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Most genetic variations associated with human complex traits are located in non-coding genomic
regions. Therefore, understanding the genotype-to-phenotype axis requires a comprehensive catalog of
functional non-coding genomic elements, most of which are involved in epigenetic regulation of gene
expression. Genome-wide maps of open chromatin regions can facilitate functional analysis of cis- and
trans-regulatory elements via their connections with trait-associated sequence variants. Currently,
Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is considered
the most accessible and cost-effective strategy for genome-wide profiling of chromatin accessibility.
Single-cell ATAC-seq (scATAC-seq) technology has also been developed to study cell type-specific chro-
matin accessibility in tissue samples containing a heterogeneous cellular population. However, due to
the intrinsic nature of scATAC-seq data, which are highly noisy and sparse, accurate extraction of biolog-
ical signals and devising effective biological hypothesis are difficult. To overcome such limitations in
scATAC-seq data analysis, new methods and software tools have been developed over the past few years.
Nevertheless, there is no consensus for the best practice of scATAC-seq data analysis yet. In this review,
we discuss scATAC-seq technology and data analysis methods, ranging from preprocessing to down-
stream analysis, along with an up-to-date list of published studies that involved the application of this
method. We expect this review will provide a guideline for successful data generation and analysis meth-
ods using appropriate software tools and databases for the study of chromatin accessibility at single-cell
resolution.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Assay for Transposase Accessible Chromatin with high-
throughput sequencing (ATAC-seq) was designed to identify open
chromatin regions in the genome [1]. Due to the use of hyperactive
Tn5 transposase, which simultaneously tags and fragments DNA
sequences in open chromatin regions, ATAC-seq requires shorter
sample preparation times and fewer number of cells for high qual-
ity profiling of chromatin accessibility compared to other existing
methods [1]. With emergence of single-cell biology and adaptation
of various sequencing-based omics technologies, the study of chro-
matin accessibility at single cell resolution became possible owing
to the development of single-cell ATAC sequencing (scATAC-seq).
However, computational analysis of scATAC-seq data remains chal-
lenging. Moreover, a wide range of potentially functional elements
within the accessible genomic regions add more complexity for
interpretation of scATAC-seq data, if they are not well understood.
Recently, computational algorithms and software tools for scATAC-
seq data analysis have been developed. However, algorithmic
approaches and parameters for each step of the data analysis pipe-
line must be carefully selected for reliable translation of chromatin
accessibility information into novel biological hypotheses.

In this review, we aim to elaborate the overall workflow of
scATAC-seq data analysis (Fig. 1) from data preprocessing to vari-
ous downstream analyses, including integration with other types
of genetics and genomics data. The analyses of sequencing read
data from scATAC-seq are subject to initial data preprocessing,
which is similar to those of other next-generation sequencing data
[2]. Sequence files are processed with software tools widely used
for quality control of sequence information, read mapping to the
reference genome, and identification of read peaks that may indi-
cate open chromatin regions [3,4]. The generation of cell-by-
feature matrix is critical for scATAC-seq data analysis and this is
facilitated by the various options available for defining genomic
features [5]. The preprocessed data are then used for downstream
analysis to elucidate networks among cis-regulatory elements,
such as promoters and enhancers, and trans-regulatory elements,
such as transcription factors (TFs). Gene activity and accessibility
to genetic variants can also be analyzed using scATAC-seq data
[6]. Moreover, scATAC-seq can be integrated with single-cell RNA
sequencing (scRNA-seq) data [7] and other omics data for multi-
omics studies.
2. Single-cell ATAC sequencing technologies

Within two years of the development of bulk ATAC-seq technol-
ogy, two different strategies of single-cell adaptations were intro-
duced: split-and-pool combinatorial cellular indexing such as sci-
ATAC-seq [8] and microfluidics approach such as using integrated
fluidics circuit (IFC) [9] (Fig. 2). In sci-ATAC-seq, the nuclei of lysed
cells are placed in 96-well plates with uniquely barcoded trans-
posases and pooled back together before dispensing into a second
96-well plate using fluorescence-activated cell sorter (FACS). The
second barcodes are introduced during amplification. By recogniz-
ing unique combinations of two barcodes, sciATAC allows sequenc-
ing of about 1500 cells with median reads of 2500 and ~11%
collision rate. In contrast, IFC scATAC-seq utilizes a Fluidigm C1
device to capture single cells and to perform transposition and
PCR on IFC. While this method can obtain more than 70,000 reads
per cell, only up to 96 cells can be processed in parallel. Another
microfluidics-based scATAC-seq using 10x Genomics Chromium
device is recently gaining popularity. Chromium system captures
single transposed nucleus in a Gel bead-in EMulsion (GEM), which
involves addition of unique barcodes to DNA fragments [6]. The
scalability and high throughput of GEM, combined with the intu-
itive software called Cell Ranger ATAC, allows for scATAC-seq study
on large number of cells.

