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Abstract: This study aimed to investigate the effects of genetic variants and haplotypes in the renin—
angiotensin system (RAS) on the risk of warfarin-induced bleeding complications at therapeutic
international normalized ratios (INRs). Four single nucleotide polymorphisms (SNPs) of AGT, two
SNPs of REN, three SNPs of ACE, four SNPs of AGTR1, and one SNP of AGTR2, in addition to
VKORC1 and CYP2C9 variants, were investigated. We utilized logistic regression and several ma-
chine learning methods for bleeding prediction. The study included 142 patients, among whom
21 experienced bleeding complications. We identified a haplotype, H2 (TCG), carrying three SNPs of
ACE (rs1800764, rs4341, and rs4353), which showed a significant relation with bleeding complications.
After adjusting covariates, patients with H2/H2 experienced a 0.12-fold (95% CI 0.02-0.99) higher risk
of bleeding complications than the others. In addition, G allele carriers of AGT rs5050 and A allele
carriers of AGTR1 rs2640543 had 5.0- (95% CI 1.8-14.1) and 3.2-fold (95% CI 1.1-8.9) increased risk of
bleeding complications compared with the TT genotype and GG genotype carriers, respectively. The
AUROC values (mean, 95% CI) across 10 random iterations using five-fold cross-validated multivari-
ate logistic regression, elastic net, random forest, support vector machine (SVM)-linear kernel, and
SVM-radial kernel models were 0.732 (0.694-0.771), 0.741 (0.612-0.870), 0.723 (0.589-0.857), 0.673
(0.517-0.828), and 0.680 (0.528-0.832), respectively. The highest quartile group (>75th percentile)
of weighted risk score had approximately 12.0 times (95% CI 3.1-46.7) increased risk of bleeding,
compared to the 25-75th percentile group, respectively. This study demonstrated that RAS-related
polymorphisms, including the H2 haplotype of the ACE gene, could affect bleeding complications
during warfarin treatment for patients with mechanical heart valves. Our results could be used to
develop individually tailored intervention strategies to prevent warfarin-induced bleeding.

Keywords: haplotype; hemorrhage; machine learning; polymorphism; renin-angiotensin

system; warfarin

1. Introduction

Warfarin has been one of the most widely used oral anticoagulants since its ap-
proval [1]. Although direct oral anticoagulants have become popular for patients who
need anticoagulation therapy, warfarin remains the first-line anticoagulant for patients
with heart valve prostheses [2]. Nevertheless, warfarin has several limitations, including a
narrow therapeutic range and wide inter- and intra-individual variabilities [1].
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Bleeding is the most serious complication of warfarin treatment [3]. Although close
monitoring based on the international normalized ratio (INR) is known to be effective for
evaluating the efficacy and safety of warfarin, it has been reported that patients may still
experience bleeding complications within therapeutic INRs, and even at sub-therapeutic
INRs [4,5]. Age, hypertension, and concomitant aspirin use—in addition to high INR—
are known as patient-related risk factors for complications [3]; however, it needs to be
explained further, and genetic factors can be an answer. According to Pourgholi et al.,
CYP2C9 and NQOI1 variants may affect bleeding complications [6]. Our previous research
also identified several gene polymorphisms (e.g., APOB and GATA4), which can affect
warfarin bleedings [7,8]. However, compared to pharmacogenomic studies for warfarin
dose [9], previous studies have rarely assessed the genetic effects on bleeding complications
during anticoagulation therapy.

The renin—angiotensin system (RAS) consists of four major components: renin (REN),
angiotensinogen (AGT), angiotensin I-converting enzyme (ACE), and angiotensin receptors
(AGTR1 and AGTR2). The RAS is known to play an important role in the regulation of
electrolyte balance, vasoconstriction, vascular remodeling, and fibrinolysis [10,11]. Previ-
ous studies have demonstrated clinically significant associations between RAS polymor-
phisms and several cardiovascular diseases (e.g., hypertension, coronary heart disease,
and stroke) [12]. According to a recent meta-analysis, it has been demonstrated that ACE
I/D polymorphism is associated with intracranial hemorrhage [13]. According to Shiotani
etal.,, AGT A-20C was associated with gastrointestinal bleeding [14]. As the RAS is highly
involved in cardiovascular functions, including fibrinolysis, RAS polymorphisms may
affect bleeding complications.

