the Debye length are set to be νii = 2× 10−3, νee =

√

mi/meνii, and λDi/ρTi = 0,
respectively.

6. Micro-instabilities in finite beta plasmas

6.1. Tokamak (Cyclone base case)

6.1.1. Ballooning parity modes In this linear analysis plasmas are assumed to be
collisionless νss = 0. Growth rates and real frequencies for kyρTi = 0.2 mode are
plotted as a function of βi in Fig. 2. The ion temperature gradient (ITG) mode is
unstable at low beta, and its real frequency ω is negative, which implies that the
ITG mode rotates toward the ion diamagnetic direction on a cross section of the
torus. The growth rate of ITG instability decreases with βi up to βi = 0.9%, while
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the absolute value of real frequency increases slightly. When βi is around 1%, the
trapped electron mode (TEM) is unstable. The TEM has positive real frequency
and rotates toward the electron diamagnetic direction. The growth rate of TEM is
smaller than that of the ITG mode at the low wavenumber kyρTi = 0.2. When βi is
above 1.3%, the kinetic ballooning mode (KBM) is unstable. The real frequency of
KBM is negative and its absolute value is larger than that of the ITG mode. The
rotation direction of KBM is in the ion diamagnetic direction and is the same as
that of the ITG mode. The growth rate of KBM increases with β, while its absolute
value of real frequency decreases. The growth rate and real frequency obtained here
are similar to those in the previous work [12, 18, 19]. The dependence of instability
on plasma beta is strong for ion scale micro-instabilities kyρTi < 1, i.e., the ITGs
are unstable at low beta and KBMs are unstable at high beta [15, 28]. On the other
hand, the growth rates of instabilities for kyρTi > 1 such as TEM/ETG mode are
not influenced by the value of plasma beta.

Figure 3 shows the growth rate as a function of the poloidal wavenumber ky for
βi = 0.2%, 1.0%, and 1.4%. The TEMs around kyρTi ≈ 0.8 are not influenced by
the increase of the beta value. On the other hand, the ITG mode, which is unstable
for kyρTi < 0.5 at βi = 0.2%, almost disappears at βi = 1.% and 1.4%, while KBM
is unstable kyρTi < 0.5 at βi = 1.4%. The TEMs are unstable for all wavenumbers
at βi = 1.%. The wavenumber of the most unstable KBM is smaller than that of
the ITG mode.

Figure 4 shows the profile of the electrostatic potential with the wavenumber
kyρTi = 0.2, 0.3, and 1.0 along the magnetic field line z. The perturbations of ITG,
TEM, and KBM have a peak at z = 0, which is the out side of the torus and is
called the bad curvature region. Since the ITG mode is a ballooning type instability,
a sharply peaked mode at the bad curvature region has a larger growth rate than
a broadened mode. In fact, the ITG with kyρTi = 0.3 is more unstable and sharply
peaked than that with kyρTi = 0.2, as shown in Figs. 3 and 4. These profiles imply
that ITG mode, TEM, and KBM have a ballooning structure localized at z = 0
and have the ballooning parity (see Sec. 3.3). The profiles of ITG mode, TEM,
and KBM with kyρTi = 0.2 and 0.3 extend over z = ±2π. On the other hand,
the profiles of TEM with kyρTi = 1.0 extends over ±8π, and the profiles are not
influenced by beta value. This very elongated mode structure along the field line
is a typical feature of TEMs. It is remarked that the electrostatic potential φ has
the same parity as the distribution function while the parallel component of the
vector potential A‖ has the opposite parity. Figure 5 shows the profile of the parallel
component of the vector potential along the magnetic field line z for the ITG mode
with kyρTi = 0.2, TEM with kyρTi = 1.0, and MTM with kyρTi = 0.09. The ITG
mode and TEM are an odd function against z, so that they are classified into the
ballooning parity modes (See Table 1).

6.1.2. Tearing parity modes A typical tearing parity instability is the micro-tearing
mode (MTM) [53, 54, 55, 56, 57]. In order to investigate MTM, we consider a large
beta tokamak plasma such as a spherical tokamak. The MTM is normally destabi-
lized by the electron temperature gradient and by the electron-ion collisions. Since
the electron-ion collision operator is not implemented in our code, a large electron-
electron collision frequency νee = 0.16 is used in this analysis instead. Other param-
eters, which are different from CBC, are βi = 6% and 1/LTi = 0. The growth rate
and real frequency of kyρTi = 0.09 mode are γ = 0.19 and ω = 2.vTi/R0, respec-
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tively. The positive real frequency indicates that the MTM rotates in the electron
diamagnetic direction. The electrostatic potential is an odd function against the
coordinate along the magnetic field line z, while the vector potential is an even
function, as shown in Figs. 4 and 5, and thus this mode is classified into the tearing
parity mode (Table 1).

6.2. Helical plasma

The beta dependence of the instability in helical plasmas is similar to that in the
CBC tokamak plasma, as shown in Fig. 6 [35, 42, 58]. The ITG mode is unstable for
βi < 1% and the KBM is unstable for βi > 1.3%. The TEM does not appear around
βi = 1.2% which is located between ITG mode unstable and KBM unstable regimes.
The significant difference from the tokamak plasma is that the most unstable KBM
has a finite ballooning angle θk = −kx/(ky ŝ) 6= 0 (kx 6= 0) and an inclined mode
structure with respect to the mid-plane of a torus. The profile of the perturbation
on xy-plane at z = 0 is inclined because of the finite radial wavenumber (Fig.
7). This is in contrast to KBMs in tokamaks as well as ITG modes in tokamaks
and helical systems. Figure 8 shows the profile of the electrostatic potential φ and
the parallel component of vector potential A‖ of the most unstable ITG mode
with k⊥ = (0, 0.3/ρTi) at βi = 0.2% and of the most unstable KBM with k⊥ =
(0.2/ρTi, 0.3/ρTi) at βi = 2% along the magnetic field line z for LHD with ηe = 0.
The electrostatic potential of ITG for βi = 0.2% has a peak at z = 0 and has an
oscillation due to the particle trapped by helical ripples. The electrostatic potential
is an even function of z and the vector potential is an odd function of z, and thus
the mode is classified into the ballooning parity mode. On the other hand, the
potential of the KBM for βi = 2% has a peak at z ≈ π/4, i.e., the mode has a
finite ballooning angle θk ≈ π/4. The finite ballooning angle appears when particle
trapping at helical ripples is significant because the bounce average of magnetic drift
velocity Eq. (5.5) has a finite radial component to destabilize the Fourier modes
with finite radial wavenumber. This inclined mode structure is the origin of the
saturation of KBM turbulence in helical plasmas, as shown in Sec. 8.2.