Since the initial single-cell adaptations of ATAC-seq technology
with cellular indexing and microfluidics, various modifications and
improvement have been added to them. Protein-indexed scATAC-
seq (Pi-ATAC) [10] profiles protein epitopes in parallel with DNA
transposition to quantify protein expression and chromatin acces-
sibility of the same individual cell. The small molecule inhibitor
Pitstop2 (scip-ATAC-seq) [11] improves the efficiency of trans-
posase entry into the nucleus and thus enhances library complex-
ity and resolution. Transcript-indexed ATAC-seq (T-ATAC-seq) [12]
using microfluidic devices allows sequencing of T cell receptor-
encoding genes with ATAC-seq. Perturb-ATAC [13] adds CRISPR
single guide RNA (sgRNA) after transposition and sequences both
the sgRNA and ATAC DNA to study the relationship among factors
regulating chromatin accessibility. Plate-based scATAC-seq facili-
tates high library complexity with lower amounts of mitochondrial
DNA and higher fraction of reads in peaks (FRiP), along with bulk
Tn5 tagging and single-nuclei sorting [14]. By combining cellular
indexing with microfluidics, droplet microfluidics scATAC-seq with
cellular indexing (dsciATAC-seq) [15] maintains read depth of
microfluidics-based scATAC-seq while increasing cellular through-
put in parallel.

Nano-well ATAC-seq (lATAC-seq) employs ICELL8 platform to
offer single cell sequencing with high throughput and low library
preparation costs [16]. Nevertheless, it is important to consider
the availability of experimental devices, compatibility with analy-
sis software, required read depth and cellular throughput, and
overall purpose of study before selecting scATAC-seq technologies.
3. Data preprocessing

Before generating biological hypotheses with downstream anal-
ysis, scATAC-seq data must undergo preprocessing steps for accu-
rate interpretation. Preprocessing of scATAC-seq data starts from
demultiplexing of sequence files and removal of low-quality cells.
Genomic regions used for cell-by-feature matrix, data transforma-
tion methods, dimension reduction (DR) approaches, and cluster-
ing methods for annotation of cell identities must be carefully
selected. Additionally, batch effects must be removed if necessary.
Since there is no magic bullet in data analysis, comparisons of mul-



Fig. 1. Schematic overview of a typical single-cell ATAC sequencing analysis workflow.
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tiple methods with complementary algorithms is necessary for
obtaining the best result from a given dataset. In Table 1, we sum-
marize 13 software packages available for scATAC-seq data analy-
sis: ChromVAR [17], SCRAT [18], scABC [19], Cicero [20], Scasat
[21], cisTopic [22], snapATAC [23], epiScanpy [24], Destin [25],
SCALE [26], scATAC-pro [27], Signac [7] and ArchR [28]. Although
varying in capability of downstream analysis, they all include
unique preprocessing steps. Recently, many of these tools were
also evaluated based on the performances in accurately identifying
cell types with clustering results [5].



Fig. 2. Schematic summary of two major strategies for single-cell adaptation of ATAC sequencing library generation: (a) split-pool cellular indexing and (b) microfluidics-
based, and (c) their modified methods.
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3.1. Preprocessing of sequencing reads

If multiple samples are indexed and sequenced in a single reac-
tion through multiplexing, they need to be demultiplexed based on
the index adapter sequence by software packages, such as Illu-
mina’s bcl2fastq. Demultiplexed sample files are then processed
by adaptor trimming, in which adaptor and primer sequences are
trimmed off by Bowtie2 [3] or Trimmomatic [29]. Trimmed reads
are then aligned to the genome of the same species to the prepared
sample using Bowtie2 [3] or BWA [30] and sorted with Samtools
[31].
Table 1
Summary of scATAC-seq analysis software packages.