Machine learning is a subdomain of artificial intelligence, which makes machines
mimic human intelligence [15]. With powerful and fast development, machine learning
has been applied to several fields, including medicine [16]. In terms of cardiology, machine
learning can help clinicians by interpreting high-dimensional data (e.g., biomedical and
clinical big data, multi-omics data, and images) [17] and predicting outcomes (e.g., coro-
nary artery disease and heart failure) [18]. Several studies also have developed machine
learning algorithms to predict warfarin dose [19-21]. However, previous studies have
rarely investigated bleeding complications by applying machine learning algorithms.

Therefore, we aimed to investigate the effects of genetic variants and haplotypes of
RAS-related genes on bleeding complications among mechanical heart valve patients main-
taining therapeutic INRs, and we used supervised machine learning to build predictive
models for bleeding occurrence.

2. Results

From among the 229 patients enrolled, 142 were included in the analysis. Of the
87 who were excluded, 28 did not reach stable INR, 4 had bleeding complications at supra-
therapeutic INRs, and 55 reported minimal bleeding complications not verified by health
professionals. Among the 55 patients who were excluded from this study because of the
lack of professional verification, 8 had bleeding complications before achieving a stable
INR, and 32, 6, and 9 patients had bleeding complications at therapeutic, supra-, and
sub-therapeutic INRs, respectively.

As shown in Table 1, the median age and male proportion of included patients was
60y and 36.6%, respectively. The mean follow-up period was 14.3 £+ 6.4 y. Among
patients included in the analysis, 21 patients reported bleedings while maintaining ther-
apeutic INRs (11 with minor and 10 with minimal bleeding complications). Atrial fib-
rillation was the only significant factor for bleeding complications among demographic
characteristics (p = 0.045).
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Table 1. Patient characteristics of study patients.
Bleeding Complication, Number (%)
Characteristics. p
Presence (n = 21) Absence (n = 121)
Sex 0.705
Male 8(38.1) 44 (36.4)
Female 13 (61.9) 77 (63.6)
Age (y) 0.106
<65 11 (52.4) 85 (70.2)
>65 10 (47.6) 36 (29.8)
Mean + SD 62.0 £11.2 58.7 +10.0 0.168
Body weight (kg)
Mean - SD 58.6 + 10.7 58.7 +10.4 0.989
Body mass index (kg/m?)
Mean + SD 223423 2254238 0.756
Comorbidity
Hypertension 6 (28.6) 33 (27.3) 0.902
Diabetes mellitus 3(14.3) 10 (8.3) 0.377
Chronic heart failure 7 (33.3) 25 (20.7) 0.199
Atrial fibrillation 17 (81) 70 (57.9) 0.045
Myocardial infarction 2(9.5) 2(1.7) 0.104
Comedication
Angiotensin-converting-enzyme inhibitor 2 (10.5) 19 (18.8) 0.383
Angiotensin II receptor blocker 4(21.1) 19 (18.8) 0.820
Antiplatelet drugs ? 0 (0) 4(3.8) 0.398
Calcium channel blocker 4 (21.1) 19 (18.8) 0.820
Diuretics 9 (47 .4) 35 (34.7) 0.291
Statins 0 (0) 4 (4.0) 0.378
INR increasing drugs b 0 (0) 1(1.0) 1.000
INR decreasing drugs © 1(5.3) 0 (0) 1.000
Valve position 0.740
Aortic 6 (28.6) 28 (23.1)
Mitral 9 (42.9) 66 (54.5)
Double ¢ 5 (23.8) 20 (16.5)
Tricuspid © 1(4.8) 7 (5.8)
Valve type 0.418
St. Jude Medical 7 (38.9) 39 (34.2)
CarboMedics 6 (33.3) 32 (28.1)
ATS 2 (11.1) 15 (13.2)
MIRA 1(5.6) 9(7.9)
Duromedics 2 (11.1) 6 (5.3)
OnX 0(0) 4 (3.5)
Others f 0(0) 9(7.9)
INR
Mean & SD 241 +0.07 2.45 +0.10 0.143
Follow-up time (y)
Mean - SD 14.27 + 6.20 14.48 +£7.59 0.886

INR: international normalized ratio;  aspirin, clopidogrel, and cilostazol, b amiodarone, fluconazole, and NSAID, © carbamazepine,
phenytoin, and rifampin, ¢ aortic plus mitral valve, © tricuspid valve with or without other valves, f including Sorin, Bjork Shiley, D-ring,
and prostheses using two or more different valve types.