7. Microturbulence at finite beta (Nonlinear simulations)

7.1. Beta dependence of turbulent transport

Nonlinear simulation results for several beta values are presented in this section [18,
19, 21, 22]. It is to be noted that the magnetic field configuration and temperature
and density profiles are fixed and the value of βi in the Ampère’s law Eq. (2.5)
is changed. Figure 9 shows the electrostatic potential profile in the configuration
space. During the growing phase (Fig. 9 (a)), the perturbed potential for βi = 0.2%
exhibits a clear ballooning structure of the ITG mode and TEM, which are strong
(weak) and elongated in the radial (poloidal) direction around the outside (inside)
of the torus. The alternative stripes of bright and dark are following along the
magnetic field line on the surface of the torus in Fig. 9, while a fine structure
appears on a cross section of the torus. The structure indicates that the turbulence
has a flute structure k‖ ≪ k⊥, as described in Sec. 2. Figure 9 (b) shows the
potential profile in a statistically steady state for βi = 0.2%. The profile shows that
zonal flows appear and regulate the ITG/TEM turbulence. As the beta is increased
to βi = 0.4% and 0.6% (Fig. 9 (b) and (c)), the zonal flows become stronger than
the turbulence in the steady state, and thus the heat transport is reduced compared
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with that for βi = 0.2%, as shown below. For βi = 0.8% the turbulence continues to
grow with a long wavelength perturbation that is stronger than the zonal flows in
the nonlinear evolution, and the heat transport continues to grow correspondingly.

Figure 10 (a) shows the β dependence of turbulent energy transport coefficient
χs = QsLTs. The energy flux isQs = Θs+

5
2TsΓs, where, Θs = Θes,s+Θem,s and the

ion heat flux due to electrostatic potential perturbation is denoted by Θes,ion, for
instance, as defined in Sec. 3.1. The transport is caused by the ITG turbulence and
decreases as ion beta βi increases from 0.2% to 0.6%, because the linear growth rate
of the ITG mode is reduced with βi, while the zonal flow is not so influenced by the
increase of beta, as will be shown by the zonal component (ky = 0) of electrostatic
potential spectrum in Fig. 11. The electron energy transport in Fig. 10 (a) is not
so affected by the increase of beta. It is noticed that the energy transport increases
to a very large value when βi exceeds 0.8%. This will be discussed in Sec. 7.3.

Figure 10 (b) shows the contribution of electrostatic potential and magnetic per-
turbation to the energy transport presented in Fig. 10 (a). The ion energy transport
is dominantly caused by the electrostatic perturbation, while the contribution of
magnetic perturbation to the ion heat transport is very small and negative, i.e., it
has very small pinch effect. In contrast with the ion transport, the electron energy
transport is significantly influenced by the magnetic perturbation. The contribution
of the magnetic perturbation is small at βi = 0.2% because of the small magnetic
perturbation as expected from the Ampère’s law Eq. (2.5). The contribution in-
creases with beta and becomes the same order as that of the electrostatic pertur-
bation at βi = 0.6%. Since the contribution from the electrostatic perturbation is
decreased with beta, the electron energy transport almost does not depend on beta
from βi = 0.2% to 0.6%. The magnetic part becomes comparable with the elec-
trostatic part for βi > 0.8% and is very large. This large contribution of magnetic
perturbation may be linked to the very large value of the transport for βi > 0.8%
through the zonal flow production, as will be discussed in Sec. 7.3.

Figure 11 shows the electrostatic potential spectra averaged from t = 50 to
t = 180. Each spectrum has a peak around kyρTi = 0.2 for βi 6 0.6%, and the ITG
mode around kyρTi = 0.2 dominantly contributes the energy transport, in spite of
the fact that the linear growth rate of TEM at kyρTi ≈ 1 is higher than that of
the ITG mode. The other peak of the spectrum is located at ky = 0, which is the
zonal component. The zonal flows regulate the ITG and TEM turbulence, and the
strength of the flow is not so affected by the increase of beta up to βi 6 0.6%, so
that the amplitude of the ITG turbulence is decreased with beta because of the
decrease of the linear growth rate. On the other hand, the zonal flows become weak
for βi = 0.8%, and, correspondingly, the amplitude of ITG turbulence becomes
large, so that the energy transport is very large, as shown in Fig. 10.

The comparison of Fig. 10 with Fig. 2 implies that the heat flux decreases with β
faster than the linear growth rate. The linear growth rate at βi = 0.6% is 3/4 of the
βi = 0.2% case. On the other hand, the heat flux at βi = 0.6% is one-half of that
at βi = 0.2%. One of the reasons is the beta dependence of zonal flow production
[19]. The zonal flow shearing decreases with beta slower than the linear growth
rate. Thus, the decrease of the linear growth rate plus the slower decrease of zonal
flow production with beta may explain the faster decrease of the ion heat flux with
beta compared to the electron heat flux in Fig. 10. The Dimits shift is suggested
by the fact that the zonal flows play an essential role at low beta ITG turbulence.
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Although it is not confirmed by our own simulation, it is reported that the shift is
enhanced by the finite beta effects and increases with beta up to 30% [21].

7.2. Entropy transfer

Here we investigate the saturation mechanism of turbulence based on the conserved
quantity introduced in Sec. 3.1. Figure 12 (a) shows the time evolution of each
term in the entropy balance equation Eq. (3.1) for the ITG turbulence with βi =
0.2%. At the beginning, the ITG mode grows, and the entropy production due to
turbulent transport term for ions Θi/LTi + ΓiTi/Lpi increases and is dominant
until t ≈ 20, and the transport term almost balances with the time derivative
of the entropy variable dδSi/dt. The increase of dδSs/dt term implies that a fine
structure of the distribution function is produced in the velocity space. After t ≈
50 the ITG turbulence is saturated and a statistical steady state is established.
In the steady state the time derivative terms are very small d

dt (
∑

s δSs + Wes +
Wem) ≈ 0, and the entropy production due to turbulent transport terms balance
with the collisional dissipation terms as shown by Eq. (3.13). The ion (electron)
transport term Θi/LTi + ΓiTi/Lpi (Θe/LTe + ΓeTe/Lpe) almost balances with the
ion (electron) collisional dissipation term Di (De), however, the balance between
them is not complete, and the free energy is transformed from ions to electrons, i.e.,
Ri < 0 and Re > 0, in Eq. (3.12), as shown in Fig. 12 (b). The entropy balance error
∆ is much smaller than the entropy production term (free energy term) of ions, and
thus the entropy balance equation Eq. (3.1) is well satisfied in the simulation.