Tool Platform Feature
Matrix

Preprocessing Clustering DAR Motif/k-mer G
a

ChromVAR R TF motifs,
k-mer

O O X O X

SCRAT R/Web Selectable
feature

O O O X X

scABC R Peak O O X O (ChromVAR) X
Cicero R TSS O O O X O
Scasat Python/R Peak O O O X X
cisTopic R Peak O O X X O
snapATAC Python/R Bin, peak O O O O (ChromVAR,

Homer)
O

epiScanpy Python Peak O O X X X
Destin R Peak O O O X X
SCALE Python Peak O O O O (ChromVAR) X
scATAC-pro Python/R Peak O O O O (ChromVAR) O
Signac R Peak O O O O (ChromVAR) O
ArchR R Bin, peak O O O O (ChromVAR),

TF footprinting
O

Tools used in junction are indicated in parentheses.
3.2. Quality control

After processing sequencing read data, barcodes that are corre-
sponding to low quality cells or doublets must be filtered out. Gen-
erally, quality control (QC) criteria for most of single-cell
sequencing technologies are based on the read counts (count
depth) and feature counts per barcode [32]. Barcodes with either
a low count depth or too high count depth are considered to be
low quality cells or doublets, respectively. The same can be applied
to the feature counts. However, utilizing unique characteristics of
scATAC-seq data may lead to more adequate QC. For example, frac-
ene
ctivity

Co-
accessibility

Trajectory Pathway Enrichment
analysis

scRNA
integration

Reference

X X X X X [17]

X X X X X [18]

X X X X X [19]
O O X X X [20]
X X O (GREAT) X X [21]
X X O O X [22]
X X O (GREAT) X O (Seurat) [23]

X X X X X [24]
X X X O X [25]
X X X X X [26]
O (Cicero) X O (GREAT) X X [27]
X X X X O (Seurat) [7]
O O X O O (Seurat) [28]
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tion of reads in peaks (FRiP), ratio of reads in promoter regions,
ratio of reads in blacklist sites, or enrichment of transcription start
sites (TSS) are often used for barcode selection [9,23,28]. Barcodes
that do not show nucleosomal banding patterns that are unique to
high-quality ATAC-seq data are also excluded [8,33]. In addition to
barcodes, features (e.g., peaks) that are located in blacklist regions
or house-keeping genes can be filtered out [23]. It is important to
remember that there is no absolute QC standard fitting for all sam-
ples. Therefore, combinations of QC criteria must be carefully cho-
sen depending on characteristics of the samples such as overall
structure of data, heterogeneity, possibly exiting cell types,
batches, or sequencing platforms.

3.3. Cell-by-feature matrix formation

The cells that have passed the QC are selected to generate a cell-
by-feature matrix for downstream analysis. A major factor that
diversifies the data matrices is defined by the genomic regions
from raw peak reads and annotation of the defined regions using
regulatory elements. While majority of the pipelines employ a sin-
gle combination of defining and annotating genomic regions, some
pipelines adapt various suited matrices for different purposes of
downstream analysis. Largely, the definition of genomic regions
can be classified by the use of sample-specific information and fea-
ture annotation can be varied with regulatory elements of interest.

The use of sample-specific information includes utilization of
bulk ATAC-seq peaks from public data or analyzing aggregated or
merged peaks from scATAC-seq data [17,19–22,34]. Single cell
aggregation can be carried out using cells from the entire sample
or from every cluster (which represents a distinct cell type)
obtained from initial temporary clustering results [23]. In most
cases, MACS2 [4] is used for peak identification. The other defini-
tion of genomic regions is fixed-size bins or windows of the gen-
ome along with scores based on the relative abundance of
sequence reads for the regions [23,33].

After defining genomic regions by either peaks or bins/windows
of fixed-size, regulatory elements, such as TF motifs and TSS, are
used to generate cell-by-feature matrix. Since motifs and k-mers
for TF binding are specific for cell types, cell type annotation based
on the information is included in some data analysis pipelines
[17,18,35]. The genomic regions are annotated with either the
known TF motifs from public databases, such as cisBP [36], JASPAR
[37], and HOMER [38], or k-mers for unsupervised annotation
using motifmatchr [39]. Moreover, accessibility to TSS can be used
as cell type-specific features [20]. Frequently, these genomic fea-
tures are combined together to form a feature set for accurate anal-
ysis of cell heterogeneity [18]. Some tools simply merge nearby
peaks or use them directly as features for matrix formation with-
out annotation of genomic elements [22,23].

3.4. Batch correction and data integration

When we analyze scATAC-seq data of multiple batches collec-
tively, non-biological factors such as technical variance can lead
to wrong biological hypotheses. Batch effects can occur by differ-
ences in experimenters, sample preparation protocols, sample har-
vest time, sequencing lanes, and sequencing technologies [32,40].
Batch effect correction for scATAC-seq data are often indirectly car-
ried out without specific computational tools. With careful exam-
ination, batch-specific peaks or features can be removed
[21,22,26]. Batch effects are often corrected during other prepro-
cessing steps such as selecting variable peaks or dimension reduc-
tion [6,28,33].