As shown in Table 2, statistically significant associations between genotypes and bleed-

ing complications were found for rs5050 of AGT, rs4341 and rs4353 of ACE, and rs2640543
of AGTRI. In the case of rs5050, 13 out of 45 patients (28.9%) with the G allele had bleeding
complications, whereas 8 out of 97 patients (8.2%) with the TT genotype had bleeding com-
plications (p = 0.001). For rs4341 and rs4353, patients with the wild allele were at a higher
risk of bleeding, compared with those who had the variant homozygotes (19.1% vs. 6.3%,
p =0.041; 19.2% vs. 2.6%, p = 0.014, respectively). C allele carriers of rs1800764 experienced
more bleeding complications than those with the TT genotype with marginal significance
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(18.8% vs. 6.5%, p = 0.055). For rs2640543, patients with the A allele had higher bleeding
risks, compared with those with the GG genotype (23.4% vs. 10.5%, p = 0.042).

Table 2. Genetic factors associated with bleeding complications at therapeutic INR.

Gene Minor Allele Grouped Bleeding Complication, Number (%)
. Allele Change Presence Absence p
Polymorphism Frequency Genotypes (1= 21) = 121)
VKORC1 C>T 0.113 CC,CT 3(14.3) 27 (22.3) 0.405
rs9934438 T 18 (85.7) 94 (77.7)
CYP2C9 A>C 0.043 AA 18 (85.7) 111 (92.5) 0.304
rs1057910 AC 3(14.3) 9(7.5)
AGT G>T 0.128 GG 19 (90.5) 87 (72.5) 0.079
rs7079 GT, TT 2(9.5) 33 (27.5)
AGT A>G 0.180 AA, AG 5(23.8) 42 (34.7) 0.327
rs699 GG 16 (76.2) 79 (65.3)
AGT T>C 0.401 TT, TC 19 (90.5) 99 (81.8) 0.529
rs11122576 CC 2(9.5) 22 (18.2)
AGT >G 0.165 T 8(38.1) 89 (73.6) 0.001
rs5050 TG, GG 13 (61.9) 32 (26.4)
REN C>T 0.225 CC 14 (66.7) 71 (58.7) 0.491
rs2368564 CT, TT 7 (33.3) 50 (41.3)
REN G>A 0.373 GG 7(33.3) 52 (43.0) 0.408
1512750834 GA, AA 14 (66.7) 69 (57.0)
ACE C>T 0.465 CC,CT 18 (85.7) 78 (64.5) 0.055
rs1800764 T 3(14.3) 43 (35.5)
ACE G>C 0.437 GG, GC 18 (85.7) 76 (62.8) 0.041
rs4341 CcC 3(14.3) 45 (37.2)
ACE A>G 0.486 AA, AG 20 (95.2) 84 (69.4) 0.014
rs4353 GG 1(4.8) 37 (30.6)
AGTR1 T>A 0.094 TT 17 (85.0) 97 (81.5) 1.000
15275651 TA, AA 3(15.0) 22 (18.5)
AGTR1 A>G 0.190 AA, AG 11 (52.4) 36 (29.8) 0.042
rs2640543 GG 10 (47.6) 85 (70.2)
AGTR1 C>T 0.254 CC 3(14.3) 6 (5.0) 0.130
rs5182 CT, TT 18 (85.7) 115 (95.0)
AGTR1 A>C 0.060 AA 18 (85.7) 107 (88.4) 0.718
rs5186 AC 3(14.3) 14 (11.6)
AGTR2 G>A 0.310 GG 3(14.3) 20 (16.5) 1.000
rs1403543 GA, AA 18 (85.7) 101 (83.5)

Since all of the ACE polymorphisms analyzed in the study were in a moderate linkage
disequilibrium (LD) (1 range: 0.63-0.79; D’ range: 0.82-0.98; Figure S1), and each SNP
showed similar association with bleeding complications, we constructed haplotypes of the
ACE gene. Five haplotypes were detected at a frequency more than 1%: H1 (CGA, 41.8%),
H2 (TCG, 47.0%), H3 (TCA, 4.7%), H4 (CCG, 4.1%), and H5 (TGA, 1.4%). The most frequent
haplotype was H2, containing variant alleles at every locus, and patients with H2/H2
experienced fewer bleeding complications than the others (3.0% vs. 18.3%, p = 0.028).