Next we consider the spectrum of each term in the entropy balance equation
for a Fourier mode k⊥ in the statistical steady state of the ITG turbulence at
βi = 0.2%. Figure 13 shows the spectrum of each term (a) Ts,ky

=
∑

kx
Tsk⊥

as
a function of the poloidal wavenumber ky and (b) Ts,kx

=
∑

ky
Tsk⊥

as a function

of the radial wavenumber kx. Figure 13 (a) shows typical features of the entropy
(free energy) transfer in the Fourier mode space. The entropy production due to
the ion turbulent transport Θi,ky

/LTi+Γi,ky
Ti/Lpi =

∑

kx
Θik⊥

/LTi+Γik⊥
Ti/Lpi

(red line) is positive and has a peak at kyρTi = 0.2. This means that the ITG
instability with kyρTi ≈ 0.2 drives the entropy (free energy) of turbulence. The
nonlinear entropy transfer spectrum Ts,ky

(blue line) is negative around kyρTi = 0.2
and cancel out Θi,ky

/LTi + Γi,ky
Ti/Lpi, and it is positive at kyρTi < 0.1 and

kyρTi > 0.4. These imply that the entropy produced by the ITG mode is transferred
from the ITG unstable region kyρTi ≈ 0.2 to the stable high wavenumber region in
kyρTi > 0.4 as well as the low wavenumber region including the zonal mode by the
nonlinear mode coupling. It is noticed that the zonal component which is the ky = 0
mode does not cause the transport Θi,ky=0/LTi + Γi,ky=0Ti/Lpi = 0 as shown by
Eqs. 3.6 and 3.7, so that

∑

s

(

Ts,ky=0 +Ds,ky=0

)

= 0 for the zonal component. It is
also noticed that

∑

ky
Ts,ky

=
∑

k⊥
Ts,k⊥

= 0. The ion collisional dissipation term
Di,ky

is negative and balances with the nonlinear entropy transfer term Ti,ky
at

high wavenumber. This implies that the transferred entropy is dissipated by the
collision at high wavenumber. Furthermore, the collisional dissipation is negative
at low wavenumber, so that the nonlinearly transferred free energy to the low
wavenumber is also dissipated by the collision. The collisional dissipation plays
the significant role at low wavenumber as well as at high wavenumber, because the
dissipation occurs not in the configuration space but in the velocity space, as shown
by Eq. (5.2). The entropy production, nonlinear entropy transfer, and collisional
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dissipation for electrons are similar to those of the ions, except that the amplitudes
are almost one-thirds smaller those of the ions.

Figure 13 (b) shows the spectrum of each term as a function of the radial
wavenumber kx. The profiles for kxρTi > 0.05 are similar to those for kyρTi > 0.2
in Fig. 13 (a), i.e., the entropy production is strong at kxρTi ≈ 0.05, the entropy
is transferred to the high wavenumber kxρTi > 0.5 by the nonlinear mode cou-
pling, and it is dissipated by collisions at the high wavenumber kxρTi > 0.5. The
profiles at low wavenumber kxρTi < 0.05 are significantly different from those for
kyρTi < 0.2 in Fig. 13 (a). This is because the ky = 0 mode represents the zonal
component and the entropy can be transferred to the zonal component, while there
are no corresponding modes in low kx region.

Figure 14 shows the spectrum of each term on the k⊥ = (kx, ky) plane. The en-
tropy production term Θsk⊥

/LTs+Γsk⊥
Ts/Lps has a peak at (kx, ky) ≈ (0.05, 0.2),

and thus the dominant ITG mode producing entropy has a finite radial wavenum-
ber. This is because the ITG mode is sheared by the zonal flow which has a radial
wavenumber. The positive region (denoted by red) of Θsk⊥

/LTs+Γsk⊥
Ts/Lps cor-

responds to the negative region (denoted by blue) of Tsk⊥
that implies the produced

entropy is transferred by the nonlinear mode coupling. The entropy is transferred to
high kx and ky region, and is also transferred to ky ≈ 0 region to produce the zonal
component. The transferred entropy is dissipated by the collision Dik⊥

, which is
large negative around ky ≈ 0, and also negative entire (kx, ky) space. The entropy
transfer process is significantly anisotropic in (kx, ky) space.

The summary of the entropy transfer in ITG turbulence, which is significantly
anisotropic, is as follows. The entropy is produced by the ITG mode, and it is
transferred not only to the high wavenumber regime but also to the low wavenumber
regime including zonal component, and eventually dissipated by the collision in high
and low wavenumber regions, as schematically shown in Fig. 15 (a). The picture
is significantly different from the energy transfer of the neutral fluid turbulence
shown in Fig. 15 (b) (see Fig. 8.10 in Ref. [59] and Fig. 6.5 in Ref. [60]). In the
neutral fluid, turbulence is normally driven at low wavenumber as indicated by
the red line, and the nonlinear transfer function has the same absolute value at
the similar wavenumber and is negative as indicated by the blue line. The transfer
function is positive only at the high wavenumber region and it balances with the
viscous dissipation represented by the green line. The transfer function is very small
between the driven and dissipation regions. This region is called the inertial range,
and a scaling of the energy spectrum Ek ∝ k−α is expected in this regime. In the
ITG turbulence, there is no region where Tsk is zero in Fig. 13, and thus there is
no inertial range in the ITG turbulence.

7.3. Saturation problem of turbulence at finite beta

The saturation problem arises in electromagnetic gyrokinetic simulations at finite
beta. In Fig. 10 (a) the level of the energy transport for ions and electrons χi and
χe are not at a physically relevant level for βi = 0.8% and 1%. The saturation
problem is called ”run-away” in Ref. [22] and is called ”non-zonal transition” in
Ref. [24]. The heat diffusion coefficient χi decreases with plasma beta because of
the reduction of the linear growth rate of the ITG mode. However, the transport
reaches a very high level when the beta is larger than a critical value βi = 0.8%
in Fig. 10 (a). The linear analysis shows that the instabilities driving turbulence
are the ITG mode and TEM at the critical beta of the run-away, and thus the
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run-away occurs at a beta that is lower than the threshold of KBM, which appears
for βi > 1.2%. Figure 16 shows the time history of the energy diffusivity coefficient
for several values of βi. The growth of ITG/TEM is saturated at a reasonable level
at the first saturation at t = 50 for each βi, and the level is roughly proportional to
the linear growth rate shown in Fig. 2. The energy transport reaches a statistically
steady state for βi < 0.8% and fluctuates around the averaged saturation level. On
the other hand, the transport for βi > 0.8% starts to grow again and continues to
grow after the first saturation. In particular, it becomes larger than 50 [vTiρ

2
Ti/R0]

at t = 90 for βi = 1%, and eventually the transport reaches thousands in the
Gyro-Bohm unit. In this case, zonal flows are weak compared with the amplitude
of microturbulence, as shown in Fig. 11 (a). This is the significant difference from
the ITG turbulence at very low beta βi 6 0.6%, and the run-away can be linked
to the weak zonal flows. The run-away may be also related to the fixed gradient
in the local simulations, and thus a saturation of turbulence can be realized at a
physically relevant level in finite beta, when a global relaxation of the temperature
and density profiles are allowed.