Batch effects of single-cell omics data can be more systemati-
cally corrected with data integration approaches based on non-
linear algorithms. These methods assume that all batches share
at least one cell type with another and differences between batches
are smaller than those between cell types [40]. However, these
methods may also remove biological variance, thus resulting in
overcorrection. Therefore, both capability of batch removal and
conservation of biological variation need to be considered [41].
Although there is no designated tool for integrating scATAC-seq
data, those developed for scRNA-seq may be utilized. A bench-
marking study of the data integration tools with atlas-level
scATAC-seq data showed that most of them performed poorly,
which may be attributable to the sparsity and binary nature of
the data [41]. Nevertheless, Harmony [42], Seurat v3 [7] and scVI
[43] showed best trade-off between batch removal and conserva-
tion of biological variation for integrating scATAC-seq data in the
benchmarking study.

Data integration tools for batch correction can also be used for
integrating multi-modal single-cell omics data (e.g., integration of
scRNA-seq and scATAC-seq data generated from the same tissue
source). They are further described in the later part of this review.

3.5. Data transformation

Though various experimental technologies are being attempted
to increase the sequencing output, peak reads from a single cell
have been reported to represent only about 1~10% of overall
detectable peaks in scATAC-seq analysis [5]. Therefore, instead of
using the initial cell-to-feature matrices directly for downstream
analysis, data transformation can be applied to compensate for
the limitation from data sparsity. Due to the binary nature of
scATAC-seq profiles (1 for presence and 0 for absence of sequence
read, respectively), classical text mining methods of topic model-
ing can be used for data transformation [22,33]. Term-frequency
inverse-document-frequency (TF-IDF) method transforms a cell-
to-feature matrix to give more weight to rarer peaks in the cell
population [33]. The transformed data matrix tends to capture
peaks that are more variable (i.e., more informative) for distinct
cell types. Jaccard distances can also be used to measure dissimi-
larity of two cells in accessibility matrix to signify unique peaks
in one cell against all the other peaks [21]. Based on the assump-
tion that higher sequencing depth attributes to the better capture
of important features, some methods weigh features of each cell by
its sequencing depth [19].

3.6. Dimension reduction, visualization and clustering

After transforming data to overcome inherit sparsity, the cell-
by-feature matrix undergoes DR which can mitigate redundant
information and potential noise of high dimensional data, and
may reduce the computational time for downstream analysis [5].
Principle Component Analysis (PCA) is a widely used linear DR
technique and the number of principal components to be chosen
is determined based on the elbow of scree plot analysis or Jack-
straw test [44]. Topic modeling methods (e.g., cisTopic) reduce
dimensions of feature matrix by choosing top topics based on
topic-cell distribution generated by latent Dirichlet allocation
(LDA) [22]. While LDA is relatively time-consuming, it can capture
cell type-specific characteristics which might improve clustering
accuracy [5]. Latent Semantic indexing (LSI) is performed by using
TF-IDF followed by singular value decomposition (SVD) [33]. Mul-
tidimensional scaling (MDS) is also used to reduce dimensions
based on the profile similarity among cells [21]. Diffusion map is
a nonlinear method of DR processing and it tends to be robust to
sequencing noise [23]. While some data analysis pipelines omit a
linear DR step, its application is shown to improve overall cluster-
ing results during downstream analysis [5]. Overall, the results
from these DR methods are used as input for both visualization
and clustering.
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In order to visualize the data in a 2- or 3-dimensional space,
non-linear DR techniques such as t-distributed stochastic neigh-
borhood embedding (t-SNE) [45] and uniform manifold approxi-
mation and projection (UMAP) [46] are used. These techniques
are often called as embeddings. UMAP visualization tends to pre-
serve global structures better while t-SNE visualization preserves
local neighborhoods [46]. However, there are still debates over
which methods need to be used for single cell analysis, and fre-
quently the choice of method depends on the properties of each
dataset and the data preprocessing method used. Therefore, it is
highly recommended to apply multiple visualization methods for
given datasets and make a choice based on the results obtained.