After adjusting for related covariates, patients with H2/H2 were revealed to have an
approximately 0.12-fold higher risk of bleeding complications than the others (Table 3).
Patients with G allele of rs5050 and A allele of rs2640543 had 5.0- and 3.2-fold higher
rates of bleeding complications at therapeutic INRs, compared with those with the TT
and GG genotypes, respectively. In constructed models, the attributable risks related to
H2, rs5050 and rs2640543 were 88.0%, 80.2%, and 68.5%, respectively. The area under
the receiver-operating curve (AUROC) value (mean, 95% confidence interval (CI)) was
0.771 (0.656-0.886) (Figure 1) and the Hosmer—Lemeshow test showed that the fitness of
model was satisfactory (x2=3.162, 5 degrees of freedom, p = 0.675). The AUROC values
(mean, 95% CI) across 10 random iterations using five-fold cross-validated multivariable
logistic regression, elastic net, random forest (RF), support vector machine (SVM)-linear
kernel, and SVM-radial kernel models were 0.732 (0.694-0.771), 0.741 (0.612-0.870), 0.723
(0.589-0.857), 0.673 (0.517-0.828), and 0.680 (0.528-0.832), respectively.
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Table 3. Multivariable analysis to identify predictors for bleeding complications at therapeutic INR.

Variables Unadjusted OR (95% CI) Adjusted OR (95% CI) Attributable Risk (%)
Male 1.08 (0.41-2.80)
Age > 65y 2.15 (0.84-5.50)
Atrial fibrillation 3.10 (0.98-9.75)
ACE H2/H2 0.14 (0.02-1.08) 0.12 (0.02-0.99) * 88.02
AGT rs5050 G allele 4.52 (1.72-11.91) 5.04 (1.80-14.11) ** 80.2
AGTRI1 rs2640543 A allele 2.60 (1.01-6.65) 3.17 (1.13-8.89) * 68.5

H2: T-C-G (rs1800764-rs4341-rs4353); * Attributable risk for not having ACE H2/H2; * p < 0.05, ** p < 0.01.

1 :
f : Method
o T - T
h J | - “ LR.ML
Elastic net
RF
| .

L e < SVM_L

"1‘4 L .. SVM_R

Sensitivity
|

1-Specificity
Figure 1. Area under the receiver operating characteristic curve (AUROC) for bleeding complications

at therapeutic INRs. LR_T: traditional logistic regression; LR_ML: machine learning-based logistic
regression; RF: random forest; SVM_L: support vector machine-linear kernel; SVM_R: support vector

machine-radial kernel.

We calculated the number needed to genotype (NNG) for preventing one patient with
a high-risk allele or haplotype from experiencing a higher incidence of bleeding complica-
tions using each model, and the values were 8, 14, and 19 for H2, rs5050, and rs2640543,
respectively. In weighted risk score (WRS) analysis, patients with bleeding complications
showed a significantly higher WRS than those without (3.6 & 1.2 vs. 2.3 & 1.3, p < 0.001).
As shown in Table 4, the incidence of bleeding complication displayed increasing patterns,
according to the quartile of WRS. The highest quartile group (>75th percentile) of WRS
had 12.0 (95% CI 3.1-46.6, p < 0.001) times increased risk of bleeding, compared to the

25-75th percentile group.
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Table 4. Weighted risk score analysis of patients with bleeding complications.
Bleeding Complications
Weighted Risk Score Percentile Odds Ratio (95% CI)
Presence Absence
<25th percentile 1(34) 28 (96.6) 0.25 (0.03-1.95)
25-75th percentile 13 (12.7) 89 (87.3) 1 (reference)
>75th percentile 7 (63.6) 4 (36.4) 11.98 (3.08-46.65) *

The 25th and 75th percentile of weighted risk score were 2 and 4; * p < 0.001.