Some possible explanations of the run-away are proposed by Refs. [22] and [24].
One is a sub-critical instability due to the production of a zonal pressure field.
When the largest gradient of corrugated pressure profile including the zonal pres-
sure exceeds the critical pressure gradient of the ideal MHD stability, a secondary
instability (sub-critical instability) occurs and the heat transport runs away [22].
Another mechanism of the run-away is the production of a stochastic magnetic
field. The effects of magnetic perturbation on the transport becomes significant for
βi > 0.8%, as shown in Fig. 10 (b). This implies that the large magnetic perturba-
tion may play a role in the run-away. The stochastic field may prevent the formation
of zonal flows [24, 29].

7.4. Impact of magnetic perturbation on turbulent transport

The influence of magnetic perturbation on the turbulent transport is reported here.
The effect is called magnetic flutter and it is caused by the perturbed part of the
parallel gradient of the perturbation. The effect is written in terms of the Poisson
bracket (b̃·∇f)k⊥

= −[A‖J0s, f ]k⊥
in Eq. (2.3). In the ITG/TEM turbulence at low

beta, the impact of magnetic flutter on the ion energy transport is typically small
compared with that of the E×B flow convection due to the electrostatic potential
perturbation, as shown in Fig. 10 (b). On the other hand, the contribution of the
magnetic flutter on the electron heat transport is comparable with that of the E×B
flow convection at finite beta in Fig. 10 (b). It is reported that the transport due to
the magnetic flutter is proportional to the square of beta β2 in ITG turbulence [19],
and that is explained by the production of a stochastic magnetic field. The violation
of magnetic surface is caused by the production of the tearing parity, as explained
in Sec. 3.3. The magnetic perturbation that has tearing parity is produced by the
ITG mode through the parity exchange caused by the nonlinear term Eq. (3.24).

Turbulence driven by the micro-tearing mode (MTM) is significantly different
from the ITG turbulence at low beta because the MTM is essentially electromag-
netic instability. As we have discussed in Sec. 3.3, the parallel component of vector
potential A‖ of MTM is an even function against the coordinate along the magnetic
field line z, so that the violation of the magnetic surface causes the instability. Al-
though we have not confirmed by our own simulation, it is reported that the heat
flux due to the magnetic perturbation is well explained by the Rechester-Rosenbluth
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model, but the model breaks down when the amplitude of the magnetic perturba-
tion is small [55].

7.5. Interaction between ITG and ETG

The electromagnetic microturbulence described above is in the ion scale k⊥ ≈ 1/ρTi,
while there is microturbulence in the electron scale k⊥ ≈ 1/ρTe. In fact, the TEM
connects to the electron temperature gradient (ETG) mode at high wavenumber
region in Fig. 3. One of the examples of high performance computing is a simulation
covering both ion and electron scales. The simulation enables us to understand the
interaction between ITG turbulence and ETG turbulence. Although the growth rate
of ETG mode is much larger than that of ITG mode, the ion scale turbulence, which
is regulated by zonal flows, dominates and controls the turbulent heat transport of
ions and electrons in a statistically steady state [61, 62].

8. Saturation of KBM turbulence with small electron
temperature gradient

The subject of this section is the identification of a saturation mechanism for finite
beta microturbulence in regimes where zonal flow production is weak [35, 42, 39, 63].

8.1. CBC

8.1.1. Saturation of KBM turbulence We have a saturation of the growth of KBM
when the electron temperature gradient is set to be small [35, 39]. The growth of
the electron temperature gradient (ETG) mode is avoided by setting the electron
temperature gradient to be small ηe = 0 or 0.2 in the simulations. Figure 17 shows
the linear growth rate of KBMs with βi = 2.% as a function of ky for ηe = 0 and
0.2. The growth rate of the most unstable mode for ηe = 0.2 is larger than that
for ηe = 0. The growth rate is negative for kyρi > 1, because the KBMs are stabi-
lized by the finite ion Larmor radius effects and the ETG is stabilized by choosing
small ηe. Figure 18 shows the time history of each term in the entropy balance
equation for βi = 2.% and ηe = 0.2. The KBM turbulence reaches a statistically
steady state with a physically relevant level of transport, Θi = 2.9TivTiρ

2
Ti/L

2
n,

Θe = 0.32TivTiρ
2
Ti/L

2
n, Γ = 0.71n0vTiρ

2
Ti/L

2
n. Figure 19 shows the spectrum of

the electrostatic potential in the steady state. It has a sharp peak of KBM at
kyρTi = 0.2, and the zonal component kyρTi = 0 is much smaller than the domi-
nant KBM. Hence, there are some cases which are free from the saturation problem,
when ηe is small, even when the zonal flows are weak.

8.1.2. Saturation caused by extended mode structure along the field line(Entropy
transfer) In order to identify the saturation mechanism of turbulence it is useful
to examine nonlinear Fourier mode coupling by evaluating the entropy transfer
function Eq. (3.16). Here, we study the saturation of KBMs in CBC with ηe = 0
and βi = 2% presented in the previous subsection [35]. The dominant KBM in
the steady state is k⊥ = (kxρTi, kyρTi) = (0, 0.2), as shown in Fig. 19. We study
the saturation of this mode by evaluating the entropy transfer function around
t = 50Ln/vTi. Figure 20 (a) shows the nonlinear entropy transfer function averaged
from t = 50 to 60Ln/vTi in the saturation phase. The transfer function is negative,
which is represented by blue region, at k′

⊥ = (k′xρTi, k
′
yρTi) = (1, 0.2) and (1,0).

This implies that the saturation of (0, 0.2) mode is caused by the nonlinear Fourier
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mode interaction with (1, 0.2) and zonal mode (1, 0). This interaction is visible in
Fig. 22 (Fig. 4 of Ref. [35]) showing that (kxρTi, kyρTi) = (0, 0.2) mode interacts
with (1., 0.2) mode represented by the fine vertical stripe structure of perturbation
on the z = 0 plane. The transfer function of zonal mode (kxρTi, kyρTi) = (0, 1)
shows that (k′xρTi, k

′
yρTi) = (1, 0.2) and (0, 0.2) are large positive in Fig. 20 (b),

thus the entropy or free energy is transformed from the KBM with (0, 0.2) and
(1, 0.2) to the zonal mode with (0, 1). It is noticed that k′

⊥ satisfies k′
⊥ = k⊥ − k′′

⊥

(see Eq. (3.17)). Figure 21 shows this transfer schematically in terms of the diagram
introduced in Fig. 1.