Cells with similar accessibility profiles can be organized into
clusters. For scATAC-seq data, there are several clustering methods
which are widely used: hierarchical, k-means, k-medoids, and Lou-
vain algorithm. Hierarchical clustering is useful for understanding
overall relationships among clusters and the result is often visual-
ized with a dendrogram to capture the hierarchical relationship. K-
means and k-medoids clustering use parametric algorithms with
predetermined number of clusters. K-medoids clustering is known
to be more robust to noise but requires more computational
power. Louvain clustering is a graph-based method which often
takes the results of k-nearest neighbor (KNN) method as input data
[7,23]. Some analytic tools might have preferred methods for clus-
tering but in most cases they are interchangeable. Recent bench-
mark results for clustering scATAC-seq data showed the most
favorable results with Louvain clustering [5].
4. Downstream analysis for hypothesis generation

The main purpose of the single-cell omics study is to generate
biological hypotheses about distinct subsets of complex mixtures
of heterogeneous cellular population. Thus, downstream analysis
generally begins with assigning cellular identity of the clusters
obtained from the preprocessed scATAC-seq data. Peak calling is
often repeated for each cluster to identify accessible chromatin
regions for distinct cellular populations, which are then subject
to a statistical test for association with various pre-defined geno-
mic features, such as, cis- and trans-regulatory elements and
genetic variants, such as, disease-associated SNPs. Downstream
analysis methods mainly aim to uncover novel regulatory elements
and to understand their functional roles in a cell type-specific man-
ner. In addition, the dynamics of chromatin accessibility during
cellular development can be studied during downstream analysis.
4.1. Cell identity annotation

For the analysis of single-cell omics data, cell identity annota-
tion of clusters is preliminary yet must be carried out with care.
Incorrect cell identity information can mislead to a wrong biolog-
ical hypothesis during downstream analysis of scATAC-seq data.
While there are a number of tools for automated cell type annota-
tion for scRNA-seq data [47] and an extensive list of cell type-
specific genes are available from various databases [32,48], there
are only a limited set of tools for scATAC-seq data and a few refer-
ence datasets for cell type specific chromatin accessibility [33].
Therefore, combined use of complementary approaches for cluster
annotation is necessary for scATAC-seq data. Largely, there are two
approaches to cell identity annotation; the first one is based on fea-
ture annotation of ATAC peaks, and the second one utilizes integra-
tion with reference scRNA-seq data.

After cells are assigned to distinct clusters based on profile sim-
ilarities, each cluster can have Differentially Accessible Regions
(DARs) which might contain various regulatory elements. The first
approach to cell identity annotation can vary in genomic features
to be used for identification of such cluster-specific peaks. Super-
vised or manual annotation of cluster identity requires databases
or literature references of cell type specific genomic features, such
as TF motifs, enhancers, promoters, and TSSs [6]. Promoters and
TSSs are most widely used for cluster annotation due to the exten-
sive list of cell type-specific genes. In simpler approaches, accessi-
bility to the cell type-specific genes can be defined by the existence
of ATAC peaks within certain distance from upstream of cell type-
specific promoters or TSSs. More advanced analysis takes various
distal and proximal regulatory elements into consideration. ‘Gene
activity scores’ weigh co-accessible elements to a gene’s promoter
region differently to infer gene expression from chromatin accessi-
bility profiles more accurately [33]. As a result, gene activity scores
correlate better with gene expression profiles than simple profiles
of promoter accessibility [33]. A software called Garnett also
employs gene activity scores and a priori profile with known cell
types along with their marker genes for supervised classification
of cell types [49].

The second approach takes advantage of extensively available
scRNA-seq data for diverse cell types. Gene expression matrix from
scRNA-seq data can be integrated with gene activity score matrix
from scATAC-seq data for the same cell types. After projecting
them onto the maximally correlated dimensions, mutual nearest
neighbors (MNN) algorithm is used to transfer cell-labels from
the scRNA-seq data to the scATAC-seq data [7,33]. While samples
with a highly dominant cell type or non-matching cell types to
the other omics data show limitations in accuracy, overall results
of cell identity annotations are concordant with matching datasets
[33]. With semi-supervised identification of cell populations in
scATAC-seq data (SSIPs), existing reference scRNA-seq and bulk
ATAC-seq data are used to generate a network of scATAC-seq data
for the sample of interest, with reference cells from external data
sources to transfer cell-labels [50].

4.2. Study of chromatin accessibility dynamics

Annotated clusters proceed to the study of chromatin accessi-
bility dynamics. Hypotheses about regulation of cellular develop-
ment can be generated using various genomic elements
associated with DARs, pseudotime-dependent changes, and co-
accessibility. DAR analysis is used to identify regulatory elements
specific for each cell type. In general, cell type-specific DARs are
identified by comparing chromatin accessibility in cells for a par-
ticular cluster with all the other cells in the dataset. Various statis-
tical tests have been employed for DAR analysis, including a
binomial test [33], negative binomial generalized linear model
[20], a Wald test [19], Fisher’s exact test [23], unequal variances
t-test [17], and information gain [21] along with 1% or 5% false dis-
covery rate (FDR) adjustment with Benjamini-Hochberg [6,23,33]
or Bonferroni correction [21].