3. Discussion

The main finding of the present study suggested that the ACE haplotype, H2 (TCG),
carrying three single nucleotide polymorphisms (SNPs) (rs1800764, rs4341, and rs4353)
in addition to rs5050 of AGT and rs2640543 of AGTR1 were associated with bleeding
complications at therapeutic INRs among patients who received warfarin therapy after
mechanical heart valve replacement surgery. Patients with H2/H2 experienced a 0.12-fold
higher risk of bleeding complications than the others. G allele carriers of rs5050 and
A allele carriers of rs2640543 were 5.0 and 3.2 times more likely to experience bleeding
complications compared with TT genotype and GG genotype carriers, respectively. In the
five-fold cross-validated multivariable logistic regression, elastic net, RF, and SVM models,
the mean AUROC values ranged between 0.67 and 0.74.

The RAS has essential roles in the cardiovascular system. Among its many functions,
the RAS—particularly angiotensin II—is involved in vascular pathophysiology, including
vascular cells growth/apoptosis, vascular smooth muscle cell differentiation/proliferation,
and extracellular matrix remodeling [11]. The RAS is also known to be involved in the
balance of coagulation and fibrinolysis by two processes: (1) tissue plasminogen activator
(t-PA) production by bradykinin, which is metabolized by ACE, and (2) plasminogen
activator inhibitor-1 (PAI-1) induction by angiotensin II [10].

The ACE gene, located on human chromosome 17, consists of 26 exons and 25 introns
and is considered highly polymorphic. Among genetic polymorphisms of ACE, I/D poly-
morphism has been most extensively studied in several cardiovascular diseases [22,23].
Rs4341, an intronic variant of ACE, is known to be in perfect LD with ACE I/D polymor-
phism in Caucasian and Asian populations, and this is commonly used as an alternative
method of determining ACE I/D polymorphism; GG genotype carriers of rs4341 are con-
sidered to be DD genotype carriers of the ACE I/D polymorphism [24]. In a study with
healthy subjects [25], ACE I/D polymorphism was related to serum ACE concentrations, ac-
counting for 47% of the total variance of serum ACE concentrations. A recent meta-analysis
including 39 case—control studies showed that ACE I/D polymorphism was significantly
associated with intracranial hemorrhage, especially among Asians [13]. Although some
studies have described the DD genotype as a potent thrombophilic factor [26,27], several
studies have reported that D allele carriers of ACE have increased risk of hemorrhagic
stroke [28] and blood loss after hip surgery [29], which is also consistent with our results.

Rs1800764 and rs4353, included in the associated haplotype with bleeding complica-
tions in our study, were located in the upstream region and intron 19 of ACE, respectively.
Chung et al. showed that rs1800764 had a significant relation with young-onset hyper-
tension and rs4353 was significantly associated with ACE activity [30]. Furthermore, the
haplotype containing the A allele of rs4353 was reportedly related to increased serum
concentrations of ACE and increased hypertension risk [31]. eQTL analysis performed on
GTEXx also supported our results [32]; both rs1800764 and rs4353 were recorded as signifi-
cant expression quantitative trait loci with ACE transcript (p = 3.0 X 1021 and 9.8 x 10717,
respectively), showing higher expression with wild-type alleles in fibroblast tissues. In
consideration of the above findings, our results might be explained by the increased serum
concentrations of ACE.

Angiotensinogen, encoded by AGT, is the only precursor of the RAS and is sequentially
cleaved by renin and ACE [33]. Gould et al. showed that plasma AGT concentrations were
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closely related to the Ky, of renin, indicating that plasma AGT concentrations might affect
the angiotensin II level accordingly [34]. Located in the promoter region of the AGT gene,
rs5050 is reported to be essential for the transcription of AGT [35], and the variant allele of
rs5050 has been reported to increase the promoter activity of AGT [35,36]. Ishigami et al.
also revealed that this variant was associated with high AGT plasma concentrations [37].
In studies with patients taking low-dose aspirin, rs5050 was reportedly associated with
bleeding [14,38]. Our study also revealed that this variant was significantly associated with
increased bleeding risk.

AGTRI1, expressed in all different organs, is the principal receptor that mediates
major actions of angiotensin II [39]. Although there have been no studies that examine
the bleeding risk of rs2640543, several studies have demonstrated the functional effect
of rs2640543, which is linked with cardiovascular disease [40,41]. Su et al. reported that,
in a study with Chinese patients, the haplotype-containing wild allele of rs2640543 was
associated with decreased systolic blood pressure reduction in response to benazepril, an
ACE inhibitor [40]. eQTL results also showed that the wild allele of rs2640543 also showed
higher expression in both fibroblast and aorta artery (p = 2.5 x 10712 and p=32x 1079,
respectively) [32]. Accordingly, the increased RAS activity seems to affect the bleeding.