Here, we discuss the mode k⊥ = (kxρTi, kyρTi) = (1, 0.2) that is responsible
for the saturation of the KBM with k⊥ = (0, 0.2). The mode structure of KBM
along the field line extends wider than ±π, as shown in Fig. 23 (a). The (1, 0.2)
mode is, in fact, connected to (0, 0.2) mode at z = ±π. In the flux tube model we
can describe perturbation extending beyond ±π by connecting other Fourier modes
through the boundary conditions by taking into account the magnetic shear from
(kx, ky) to (kx + 2πŝky, ky) when the simulation domain is in −π 6 z 6 π, where
ŝ is the magnetic shear [26]. In this simulation (kxρTi, kyρTi) = (0, 0.2) mode is
connected to (1., 0.2) mode at z = ±π, as shown in Fig. 23 (a). When we solve a lin-
earized equation in the flux tube geometry, a calculation for (kxρTi, kyρTi) = (0, 0.2)
with (kxρTi, kyρTi) = (1, 0.2) in [−π : π] is exactly the same as the calculation of
(kxρTi, kyρTi) = (0, 0.2) in the simulation box [−2π : 2π]. However, in nonlinear
evolution, the (1, 0.2) mode can interact with the (0, 0.2) mode through nonlinear
Fourier mode coupling. In fact, this interaction causes the saturation of the growth
of (0, 0.2) KBM as described by the diagram in Fig. 21. Hence, the KBM becomes
saturated by the interaction with the mode caused by the elongated mode structure
along the magnetic field line in this simulation. It is noticed that the saturation
mechanism described here plays a role in the ITG/TEM turbulence in Sec. 7.1,
however, the stabilizing effects by zonal flow shear is much stronger than the in-
teraction caused by the elongated mode structure, and thus the mechanism is not
responsible when zonal flows are strong.

8.1.3. Higher saturation level with elongated flux tube It is shown that the KBM is
saturated by the interaction with the mode produced by the extended structure of
fluctuation along the magnetic field line in the previous subsection. The interaction
can be avoided by extending the simulation box along the field line, i.e., in z-
direction, from [−π : π] to [−Nθπ : Nθπ] with an integerNθ [26]. Figure 23 (b) shows
that the KBM with (kxρTi, kyρTi) = (0, 0.2) and the other KBM (kxρTi, kyρTi) =
(1, 0.2) are not connected at z = ±π, and thus these two modes are independent
during their linear growth. Since these two KBMs are independent during the linear
growth phase, their nonlinear mode coupling can be reduced.

Figure 24 shows the time history of heat flux withNθ = 1 andNθ = 2. For β = 2%
the ion heat flux Θion with Nθ = 1 reaches a steady state around t = 40Ln/vTi
and is about 2 TivTiρ

2
i /L

2
n in the steady state (Fig. 24 (a)). The heat flux with

Nθ = 2 starts to become saturated around t = 40, then continues to grow. The
heat flux increases more than 1000 times of that with Nθ = 1, and a steady state
is not obtained. Figures 24 (b) shows the time history of ion heat flux for 1.8%.
The KBM turbulence in the extended domain simulations with Nθ = 2 is saturated
and reaches a statistical steady state. Their amplitudes are much larger than that
from the calculation with Nθ = 1. Hence, the interaction of the KBM with the
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connected mode, which is shown in the diagram (Fig. 21), is significantly reduced
in the calculation with −2π 6 z 6 2π (Nθ = 2), and the level of turbulent transport
with −2π 6 z 6 2π is much higher than that with −π 6 z 6 π (Nθ = 1).

8.2. Electromagnetic turbulence in three-dimensional magnetic field

Saturation of turbulent transport in finite-beta helical plasmas is reported here. A
statistical steady state of the KBM turbulence at high beta is obtained and com-
pared with that of the ITG turbulence for a model configuration of standard LHD
plasma. The most unstable KBM in LHD has a finite radial wavenumber and a
finite ballooning angle as shown in Figs. 6 and 8. The perturbation of the KBM is
inclined on the xy plane because of the finite radial wavenumber, as shown in Fig.
7. In nonlinear simulations two oppositely inclined KBMs grow. One has a posi-
tive radial wavenumber and the other has a negative wavenumber. The simulation
reveals that the growth of KBM in LHD is saturated by nonlinear interactions of
oppositely inclined convection cells, which are peaked at finite z, through mutual
shearing (Fig. 25 (b) and Fig. 26 with the title ”KBM”). The saturation mechanism
is in contrast with that of the ITG turbulence regulated by zonal flows (Fig. 25 (a)
and Fig. 26 with the title ”ITG”).

The saturation mechanism is quantitatively investigated by evaluating the non-
linear entropy transfer function T (k⊥;k′

⊥,k
′′
⊥) of triad Fourier mode interaction

[42]. There are two main directions of scatter of the entropy/free-energy from the
dominant KBM (kxρi, kyρi) = (±0.31, 0.12) to the high-wavenumber region in the
Fourier space k⊥ = (kx, ky) (Figs. 27 and 28): one is the direction along the red
arrows with ”interaction with inclined mode” and the other is the direction along
the blue arrows with ”interaction with ZF.” The amount of scatter T (k⊥;k′

⊥,k
′′
⊥)

is shown in Fig. 27 and is indicated by the thickness of the arrows in Fig. 28. The
scatter by the inclined KBM shear is larger than that by the zonal flow shear.
Hence, the mutual interaction between the dominant KBMs (inclined modes) cause
the subsequent entropy transfer from the KBMs to linearly stable high-wavenumber
Fourier modes.

The spectra of the electrostatic potential 〈|φk⊥
|2〉 for the KBM turbulence and

the ITG turbulence are plotted as a function of poloidal wavenumber ky in Fig.
29. The spectrum of the KBM turbulence has a sharp peak at the dominant mode
kyρi = 0.12, and the zonal component ky = 0 and other modes are much smaller
than the dominant mode. On the other hand, the spectrum of the ITG turbu-
lence widely spreads over ky, and the amplitude of the zonal component is com-
parable with the dominant ITG modes. The energy flux due to ITG is about 5
n0TivTiρ

2
i /L

2
n, while the flux due to KBM is about 3 n0TivTiρ

2
i /L

2
n. Thus, their

turbulent transports are comparable in the gyro-Bohm unit, even though the am-
plitude of the KBM turbulence is larger than that of the ITG turbulence (Fig. 29).
This implies that the KBM turbulence is not efficient in the transport compared
with the ITG turbulence [39, 42].

The finite beta turbulence is saturated by the nonlinear interactions of oppositely
inclined convection cells through mutual shearing, even when the zonal flow is
weak. The mechanism may also play a role in the saturation of turbulence in finite-
beta tokamaks in the presence of three-dimensionality such as toroidal ripples and
resonant magnetic perturbation (RMP).
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9. Magnetic islands and magnetic reconnection

Electromagnetic perturbations are able to violate magnetic surfaces and cause mag-
netic islands through magnetic reconnection [64]. Here we briefly review gyrokinetic
simulation studies on interactions between the ITG turbulence and magnetic is-
lands and on basic physics of magnetic reconnection. Most gyrokinetic studies on
the interaction of turbulence with magnetic islands consist of carrying out elec-
trostatic simulations in the presence of a fixed magnetic island [65, 66, 67, 68],
and it is reported that the production of long wavelength mode by ITG turbu-
lence can give rise to an oscillating vortex flow inside the island separatrix [66],
and the oscillation is related to the geodesic acoustic mode [67]. The momentum
transport associated with a magnetic island interacting with external magnetic per-
turbation is also studied [68]. There are some gyrokinetic simulations of magnetic
reconnection for understanding the magnetic island formation. The dependence of
instabilities associated with magnetic reconnection on collisions is reported in Ref.
[69]. The acceleration of magnetic reconnection, which was found by fluid simu-
lations, is confirmed [70]. It is also found that collisionless magnetic reconnection
is reversible [71]. The electromagnetic gyrokinetic simulations of microturbulence
interacting with self-consistently produced magnetic islands in global geometry are
retained for future work.