Single-cell trajectory analysis utilizes pseudotemporal ordering
of cells to reconstruct differentiation processes or cell lineages.
Trajectory analysis is useful if chromatin accessibility changes con-
tinuously within cell population. Cicero [20] is an extension of
Monocle2 [51], a widely used trajectory analysis tool for scRNA-
seq data, for scATAC-seq data. Nearby peaks are aggregated for
dealing with sparsity and DARs are selected to define temporal
states. After cells are ordered in pseudotime using DDRTree [52]
method, accessibility kinetics at selected genomic regions can be
depicted. STREAM [53] is a trajectory analysis tool that can handle
both transcriptomic and epigenomic data. For analyzing scATAC-
seq data, k-mer score matrix in accessibility variable regions is
used to construct pseudotime trajectories. The strength of STREAM
lies in an unbiased end-to-end pipeline starting with unprocessed
raw data files. Trajectory analysis with such tools can be used for
identification of cell type-specific regulatory elements associated
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with cellular development from one cell type to another [6,20,54–
56]. For example, if accessibility of TF motifs changes significantly
during differentiation process, the matching TFs can be studied fur-
ther for their involvement in activation or initiation of differentia-
tion [11,53,57].

Interactions between different genomic elements are important
for understanding regulatory networks. Such interactions can be
analyzed with co-accessibility of different genomic regions. Cicero
groups similar cells to generate cell accessibility matrix to calcu-
late covariance between each pair of genomic elements in overlap-
ping genomic windows. Co-accessibility is used for analysis of
interactions between TSS and enhancers [8,11,57–59], promoters
[20], and other genomic elements.

4.3. TF motif-based hypothesis generation

TFs are major trans-acting regulators of gene expression. Anal-
ysis of scATAC-seq enables identifying specific TFs for different cell
types within heterogeneous cell population [17]. Since TFs are
highly involved in the developmental process, the analysis of
cell-to-cell variation of TF expression will facilitate understanding
of their roles during cellular differentiation [35]. Furthermore,
scATAC-seq allows for simultaneous analysis of cis-regulatory ele-
ments that are associated with the activities of relevant TFs.

Study of TFs with scATAC-seq data requires both software pack-
ages and databases for TFs and their binding motifs. Initially, meth-
ods for scATAC-seq data analysis mainly utilized the known TF
motifs [8,9]. Though not invented solely for analysis of scATAC-
seq data, bioinformatics tools, such as, Homer [38] and FIMO
[60], are useful in identifying TF motifs within open chromatin
regions. A software package chromVAR, which was developed for
scATAC-seq analysis, is a widely used algorithm for calculating
bias-corrected deviations and z-scores of TF motifs and k-mers
[17]. TFs related to various cell types, such as immune cells [12],
cardiac progenitor cells [55], and neuronal cells [61], have been
analyzed with chromVAR deviations and z-scores. Furthermore,
TF motif accessibility can be compared with TF expression values
calculated from scRNA-seq data [62]. For identification of cell type
specific TFs and prediction of cell types from those TF motifs, sev-
eral models, such as convolutional neural network [33] and ran-
dom forest classification [57], can be used.

4.4. Gene-based hypothesis generation

scRNA-seq has been widely used for studying gene expression
profiles of heterogeneous cell populations [63]. Gene expression
can be inferred from chromatin accessibility information at TSSs,
gene body, and other regulatory elements. TSSs and transcription
termination sites of active genes are located at open chromatin
regions or nucleosome-depleted regions [64] and so, accessibility
profiles at TSSs can be utilized for gene-based downstream analysis
of scATAC-seq data.