In our study, VKORC1 and CYP2C9 polymorphisms, the well-known genetic factors for
warfarin dose prediction [1], were not significantly associated with bleeding complications.
As our study patients had already achieved therapeutic INRs after dosing adjustments,
VKORC1 and CYP2C9 polymorphisms were expected not to affect bleeding risk.

This study applied several machine-learning-based methodologies based on the sig-
nificant factors in the univariate analyses to predict bleeding complications. The AUROC
values from the five-fold cross-validated multivariable logistic regression, elastic net, and
RF revealed the favorable performance of these models (higher than 0.7). The elastic net
is a penalized linear regression model that combines the penalties of the lasso and ridge
methods [41]. RF is an ensemble method, which increases the diversity by using a random
subset of available features at each node and provides a more accurate prediction than a
single decision tree [42—44]. In the case of SVM models, the AUROC values were around
0.67. In this study, SVMs were implemented using linear and radial basis function kernels.
Linear kernel SVMs have a single tuning parameter, C, which is the cost parameter of the
error term, whereas radial kernel SVMs have an additional hyperparameter, sigma, which
determines the width for Gaussian distribution [44,45].

Since this study dealt with patients with INRs between 2 and 3, only minimal or minor
bleeding events were observed. Although it is obvious that major hemorrhages are of
importance, minor bleedings are also clinically important, because they serve as warnings
for subsequent major bleedings and may increase the number of visits to clinics, resulting
in additional medical costs.

To evaluate the potential clinical value of genotyping SNPs, we calculated the WRS
based on our logistic regression models. The highest quartile group of WRS had 12-fold
significantly higher bleeding complications than the 25-75th percentile group, implying
the possibility of discriminating the high-risk group of bleeding complications in patients
on stable warfarin therapy.

The limitations of our study are its retrospective study design and small sample size.
In addition, we did not consider the social and clinical histories (e.g., alcohol use and bleed-
ing/stroke history), which could affect bleeding, due to the insufficient data. However, to
our knowledge, this is the first study to investigate and predict the warfarin-induced bleed-
ing complications with RAS-related genetic variants using machine learning algorithms.

4. Materials and Methods
4.1. Study Patients and Data Collection
This is a retrospective analysis of prospectively collected blood samples. The details for

study patients have already been described in previous papers [7,8]. Study patients were
recruited from the previous study cohort, entitled the Ewha-Severance Treatment (EAST)
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Group of Warfarin. Briefly, 229 patients were included who received mechanical heart valve
replacement and were treated with warfarin between January 1982 and December 2009 at
the Severance Cardiovascular Hospital of Yonsei University College of Medicine. Among
the EAST cohort, patients with a stable INR, which was defined as at least three consecutive
INR values in the therapeutic range (2-3) at the outpatient clinic, were recruited for the
study. Patients whose bleedings occurred at supra- or sub-therapeutic INRs or were not
confirmed by doctors were excluded.

Patients were routinely followed up at the outpatient clinic until warfarin discontinua-
tion, loss to follow up, death, or the end of the study, whichever came first. Blood samples
were collected at the outpatient visit. By reviewing patients’ medical records between
January 1982 and August 2017, the following data were collected: age, sex, weight, height,
body mass index, position and type of valve prosthesis, comorbidities, co-medications,
follow-up time, INR values, and bleeding occurrence. Each bleeding event was confirmed
by a doctor at the hospital, and the INR was checked at the time of the event. Bleeding
complications were assessed using the Platelet Inhibition and Patient Outcomes (PLATO)
classification (i.e., major fetal/life-threatening, major other, minor, and minimal) [46].

The Institutional Review Board of the Yonsei University Medical Center approved
this study (approval number: 4-2009-0283). This study followed the ethical standards
of the Institutional Review Board of the Yonsei University Medical Center and Helsinki
declaration principles. Written informed consent was taken from all patients.