10. Summary

Electromagnetic gyrokinetic simulation enables us to study turbulent transport in
finite beta torus plasmas. When the plasma beta is small, the ITG and TEM/ETG
modes are unstable, and the ITG turbulence is regulated by zonal flows. Mag-
netic perturbation with tearing parity can be produced from the ITG mode, which
has ballooning parity, through nonlinear interactions, and can influence turbulent
transport by violating magnetic surface.

When the beta is increased with keeping the magnetic field, density, and tem-
perature profiles, the growth rate of ITG mode decreases, while the zonal flow
amplitude is not so influenced, and thus the turbulent transport is reduced. When
plasma beta exceeds a critical value, the zonal flows are weak, and then the turbu-
lent transport becomes very large correspondingly. This unphysical large transport
is observed not only for CBC but also for other DIII-D cases [22]. The magnetic
perturbation plays a central role in reducing the growth rate of ITG, and probably
in weak zonal flow production. The KBM, which is an electromagnetic instability,
is destabilized at high beta, and a saturation of the KBM turbulence is obtained
even when the zonal flows are weak, when the electron temperature gradient is set
to be small and beta value is just above the linear instability threshold. The mode
structure along the magnetic field line plays a role in the saturation of turbulence,
and thus the saturation level is influenced by the length of simulation domain along
the magnetic field line. The spectrum of the KBM turbulence is much narrower
than that of ITG turbulence and the efficiency in transport is small compared with
the ITG turbulence at low beta. The condition for getting a physically relevant sat-
uration level of ITG/TEM turbulence at finite beta and KBM turbulence at high
beta has not been fully understood yet.

The analysis of simulation results based on some basic properties of the elec-
tromagnetic gyrokinetic equation is emphasized. One is the conservation of the
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quadratic quantity called entropy variable, and another is the parity invariance of
the linearized gyrokinetic equation. Saturation process of turbulence can be clarified
by investigating the nonlinear entropy transfer in the Fourier space and by examin-
ing the nonlinear exchange of parities of perturbation against the coordinate along
the magnetic field line.
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Figure 1. The diagram of nonlinear entropy transfer in the Fourier space: (a) an ele-
ment is a triangle with the vertexes connected to three lines representing three energy
transfer functions of the mode at the other end of the line, T (k⊥;k′

⊥,k′′
⊥), T (k′

⊥;k′′
⊥,k⊥)

and T (k′′
⊥;k⊥,k′

⊥), where T (k⊥;k′
⊥,k′′

⊥) + T (k′
⊥;k′′

⊥,k⊥) + T (k′′
⊥;k⊥,k′

⊥) = 0 and the
arrows represent the signs of them, which are T (k⊥;k′

⊥,k′′
⊥) < 0, T (k′

⊥;k′′
⊥,k⊥) < 0 and

T (k′′
⊥;k⊥,k′

⊥) > 0 in the figure as an example, and (b) an example showing the transfer
for the ITG turbulence regulated by zonal flows which scatter the entropy of the ITG
mode to a high wavenumber region.
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Figure 7. Profile of electrostatic potential φ of the ITG mode at βi = 0.2% and of the
most unstable KBM at βi = 1.7% on (x, y) plane for LHD with ηe = 0.
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(a) (b)

(c) (d)

(e)

Figure 9. Color map of the electrostatic potential profile in the configuration space, at (a)
growing phase for βi = 0.2%, (b) statistically steady state for βi = 0.2%, (c) statistically
steady state for βi = 0.4%, (d) statistically steady state for βi = 0.6%, and (e) nonlinear
growing phase for βi = 0.8%.
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Figure 10. The ion beta βi dependence of (a) time averaged energy diffusion coefficient
and (b) the coefficient due to the electrostatic perturbation χs,es and magnetic perturba-
tion χs,em.
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Figure 11. Spectra of the electrostatic potential for several βi as a function of (a) the
poloidal wavenumber ky and (b) the radial wavenumber kx.
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Figure 12. Each term in the entropy balance equation Eq. (3.1) for ITG turbulence
with βi = 0.2% in CBC. The entropy balance error ∆ is much smaller than the entropy
production term (free energy term) of ions Θi/LTi + ΓiTi/Lpi. Each term of Eq. (3.12)
showing the entropy transfer from ions to electrons.
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Figure 13. Each term in the entropy balance equation for a wavenum-
ber k⊥ Eq. (3.14) for the ITG turbulence in CBC with βi = 0.2%
(a) the entropy transfer function Ts,ky =

P

kx
Tsk⊥ , the entropy production

Θs,ky /LTs + Γs,ky Ts/Lps =
P

kx
Θsk⊥/LTs + Γsk⊥Ts/Lps, and the collisional dissipa-

tion Ds,ky =
P

kx
Dsk⊥ as a function of poloidal wavenumber ky (b) Ts,kx =

P

ky
Tsk⊥ ,

Θs,kx/LTs+Γs,kxTs/Lps, and Ds,kx as a function of radial wavenumber kx. The anisotropy
of the transport in the Fourier space is significant.
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Figure 14. Each term in the entropy balance equation for a wavenumber k⊥ in Eq. (3.14),
the entropy production Θsk⊥/LTs +Γsk⊥Ts/Lps, the entropy transfer function Tsk⊥ , and
the collisional dissipation Dsk⊥ , for the ITG turbulence in CBC with βi = 0.2% on the
k⊥ = (kx, ky) plane. The anisotropy of the entropy transport in the k⊥ = (kx, ky) space
is significant.

ky

(a)    Micro-turbulence in torus plasma

Θ

T
D

k 

(b)    Neutral !uid turbulence

Θ

T
D

Figure 15. Schematic graphs of the drive of free energy Θ, the transfer function T , and
the dissipation D for (a) the entropy transfer of the micro-turbulence in torus plasmas
and (b) the energy transfer of neutral fluid turbulence.
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Figure 20. Entropy transfer function T (k⊥;k′
⊥,k′′

⊥) averaged from t = 50 to
60 for the KBM turbulence with β = 2% in CBC plasma on k′

⊥ plane for (a)
k⊥ = (ρikx, ρiky) = (0, 0.2) and (b) k⊥ = (ρikx, ρiky) = (1., 0). It is noted that k′