UROPA [65] can assign TSSs to scATAC-seq peaks using genomic
annotation databases. Peaks annotated by TSSs can be used for fur-
ther analysis, such as comparison of opening and closing of chro-
matin at TSSs [55], calculation of TSS gene set deviation [58], and
identification of chromatin accessibility at known marker genes
to identify cell types and states [61,66,67]. However, considering
only the chromatin states of TSSs might not fully indicate gene
expression [20], calculation of ‘gene activity score’, which takes
information from regulatory elements, can improve translation of
accessibility information into gene expression [20]. Cicero gene
activity scores consider accessibility at sites proximal and distal
to TSS of a gene and weigh them by their co-accessibility. Gene
activity scores have been used to compare TF motif accessibility
to TF gene activity scores from the same scATAC-seq data [11], to
annotate cells using cell type specific marker genes [6,68], and to
transfer cell-labels from scRNA-seq datasets to matched scATAC-
seq datasets [69]. Lastly, for visualization of DARs at gene bodies,
Deeptools [70] and MACS2 [4] generates bigwig files, which can
be displayed with genomic browsers, such as Gviz [71], Integrative
Genomics Viewer (IGV) [72], and UCSC Genome Browser [73].

Gene set enrichment analysis for a distinct cell population is
useful for identifying pathways relevant to the cell identity. Gene
Ontology (GO) [74] and KEGG [75] are the most widely used data-
bases for pathway gene sets. Pathways associated with a cell pop-
ulation are analyzed based on genes associated with cell type-
specific accessible (peak) regions. Peaks within upstream and
downstream extension of gene body [61,76], TSS [55], or with gene
activity scores [57] are used as input data for pathway analysis.
Various gene set enrichment tools, such as GREAT [77] or clus-
terProfiler [78], can be applied to scATAC-seq data.

4.5. Enhancer-based hypothesis generation

Enhancers are cis-regulatory elements distal from their regula-
tory target genes. Proximal and distal interactions of enhancers
with other regulatory elements have been identified by analyzing
3D structures of chromatin [79]. Moreover, enhancer dense
regions, called super-enhancers, are known to be cell type and
state specific [80] and are involved in disease-associated regula-
tory nodes [81]. Studies on enhancers at single cell resolution are
useful in predicting specific cell types, as it has higher accuracy
than other cis-regulatory elements and transcriptomes [82].

Various studies have focused on identifying cell type-specific
enhancers and their involvement in developmental processes.
The most common types of enhancer analyses include identifica-
tion of cell type-specific distal and proximal enhancers [76] and
relative enrichment of enhancer activities [54,83,84]. Notably, var-
ious enhancer databases, such as VISTA [85], CRM Activity Data-
base (CAD) [54], Redfly Enhancer [86], and Vienna Tiles library
[87], can be utilized for such analysis. Furthermore, evaluating
the interactions of enhancers to promoters or genes with co-
accessibility [57], paired scRNA-seq data [88], virtual latent space
[69], and Activity-by-Contact model [83] have been suggested in
several data analysis pipelines.

4.6. Hypothesis generation with disease-associated genetic variants

Disease-associated SNPs detected via genome-wide association
study (GWAS) and expression quantitative trait loci (eQTL) analysis
are useful resources for understanding genomic regulation in dis-
eases. Since most SNPs are located in non-coding regions [68], it
is anticipated that many GWAS SNPs and eQTLs are associated with
cis-regulatory elements; therefore, the study of open chromatin
regions are useful in identifying their functional effects [89,90].
In addition, the identification of cell types relevant to disease-
associated variants is crucial for in-depth understanding of these
variants [91]. Using scATAC-seq, genetic variants can be linked to
their cellular and functional targets through the identification of
both DNA sequences and chromatin accessibility of regulatory ele-
ments at single cell resolution. While relating various epigenetic
features to GWAS signals through various bulk sequencing meth-
ods have provided useful results, single cell resolution analysis
additionally enables us to overcome the limitations imposed by
cell-type heterogeneity [33]. Indeed, several studies have demon-
strated the importance of providing enrichment profiles of GWAS
SNPs in cell-type specific peaks [25,33,67,92]. The modified version
of chromVAR, called gchromVAR, scores each single cell for GWAS
enrichment to identify causal variants in genomic regions and
putative target genes of those variants in a cell type specific man-
ner [92]. By utilizing co-accessibility measurements, intercon-



Fig. 3. Integration of single-cell ATAC sequencing data with single-cell RNA sequencing data via experimental approaches and computational approaches. Integrative analysis
of gene expression and chromatin accessibility for the same cell types can be used for confirming cell identity annotation and for facilitating generating new hypotheses for
regulatory elements. For example, identification of peak-to-gene interactions can infer enhancer-promoter interactions; comparison between expression of a gene and
accessibility of its TF-enriched regions across pseudotime can reveal kinetic relationship between transcription and regulatory regions; comparison between expression of a
gene and accessibility of its TF-enriched regions across cell types or sample groups can reveal expression and accessibility signature associated with a cell type or
subpopulation.
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nected peaks overlapping GWAS SNPs and GTEx eQTL to other
peaks containing regulatory elements can be analyzed [6]. GREGOR
[93] is also used to annotate enrichment of disease-associated
SNPs from various databases [67]. More complex models using
deep learning and machine learning framework to identify cell
type-specific functional SNPs and associated novel functional
genes were also implemented in some recent studies [67,68].
5. Integrative analysis with single-cell transcriptome data