4.2. Genotyping Methods

The SNPs of RAS-associated genes were selected by reviewing the following sources:
(1) Haploreg 4.1 for minor allele frequencies and LD patterns of SNPs in Asian popu-
lations [47]; (2) the PharmGKB database for clinical annotations [48]; and (3) previous
studies [30,49,50]. Finally, a total of 16 SNPs were investigated: four SNPs of AGT (rs7079,
rs699, rs5050, and rs11122576), two SNPs of REN (rs2368564 and rs12750834), three SNPs
of ACE (rs1800764, rs4341, and rs4353), four SNPs of AGTR1 (rs275651, rs2640543, rs5186,
and rs5182), and one SNP of AGTR2 (rs1403543), along with the two well-known SNPs for
warfarin stable doses (VKORC1 rs9934438 and CYP2C9 rs1057910).

We extracted genomic DNA from patients” blood samples using the QlAamp DNA
Blood Mini Kit (QIAGEN, Hilden, Germany). All samples were genotyped using the
TagMan SNP genotyping assay (Applied Biosystems, Foster City, CA, USA) based on a real-
time PCR system or SNaPShot multiplex kits (Applied Biosystems, Foster City, CA, USA)
based on a single-base primer extension assay.

4.3. Statistical Analysis and Machine Learning Methods

We calculated the LD (r? and D’) for each SNP pair in a gene by Haploview 4.2 [51]
and performed haplotype analysis using Plink [52]. To compare the patients with and
without bleeding complications, the chi-square test and independent t-test were used for
categorical and continuous variables, respectively. To determine independent risk factors
related to bleeding complications, we performed multivariable logistic regression analysis
with backward elimination using variables whose p-value was less than 0.05 in univariate
analysis, in addition to clinical confounders (age and sex). We obtained odds ratios (ORs)
and adjusted odds ratios (AORs) by logistic analyses and calculated attributable risk (%)
by the formula of ((AOR — 1)/AOR) x 100. The model was tested by Hosmer-Lemeshow
statistics and AUROC analysis.

To predict bleeding complications, we utilized machine learning algorithms, including
five-fold cross-validated multivariable logistic regression, elastic net, RF, and a SVM. In
each algorithm, we used 10 repeat iterations. To evaluate model performance, we used the
AUROC with a 95% CL
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The NNG, which represents the number of patients for preventing one additional
bleeding complication, was calculated by the following equations [7]:

Relative risk reduction (RRR) = (AOR — 1)/AOR;

Absolute risk reduction (ARR) = RRR x Riskn, genotyping;
NNG =1/ARR,

where Riskng genotyping Was defined as the risk of higher incidence of bleeding complications
without genotyping. To assess the cumulative effect of clinical factors and multiple SNPs
on bleeding complications, the WRS was created based on variables that were included
in each model in this study. The point assigned to each variable was determined by the
variable’s beta coefficient from the logistic regression model in the current study, and the
WRS was the sum of the points for variables that patients had.

A p-value of <0.05 was considered statistically significant. All analyses were performed
with SPSS 20.0 (IBM, Armonk, NY, USA) and R package caret.

5. Conclusions

This study demonstrated that RAS-related polymorphisms, including the H2 hap-
lotype of ACE, rs5050 of AGT, and rs2640543 of AGTR1 could affect bleeding compli-
cations during warfarin treatment for patients with mechanical heart valves. Our re-
sults could be used to develop individually tailored intervention strategies to prevent
warfarin-induced bleeding.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ph14080824 /51, Figure S1. Linkage disequilibrium patterns and relative position of SNPs
among study patients. Present SNPs were in AGT ((a) and (e)), REN ((b) and (f)), ACE ((c) and (g))
and AGTR1 ((d) and (h)), respectively. Values in squares are the pairwise calculation of D’ ((a)—(d)) or
2 ((e)-(h)). Empty squares indicate D’ = 1.0 or 2 =1.0.
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Abbreviations
ACE angiotensin I-converting enzyme
AGT angiotensinogen

AGTR angiotensin receptor
AORs adjusted odds ratios
AUROC  area under the receiver-operating curve

INRs international normalized ratios
LD linkage disequilibrium

NNG number needed to genotype

ORs odds ratios

PAI-1 plasminogen activator inhibitor-1
PLATO  Platelet Inhibition and Patient Outcomes
RAS renin-angiotensin system

REN renin

RFE random forest

SVM support vector machine

SNPs single nucleotide polymorphisms

WRS weighted risk score
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