⊥

satisfies k′
⊥ = k⊥ − k′′

⊥.
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KBM (connected) Zonal flow

t=50-60

Figure 21. The diagram of the nonlinear entropy transfer in the Fourier space for
the KBM turbulence in CBC with βi = 2%, ηi = 3.1, and ηe = 0 : the arrow from
k⊥ = (kx, ky) = (0, 0.2) shows the transfer of the entropy/free-energy from the dominant
KBM to zonal flow through the connected mode k⊥ = (kx, ky) = (1, 0.2).
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Figure 22. The fluctuation of KBM turbulence on z = 0 plane in the steady state: (a)
electrostatic potential and (b) parallel component of the vector potential profiles, where
x and y are in the radial and poloidal directions, respectively.
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(kx,ky)
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(b)  N  =2θ

Figure 23. Electrostatic potential profile of (a) the KBM with k⊥ = (kx, ky) = (0, 0.2)
and the connected mode (kx, ky) = (1, 0.2) in the simulation domain −π 6 z 6 π (Nθ = 1)
and (b) the KBM with k⊥ = (kx, ky) = (0, 0.2) and the other KBM with (kx, ky) = (1, 0.2)
in the simulation domain −2π 6 z 6 2π (Nθ = 2). The simulation boxes divided the dotted
red lines are identical.

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200

H
ea

t f
lu

x 
 Θ

io
n 

[T
iv

T
iρ

i2 /L
n2 ]

Time  [Ln/vTi]

(a) CBC tokamak β=2% ηi=3.1 ηe=0

Nθ=1
Nθ=2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  50  100  150  200  250

H
ea

t f
lu

x 
 Θ

io
n 

[T
iv

T
iρ

i2 /L
n2 ]

Time  [Ln/vTi]

(b) CBC tokamak β=1.8% ηi=3.1 ηe=0

Nθ=1
Nθ=2

Figure 24. Time evolution of heat flux caused by KBM turbulence in CBC plasma with
ηe = 0 and (a) β = 2% and (b) β = 1.8% with the flux tube length −Nθπ 6 z 6 Nθπ for
Nθ = 1 and Nθ = 2.
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(a) (b)

Figure 25. Electrostatic potential profile of (a) the ITG turbulence with very small beta
and (b) the KBM turbulence with finite beta in a helical plasma. The KBM is saturated
by the interactions with oppositely inclined modes, while the ITG is regulated by zonal
flows.

Figure 26. Electrostatic potential profile of the ITG turbulence with very small beta and
the KBM turbulence with finite beta in a helical plasma on the z = 0 plane, where x and
y are in the radial and poloidal directions, respectively.
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Figure 27. The diagram of the nonlinear entropy transfer for the KBM turbulence in
LHD with βi = 1.7%, ηi = 3, and ηe = 0.
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Figure 28. Entropy transfer in the wavenumber space (kx, ky) of the KBM tur-
bulence in LHD. The red (blue) arrows show the scatter from the dominant KBM
(kxρi, kyρi) = (±0.31, 0.12) to the stable high-wavenumber modes by the inclined mode
(zonal flow) shear. The thickness of the arrows show the amount of transfer.
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broadened. The zonal component (ky = 0) of KBM is much smaller than the sharp peak
of KBM in a helical plasma.
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Appendix A

We present the dimensional form of the gyrokinetic equation in this appendix. The
distribution functions of gyro-centers are divided into the Maxwellian part and a

perturbed part, Fs = FMs + δfs, where FMs = n0

(2πTs/ms)3/2 exp(−msv
2
‖

2Ts
−µB
Ts

). The

gyrokinetic equation is

∂δfsk⊥

∂t
+ v‖b

∗
s · ∇δfsk⊥

− µ

ms
b · ∇B∂δfsk⊥

∂v‖

= −ivds · k⊥

(

δfsk⊥
+
qs
Ts
FMsφk⊥

J0s

)

− (ṽEs · ∇δfs)k⊥

+iv∗s · k⊥
qs
Ts
FMs

(

φk⊥
− v‖

c
A‖k⊥

)

J0s + v‖
qs
Ts
FMsE‖sk⊥

+ Cs, (A 1)

where E‖sk⊥
= −(b∗

s ·∇J0sφ)k⊥
− 1
c
∂
∂tA‖k⊥

J0s, qi = e, qe = −e, and J0s = J0(ρsk⊥)
is the zeroth order Bessel function. In the equations (ṽEs·∇δfs)k⊥

= c
B [φJ0s, δfs]k⊥

and (b∗
s ·∇f)k⊥

= b ·∇fk⊥
− 1

B [A‖J0s, f ]k⊥
. The drift velocities are vds = c

qsB
b×

(µ∇B + msv
2
‖b · ∇b), v∗s = cTs

qsB
b × ∇ lnFMs, and ṽEsk⊥

= − c
Bφk⊥

J0sik⊥ × b.
The Poisson equation and the Ampère’s law are

k2
⊥φk⊥

= 4π
∑

s

qs

(
∫

δfsk⊥
J0sd

3v − qsn0

Ts
(1 − Γ0s)φk⊥

)

, (A 2)

k2
⊥A‖k⊥

=
4π

c

∑

s

qs

∫

v‖δfsk⊥
J0sd

3v, (A 3)

where Γ0s = e−ρ
2
sk

2
⊥I0(ρ

2
sk

2
⊥).

Appendix B

We describe physical meaning of some terms in the gyrokinetic equation Eq. (2.3)
in this Appendix. When we neglect the r.h.s. of the equation and nonlinear terms,
we have an equation

∂

∂t
δfsk⊥

+ vTsv‖b · ∇δfsk⊥
= 0. (B 1)

By using the flux tube coordinate introduced in Sec. 5.1, the equation is written as
(

∂

∂t
+ vTsv‖

1

qR

∂

∂z

)

δfsk⊥
= 0. (B 2)

The solution is a function of z − vPst,

δfsk⊥
= g(z − vPst), (B 3)

where vPs = vTsv‖/(qR) is the phase velocity. The solution represents the propa-
gation of fluctuation along the magnetic field line z with the phase velocity vPs.
Thus, the second term in Eq. (2.3) is responsible for the streaming of fluctuation
along the magnetic field line.

Next, we consider a collisionless plasma in a uniform magnetic field ∇B = 0
which implies the magnetic drift velocity vanishes vds = 0. We further neglect the
nonlinear terms, magnetic perturbation A‖ = 0, and the collision term C = 0. The
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gyrokinetic equations Eq. (2.3) becomes

∂

∂t
δfsk⊥

+ vTsv‖b · ∇δfsk⊥
= vTsv‖

qs
Ts
FMsb · ∇φk⊥

J0s + iv∗s · k⊥
qs
Ts
FMsφk⊥

J0s.