Integration of single-cell gene expression and chromatin acces-
sibility data may improve cell identity annotation. More impor-
tantly, joint analysis of multimodal data will facilitate detecting
correlations between trans- and cis-regulatory elements underly-
ing the cellular state of interest. Integrative analysis of single-cell
transcriptome and chromatin accessibility can be achieved by both
experimental and computational approaches (Fig. 3).

Experimental approaches to integrative analysis focus on
obtaining transcriptome and epigenome data from the same cells
simultaneously. The multimodal single-cell analysis method sci-
CAR employs combinatorial indexing method for both scRNA-seq
and scATAC-seq to increase throughput [94]. Another method,
single-cell chromatin accessibility and transcriptome sequencing
(scCAT-seq), separates cytoplasm components and nuclei for
scRNA-seq and scATAC-seq, respectively [95]. Single-Nucleus chro-
matin Accessibility and mRNA Expression sequencing (SNARE-seq)
method utilizes linked barcodes for capturing both gDNA from
transposed DNA fragments and mRNA from a nucleus in a single
droplet for parallel sequencing using the same barcodes for each
cell [96]. There is a method that involves cell fixation with chemi-
cal reagents, followed by bulk transposition for single cell sorting
to reduce the cost and simplify overall procedures [97]. Using mul-
timodal single-cell technologies, chromatin accessibility can be
directly compared to gene expression for understanding the func-
tional relationships between cis/trans-regulatory elements and
associated gene expressions.

At present, there are algorithmic approaches for computational
integration of single-cell genomics data derived from different
sample groups, experiments, or even technologies. Methods based
on non-negative matrix factorization (NMF), such as CoupledNMF
[62] and LIGER [98], have been proven useful in multimodal
single-cell data integration. Seurat v3 is a widely used method
for scRNA-seq and scATAC-seq integration [7]. Seurat v3 integrates
multimodal single-cell data by projecting two different datasets
into a sub-space defined by correlated variables and then identify-
ing anchors between datasets. Harmony is a fast and scalable algo-
rithm of single-cell data integration based on iterative adjustment
of data-specific clusters [42]. Recently, more approaches for data
integration were reported, including the maximum mean discrep-
ancy manifold alignment (MMD-MA) algorithm [99] and De-
Convolution and Coupled-Clustering (DC3) [100]. The single-cell
multi-omics integration has been used for validation of cell iden-
tity assignments [57,58,69], linking differentially expressed genes
(DEGs) to DARs for inference of enhancer-promoter (E-P) interac-
tions [88], observation of a trend for accessibility of enhancers pre-
dicted by TF-motif to precede changes in gene expression [83] and
identification of conserved chromatin accessibility and transcrip-
tion across cell types or sample groups [101].
6. Conclusion and outlook

Despite potentially wide applications in the study of cellular
systems, a relatively high cost of single-cell sequencing technolo-
gies and high complexity of the data might limit accessibility to
single-cell biology for many researchers. However, there have been
many community-wide efforts for improving both experimental
and computational methods of single-cell omics, including
scATAC-seq data analysis. While a reasonable consensus in data
analysis pipelines has not been achieved yet, the number of publi-
cations on data generation technology and data analysis methods
for scATAC-seq are growing exponentially during recent times.
Benchmarking studies utilizing different methods for data genera-
tion and analysis would provide useful information to the commu-
nity for establishing the best practices of scATAC-seq data analysis
[27]. Moreover, integration with other types of single-cell and bulk
omics data, as well as genomic variation data, will greatly potenti-
ate scATAC-seq studies aimed at elucidating complex circuits of
gene regulation involved in disease progression. Especially, inte-
gration of scATAC-seq with other epigenetic technologies, such as
ChIP-seq and Hi-C, will unravel 3D chromatin structures
[68,102]. Such integrative multimodal analysis will facilitate iden-
tification of key regulators involved in disease progression, which
are often potential therapeutic targets and biomarkers for diagno-
sis. Conclusively, we anticipate that scATAC-seq will promote a
holistic view of epigenetic regulation and regulatory networks
involved in the development of normal cells and disease progres-
sion in human and other multi-cellular organisms.
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