(B 4)
A wave in this plasma δfsk⊥

= A exp(−iωt+ ik · x) satisfies

(−iω + ik‖v‖vTs)δfsk⊥
= (ik‖v‖vTs + iω∗s)

qs
Ts
FMsφk⊥

J0s, (B 5)

where ω∗s = v∗s · k⊥. The dispersion relation is obtained by substituting this
equation to the Poisson equation Eq. 2.4,

λ2
Dik

2
⊥ +

∑

s

q2s
Ts

(1 − Γ0s) = −
∑

s

q2s
Ts

∫

ω∗s + k‖v‖vTs

ω − k‖v‖vTs
FMsJ

2
0sd

3v. (B 6)

The equation describes the Landau damping, as shown in page 36 of Ref. [1].

Appendix C

In this appendix the derivation of the entropy balance equation Eq. (3.1) is pre-
sented in detail. First we rewrite the gyrokinetic equation Eq. (2.3) in terms of
the non-adiabatic part, hsk⊥

= δfsk⊥
+ qs

FMs

Ts
φk⊥

J0s, to obtain Eqs. (3.18)-(3.20),

where χsk⊥
= (φk⊥

− v‖A‖k⊥
)J0s. Then, we multipy

h∗
sk⊥

2FMs
to Eq. (3.18), integrate

it over the velocity space, make the flux surface average, add all wavenumbers and
particle species, and finally add the complex conjugate. The sum of the l.h.s. and
the third term on the r.h.s. becomes
〈

∑

s,k⊥

∫

d3v
Tsh

∗
sk⊥

2FMs

∂

∂t

(

hsk⊥
+ qs
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〉

+ c.c.

=

〈
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∗
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∫

d3v
Ts|δfsk⊥

|2
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2
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2
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k2
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2
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d
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(

∑

s

δSs +Wes +Wem

)

,

where the Poisson equation and the Ampère’s law Eqs. 2.4 and 2.5 are used,
∫

v‖FMsJ
2
0sd

3v = 0, and ”c.c.” denotes the complex conjugate of the previous
terms. The first term on the r.h.s. vanishes

−ivds · k⊥|hsk⊥
|2 Ts

2FMs
+ ivds · k⊥|hsk⊥

|2 Ts
2FMs

= 0. (C 1)
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The second term on the r.h.s. vanishes

〈
∫

d3v
Ts

2FMs
h∗sk⊥

[H,hsk⊥
]‖

〉

+ c.c.

=
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Tsh
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〉

= 0,

where ∇‖FMs = −FMsµ∇‖B and ∂
∂v‖

FMs = −v‖FMs are used. The fourth term

on the r.h.s. becomes

〈
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, (C 3)

where the diamagnetic velocity is given by Eq. 5.1. The fifth term, which is the
nonlinear term, vanishes

∑
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h∗sk⊥
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+ c.c.
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⊥
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)

= 0. (C 4)
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This is because, by exchanging k and k′′ and using χ∗
sk′

⊥
= χs−k′

⊥
, the second term

becomes
∑

k⊥,k′
⊥,k
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⊥
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⊥,k

′
⊥+k⊥

b · k′
⊥ × k⊥χs−k′

⊥
h∗sk′′

⊥
hsk′′

⊥

= −
∑

k⊥,k′
⊥,k

′′
⊥

δk⊥,k′
⊥+k′′

⊥
b · k′

⊥ × k′′
⊥χsk′

⊥
h∗sk⊥

hsk′′
⊥
. (C 5)

From the l.h.s. to the r.h.s. k⊥ is replaced to −k⊥ because
∑

k⊥
=
∑Nk

k⊥=−Nk
and,

δk′′
⊥,k

′
⊥−k⊥

b · k′
⊥ × k⊥ = δk′′

⊥,k
′
⊥−k⊥

b · k′
⊥ × (k⊥

′ + k⊥
′′) = δk⊥,k′

⊥+k′′
⊥
b · k′

⊥ × k⊥
′′

is used. The sixth term, which is the collision term, becomes
〈
∫

d3v
Ts

2FMs
h∗sk⊥

Cs(hsk⊥
)

〉

+ c.c. = Dsk⊥
. (C 6)

Using Eqs. (C 1)-(C 6), we have the entropy balance equation Eq. (3.1).

Appendix D

Here it is shown that the dispersion relation of the high frequency mode in Sec.
4.3 can be derived by using a fluid model. We consider a collisionless plasma in
a uniform magnetic field, which is the same as the previous appendix. We further
assume that the plasma is uniform ∇FMs = 0 which implies the diamagnetic drift
velocity vanishes v∗s = 0. Equation B 4 becomes

∂

∂t
δfsk⊥

+ vTsv‖b · ∇δfsk⊥
= vTsv‖

qs
Ts
FMsb · ∇φk⊥

J0s. (D 1)

A set of gyro-fluid equations is derived by integrating Eq. (D 1) and Eq. (D 1)
multiplied by v‖ over the velocity space. The equations for the gyro-center density
δnsk⊥

=
∫

δfsk⊥
d3v and the gyro-center parallel velocity δusk⊥

=
∫

v‖δfsk⊥
d3v

are
∂

∂t
δnsk⊥

= −vTsb · ∇δusk⊥
, (D 2)

∂

∂t
msδusk⊥

= −vTsb · ∇
(

δp‖sk⊥
+
qs
Ts
φk⊥

)

, (D 3)

respectively, where
∫

FMsv‖d
3v = 0 is used. We assume a closure: δp‖sk⊥

= 0 and
higher moments are zero. By using the Poisson equation Eq. 2.4 for long wavelength
perturbations

∑

s

(

qsδnsk⊥
e−ρ

2
T sk

2
⊥/2 − q2s

Ts
(1 − Γ0s)φk⊥

)

= 0, (D 4)

we have

∂

∂t

∑

s

q2s
Ts

(1 − Γ0s)φk⊥
= −qevTeb · ∇δuek⊥

e−ρ
2
T ek

2
⊥/2, (D 5)

∂

∂t
meδuek⊥

= −vTeb · ∇ qe
Te
φk⊥

, (D 6)
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where the ion parallel velocity is neglected δuik⊥
= 0 because vTi ≪ vTe. The

dispersion relation of a wave in the plasma is

k2
‖ − ω2me

∑

s

q2s
Ts

(1 − Γ0s) = 0. (D 7)

When we consider a wave with the typical wavelength comparable to that of ITG
mode k⊥ < 1/ρTi ≪ 1/ρTe, we can approximate Γ0e ≈ 1 and Γ0i ≈ 1 − ρ2

Tik
2
⊥,

then we have k2
‖ = ω2mek

2
⊥ρ

2
Ti. By rewriting to the dimensional form, we have the

dispersion relation for the high frequency mode in Sec. 4.3

ω2 =
k2
‖

k2
⊥

mi

me
Ω2
Ti. (D 8)


